
Xu, Yongdeng

Working Paper

DCC-HEAVY: A multivariate GARCH model with realized
measures of variance and correlation

Cardiff Economics Working Papers, No. E2019/5

Provided in Cooperation with:
Cardiff Business School, Cardiff University

Suggested Citation: Xu, Yongdeng (2019) : DCC-HEAVY: A multivariate GARCH model with realized
measures of variance and correlation, Cardiff Economics Working Papers, No. E2019/5, Cardiff
University, Cardiff Business School, Cardiff

This Version is available at:
https://hdl.handle.net/10419/230438

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/230438
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 

 

 
 

 

Working Paper No. E2019/5 

 

 

 DCC-HEAVY: a multivariate GARCH model with 

realized measures of variance and correlation 

 
Yongdeng Xu  

 

February 2019 
 

ISSN 1749-6010 

 

 

 

Cardiff Economics Working Papers 

This working paper is produced for discussion purpose only. These working papers are expected to be published in 

due course, in revised form, and should not be quoted or cited without the author’s written permission. 

Cardiff Economics Working Papers are available online from:  

http://econpapers.repec.org/paper/cdfwpaper/  and  

business.cardiff.ac.uk/research/academic-sections/economics/working-papers 

Enquiries: EconWP@cardiff.ac.uk 

 

Cardiff Business School 

Cardiff University 

Colum Drive 

Cardiff CF10 3EU 

United Kingdom 

t: +44 (0)29 2087 4000 

f: +44 (0)29 2087 4419 

business.cardiff.ac.uk 
 

 

 

 

http://econpapers.repec.org/paper/cdfwpaper/


DCC-HEAVY: a multivariate GARCH model

with realized measures of variance and

correlation

Yongdeng Xu (Cardiff University)∗

September 2018

Abstract

This paper proposes a new class of multivariate volatility model that

utilising high-frequency data. We call this model the DCC-HEAVY model

as key ingredients are the Engle (2002) DCC model and Shephard and

Sheppard (2012) HEAVY model. We discuss the models’dynamics and

highlight their differences from DCC-GARCH models. Specifically, the

dynamics of conditional variances are driven by the lagged realized vari-

ances, while the dynamics of conditional correlations are driven by the

lagged realized correlations in the DCC-HEAVY model. The new model

removes well known asymptotic bias in DCC-GARCH model estimation

and has more desirable asymptotic properties. We also derive a Quasi-

maximum likelihood estimation and provide closed-form formulas for multi-

step forecasts. Empirical results suggest that the DCC-HEAVY model

outperforms the DCC-GARCH model in and out-of-sample.

Keywords: HEAVY model, Multivariate volatility, High-frequency

data, Forecasting, Wishart distribution
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1 Introduction

Multivariate volatility modeling plays a critical role in the areas of risk man-

agement, portfolio optimization, and asset pricing. Therefore, understanding

and forecasting the temporal and cross-sectional dependence in elements of the

covariance matrix are of vital importance in financial econometrics. The most

popular approach is the multivariate generalized autoregressive conditional het-

eroscedasticity (GARCH) models (reviewed by Bauwens et al., 2006), which

treats the conditional covariance matrix of returns as a deterministic function

of past returns.

More recently, the increasing availability of intraday data has led to the intro-

duction of new types of volatility models that include so-called “high-frequency-

based volatility model”. These new models lead to more accurate measurements

and forecasts of the conditional (co)variance of daily financial returns. Examples

of such models in the univariate case are the multiplicative error model (MEM)

(Engle and Gallo 2006), the HEAVY (high-frequency-based volatility) model

(Shephard and Sheppard 2010), and the Realized GARCH model (Hansen et

al. (2012). In the multivariate context, Noureldin et al. (2012) develop a multi-

variate HEAVY model, which consists of dynamic specifications for conditional

covariance of returns and realized measures of the covariance matrix. In partic-

ular, they show that the dynamics of conditional covariance are driven by the

lagged realized covariance rather that the lagged outer product of daily returns.

The related multivariate HEAVY models are Jin and Maheu (2013) and Op-

schoor et al.(2017), who developed dynamic component models of returns and

realized covariance matrices based on Wishart distributions.1 The multivariate

HEAVY model leads to more accurate measurements and forecasts of the con-

ditional covariance matrix and becomes a popular approach in the multivariate

volatility modeling. The multivariate HEAVY models (i.e. Noureldin et al.,

2012 and Opschoor et al., 2017) usually adopt a scalar BEKK type parameter-

ization to avoid the curse of dimensionality. This scalar model implies that the

conditional variances and covariances all follow the same dynamic pattern. This

is restrictive but reduces the number of parameters enormously.

In this paper, we propose an alternative way to specify the conditional

covariance matrix in the multivariate HEAVY framework. We adopt a DCC

1The related autoregressive Wishard model for the covariance matrix are Gourieroux et al.
(2009),Chiriac and Voev (2011) and Golosnoy, et al. (2012), although the authors apply it to
realized covariance matrices, discarding the daily return observations.
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type parameterization. The DCC type parameterization, which is an equal or

more popular specification than BEKK type parameterization, has attracted

less attention. However It is well known the DCC model is applicable to large

conditional variance-covariance matrix estimation, without imposing a scalars

restriction on the parameters, as the DCC type model is a two-step estima-

tor. It is therefore interesting to study the DCC type parameterization in the

multivariate HEAVY framework.

The new model we propose is called DCC-HEAVY model as key ingredi-

ents are the DCC model and HEAVY model. Specifically, we representation

the conditional covariance matrix of returns in terms of the product of the cor-

responding diagonal matrix of conditional standard deviation and conditional

correlation matrix. Different from DCC-GARCH models, the dynamics of con-

ditional variances(which is the square of standard deviation) are driven by the

lagged realized variances, while the dynamics of conditional correlations are

driven by the lagged realized correlations.

We discuss the models’dynamics and highlight their differences from DCC-

GARCH models. In particular, we show that the new model removes well

known asymptotic bias in DCC-GARCH model estimation and has more de-

sirable asymptotic properties. We also unify the DCC-HEAVY, DCC-GARCH

and DCCX-GARCHX2 in one representation and express them in a vector mul-

tiplicative error form. The statioanry condition and closed-form formulas for

multi-step forecasts are derived.

