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Abstract

When limited to heterosexual marriage, agents of different genders are not guaranteed

to harvest the same payoff even conditional on having the same type, and even if all

other factors, such as search costs or the distribution of partner types, are the same

across genders. If same-sex marriage is legalized and there is a positive mass of agents

who find marriage with both sexes acceptable, then only symmetric equilibria survive

in symmetric environments.
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1 Introduction

Modern marriage is a civil contract that brings both spouses economic and contractual

benefits. Inheritance issues, tax benefits, immigration status, adoption opportunities, etc.,

frequently depend upon marital status. Meanwhile, in many modern countries sex, cohabi-

tation, and parenthood do not require marriage. Why then are many people, married and

not, so strongly opinionated against same-sex marriage? Some of this resistance might be

cultural or emotional, but we find an economic rationale for such an opposition. In this

paper, we show that if same-sex marriage is prohibited, then asymmetric equilibria can arise

in the marriage market, specifically that otherwise similar agents of different genders obtain

different payoffs. Moreover, one of the genders can be systematically oppressed, meaning

that all agents of one gender obtain a lower payoff than otherwise identical agents of the op-

posite gender. However, as we show in the paper, if same-sex marriage is allowed, then every

marriage market equilibrium (in an otherwise gender-symmetric environment) is a symmetric

one, meaning that agents’ payoffs are gender-independent. We show that an arbitrarily tiny

proportion of bisexual individuals is sufficient to guarantee gender-neutral market outcomes

in the presence of same-sex marriage. This may be a reason for the advantaged gender to

oppose such marriages.

Our model is based on the framework by Atakan (2006a), in which each agent has fixed

per period search costs and the surplus of marriage is split according to the Nash bargaining

solution. We show that once genders are formally introduced to this framework and only

heterosexual marriage is allowed, then for each equilibrium in Atakan (2006a) there is a

continuum of asymmetric equilibria. This gender inequality is maintained by limiting the

set of marital partners to the opposite gender. Suppose that one of the genders expects a

higher equilibrium payoff, which acts as a disagreement outcome in each current or potential

match. This means that each agent of such gender is more demanding, so representatives

of the dominated gender, being forced to marry representatives of the dominating gender,

expect forthcoming matches to be equally demanding, and therefore accommodate such

higher demands from current suitors, which leads to an asymmetric equilibrium. After
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illustrating the possibility of asymmetric outcomes, we allow for same-sex marriage. It turns

out, that as long as there are some bisexual people, i.e. those who are able to accept marriage

with both genders, only symmetric equilibrium outcomes are possible.

Remarkably, this result does not depend on the size of the bisexual cohort. The key

mechanism is that allowing same-sex marriage improves a disagreement point for bisexuals

of an oppressed gender, which lowers equilibrium payoffs for all agents of the advantaged

gender, and thereby benefits all, even the heterosexual, agents of the dominated gender. This

process unravels until all the gender-driven asymmetries disappear. However, asymmetries

which are not related to institutional restrictions on marriage but arise due to differences

in genders1 may still remain. We show, however, that even such strong asymmetries might

disappear in a purely bisexual society.

Our paper makes contributions to several strands of literature in the social sciences.

The theoretical literature on marriage starts with Becker (1973) who showed that under the

supermodularity of the marriage production function, marriage market equilibria feature

positive assortative matching—“better” husbands get “better” wives. This result was sub-

sequently extended by Atakan (2006a), who considered fixed search frictions, and by Shimer

and Smith (2000), who considered time-dependent search frictions (which requires the log-

supermodularity of the production function to obtain positive assortative matching) and by

Smith (2006), who modelled a non-transferable utility (in which case a “class” equilibrium

can arise: space of types gets broken into classes by ability, and higher class members of one

gender marry higher class members of another gender). We contribute to this literature by

establishing the existence of equilibrium in a matching model with fixed search costs and

exogenous constraints on matching opportunities (Theorem 1).

The main focus of our paper is on gender asymmetries rather than the properties of

the distribution of matches. Gender asymmetries in marriage outcomes were studied by

Burdett and Coles (1997), where they arise due to the differences in equilibrium produc-

tivity type distributions, and in Bhaskar and Hopkins (2016) where such productivity type

1A biased gender ratio, as described in Abramitzky et al. (2011), is the most obvious asymmetry that
can drive outcome asymmetries; see Burdett and Coles (1997) for more theoretical examples.
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differences can arise due to the difference of returns to investments in productivity type.

The nature of asymmetry in our paper is quite different, since asymmetric outcomes exist

in a purely symmetric environment due to the distribution of bargaining power in equilib-

rium (see Proposition 2). Moreover, we show that asymmetries arising to the distribution of

productivity types disappear in a bisexual environment with same-sex marriage.

A vast literature on intra-household allocation (see, e.g. Browning et al. (1994) and

Browning and Chiappori (1998)) studies how the distribution of bargaining power affects

intra-house consumption decisions. Although this literature mainly connects bargaining

power to traits (age, income, etc.), some of the differences are explained by mere gender.

Wright and Rogers (2011) provide an overview of the dynamics of gender inequality in labor

distribution in US families that shows that the difference between genders were significant,

but are diminishing with time, seemingly connected with better workplace opportunities for

females. Not all inequality comes from the current status of either partner: Tichenor (1999)

shows that even if a wife earns more than her husband, she does not necessarily enjoys more

power in the family. This is perfectly consistent with our model: we can demonstrate an

equilibrium where the wife of a better type collects a smaller lifetime payoff. Black et al.

