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The Cross-sectional Distribution of Completed
Lifetimes: Some New Inferences from the

Survival Analysis

Maoshan Tian1 and Huw Dixon2∗†

Abstract

The cross-sectional distribution of completed lifetimes (DCL) is
a new estimator defined and derived by Dixon (2012) in the general
Taylor price model (GTE). DCL can be known as the cross-sectional
weighted estimator summing to 1. It is a new statistics applying to
describe the data. This paper focuses on the cross-sectional distribu-
tion in the survival analysis. The delta method is applied to derive
the variance of the of three cumulative distribution functions: the dis-
tribution of duration, cross-sectional distribution of age, distribution
of duration across firms. The Monte Carlo experiment is applied to do
the simulation study. The empirical results show that the asymptotic
variance formula of the DCL and distribution of duration performs
well when the sample size above 25. With the increasing of the sam-
ple size, the bias of the variance is reduced.
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1 Introduction and Literature Review

The best known non-parametric estimator of the survival function was de-
rived by Kaplan and Meier (1958). As Gillesple and Fisher (1979) explained,
Kaplan-Meier estimator is the limit of the life table method to calculate the
survival function with the increasing of the time intervals thereby tending to
be zero. Kaplan and Meier (1958) assumed that lifetime time (the existence
of the events or the age of death) was independent with the failure time (haz-
ard rate) and derived the product limit estimator. They derived the variance
of the survival function from an alternative way and obtained the same re-
sult as Greenwood (1926)’s formula. They also showed the variance formula
of the survival function in the large sample size. In addition, the product
limit estimators were the consistent estimators. On the other hand, Nelson
(1972) applied a graphical method to investigate the failure ratio (hazard
rate) rather than the survival ratio. This graphical method was named as
”hazard plotting”. It plotted the hazard rate and the cumulative hazard
rate depending on the distribution of the hazard function. After that, Aalen
(1978) investigated the hazard function and the cumulative hazard function
from the theoretical part. The counting process theory was applied to derive
the cumulative hazard function. Since both Nelson and Aalen derived the
cumulative hazard function, there existed the new estimator named as the
Nelson-Aalen estimator. Nelson-Aalen estimator was the cumulative hazard
function. For the asymptotic properties of KM and NA estimators, see An-
dersen et al. (1993), Fleming and Harrington (1991), Kalbfleisch and Prentice
(2002), Fleming and Harrington (1991), Bohoris (1994) and Colosimo et al.
(2002). In terms of the parametric method for estimating the survival func-
tion and the hazard function, Cox (1972) derived an exponential function to
regress the hazard rate. It assumed that there existed some measurements for
each individual. To investigate the null hypothesis test whether two group
has the same survival rate depending on the log-rank test, see Mantel (1966).
Breslow and Crowley (1974) investigated the life table and the Greenwood
formula under the large sample conditions. They also derived the asymptotic
normality for the standard life estimators. The estimators were assigned into
the vector form which converged to the multivariate normal distribution. The
covariance formula for the survival function and cumulative hazard function
were derived under large sample conditions. The confidence interval of the
KM estimator was introduced by Gillesple and Fisher (1979), Nair (1981),
Nair (1984) and Kalbfleisch and Prentice (2002). Kalbfleisch and Prentice
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(2002) provided a method called log-log transformation method to guarantee
the positive lower bound of the confidence interval of KM estimator.

Both parametric and non-parametric methods of estimation have been
well studied and we know the variances of estimators and related statistical
properties. In this paper, we want to derive the variances of the three related
distributions, two of which are cross-sectional. The age distribution, which
gives the proportion of observations at a point in time which have particular
ages; the cross-sectional distribution of completed lifetimes which gives the
proportion of observations at a point in time which will have a completed
lifetime of a particular duration; the distribution of duration, the propor-
tion of observations over the whole period which has completed lifetimes of
a particular duration. Our analysis is applicable to a panel of observations,
where we observe many agents (people, households, firms, machines) repeat-
edly over time and also to situations where we observe just a few or even
one agent over time. Our framework is one of discrete time, although the
analysis easily carries over to continuous time representations.