The DCC-HEAVYmodel is a two-step estimator of conditional variances and

correlations. In the first step the mean equation of each asset in the sample,

nested in a univariate HEAVY model of its conditional variance, is estimated.

Then these univariate variance estimates are used to standardise the return

innovations for each asset. In the second step, a model of the first moments of the

standardised return innovations nested in a scalar multivariate GARCH model

of conditional second moments is estimated. Engle (2002) show that this two

steps procedure produces consistent maximum likelihood parameter estimates.

The two-step approach makes the estimation much simple, and hence the DCC

model is applicable to large conditional variance-covariance matrix estimation,

without imposing a scalars restriction on the parameters.

In an empirical application, we apply the model to 10 most liquid stocks in

the Dow Jones Industrial Average (DJIA) index. Like the univariate HEAVY

2’X’denotes the exogeneous variables. See section 3.1 for details.
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model, we find that the effects of the lagged returns squared are insignificant

when lagged realized variances are included in the conditinoal variance equa-

tions, which implies that the dynamics of conditional variance are driven by the

lagged realized variance only. Likewise, we find that the effect of the lagged

out product of return innovation is insignificant when lagged realized correla-

tion is included in the conditinoal correlation equation, which implies that the

dynamics of conditional correlation are driven by the lagged realized correlation

only. Moreover, our results suggest that the DCC-HEAVY model outperforms

the DCC-GARCH model both in and out-of-sample. It fits with the data better

and provides better out-of-sample forecasts. The out-of-sample forecast gains

comparing with theDCC-GARCH model is substatial. The gains ranges from

10% to 40%.

The remainder of the paper is organized as follows. Section 2 introduces the

DCC-HEAVY model with a comparison to the DCC-GARCH model. Section

3 analysis the model properties in details, including multiplicative error rep-

resentation, multi-step forecasts and model extension. Section 4 discusses the

estimation and inference. Section 5 presents the results of our empirical analy-

sis, along with various statistical in- and out-of-sample forecast comparisons.

Section 6 concludes. The additional Appendix to this paper includes additional

empirical results.

2 The DCC-HEAVY Model

2.1 Multivariate HEAVY framework

Noureldin et al. (2012) extend the HEAVY model in a multivariate version.

Follow their definition, we define rt to be a (k × 1) vector of daily returns and

rj,t be the jth intra-daily vector of returns on a day t where j = 1, 2, ...,m.

Assuming, for instance, 24-hour trading means m = 1440. The outer product

of daily returns is the (k × k) matrix denoted by rtr′t. The realized covariance
measure on the day t is a (k× k) matrix denoted by RCt. One example of RCt
which is used in Noureldin et al. (2012) and this paper is the realized covariance

matrix defined as

RCt =

m∑
j=1

rj,tr
′
j,t

An alternative is to use a noise-robust estimator such as the realized kernel

of Barndorff-Nielsen et al. (2008, 2011). We then define the realized corre-
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lation on the day t as a (k × k) matrix denoted by RLt, such that RLt =

diαg(RCt)
−1/2RCtdiαg(RCt)

−1/2, with unit on the main diagonal. The real-

ized variance on the day t is a (k× 1) vector denoted by vt, which only includes

the diagonal elements in RCt.

The multivariate HEAVY model is the two-equation system

E(rtr
′
t|Ft−1) : = Ht

E(RCt|Ft−1) : = Mt

where E(rt|Ft−1) = 0 is assumed for simplicity, so that Ht is the conditional

covariance matrix of daily return andMt is the conditional mean of the realized

covariance matrix.

For the specification of the dynamics of Ht and Mt, Noureldin et al. (2012)

adopt the BEKK-type model to ensure that the conditional covariance matrix

is positive semidefinite. The key feature of this BEKK-HEAVY model is that

the conditional covariance Ht is a function of lagged realized covariance RCt
rather than the outer product of daily return rtr

′
t. The unrestricted BEKK-

type parameterization has O
(
k2
)
parameters. In applied work, the parameter

matrices are usually imposed to be scalars of diagonal matrices to avoid the

curse of dimensionality.

2.2 DCC-HEAVY Model

An alternative specification for the condition covariance matrix is the condi-

tional correlation (DCC-)GARCH type model, proposed by Engle (2002). The

idea is to decompose the conditional covariance matrix of returns in terms of the

product of the corresponding diagonal matrix of conditional standard deviation

and conditional correlation matrix. Let’s rewrite the return vector rt by the

relation

rt = ut � h1/2t , ut ∼ i.i.d N(0, Rt) (1)

where � denotes the Hadamard (element by element) product; ht is the condi-
tional variance of returns and Rt is the conditinal correlation matrix of returns.

Rt is a symmetric positive definite correlation matrix with unit diagonal ele-

ments.

The conditional covariance matrix, Ht , can be decomposed as:

Ht = diαg[h
1/2
t ]Rtdiαg[h

1/2
t ].) (2)
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The specification for the conditional covariance consists with the specifica-

tions of conditional variance ht and conditional correlation Rt. The dynamics

of the conditional variance can be expressed as HEAVY-r (Shephard and Shep-

pard, 2010):

ht=ωh +Ahvt−1 +Bhht−1 (3)

where ωh is a (k × 1) vector, Ah and Bh are (k × k) a diagonal matrix 3 .

The dynamics of the conditional correlation can be expressed similarly as:

Rt = R̃+ αrRLt−1 + βrRt−1 (4)

where R̃ = (1 − βr) R̄ − αrP̄ is a k × k matrix; R̄ equals the unconditional

correlation matrix of ut; P̄ equals the unconditional mean matrix of RLt; αq, βq
are non-negative scalar parameters satisfying βρ < 1. The elements of R̄ and

P̄ can be set to their empirical counterpart to render the estimation simpler.

There are only two parameters (αq and βq) that are needed to be estimated.