(2007) provide some statistics on same- and opposite-sex families in the US; notably, in same-

sex couples, both partners are more likely to work. Oreffice (2011) documents that traits

can affect the distribution of bargaining power differently in homosexual and heterosexual

marriages.

Attitudes to same-sex marriage are significantly different between the two sexes. Olson

et al. (2006) documents that females have substantially more positive attitudes about it than

males. Lewis and Gossett (2008) also find females to be less opposed to same-sex marriage.

Baunach (2012) notes a significant liberalization of public attitudes to same-sex marriage

during the period from 1988 till 2010. She found that in all periods of study females had

a significantly more positive attitude to same-sex marriage than males. She claims that

“changing same-sex marriage attitudes are not due to demographic changes ... [R]ather, the

liberalization in same-sex marriage attitudes ... is due primarily to a general societal change
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in attitudes”, which can be interpreted as a change in equilibrium beliefs in our formal model.

The structure of the paper is as follows. The formal model is presented in section 2. In

section 3 we define the equilibrium and prove its existence. Our key results on the impact

of same-sex marriage restrictions on gender inequality are presented in section 4. In section

5 we discuss the role of our assumptions and possible extensions of our model.

2 Model

There are infinitely many agents in the model. Each agent is characterized by a two-

dimensional type (i, x) with i ∈ T, x ∈ [0, 1]. The set of types which can form a partnership

is restricted with respect to i ∈ T : for i, j ∈ T , let aij = 1 if marriage is possible and

aij = 0 if it is not2, either due to sexual orientation or for legal reasons.3 For example, if

there are females and males in the population and if either same-sex marriage is prohibited

or if all agents are heterosexual, then we have aFF = aMM = 0 and aMF = aFM = 1. We

assume that at least some of aij = 1 for every i and impose aij = aji. Each type i appears

in the population with the probability qi ∈ [0, 1],
∑

i∈T qi = 1. Let x be the “productivity”

component of the type, which directly affects the pay-offs of the participants of the marriage

market.

In every period agents meet a potential partner and bear costs c > 0. Agents can decide

whether to accept or reject the match. If aij = 1 and both agents (i, x) and (j, y) agree

to marry then they harvest joint production f(x, y), which is defined by the production

function f : [0, 1]2 → R++, and then quit the market. Note that we assume that the output

in the marriage is solely defined by the productivity component of the agents’ types and is

not related to the gender component.

2Our results can be directly extended to the case when aij ∈ [0, 1]. In this case aij can be interpreted as
the probability that a match between types i and j is possible. An alternative interpretation of ai,j ∈ (0, 1)
is that some kinds of marriage are legal but repugnant in the sense of Roth (2018): part of the surplus of
such a marriage is dissipated.

3We interpret T as a set of restrictions derived from sexual orientation and legal constraints, but our
model extends to other restrictions on possible matches, arising due to race, class, caste, etc.
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Assumption 1. f(·, ·) is positive, symmetric, increasing in both arguments and Lipschitz

continuous of modulus K.

This assumption implies that (i) higher productivity types are more attractive partners

in marriage, and (ii) roles in marriage for both partners are equal. Lipschitz continuity is a

technical assumption which is used in the proof of the existence of the equilibrium.

The productivity of an unmatched agent of type i ∈ T is distributed according to the

cumulative distribution function Gi : [0, 1]→ [0, 1]. We assume that Gi(·) has a continuous

bounded density on [0, 1]. We assume that when a married agent (i, x) leaves the market

she is replaced with an agent of the same type, and therefore the distribution of types is

stationary.

When agents (i, x) and (j, y) decide to marry, they produce f(x, y) and divide it according

to Nash’s (1950) bargaining solution. Let vi(x) and vj(y) be the expected continuation values

of rejecting the match and continuing searching, to be defined later. These values serve as a

disagreement point in the Nash bargaining problem. Then, if the match is accepted by both

players their payoffs are {vi(x) + sij(x, y), vj(y) + sij(x, y)}, where

sij(x, y) ≡ f(x, y)− vi(x)− vj(y)

2

is the surplus.

3 Definition and Existence of Equilibrium

Let Aij(x) ⊆ [0, 1] be a set of productivity types with j ∈ T acceptable by agent (i, x). Our

setting imposes the following restriction

aij = 0⇒ Aij = ∅. (1)

The payoff function from a match between players (i, x) and (j, y) is specified by
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π[x, y, Aij(x), Aji(y)] =


−c if x /∈ Aji(y) or y /∈ Aij(x)

−c+ vi(x) + sij(x, y) if x ∈ Aji(y) and y ∈ Aij(x)

0 if matched in previous rounds

(2)

Now we are ready to define the value function of player (i, x).

vi(x) = max
Âij

{∑
j∈T

qjEj,yt

∞∑
t=0

π[x, yt, Âij, Aji(yt)]

}
(3)

with (1) satisfied for Âij. Notation Ej,yt means that the expectation is taken with respect to

yt ∼ Gj.

Definition 1. Search equilibrium is a function v : T × [0, 1] → R and a strategy Aij(x)

for each i ∈ T , x ∈ [0, 1] such that

1. Aij(x) solves problem (3) given that all other types (j, y) ∈ T × [0, 1] are playing the

strategy Ajk(y), k ∈ T and the payoff function (2) is defined according to vi(x);

2. vi(x) satisfies (3) given that all players (j, y) ∈ T × [0, 1] are playing Ajk(y), k ∈ T ,

and payoff function (2) is defined according to (3);

3. matching sets Aij(y) satisfy restriction (1).

The following theorem establishes the existence of the equilibrium.

Theorem 1. Under Assumption 1, the search equilibrium exists.

The proof, which is similar to that by Atakan (2006b), is presented in Appendix B.