Since RLt has unit diagonal elements, Rt is a well-defined correlation matrix

for all t if the initial matrix R0 is a correlation matrix. Matrix R̃ satisfies the

constraints of a correlation matrix, i.e. positive definite symmetric with unit

diagonal elements. Hence, reparameterising Rt as in the DCC-GARCH model

is not needed.

Eq (2), (3) and (4) forms the DCC-HEAVY model.

To close the DCC-HEAVY model, we need to specify the dynamics for the

realized covariance matrix. Following Bauwens et al. (2012), the realized co-

variance matrix can be specified as a DCC type model such that

E(RCt|Ft−1) := Mt

Mt = diαg[m
1/2
t ]Ptdiαg[m

1/2
t ]. (5)

where mt is the conditional mean of realized variance and Pt is the conditional

mean of the realized correlation matrix.

The realized variance mt follows a HEAVY-RM (or MEM) structure:

mt=ωm +Amvt−1 +Bmmt−1 (6)

3Ah can be full k× k matrix to allow spillover effects, but Bh is restricted to be a diagnol
matrix. This specification enables estimating the k-dimentional variance model eqation-by-
equation.
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where ωm is a (k × 1) vector, Am and Bm are (k × k) matrix.

The realized correlation matrix Pt is defined in the following way:

Pt = P̃ + αpRLt + βpPt−1 (7)

where P̃ = (1 − αp − βp)P̄ with P̄ an k × k unconditional mean matrix of

RLt, and αp, βp are non-negative scalar parameters satisfying αp +βp < 1. The

elements of P̄ can be set to their empirical counterpart to render the estimation

simpler4 .

The DCC-HEAVY model can be estimated in two steps, and a QML inter-

pretation is given to each step in section 3.

Remark 1 The DCC-HEAVY model can be simplified to a CCC-HEAVY model
if Rt is constant. The CCC-HEAVY model consistent the following two equa-

tions:

rt = ut � h1/2t , ut ∼ i.i.d(0, R) (8)

ht = ωh +Ahvt−1 +Bhht−1

vt = mt � εvt , εvt ∼ i.i.d(I,Σv) (9)

mt = ωm +Amvt−1 +Bmmt−1

The correlation matrix R is constant, which can be estimated jointly with

other parameters in ht equation.

2.3 Comparison with the DCC-GARCH model

DCC-GARCH model (Engle 2002) for the conditional covariance matrix consists

with the specifications of conditional variance ht

ht=ωh +Ahrt−1 +Bhht−1 (10)

where ωh is a (k × 1) vector, Ah and Bh are (k × k) diagonal matrix, and

specification of conditional correlation Rt

Rt = {diag(Qt)}−1/2Qt{diag(Qt)}−1/2 (11)

4E(RLt) is not equal to the uncontitional correlation matrix Pt,due to the non-linearity of
the the transformation from covariance to correlation. However, Bauwens et al. (2012) shows
that for large RCt (RCt is caculated from large enough number of high-frequency returns), P̄
should be equal to E(RLt).
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where the k × k symmetric positive definite matrix Qt = (qij,t) is given by5 :

Qt = (1− αq − βq)Q̄+ αq[ut−1u
′
t−1] + βqQt−1 (12)

where αq, βq are non-negative scalar parameters satisfying αq + βq < 1 and Q̄

is the k × k matrix.
Note that the parameterising Rt = {diag(Qt)}−1/2Qt{diag(Qt)}−1/2 is to

guarantee Rt a well-defined correlation matrix (positive defined symmetric ma-

trix with unit diagonal elements). Qt itself does not have this property since

ut−1u
′
t−1 is not a symmetric matrix with non-unit diagonal elements. However,

this parameterisation results in two issues in the DCC model estimates and

forecasts.

First, Engle (2002) assumes that Q̄ ' R̄, where R̄ is the unconditional

correlation of ut. The elements Q̄ are set to their empirical counterpart to render

the estimation simpler. However due to the non-linearity of the transformation

from Rt to Qt6 , the term Q̄ is not the unconditional correlation of ut, which is

also acknowledged in Engle and Sheppard (2001) and Aielli (2013). Therefore,

Q̄ is a biased estimator and the effect is that the estimates αq and βq will be

biased as well. These asymptotic biases are due to the fact that 1
T

∑
t utu

′
u does

not converge to Q̄.

Second, multiple-step ahead forecasting requires Et(Rt+s). However, the

DCC evolution process is a non-linear process

Qt+s = Q̃+ αq[ut+s−1u
′
t+s−1] + βqQt+s−1

where Et[ut+s−1u′t+s−1] = Et[Rt+s−1] andRt+s = {diag(Qt)}−1/2Qt{diag(Qt)}−1/2.
Thus, the s-step ahead forecast of the correlation cannot be directly solved for-

ward to provide a convenient method for forecasting. A simple approximation

(Engle and Sheppard 2001) to set Et[Qt+s] ≈ Et[Rt+s], then derive forecast as

Rt+s|s = Q̄+ αq[ut+s−1|su
′
t+s−1|s] + βqRt+s−1|s

= Q̄+ (αq + βq)Rt+s−1
(13)

But this is a biased forecast.

Due to the asymptotic bias, the DCC-GARCH model may result in mis-

leading conclusions. Aielli(2013) shows that the bias is an increasing function

5Tse and Tsui (2002) use a different specification in their DCC-GARCH model.
6For example,Jason’s inequality shows that E[(xt)−1/2] 6= [E(xt)]−1/2
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of the persistence of the correlation process. Engle et al. (2008) and Aielli

(2013) suggest to modify the standard DCC in order to correct the asymptotic

bias proposes a modified DCC model (cDCC), but additioal issues arisng in

estimation, for example, a third step estimation is needed which generate more

ineffi ciency (see Aielli, 2013).

The DCC-HEAVY model is more tractable and does not suffer from the

asymptotic bias. It differs with DCC-GARCH model in three ways: 1) the

dynamics of conditional variances ht are driven by the lagged realized volatil-

ities vt−1; 2) the conditional correlation Rt is modelled directly rather than

parameterised in a sandwich form as in eq.(11); 3) the dynamics of conditional

correlations Rt are driven by the lagged realized correlations RLt−1.