Denote by Mij(x) the matching sets of type (i, x), i.e. types (j, y) which both accept (i, x)

and are accepted by (i, x). Suppose that agent (i, x) meets agent (j, y) and that aij = 1.

Then, the value function can be represented as

7



vij(x, y) = max

{
sij(x, y) + vi(x),−c+

∑
l∈T

qlEl,zvi,l(x, z)

}
=

max {sij(x, y) + vi(x), vi(x)}

Thus, the match is accepted whenever surplus sij(x, y) is non-negative.4 As the same logic

applies to player (j, y) we conclude that Mij(x) = {(j, y) : sij(x, y) ≥ 0, aij = 1}. If aij = 0

then Mij(x) = ∅. The following Proposition proves that the constant surplus condition

holds in equilibrium.

Proposition 1. For all (i, x) ∈ T × [0, 1]

∑
j∈T

qj

∫
Mij(x)

sij(x, y)dGj(y) = c. (4)

4 Gender and Asymmetries

Once we have established the existence of equilibrium in our generalized model we can

proceed with the analysis of the impact of marriage restrictions on gender inequality.

First, consider the model by Atakan (2006a). Since this model does not have any gender

differences, we can treat it as an essentially one-gender model with a11 = 1. Since the division

of the surplus cannot be conditioned on sex in such a setting, the equilibrium is necessarily

symmetric. It satisfies the constant surplus condition (4). Let ṽc(x) be the value function

associated with such equilibrium when the search cost is c.

Now we explore how the possibility of having different types of players affects the existence

of asymmetric equilibria.

Definition 2. An equilibrium is asymmetric if for some i, j ∈ T and x ∈ [0, 1]: vi(x) 6=

vj(x).

4We ignore superficial equilibria in which nobody marries nobody because everyone expects to be rejected.
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We start our analysis with the world with two genders and no sexual orientation asym-

metries T = {F,M}. A few questions may be asked here. Are there asymmetric equilibria in

a model with two genders? If yes, what drives such asymmetries? Is it necessary to have two

different productivity type distributions GF 6= GM in order to have asymmetric equilibria?

How does sexual orientation impact the existence of asymmetric outcomes? Namely, what

is the difference between an environment when every agent is straight or same-sex marriage

is forbidden (aFM = aMF = 1, aFF = aMM = 0) and an environment when all players are

bisexual and same-sex marriage is allowed (aFM = aMF = aFF = aMM = 1)?

We start by considering an environment when same-sex marriage is forbidden, but other-

wise the model is symmetric, i.e. qF = qM = 1/2 and GF (x) = GM(x) = G(x). If everybody

was bisexual and same-sex marriage was allowed, we would have the unisex equilibrium of

Atakan (2006a) described above, with value function ṽc(x). Now, take the value function

ṽ2c(x) associated with the unisex equilibrium, but with double the search costs, to reflect

that the chance of meeting the opposite gender agent is twice smaller. Let M̃(x) be the

matching set associated with such an equilibrium. Define

vF (x) = ṽ2c −∆, vM(x) = ṽ2c + ∆. (5)

for some ∆ > 0. We claim that such value functions vF , vM together with matching sets

MFM(x) = MMF (x) = M̃(x), MFF = MMM = ∅ constitute an asymmetric equilibrium in a

search economy when same-sex marriage is prohibited. First note that if the value functions

are defined by (5) then the surplus remains the same as in the unisex economy:

sFM(x, y) = sMF (x, y) =
f(x, y)− vF (x)− vM(y)

2
=
f(x, y)− ṽ2c(x)− ṽ2c(y)

2
≡ s̃(x, y)

and thus the matching sets are exactly the same as M̃(x). Moreover, the optimal stopping

problem is consistent with the value functions, i.e. if the agent is expected to get ṽ2c±∆ in

the next round, this is also her current value function:
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vF (x) = −c+
1

2
[ṽ2c(x)−∆] +

1

2
Emax{s̃(x, y) + ṽ2c −∆, ṽ2c −∆}

=
1

2
[ṽ2c(x)− 2∆] +

1

2
[−2c+ ṽ2c(x) + Emax{s̃(x, y), 0}] = ṽ2c(x)−∆

is defined recursively by ṽ2c(x) = −2c + ṽ2c(x) + Emax{s̃(x, y), 0}. The same logic applies

to vM . This brings us to the following conclusion.

Proposition 2. Suppose that aFM = aMF = 1 and aFF = aMM = 0, qF = qM = 1/2 and

GF (x) = GM(x) for all x ∈ [0, 1]. Then there exists a continuum of asymmetric equilibria

with vi(x) < vj(x) for all values of x ∈ [0, 1].

Note that our result does not simply say that there is unequal treatment of agents in

equilibrium, meaning that the same productivity types get different payoffs depending on

their gender (for example high productivity F ’s and low productivity M ’s are treated better

than their opposite gender counterparts). We show that the difference in payoffs can be

persistent across all productivity types, meaning that there can be a systematic discrimi-

nation against one of the genders. That is, all the F ’s can get lower payoffs than the M ’s of

the same productivity type. These differences are not driven by asymmetries in the environ-

ment, which is symmetric, but are purely a result of coordination on a specific equilibrium

outcome. This is in contrast to Burdett and Coles (1997) and others5, where differences

between gender payoffs are driven solely by differences in some gender characteristics, e.g.

distributions of productivity types.

Next we consider an environment in which there are no hurdles for same-sex marriage:

aFM = aMF = aFF = aMM = 1. Moreover, we allow for all sorts of asymmetries in gender

distribution: qF 6= qM and GF (x) 6= GM(x). As the following Proposition establishes, even

in such strikingly asymmetric environment all equilibria are necessarily symmetric.

5This is also the case in Bergstrom and Bagnoli (1993), Siow (1998), Chiappori and Oreffice (2008), Coles
and Francesconi (2011), and Bhaskar and Hopkins (2016).
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Proposition 3. Suppose that aFM = aMF = aFF = aMM = 1. Then, in any equilibrium

vF (x) = vM(x) for all x ∈ [0, 1].

Proposition 2 highlights the fact that in the model with transferable utility gender dif-

ferences in payoffs can arise purely because of exogenous gender restrictions on possible

matches, while Proposition 3 shows that the absence of such restrictions leads to the equal

treatment of genders even in asymmetric environments, e.g. such as in papers listed in

Footnote 5. However, it relies on two important conditions: (i) that same-sex marriage is

allowed and (ii) that all agents are willing to accept a same sex partner. Condition (i) is a

policy issue and, as we have illustrated, the absence of institutional restrictions on same-sex

marriage is generally good for gender equality. Condition (ii) relates to human nature and it

is unreasonable to assume that it holds in real societies, since some of their members would

find it impossible to marry a person of the same gender, regardless of his or her produc-

tivity characteristics. We intend to show that even having a tiny proportion of agents who

are willing to accept partners of both genders is sufficient to guarantee gender equality in

environments which are gender-symmetric. This key result is the main focus of the rest of

this section.

Suppose that agents now differ both in their gender and their sexuality. We will distin-

guish heterosexual agents who can only match with the opposite gender and bisexual agents

who can match with both genders.6 Let the set of types be T = {FB,FH,MB,MH}. We

make the following assumption on possible matches:

aiH,ij = aij,iH = 0, i ∈ {F,M}, j ∈ {B,H}

and all other a’s are equal to 1. That is, heterosexual people can only marry the opposite

gender. Moreover, we impose the condition that the environment is symmetric with respect

to genders.

6For the sake of brevity, we omit purely homosexual agents: their presence would not break the feedback
loop from heterosexual to homosexual marriages via bisexuals that we will exploit. If anything, they would
make our result easier to obtain by applying additional pressure towards making genders more equal.
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Assumption 2. qFB = qMB = q and qFH = qMH = 1− q and GFB(x) = GMB(x) = GB(x)

and GFH(x) = GMH(x) = GH(x) for all x ∈ [0, 1].

Without this assumption the difference in agents’ payoffs can be driven purely by the

composition of the available pool of matching candidates. If, say, there were only a few F ’s

they would benefit at the expense of the MH’s. The same logic applies to the differences

between heterosexual and bisexual people: even in a symmetric environment bisexual people

meet potentially suitable candidates more often than straight ones do and as a result obtain

higher payoffs in equilibrium. To address this issue we redefine the notion of symmetry in

the following way.

Definition 3. An equilibrium is gender-symmetric if vFi(x) = vMi(x) for all x ∈ [0, 1]

and i = H,B.

Now we can proceed with the main result of our paper.

Proposition 4. Suppose that Assumptions 1 and 2 hold, q > 0 and f(·, ·) is supermodular.

Then all equilibria are gender-symmetric.

Our previous analysis suggested that the presence of bisexual types should reduce gender

inequality if same-sex marriage is possible. What is surprising is that gender inequality

completely disappears for all values of q > 0, regardless of how small q is. The mechanism

behind this result is as follows. Start with some asymmetric equilibrium in a situation

when same-sex marriage was outlawed, and allow for same-sex marriage. Then the bisexual

members of a dominated gender, say, the F ’s, will start matching with each other. This

will drive up their disagreement point thereby making the M ’s less picky. This in turn will

increase the payoffs for all the F ’s, bisexual or not. This process continues until all the

gender-driven differences in payoffs are wiped out.

The supermodularity of the production function is usually assumed to obtain positive

assortative matching, see Shimer and Smith (2000) and Atakan (2006a). In this paper we

do not study the properties of matching distribution7 and the supermodularity assumption

7Jepsen and Jepsen (2002) find evidence of positive assortative matching in both heterosexual and same-
sex marriages in the US Census data.
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in our model guarantees that the bisexuals of disadvantaged gender match with themselves

in equilibrium. It is a sufficient condition for such matches, but it can be shown that it is

not a necessary one.

5 Discussion

In this paper, we show that same-sex marriage might lead to a more egalitarian society:

while people of differing abilities will still get different payoffs from marriage, people of the

same ability and of the same attitude to same-sex marriage would get the same payoff.

Our model relies on the assumption that the willingness to participate in same-sex mar-

riage is deterministic. This assumption can be easily replaced with the assumption that

agents can participate in homosexual marriage with a certain probability. Such a replace-

ment would be equivalent to assuming that aij are no longer drawn from a binary domain,

but are real numbers between zero and one. The matching equilibrium still exists and the

results of Proposition 4 hold as long as the probability of matching with the opposite gender

is positive.

Our model can also encompass taste shocks or “love”. It can be modelled by replacing

f(x, y) with f(x, y) + ε, where ε is a random shock. As long as the distribution of ε does

not depend on gender, our main result in Proposition 4 holds.