The latter two enables DCC-HEAVY model deriable asymptotic properties.

In the correlation matrix equation (eq.(4)), RLt has unit diagonal elements

and is a well-defined correlation matrix for all t and R̃ is a parameter that

satisfies the constraints of a correlation matrix. So Rt is a well-defined cor-

relation matrix for all t as long as the initial value R0 is a correlation ma-

trix. Hence, reparameterising Rt as in the DCC-GARCH model such that

Rt = {diag(Qt)}−1/2Qt{diag(Qt)}−1/2 = Qt is not necessary. As a result,

the asymptotic bias due to the nolinear transformation from Rt to Qt in DCC-

GARCHmodel does not exist in DCC-HEAVYmodel. Therefore, DCC-HEAVY

model is more tractable has a better asympotitc properties than DCC-GARCH

model.

3 Representation, Forecasting and Extension

In this section, we look further the properties of DCC-HEAVY model. We first

represent the DCC-HEAVY model in a multiplicative error form and discuss its

dynamics. We then derive closed-form formulas for multi-step forecasts. Finally,

we discuss model extensions by adding asymmetric effects.

3.1 Multiplicative Error Representation

To better understand the dynamics, we express the DCC-HEAVY model in a

multiplicative error form.

We begin with the conditional and realized variance equations. Defining

xt = [r2t , vt]
′ and µt = [ht,mt]

′, where xt and µt is a (2k × 1) the vector,

the vector multiplicative representation for conditional and realized variance

9



equations (eq.(3) and (6)) are

E(xt|Ft−1) : = µt

µt = ω +Axt−1 +Bµt−1 (14)

where

ω=

[
ωh

ωm

]
, A=

[
0 Ah

0 Am

]
, B=

[
Bh

Bm

]
.

Note ifA=

[
Ah

0 Am

]
, it becomes a DCC-GARCHmodel; ifA=

[
Ah Ahm

0 Am

]
,

it becomes a DCC-GARCHX model. These are the two models that we will es-

timate in the empirical analysis for comparison with our DCC-HEAVY model

purpose.

Then defining Y t = [utu
′
t, RLt]

′ and Φt = [Rt, Pt]
′ , where Y t and Φt is

a (2k × k) matrix, the matrix multiplicative representation for conditional and
realized correlation matrix equations (eq.(4) and (7)) are

E(Y t|Ft−1) : = Φt

Φt = W + αY t−1 + βΦt−1 (15)

where

W=

[
R̃

P̃

]
, α=

[
αr

0 αp

]
, β=

[
βr

βp

]

Note if α=

[
αq

0 αp

]
, it becomes DCC-GARCHmodel; if α=

[
αq αr

0 αp

]
,

it becomes DCCX-GARCH model.

Note that Rt is equal to Qt in DCC(X)-GARCH model, so E(Y t|Ft−1) :'
Φt. This approximation does affect the multi-step ahead forecasting, as shown

in the next subsection.

To summary, the DCC-HEAVY model in multiplicative error form has the

following two equations:

1) Conditional and realized variance equations:

E(xt|Ft−1) := µt

µt = ω +Axt−1 +Bµt−1
(16)
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2) Conditional and realized correlation matrix equations:

E(Y t|Ft−1) := Φt

Φt = W + αY t−1 + βΦt−1
(17)

The stationary conditions are given as follows:

max(eig(A+B)) < 1

max(eig(α+ β)) < 1 (18)

3.2 Multiple-step ahead Forecasting

We are primarily interested in forecasting the conditional covariance matrix of

daily returns, Ht. The s-step ahead forecasts of Ht+s|t is:

Et[Ht+s] = Et[diαg(h
1/2
t+s)Rt+sdiαg(h

1/2
t+s)]

= Et[diαg(h
1/2
t+s)]Et[Rt+s]Et[diαg(h

1/2
t+s)]

We need to forecast Et[ht+s] and Et[Rt+s].

For forecasting of Et[ht+s] and Et[Rt+s], we use the multiplicative error

form, which is more general and valid for both DCC-HEAVY, DCC-GARCH

and DCCX-GARCH model. We forecast Et(µt+s) and Et(Φt+s), denoted by

µt+s|t and Φt+s|t, respectively.

Let’s start with eq.(14) and forecast µt+s|t.We move steps ahead, xt+s|t, s >

0 is not known and needs to be substituted with its corresponding conditional

expectation µt+s|t, hence

µt+1|t = ω +Axt +Bµt

µt+s|t = ω + (A+B)µt+s−1|t for s � 2 (19)

which can be solved recursively for any horizon s. A closed form forecasts for

µt+s|t can be derived as:

µt+s|t = ω̃ + Cs−1µt+1|t for s � 2

where ω̃ = (I − C)−1(I − Cs−1)ω and C = (A+B).

We then derive a similar result for Et(Φt+s) from eq.(15) as following:

11



Φt+1|t = W + αY t + βΦt

Φt+s|t = W + (α+ β)Φt+s−1|t for s � 2. (20)

A closed form forecasts for φt+s|t can be derived as:

Φt+s|t = W̃ + cs−1Φt+1|t for s � 2

where W̃ = (I − c)−1(I − cs−1)W and c = (α+ β).

Next, the DCC-HEAVY model s-step ahead forecast µt+s|t andΦt+s|t can be

derived from eq.(19) and eq.(20) by settingA=

[
0 Ah

0 Am

]
, B=

[
Bh

Bm

]
, α=

[
αr

0 αp

]
,

β=

[
βr

βp

]
.