We do not include purely homosexual types in our model, because they do not have any

impact on gender equality, which is the main focus of our paper. However, it is obvious

that if such agents existed in our model, they could only benefit from the introduction of

same-sex marriage, since in the past they simply could not participate in the market. The

impact of such agents on the surpluses earned by specific productivity types is unclear and

would depend on the distribution of productivity types among homosexuals. However, as

long as homosexuals of both genders are of equal measure and have the same distribution

of traits, any matching market equilibrium is symmetric, provided that there is a positive

mass of bisexuals.
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We assume that the search costs are constant and type-independent. However, if the

equilibrium exists, then the result of Proposition 4 holds for type-dependent search costs,

c(x), because the proof is based on the constant-surplus conditions (6)-(9) written out for

one type alone, the most advantaged type. The same holds for the proportion of bisexual

population among those whom this type can meet, q(x). Having gender-dependent search

costs, however, destroys the gender symmetry. If the search costs were value-dependent, for

instance, featuring time discounting, the symmetric equilibrium could be guaranteed even

without same-sex marriage.

We assumed that leaving agents are replaced with clones, which results in stationary

productivity type distributions and marriage strategies. If this assumption is relaxed, then

the equilibrium distribution of traits might be different for each of the two genders, leading

to asymmetry in the payoffs. If all agents are bisexual, the equilibrium remains gender

symmetric, but a small fraction of the bisexuals is no longer sufficient for guaranteeing

gender symmetry.

With this paper, we show that same sex marriage helps to achieve equality between

genders if the populations were originally symmetric. Institutional aspects borne by gender

inequality, such as unequal access to education, healthcare or privacy, might produce dif-

ferent ability distributions in the two genders, even if ex-ante distributions were identical,

reinforcing the gender inequality. Our propositions suggest that some inequality can be tol-

erated when the bisexual population is large enough; the proof of Proposition 3 is robust

to differences across genders with respect to ability distribution or gender imbalances. We

leave these issues for future research.
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Appendix A: Proofs

Proof of Proposition 1. Note, that

vi(x) =
∑
j∈T

qj

∫ 1

0

max{−c+ vi(x),−c+ vi(x) + sij(x, y)aij}dGj(y) =

− c+ vi(x) +
∑
j∈T

qj

∫
Mij(x)

sij(x, y)dGj(y)

Cancelling vi(x) and rearranging terms gives

∑
j∈T

qj

∫
Mij(x)

sij(x, y)dGj(y) = c.

Proof of Proposition 3. Suppose that for some x we have vM(x) > vF (x). From

Proposition 1 it follows that

qM

∫ 1

0

[f(x, y)− vM(x)− vM(y)]+dGM(y) + qF

∫ 1

0

[f(x, y)− vM(x)− vF (y)]+dGF (y) = 2c

qM

∫ 1

0

[f(x, y)− vF (x)− vM(y)]+dGM(y) + qF

∫ 1

0

[f(x, y)− vF (x)− vF (y)]+dGF (y) = 2c

where [z]+ = max{z, 0}. Subtracting one equation from another yields

qM

∫ 1

0

{
[f(x, y)− vM(x)− vM(y)]+ − [f(x, y)− vF (x)− vM(y)]+

}
dGM(y)+

qF

∫ 1

0

{
[f(x, y)− vM(x)− vF (y)]+ − [f(x, y)− vF (x)− vF (y)]+

}
dGF (y) = 0

However, due to vM(x) > vF (x) both summands are negative, so we arrive at a contradiction.

Proof of Proposition 4.
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Define z(x, y) ≡ f(x, y)− vFH(x)− vFH(y) and define

∆(x) ≡ vMH(x)− vFH(x)

∆M(x) ≡ vMB(x)− vMH(x)

∆F (x) ≡ vFB(x)− vFH(x)

i.e., ∆(x) is a premium for being male for type x conditional on being heterosexual, ∆M(x)

(∆F (x) ) is a premium for being bisexual conditional on being a male (female) of type x.

Moreover, to define matching sets

MBMB(x) = {y : z(x, y)−∆(x)−∆M(x)−∆(y)−∆M(y) > 0}

MBFB(x) = {y : z(x, y)−∆(x)−∆M(x)−∆F (y) > 0}

MBFH(x) = {y : z(x, y)−∆(x)−∆M(x) > 0}

MHFB(x) = {y : z(x, y)−∆(x)−∆F (y) > 0}

MHFH(x) = {y : z(x, y)−∆(x) > 0}

FBMB(x) = {y : z(x, y)−∆F (x)−∆(y)−∆M(y) > 0}

FBMH(x) = {y : z(x, y)−∆F (x)−∆(y) > 0}

FBFB(x) = {y : z(x, y)−∆F (x)−∆F (y) > 0}

FHMB(x) = {y : z(x, y)−∆(y)−∆M(y) > 0}

FHMH(x) = {y : z(x, y)−∆(y) > 0}

Choose the type with the largest gender difference:

x0 ∈ arg max
y

(max{|vMH(y)− vFH(y)|, |vMB(y)− vFB(y)|})

Without loss of generality we assume that this type is male. We write out the optimal

stopping conditions for type x0 of various gender and sexual orientation combinations using

16



our notation:

q

∫
MBMB(x0)

[z(x0, y)−∆(x0)−∆M(x0)−∆(y)−∆M(y)]dGB(y)+

q

∫
MBFB(x0)

[z(x0, y)−∆(x0)−∆M(x0)−∆F (y)]dGB(y)+

(1− q)
∫
MBFH(x0)

[z(x0, y)−∆(x0)−∆M(x0)]dGH(y) = 2c

(6)

q

∫
MHFB(x0)

[z(x0, y)−∆(x0)−∆F (y)]dGB(y)+

(1− q)
∫
MHFH(x0)

[z(x0, y)−∆(x0)]dGH(y) = 2c

(7)

q

∫
FBMB(x0)

[z(x0, y)−∆F (x0)−∆(y)−∆M(y)]dGB(y)+

q

∫
FBFB(x0)

[z(x0, y)−∆F (x0)−∆F (y)]dGB(y)+

(1− q)
∫
FBMH(x0)

[z(x0, y)−∆F (x0)−∆(y)]dGH(y) = 2c

(8)

q

∫
FHMB(x0)

[z(x0, y)−∆(y)−∆M(y)]dGB(y)+

(1− q)
∫
FHMH(x0)

[z(x0, y)−∆(y)]dGH(y) = 2c

(9)

Now, suppose that vMH(x0) − vFH(x0) ≥ vMB(x0) − vFB(x0), i.e. the gender gap is

maximal among straight people. Then, ∆(x0) ≥ max{∆(y),∆(y) + ∆M(y)−∆F (y)}. Then,

we get that

∫
MHFB(x0)

[z(x0, y)−∆(x0)−∆F (y)]dGB(y) ≤
∫
FHMB(x0)

[z(x0, y)−∆(y)−∆M(y)]dGB(y)

∫
MHFH(x0)

[z(x0, y)−∆(x0)]dGH(y) ≤
∫
FHMH(x0)

[z(x0, y)−∆(y)]dGH(y)

From (7) and (9) we get that both these expressions must hold as equalities, which implies

that ∆(x0) = ∆(y) for all y ∈ FHMH(x0) = MHFH(x0) and ∆(x0) = ∆(y) + ∆M(y) −

∆F (y) for all y ∈ FHMB(x0) = MHFB(x0). Since MHFB(x0) ⊂ MHFH(x0) we obtain
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that ∆M(y) = ∆F (y) for all y ∈ MHFB(x0). Thus, we conclude that all the types suffer

the same amount of discrimination regardless of their sexual orientation. This is equivalent

to having the largest gender gap among bisexual people – the case we deal with next.

Finally, suppose that vMH(x0) − vFH(x0) ≤ vMB(x0) − vFB(x0), i.e. the gender gap is

maximal among bisexual people. Then, ∆(x0) + ∆M(x0) − ∆F (x0) ≥ max{∆(y),∆(y) +

∆M(y)−∆F (y)}. This implies that

∫
MBMB(x0)

[z(x0, y)−∆(x0)−∆M(x0)−∆(y)−∆M(y)]dGB(y) ≤∫
FBFB(x0)

[z(x0, y)−∆F (x0)−∆F (y)]dGB(y)

∫
MBFB(x0)

[z(x0, y)−∆(x0)−∆M(x0)−∆F (y)]dGB(y) ≤∫
FBMB(x0)

[z(x0, y)−∆F (x0)−∆(y)−∆M(y)]dGB(y)

∫
MBFH(x0)

[z(x0, y)−∆(x0)−∆M(x0)]dGH(y) ≤∫
FBMH(x0)

[z(x0, y)−∆F (x0)−∆(y)]dGH(y)

Again, all these expressions must be equalities due to (6) and (8).

First we show that FBFB(x0) is non-empty using the supermodularity of F (·, ·). Sup-

pose that FBFB(x0) = ∅. Then, (i) MBMB(x0) = ∅ and (ii) vFB(x0) = vFH(x0).

FHMH(x0) 6= ∅. This implies that if FBFB(x0) = ∅

f(x0, x0)− vFH(x0)− vFH(x0)−∆(x0) < f(x0, x0)− vFH(x0)− vFH(x0) < 0.

Because both sexual orientations suffer equally from discrimination, we know that for all

y ∈ FHMH(x0) = MHFH(x0) the level of discrimination is constant: ∆(y) = ∆(x0) (see
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the case above). Now let

y = arg max
y≥x0

[f(x0, y)− vFH(x0)− vFH(y)−∆(y)]

y = arg max
y≤x0

[f(x0, y)− vFH(x0)− vFH(y)−∆(y)]

That is, y (y) is the best possible match that is larger (smaller) than x0. Now, the surplus

is sFHMH(x, y) = 1
2
[f(x, y)− vFH(x)− vFH(y)−∆(y)]. The supermodularity of f(·, ·) gives

sFHMH(y, y)− sFHMH(y, x0) > sFHMH(x0, y)− sFHMH(x0, x0)

Thus, since sFHMH(x0, x0) < 0 we get that sFHMH(y, y) > sFHMH(y, x0) + sFHMH(x0, y)

and because for all y ∈ FHMH(x0) we have ∆(y) = ∆(x0) we have that sFHMH(y, y) >

2sFHMH(x0, y). Similarly, sFHMH(y, y) > 2sFHMH(x0, y). Now, because the matching set is

defined as a set where the surplus is positive we get that

∫
FHMH(y)

s(y, y)dGH(y) ≥
∫
FHMH(x0)∩{y≥x0}

s(y, y)dGH(y) ≥ 2

∫
FHMH(x0)∩{y≥x0}

s(x0, y)dGH(y)

∫
FHMH(y)

s(y, y)dGH(y) ≥
∫
FHMH(x0)∩{y≤x0}

s(y, y)dGH(y) ≥ 2

∫
FHMH(x0)∩{y≤x0}

s(x0, y)dGH(y)

Note, that since FHMH(x0) 6= 0 (for otherwise the agent marries no one and gets the

lifetime utility of negative infinity), then at least one ultimate inequality in either expressions

is strict.
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The same proof can be constructed for FHMB(x0).
8 Thus, we conclude that

c = (1− q)
∫
FHMH(x0)

s(x0, y)dGH(y) + q

∫
FHMB(x0)

s(x0, y)dGB(y) =

(1− q)
[∫

FHMH(x0)∩{y≤x0}
s(x0, y)dGH(y) +

∫
FHMH(x0)∩{y≥x0}

s(x0, y)dGH(y)

]
+

q

[∫
FHMB(x0)∩{y≤x0}

s(x0, y)dGB(y) +

∫
FHMB(x0)∩{y≥x0}

s(x0, y)dGB(y)

]
<

1

2
(1− q)

∫
FHMH(y)

s(y, y)dGH(y) +
1

2
q

∫
FHMB(y)

s(y, y)dGB(y)+

1

2
(1− q)

∫
FHMH(y)

s(y, y)dGH(y) +
1

2
q

∫
FHMB(y)

s(y, y)dGB(y) = c

Thus, we arrive at a contradiction, and FBFB(x0) is non-empty.