After obtaining µt+s|t and Φt+s|t, the s-step ahead forecast of condition

variance Et[ht+s] is the first k elements of µt+s|t and the s-step forecast of

condition correlation Et[Rt+s] is the first k elements of Φt+s|t. Then, the s-step

ahead forecast of Et[Ht+s] is given by

Et[Ht+s] = Et[diαg(h
1/2
t+s)]Et[Rt+s]Et[diαg(h

1/2
t+s)]. (21)

For out-of-sample forecast evaluation, we use two loss functions. The first

one a quasi-likelihood (QLIK) loss function (e.g., Noureldin et al., 2012) of the

form

Lt,s(Σt+s, H
a
t+s|t) = |Σt+s|+ tr((Ha

t+s|t)
−1Σt+s)− log |(Ha

t+s|t)
−1 − k (22)

where Σt+s is the actual (unobserved) covariance matrix and Ha
t+s|t denotes its

s-step forecast using model a conditional on time t information.

The second loss function is the root-mean-squared error (RMSE) based on

the Frobenius norm (Chiriac and Voev, 2011 and Golosnoy et al. , 2012) of the

forecast error, which is defined by

FNs =
1

s

∑
t

||Σt+s −Ha
t+s|t|| =

1

s

∑
t

∑
i,j

(σij,t+s − hij,t+s)2
1/2 . (23)

Since Σt+s is unobservable, our analysis will be based on some proxy denoted
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by Σt+s, which we take to be the realized covariance matrix, RCt+s. The loss

function evaluates the s-step predicted density from model a using the proxy

Σ̂t+s as data, and it provides a consistent ranking of volatility models in the

sense of Patton (2011) and Patton and Sheppard (2009) as it is robust to noise

in the proxy Σ̂t+s; see also Laurent et al. (2013).

3.3 DCC-HEAVY model extension

It has long been recognized that financial markets react differently to positive

and negative news. The asymmetric effect is now commonly used to refer to any

volatility model, univariate and multivariate alike, in which the (co)variances

respond asymmetrically to positive and negative shocks. The DCC-HEAVY

model can be extended by incorporating the asymmetric effect to both the

variance and correlation equation. In the variance equation, the asymmetric

effect implies that volatility tends to increase more following negative return

shocks than after equally-sized positive shocks. In the correlation equation, the

asymmetric effect implies that the correlation between stock returns tends to

increase when the market turns down. The extended model is called ADCC-

HEAVY model.

Defing Dt=diαg[dt] = diαg(dh1t, d
h
2t, ..., d

h
kt), where d

h
jt = 1 if rjt < 0 and

dhjt = 0, if rit � 0 for i = 1, .., k, and define Dr
t = Dt D

′
t , the dynamics of the

conditional covariance matrix in the asymmetric ADCC-HEAVY model are

Ht = diαg[h
1/2
t ]Rtdiαg[h

1/2
t ] (24)

ht = ωh +Ahvt−1 +Bhht−1 + γhDt−1vt−1

Rt = R̃+ αrRLt−1 + βrRt−1 + γrD
r
t−1RLt−1

where R̃ = (1 − βr) R̄ − (αr + γrD̄
r)P̄ is a k × k matrix and D̄r equals

the unconditional mean Dr
t . If asymmetric effects are significant, then γh and

γr should be positive.

We can also add asymmetric effects in the realized covariance equations. The

dynamics of the realized covariance matrix in the asymmetric form are

13



Mt = diαg[m
1/2
t ]Ptdiαg[m

1/2
t ].

mt = ωm +Amvt−1 +Bmmt−1 + γmDt−1vt−1

Pt = P̃ + αpRLt + βpPt−1 + γrD
r
t−1RLt−1

Furthermore, the heterogeneous autoregressive (HAR) model of Corsi (2009)

has arguably emerged as the most widely used univariate realized volatility-

based forecasting model. The model was extended to a multivariate setting by

Chiriac and Voev (2010) and Oh and Patton (2016). We add the HAR model

structure to the realized covariance equations 7 :

Mt = diαg[m
1/2
t ]Ptdiαg[m

1/2
t ]. (25)

mt = ωm +Amvt−1 +Bmmt−1 + γmDt−1vt−1 + αwmv
w
t−1 + αmmv

m
t−1

Pt = P̃ + αpRLt + βpPt−1 + γpD
r
t−1RLt−1 + αwp RL

w
t−1 + αmp RL

m
t−1

where vwt−1 = 1
5

∑5
j=1 vt−j and v

m
t−1 = 1

22

∑22
j=1 vt−j andRL

w
t−1 = 1

5

∑5
j=1RLt−j

and RLmt−1 = 1
22

∑22
j=1RLt−j , so P̃ = (1− αp − βp − γrD̄r − αwp − αmp )P̄ .

The out-of-sample forecasts of ADCC-HEAVY model can be derived recur-

sively. The formulas are provided in the additional appendix.

4 Estimation and Inference

DCC-HEAVY model is parameterized with a finite-dimensional (δ×1) parame-

ter vector θ ∈ Θ ⊂ Rδ. Decompose θ = (θ′H , θ
′
M ) where the (δH × 1) vector

θH and the (δM × 1) vector θM denote the parameters vector in the conditional

covariance and realized covariance equations, respectively. θH and θM could

be estimated separately, as they are variation free in the sense of Engle et al.

(1983). Then θH and θM in DCC-HEAVY model can be estimated by two-step

estimation as proposed by Engle (2002).

7Note we also test the HAR structure in the conditional covariance equations, but the
effects are insignificant, so we only add HAR structure in the realized covariance equations.
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4.1 Estimation of θH in the condition covariance equations

Now let’s write the return vector rt by the relation

rt = ut � h1/2t , ut|Ft−1 ∼ N(0, Rt) (26)

Ht = diαg[h
1/2
t ]Rtdiαg[h

1/2
t ] (27)

A natural choice of density for the innovation of return is the multivariate

Gaussian distribution, the log-likelihood for returns equation can be written as

LH(θH ; rt) = −1

2

T∑
t=1

(k log(2π) + log(|Ht|) + r′tH
−1
t rt) (28)

= −1

2

T∑
t=1

(
k log(2π) + 2 log(|diαg(h

1/2
t )|) + log(|Rt|) + u′tR

−1
t ut

)
The DCC type model can also be estimated by two-step estimation as pro-

posed by Engle (2002). The parameter space θH is split into θH1 for the para-

meters in the variance equation and θH2 for the parameters in the correlation

equation. We denote by QLH1 the likelihood where Rt in (28) is replaced by

the identity matrix

LH1(θH1;rt) = −1

2

T∑
t=1

(
k log(2π) + 2 log(|diαg(h

1/2
t )|) + u′tut

)
(29)

We denote by QLH2 the likelihood given θH1 where we have concentrate out ht:

LH2(θH2;rt, θH1) = −1

2

T∑
t=1

(
k log(2π) + log(|Rt|) + u′tR

−1
t ut

)
(30)

The DCC-HEAVY model is a two-step estimator of conditional variance

and correlation. Two-step estimation is simple, and an ineffi cient but consistent

estimator of the parameter θH can be found.