Thus, for all y ∈ MBMB(x0) = FBFB(x0) we obtain ∆(x0) + ∆M(x0) − ∆F (x0) =

−∆(y) − ∆M(y) + ∆F (y) and for all y ∈ MBFB(x0) = FBMB(x0) we obtain ∆(x0) +

∆M(x0)−∆F (x0) = ∆(y) + ∆M(y)−∆F (y). Note also that any y ∈MBMB(x0) such that

∆(y)+∆M(y)−∆F (y) > 0 also is an element of MBFB(x0) and if ∆(y)+∆M(y)−∆F (y) > 0

it must be an element of FBMB(x0). Thus, MBMB(x0) ∪MBFB(x0) is non-empty and

therefore for all y from this set it must hold that ∆(y) + ∆M(y)−∆F (y) = 0 and therefore

∆(x0) + ∆M(x0)−∆F (x0) = 0.

Appendix B: Existence

The existence proof requires a sequence of Lemmas. Lemma 1 deals with the solution to the

optimal stopping problem for an arbitrary choice of value functions. Lemma 2 establishes

that the mapping of value functions defined in (10) is bounded, and thus we deal with a

compact set of value functions. Lemma 3 establishes the continuity of this mapping. Then

the existence result follows from Schauder’s fixed point theorem.

Denote f = f(0, 0), f = f(1, 1). Let W be a set of functions w : T × [0, 1] →
8Note that both ∆M (y) and ∆M (x0) cancel on both sides of sFHMB(y, y) − sFHMB(y, x0) >

sFHMB(x0, y)− sFHMB(x0, x0).

20



[
−c+ (f −K)/2, (f +K)/2

]
. Pick up some w = {wi}i∈T . Denote

πw
ij (x, y) =

f(x, y) + wi(x)− wj(y)

2
aij

That is, payoff either equals the Nash bargaining share of the surplus or zero, if the match

is not admissible. Define

vwi (x) = max
Âij

{∑
j∈T

qjEj,yt

∞∑
t=0

πw
ij [x, yt, Âij, Aji(yt)]

}
, s.t. (1) (10)

where Ej,yt means that yt is distributed according to Gj.

Lemma 1. For any given w the optimal stopping problem has a solution in stationary

strategies and (j, y) is accepted by (i, x) if (i, j) satisfy (1) and πw
ij (x, y) ≥ vwi (x).

Proof. Existence of the optimal stopping rule is proved in Chapter 9 of Stokey et al. (1989).

Suppose, that type (i, x) is matched with type (j, y) and now has to decide whether to accept

the match. Denote vwij (x, y) the value function of this decision. If the match is accepted,

then the payoff is πw
ij (x, y). If the match is rejected, then the game continues and the payoff

is
∑

l∈T qlEl,zv
w
il (x, z). Thus,

vwij (x, y) = max

{
πw
ij (x, y),−c+

∑
l∈T

qlEl,zv
w
il (x, z)

}
= max

{
πw
ij (x, y), vwi (x)

}
which completes the proof.

Lemma 2. For all (i, x) ∈ T × [0, 1]

−c+ min

{
0,
f −K

2

}
≤ vwi (x) ≤ f +K

2

and vwi (x) is Lipschitz-continuous of modulus K in x.
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Proof. Due to the Lipschitz-continuity of f we have πw
ij (x, y) ∈

[
min{(f −K)/2, 0}, (f +K)/2

]
.

When the matching set is empty πw
ij (x, y) = 0. As in the proof of Lemma 1, let vwij (x, y) be

the value obtained by type (i, x) when matched with type (j, y). We have that

vwij (x, y) ≥ πw
ij (x, y) ≥ min

{
0,
f −K

2

}
.

Thus,

vwi (x) = −c+
∑
l∈T

qlEl,zv
w
il (x, z) ≥ −c+ min

{
0,
f −K

2

}
.

Similarly, we have that vwij (x, y) ≤ (f + K)/2 as the best possible match is accepted if

feasible, and thus vwi (x) ≤ (f +K)/2. Now, define vw,0
ij (x, y) = πw

ij (x, y) and

vw,n
ij (x, y) = max

{
πw
ij (x, y),−c+

∑
l∈T

qlEl,zv
w,n−1
il (x, z)

}

From Lipschitz-continuity of vw,n−1
il (x, y) and πw

ij (x, y) follows Lipschitz-continuity of vw,n
ij (x, y)

and therefore of vwij (x, y) = limn→∞ v
w,n
ij (x, y). Thus, vwi (x) = −c +

∑
l∈T qlEl,yv

w,n−1
il (x, y)

is also Lipschitz-continuous of modulus K.

Lemma 3. Suppose ws → w in supp norm, then vws → vw in supp norm, where vws ={
vws
j

}
j∈T .

Proof. Proof is by induction. Take vws,0
ij (x, y) = πws

ij (x, y) and vw,0
ij (x, y) = πw

ij (x, y). Then

min
t,z

[
πws
ij (t, z)− πw

ij (t, z)
]
≤ vws,0

ij (x, y)− vw,0
ij (x, y) ≤ max

t,z

[
πws
ij (t, z)− πw

ij (t, z)
]

from which follows that

min
t,z

min
l∈T

[πws
il (t, z)− πw

il (t, z)] ≤ vws,0
ij (x, y)− vw,0

ij (x, y) ≤ max
t,z

max
l∈T

[πws
il (t, z)− πw

il (t, z)]
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Now, suppose that

min
t,z

min
l∈T

[πws
il (t, z)− πw

il (t, z)] ≤ vws,n−1
ij (x, y)−vw,n−1

ij (x, y) ≤ max
t,z

max
l∈T

[πws
il (t, z)− πw

il (t, z)]

for all (x, y). Recall that vw,n
ij (x, y) = max

{
πw
ij (x, y),−c+

∑
l∈T qlEl,zv

w,n−1
il (x, z)

}
for all

w. Now consider four cases.

1. Suppose that πw
ij (x, y) ≥

∑
l∈T qlEl,zv

w,n−1
il (x, z) and πws

ij (x, y) ≥
∑

l∈T qlEl,zv
ws,n−1
il (x, z).

In this case vw,n
ij (x, y)− vws,n

ij (x, y) = πw
ij (x, y)− πws

ij (x, y) and thus

min
t,z

min
l∈T

[πws
il (t, z)− πw

il (t, z)] ≤ min
t,z

[
πws
ij (t, z)− πw

ij (t, z)
]
≤

vws,n
ij (x, y)− vw,n

ij (x, y) ≤

max
t,z

[
πws
ij (t, z)− πw

ij (t, z)
]
≤ max

t,z
max
l∈T

[πws
il (t, z)− πw

il (t, z)]

2. Suppose that πw
ij (x, y) <

∑
l∈T qlEl,zv

w,n−1
il (x, z) and πws

ij (x, y) <
∑

l∈T qlEl,zv
ws,n−1
il (x, z).

In this case we have

vws,n
ij (x, y)− vw,n

ij (x, y) =
∑
l∈T

qlEl,z[v
ws,n−1
il (x, z)− vw,n−1

il (x, z)]

For all (x, z) we have

∑
l∈T

qlEl,z[v
ws,n−1
il (x, z)− vw,n−1

il (x, z)] ≥

∑
l∈T

ql min
t,z

min
l∈T

[πws
il (t, z)− πw

il (t, z)] ≥

min
t,z

min
l∈T

[πws
il (t, z)− πw

il (t, z)]
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where the first inequality is due to our induction assumption. Similarly

∑
l∈T

qlEl,z[v
ws,n−1
il (x, z)− vw,n−1

il (x, z)] ≤

∑
l∈T

ql max
t,z

max
l∈T

[πws
il (t, z)− πw

il (t, z)] ≤

max
t,z

max
l∈T

[πws
il (t, z)− πw

il (t, z)]

3. Suppose that πw
ij (x, y) ≥

∑
l∈T qlEl,zv

w,n−1
il (x, z) and πws

ij (x, y) <
∑

l∈T qlEl,zv
ws,n−1
il (x, z).

In this case we get

vws,n
ij (x, y)− vw,n

ij (x, y) =
∑
l∈T

qlEl,zv
ws,n−1
il (x, z)− πw

ij (x, y)

Note that in this case

∑
l∈T

qlEl,zv
ws,n−1
il (x, z)− πw

ij (x, y) ≤ πws
ij (x, y)− πw

ij (x, y)

and due to case 1 we have

vws,n
ij (x, y)− vw,n

ij (x, y) ≤ max
t,z

max
l∈T

[πws
il (t, z)− πw

il (t, z)]

Also, because

∑
l∈T

qlEl,zv
ws,n−1
il (x, z)− πw

ij (x, y) ≥
∑
l∈T

qlEl,z[v
ws,n−1
il (x, z)− vw,n−1

il (x, z)]

from case 2 we obtain

vws,n
ij (x, y)− vw,n

ij (x, y) ≥ min
t,z

min
l∈T

[πws
il (t, z)− πw

il (t, z)]

4. Suppose that πw
ij (x, y) <

∑
l∈T qlEl,zv

w,n−1
il (x, z) and πws

ij (x, y) ≥
∑

l∈T qlEl,zv
ws,n−1
il (x, z).
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This case in analogous to case 3.

We conclude that

min
t,z

min
l∈T

[πws
il (t, z)− πw

il (t, z)] ≤ min
t,z

[
πws
ij (t, z)− πw

ij (t, z)
]
≤

vws,n
ij (x, y)− vw,n

ij (x, y) ≤

max
t,z

[
πws
ij (t, z)− πw

ij (t, z)
]
≤ max

t,z
max
l∈T

[πws
il (t, z)− πw

il (t, z)]

and by taking limit with respect to n obtain

min
t,z

min
l∈T

[πws
il (t, z)− πw

il (t, z)] ≤ min
t,z

[
πws
ij (t, z)− πw

ij (t, z)
]
≤

vws
ij (x, y)− vwij (x, y) ≤

max
t,z

[
πws
ij (t, z)− πw

ij (t, z)
]
≤ max

t,z
max
l∈T

[πws
il (t, z)− πw

il (t, z)] (11)

Now, as regards ws → w we have πws
ij (t, z)→ πw

ij (t, z) for all i, j, t, z we conclude that both

sides of (11) approach zero as ws → w and therefore vws
ij (x, y) → vwij (x, y) which implies

that vws → vw.

Finally, since vw is a continuous mapping of W onto itself and W is a compact subset

of Banach space (due to Lemma 3) we obtain existence by the application of Schauder’s

theorem.
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