Engle (2002) show that this two steps procedure produces consistent max-

imum likelihood parameter estimates. The two-step approach makes the esti-

mation much simple, and hence the DCC type of model is applicable to large

conditional variance-covariance matrix estimation, without imposing a scalars

restriction on the parameters.
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4.2 Estimation of θM in the realized covariance equations

Since realized covariance is a symmetric positive define matrix, a natural choice

of density for the innovation in the realized covariance equation is the Wishart

distribution.

We assume RCt follows a n−dimensional central Wishart distribution and
denote this assumption by

RCt|Ft−1 ∼Wk(ν,Mt/ν)

where ν(> k − 1) is the degree of freedom. From the properties of the Wishart

distribution - see e.g. Anderson (1984) and Golosnoy, Gribisch, and Liesenfeld

(2012)- it follows that

E(RCt|Ft−1) := Mt

Using the expression of a Wishart density function, and of Mt in (5), we

obtain the loglikelihood contribution

LM (θM ;RCt) =

T∑
t=1

{
CM −

v

2
log(|Mt|)−

v

2
tr(M−1t RCt)

}
(31)

= CM +

T∑
t=1

{
−v

2
log(|VtPtVt|)−

v

2
tr((VtPtVt)

−1RCt)
}

where CM = vk
2 log v

2 + (v−k−1)
2 log |RCt| −

∑k
i=1 log Γ[v + 1 − i)/2] which are

constants with respect to θM .

The DCC-HEAVY model for realized covariance matrix can also be esti-

mated in two steps. The parameter space θM is split into θM1 for the parame-

ters in the realized volatility model and θM2 for the parameters in the realized

correlation model. We denote by LM1 the likelihood where Pt in (31) is replaced

by the identity matrix.

LM1(θM1;RCt) = −
T∑
t=1

{
v log(|Vt|) +

v

2
tr(V −1t RCtV

−1
t )

}
(32)

We denote by LM2 the likelihood given θM1 where we have concentrate out vt:

LM2(θM2;RCt, θM1) = −v
2

T∑
t=1

{
log(|Pt|) + tr((P−1t − /Ik)V −1t RCtV

−1
t )

}
(33)
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Figure 1: Figure 1. Annualized realized volatility and realized correlation.

Two-step estimation is simple, and an ineffi cient but consistent estimator of the

parameter θM can be found.

5 Empirical Application

5.1 Data

We use the same data as Noureldin et al. (2012), which is available to download

from JAE data archive.

They use high-frequency data from 10 most liquid stocks in the Dow Jones

Industrial Average (DJIA) index. These are: Alcoa (AA), American Express

(AXP), Bank of America (BAC), Coca Cola (KO), Du Pont (DD), General Elec-

tric (GE), International Business Machines (IBM), JP Morgan (JPM), Microsoft

(MSFT), and Exxon Mobil (XOM). The sample period is 1 February 2001 to

31 December 2009 with a total of 2242 trading days, and the data source is the

TAQ database.

The main focus of the empirical application is on modelling and forecasting

the conditional covariance matrix of all 10 stocks using the DCC-HEAVY model.

We slso estimate 5 stocks, 4 stocks, 3 stocks and 2 stocks combinations for
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robustness check.

Figure 1 contains the annualized realized volatility of BAC, IBM and AA,

and their realized correlation over the full sample. The sharp increase in volatil-

ity in 2008—2009 is associated with the turmoil in financial markets during the

recent financial crisis. The increase in volatility is much more pronounced es-

pecially after the collapse of Lehman Brothers in mid September 2008. The

realized correlation is very persistent. And the realized correlation seems to

have been relatively high during the crisis.

5.2 Empirical results

In Table I, we present the HEAVY, GARCH and GARCHX model estimates.

This is the first step parameter estimates in the variance equation. The estimate

of βr in HEAVY model is smaller than that in GARCH model, implying that

the elements of volatility in HEAVY model will be smooth, although less smooth

than the corresponding estimates from the GARCH model. Compared to the

nesting GARCH-X model, there is no loss of fit when moving to HEAVY-R

since the coeffi cient on αrr in GARCH-X model is not statistically significant.

This is not the case when moving from GARCH-X to GARCH, which suggests

that conditional variance is effectively driven by lagged realized variance.

In Table 2, we present the DCC-HEAVY, DCC-GARCH and DCCX-GARCH

model estimates. This is second step parameter estimates in the conditional

correlation equation. These estimates are largely in line with those from the

univariate HEAVY model in Table 1 and Shephard and Sheppard (2010). The

estimate of βr in DCC-HEAVY model is smaller than that in DCC-GARCH

model, implying that the elements of correlation in DCC-HEAVY model will

be smooth, although less smooth than the corresponding estimates from the

DCC-GARCH model. Compared to the nesting DCCX-GARCH model, there

is no loss of fit when moving to DCC-HEAVY since the coeffi cient on αrr in

DCCX-GARCH model is not statistically significant. This is not the case when

moving from DCCX-GARCH to DCC-GARCH, which suggests that conditional

correlation is effectively driven by lagged realized correlation.

The estimates also suggest that the DCC-HEAVY model’s half-life (of a

deviation of the one-step forecast of conditional variance or correlation from

its long run) is substantially shorter than that of the DCC-GARCH model,

suggesting that the former’s forecast responds faster to abrupt changes in the

level of volatility or correlation.
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Table 1: Step 1 parameter estimates in the variance equation

GARCH GARCHX HEAVY-R HEAVY-RM

αrr βr αrr βr αrR βr αrR αm βm
BAC 0.067 0.927 0.003 0.644 0.604 0.641 0.614 0.474 0.526

( 2 .5 3 ) ( 3 2 .7 0 ) ( 0 .2 7 ) ( 7 .1 1 ) ( 3 .2 0 ) ( 7 .5 9 ) ( 3 .7 3 ) ( 9 .8 6 ) ( 1 0 .9 6 )

JPM 0.086 0.914 0.007 0.767 0.347 0.763 0.363 0.501 0.499

( 4 .8 9 ) ( 5 2 .3 0 ) ( 0 .4 7 ) ( 1 0 .6 8 ) ( 2 .8 2 ) ( 1 0 .8 3 ) ( 3 .1 9 ) ( 1 1 .3 0 ) ( 1 1 .2 7 )

IBM 0.106 0.879 0.034 0.513 0.699 0.499 0.782 0.352 0.634

( 1 .0 9 ) ( 8 .0 2 ) ( 1 .4 0 ) ( 3 .3 7 ) ( 2 .6 7 ) ( 3 .1 1 ) ( 2 .9 5 ) ( 9 .2 0 ) ( 1 6 .1 0 )

DD 0.061 0.931 0.005 0.655 0.453 0.652 0.463 0.366 0.618

( 2 .9 8 ) ( 4 1 .6 0 ) ( 0 .2 2 ) ( 7 .9 9 ) ( 3 .3 4 ) ( 8 .6 5 ) ( 4 .2 2 ) ( 1 0 .7 1 ) ( 1 7 .3 9 )

XOM 0.082 0.895 0.008 0.695 0.339 0.691 0.354 0.378 0.603

( 5 .5 3 ) ( 4 7 .6 0 ) ( 0 .4 5 ) ( 1 0 .9 6 ) ( 4 .0 5 ) ( 1 1 .3 1 ) ( 4 .8 7 ) ( 1 1 .3 5 ) ( 1 7 .5 0 )

AA 0.045 0.948 0.000 0.868 0.197 0.868 0.197 0.314 0.669

( 4 .2 2 ) ( 7 2 .9 2 ) ( . ) ( 4 .9 1 ) ( 0 .7 6 ) ( 4 .9 1 ) ( 0 .7 6 ) ( 9 .4 7 ) ( 1 9 .4 1 )

AXP 0.095 0.905 0.001 0.727 0.442 0.726 0.444 0.397 0.603

( 6 .8 2 ) ( 6 4 .7 6 ) ( 0 .1 3 ) ( 1 3 .3 0 ) ( 4 .5 7 ) ( 1 3 .6 6 ) ( 4 .8 1 ) ( 1 0 .6 5 ) ( 1 6 .2 0 )

DD 0.061 0.931 0.005 0.655 0.453 0.652 0.463 0.366 0.618

( 2 .9 8 ) ( 4 1 .6 0 ) ( 0 .2 2 ) ( 7 .9 9 ) ( 3 .3 4 ) ( 8 .6 5 ) ( 4 .2 2 ) ( 1 0 .7 1 ) ( 1 7 .3 9 )

GE 0.054 0.945 0.011 0.478 0.837 0.509 0.799 0.369 0.631

( 3 .2 9 ) ( 5 7 .5 6 ) ( 0 .1 2 ) ( 1 .1 6 ) ( 1 .3 1 ) ( 2 3 .8 1 ) ( . ) ( 1 1 .3 8 ) ( 1 9 .4 5 )

KO 0.105 0.888 0.057 0.556 0.515 0.491 0.659 0.356 0.631

( 1 .7 0 ) ( 1 4 .2 0 ) ( 1 .6 9 ) ( 4 .7 8 ) ( 2 .8 3 ) ( 4 .4 7 ) ( 4 .3 6 ) ( 1 0 .6 1 ) ( 1 8 .5 8 )

Note: robust t statistics are reported in the bracket.

The log-likelihood and its decomposition into variance and correlation equa-

tion are reported in Penal B of Table 2. It indicates an improvement in fit of the

DCC-HEAVY model compared to the DCC-GARCH model. The decomposi-

tion suggests that the DCC-HEAVY improves on DCC-GARCH model in both

the variance and correlation equation. However, most of the in sample gains are

coming from the variance equation. The overall improvement is substantial.

Table 3 gives the results of the out of sample forecasting comparison. We

estimate the model using a rolling window of 1486 observations. The size of the

rolling window is chosen such that our forecasts start on 3 January 2007. The

forecast period 3 January 2007 to 31 December 2009. We use the parameter

estimates to obtain forecasts of Ht+s|t at horizons s = 1, 5, 22 days using eq.(21).

Table 3 reports the ratio of the losses for the DCC-HEAVY model relative to

the losses of the DCC-GARCH model at the different forecast horizon.

The results show that DCC-HEAVY outperforms DCC-GARCH, especially

at short forecast horizons. This is true for the whole covariance matrix forecast

as well as its decomposition into variance and correlation components, which
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Table 2: Step 2 parameter estimates in the correlation equation

DCC-GARCH DCCX-GARCH DCC-HEAVY HEAVY-RC

αrr βr αrr βr αrR βr αrR αm βm
0.010 0.974 0.012 0.795 0.106 0.761 0.131 0.077 0.908

( 4.58) (137.1) ( 1.33) (20.3) ( 5.04) (17.16) ( 6.24) (22.45) (195.8)

Panel B: Log-likelihood decomposition (DCC-HEAVY vs DCC-GARCH)

DCC-GARCH DCC-HEAVY DCC-HEAVY Gains

Variance -4316 -4249 67

Correlation -2714 -2705 9

Joint distribution -7030 -6955 76

Note: robust t statistics are reported in the bracket. HEAVY-RC is the parameter estimates of

realized correlation equation.

provides further insight into the source of forecast gains. Based on RMSE as

loss function, it can be seen that the overall forecast of the covaraince matrix

gain is relatively large. The DCC-HEAVY model reduces the forecast error of

the covariance matrix by 30% compared with the DCC-GARCH model. Based

on QLIK as loss function, the overall forecast gain is still substatial. The only

exeption is the 1 month (22 days) ahead forecasts, where DCC-GARCH model

outperfoms DCC-HEAVY model by 4.9%. Overall, our empirical results show

the superior forecasting ability of DCC-HEAVY model. Consistent with the in

sample log-likelihood statistics, most of the forecasting gains are coming from

variance equations. But it does suggest that the realized measure provides

valuable information for forecasting the conditional correlation.

We also estimate the ADCC-HEAVY model and forecasting the conditional

covariance matrix by using ADCC-HEAVY model. For sake of space, we only

report the out of sample forecast results in the last two colums of Table 3.

The two step estimation results for ADCC-HEAVY model can be found in the

additional appendix. The results in Table 3 show that the ADCC-HEAVY

further improve the out-os-sample forecasts accuracy. Based on RMSE as loss

function, it can be seen that the overall forecast of covariance matrix gain is

large. The DCC-HEAVY model reduces the forecast error by 40% compared

with the DCC-GARCH model. Again, most of the forecasting improvements

are coming from variance equations.
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Table 3: Ratio of the losses(DCC-HEAVY and ADCC-HEAVY vs DCC-GARCH)

DCC-HEAVY ADCC-HEAVY

RMSE QLIK RMSE QLIK

Covariance s=1 0.7118 0.7303 0.6391 0.7841

s=5 0.7453 0.8135 0.6092 0.8143

s=22 0.7616 1.0488 0.6751 0.9703

Variance s=1 0.8720 0.6667 0.8336 0.6534

s=5 0.8566 0.7648 0.7760 0.7296

s=22 0.8828 0.9713 0.8399 0.9360

Correlation s=1 0.9231 0.9254 0.9355 0.9902

s=5 0.9547 0.9854 0.9645 0.9810

s=22 0.9877 1.0400 1.0084 0.9825

Note: Ratio of the losses for the DCC-HEAVY and ADCC-HEAVY models

relative to the losses of the DCC-GARCH model

5.3 Robustness

For robustness, we estimate the DCC-HEAVY model including only 5 stocks.

We divide the ten stocks into two paris, each pair includes 5 stocks. The first

step variance equation estimation is exactly the same as Table 1. We report

the second step correlation equation estimation in Table 4 and 5. The out of

sample comparison results is reported in Table 6.

Table 4: Step 2 correlation estimation results (5 stocks pair 1)

DCC-GARCH DCCX-GARCH DCC-HEAVY RC-HEAVY

0.009 0.981 0.006 0.686 0.171 0.641 0.195 0.102 0.879

( 3 .6 4 ) ( 1 4 0 .9 ) ( 0 .9 8 ) ( 2 .2 3 ) ( 1 .1 2 ) ( 2 .2 4 ) ( 1 .4 9 ) ( 1 6 .2 9 ) ( 1 0 4 .7 )

Panel B: Log-likelihood decomposition (DCC-HEAVY vs DCC-GARCH)

DCC-GARCH DCC-HEAVY DCC-HEAVY gains

Variance -4339 -4287 53

Correlation -2860 -2854 6

Joint distribution -7199 -7140 59

The results are consistent with 10 stocks estimation results. It can be seen

that the conditional correlation is mainly driven by the lagged realized correla-

tion. The DCC-HEAVY model outperforms DCC-GARCH model both in and

out of the sample. However, most of the gains are coming from the variance

equations.

We also estimate 4 stocks, 3 stocks and 2 stocks conditional correlation equa-
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Table 5: Step 2 correlation estimation results (5 stocks pair 2)

DCC-GARCH DCCX-GARCH DCC-HEAVY RC-HEAVY

0.027 0.927 0.026 0.722 0.156 0.653 0.218 0.114 0.871

( 2 .6 2 ) ( 2 5 .2 8 ) ( 2 .5 8 ) ( 1 3 .2 2 ) ( 3 .8 2 ) ( 1 1 .7 9 ) ( 6 .4 6 ) ( 1 7 .6 6 ) ( 1 0 8 .9 )

Panel B: Log-likelihood decomposition (DCC-HEAVY vs DCC-GARCH)

DCC-GARCH DCC-HEAVY DCC-HEAVY gains

Variance -4293 -4212 81

Correlation -2825 -2815 10

Joint distribution -7118 -7028 91

Table 6: Ratio of the losses (DCC-HEAVY vs DCC-GARCH)

5 assets pair 1 5 assets pair 2

RMSE QLIK RMSE QLIK

Covariance s=1 0.8103 0.6929 0.6370 0.7760

s=5 0.8290 0.7884 0.6810 0.8070

s=22 0.7940 0.9642 0.7260 1.1150

Variance s=1 0.8406 0.6627 0.9030 0.6710

s=5 0.8699 0.7666 0.8430 0.7630

s=22 0.8802 0.9342 0.8850 1.0080

Correlation s=1 0.9375 0.9492 0.9070 1.7410

s=5 0.9636 0.9530 0.9360 1.1600

s=22 0.9853 0.9580 0.9780 1.0570

Note: this table reports the ratio of the losses for the DCC-HEAVY models

relative to the losses of DCC-GARCH models.

tions and compare the forecasting performance with DCC-GARCH model. The

main conclusion always holds. The additional appendix provides the detailed

results.

6 Conclusion

This paper proposes a new class of multivariate volatility model utilising high-

frequency data. We call this model DCC-HEAVY as key ingredients are Engle

(2002) DCC model and Shephard and Sheppard (2010) HEAVY model. In

the DCC-HEAVY model, the dynamics of conditional variances are driven by

the lagged realized variances, while the dynamics of conditional correlations are

driven by the lagged realized correlations. The DCC-HEAVY model removes the
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well know asymptotic bias (Aielli 2013) in DCC-GARCH estimation, has more

desirable asymptotic properties. We also derive a Quasi-maximum likelihood

estimation and provide closed-form formulas for multi-step forecasts. Empirical

results suggest that the DCC-HEAVY model outperforms the DCC-GARCH

model in and out-of-sample.
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