Suppose we divide time into discrete periods: days, weeks, months and
so on. In economic applications, this will often be driven by the data we
have. The survival function gives the probability that an event will last
for more than i periods, Si. Clearly, Si ∈ [0, 1] and Si ≥ Si+m for m > 0.
The corresponding hazard function hi gives the conditional probability that
having survived i periods, the event ends (death or failure). There are
two classic methods of estimating this process. The Kaplan-Meier estima-
tor (KM) estimates the survival function, whilst the Nelson-Aalen estimator
(NA) estimates the cumulative hazard function. The properties of both of
these estimators have been well studied and in particular their asymptotic
variances. Whilst both KM and NA are general non-parametric estimators,
they can also be estimated in parametric forms, such as the Cox proportional
hazard model.

Starting from the KM and NA estimators, we are able to construct esti-
mators of the three distributions (durations, ages and completed lifetimes)
and to derive their asymptotic variances using both the Taylor expansion and
delta methods. Theorem 1 derives the asymptotic variance of the distribution
of durations. Theorem 2 and its corollary derive the asymptotic variances
for the two cross-sectional distributions. In the simulation part, the Monte
Carlo method was applied to explore the performance of the estimators and
their sensitivity to censored of observations. We find that whilst there can
be small bias for samples as small as 25, for samples 50 or over there is almost
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no bias and the results are not sensitive to censored for samples of 50 or over.
The three distributions we estimate we believe may have many useful

applications. In economics, the estimated cross-sectional distribution of
completed durations can be used to calibrate the Generalized Taylor Model
of heterogeneous price and/or wage setting in a macroeconomic setting(See
Taylor (1980); Coenen et al. (2008); Dixon and Bihan (2012)). In this setting,
the cross-sectional distribution gives the proportion of price or wage setters in
the economy who set prices or wages for a particular period of time. However,
in demographics, it also gives the distribution of completed lifetimes for those
living at a point in time. Whilst it is common to calculate the life-expectancy
from life tables, our estimates enable the complete distribution of lifetimes
to be estimated. Also, if we are looking at the stock of something at a point
in time (unemployed workers, people living in an area, or machines), we
can generate the distribution of completed durations (when the unemployed
find a job, when people move from an area, when machines will fail). The
estimation method can be non-parametric or parametric. The distribution of
durations is useful when we want to look at the population over an extended
period of time: the distribution of spells of unemployment, the distribution
of price spells, the distribution of periods before machines have their first
fault and so on.

2 Survival Function and Hazard Function

Kaplan and Meier (1958) provided an estimator for the survival function, the
Kaplan-Meier estimators Si ∈ [0, 1], i = 1, 2, ......F , where F is the maximum
duration (this can be arbitrarily large, or may have an obvious empirical
value such as the length of the dataset). We can imagine that there is a
panel of agents. A spell of time is a period when the agent remains in the
same state (remains alive, remains ill, sets the same price). Failure occurs
when that state changes (death, recovery from illness, price changes). When
the state changes, this can either be seen as the same agent continuing in the
different states (the firm continues but sets the different price) or a new agent
replaces the old (the machine fails and is replaced with a new machine).

If we look across the entire data set, we can count the number of spells
that last at least k periods as Nk, and the number of failures in the k − th
period is Dk. N0 is the total number of price spells in the sample. The
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Kaplan-Meier estimator Ŝi of the survival function Si can be written as:

Ŝi =
i∏

k=1

Nk −Dk

Nk

(1)

Si can be defined as the proportion of spells remaining at i − th period.
This formula is also known as the product limited estimator for the sur-
vival function. There exists another way to describe the survival function,
the cumulative hazard function which can be estimated by the Nelson-Aalen
estimator. The formula is:

Ĥi =
i∑

k=1

Dk

Nk

(2)

The cumulative hazard function Hi is the summation of the hazard rate in
each period until i period. The (marginal) hazard function can be defined as
the proportion of failures amongst spells that have lasted i periods :

ĥi =
Di

Ni

(3)

By convention, we set S0 = 1 and D0 and h0 = 0 are equal to zero since
all spells last at least 0 periods. Since F is the longest spell, hF = 1 and
SF = 0 under the uncensored case. The hazard function can be transformed
to the survival function:

Ŝi =
i∏

k=1

(1− ĥk) (4)

Likewise, the survival function can be transformed into the hazard function:

ĥi =
Ŝi−1 − Ŝi

Ŝi−1

Before deriving our three distributions, we need to define an additional vari-
able h̄:

h̄ =
1∑F

i=0 Ŝi

(5)

h̄ is the reciprocal of the sum of survival probabilities. Intuitively, in a
balanced panel, h̄ is the proportion of agents that fail every period. To see
this, consider some simple examples. First, failures occur in the first period
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for all spells. In this case, S0 = 1 and Si = 01 for all i > 0. All spells last
for one period, and h̄ = 1. Second the example where all spells last for two
periods and then fail. In this case we have S0 = S1 = 1, Si = 0 for i ≥ 2.
In this case h̄ = 1/2 : 50% of spells fail per period. Hence, with a balanced
panel, we can think of h̄ as being the proportion of failures each period.

However, if we just have one cohort, we can think of h̄ as being the
weighted average hazard over i = 1..F , where the weights are the proportions
surviving to period i divided by the sum of survival probabilities (to ensure
the weights add up to 1).

Proposition 1. h̄ = 1∑F
i=0 Ŝi

∑F−1
i=0 Ŝiĥi+1 = 1∑F

i=0 Ŝi

To see why,

h̄ =
1∑F

i=0 Ŝi

F−1∑
i=0

Ŝiĥi+1

=
1∑F

i=0 Ŝi

(
Ŝ0 − Ŝ1

Ŝ0

+ Ŝ1

(
Ŝ1 − Ŝ2

Ŝ1

)
+ ...ŜF−1

)
=

1∑F
i=0 Ŝi

(
1− Ŝ1 +

(
Ŝ1 − Ŝ2

)
+
(
Ŝ2 − Ŝ3

)
+ ..(ŜF−2 − ŜF−1) + ŜF−1

)
=

1∑F
i=0 Ŝi

2.1 The Distribution of Durations

The distribution of durations gives the proportion of spells that survive at
least i−1 periods and change (or ”die”) in the i−th period. This is sometimes
called the unconditional hazard function. The proportion of spells lasting
exactly i periods can be defined as:

âdi = Ŝi−1ĥi (6)

The product limit estimator of the distribution of duration can be written
as:

âdi =
Di

Ni

i−1∏
k=0

(
Nk −Dk

Nk

) (7)

1It should be mention that SF equal to zero in the uncensored case; but SF may not
equal to zero when the censored problem is considered
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Clearly, âdi > 0 and for F > 1, 1 > âdi . Note also that

F∑
i=1

âdi = 1

since
F∑
i=1

Ŝi−1ĥi =
F∑
i=1

(
Ŝi−1 − Ŝi

)
= Ŝ0 = 1

The distribution of durations can be treated as applying a particular cohort
starting within a specific time frame (as with life tables), or as the distribu-
tion of all spells over a possibly long period (as in a balanced panel).

2.2 The Age Distribution

The age distribution can be explained as the ratio between the survival func-
tion of the price at the time i as:

âAi =
Ŝi∑F
k=1 Ŝk

= Ŝih̄ (8)

Since the survival function is non-increasing, the age distribution is non-
increasing: âAi ≥ âAi+1. In addition, it is clear that the summation of the age
distribution is equal to 1.

In the case of a balanced panel, we can think of the age distribution as
being the cross-sectional distribution of ages across agents at a point in time.
However, for a particular cohort, we can also think of it as the proportions of
spells from that cohort lasting at least a particular length. This differs from
the survival function because the proportions add up to unity (being the
survival function pre-multiplied by h̄). The survival function does not add
up to unity because the events captured are not mutually exclusive. The
sum of survival probabilities will exceed one unless all spells last just one
period.

2.3 The Distribution of Completed Lifetimes

Next, we introduce the less familiar cross-sectional distribution of the com-
plete lifetimes (DCL) across agents. The new distribution is derived by
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Dixon (2012). The DCL can be written as:

âi = ih̄Ŝi−1ĥi (9)

Therefore, the product limited estimator of the DCL can be written as:

âi = i
Ŝi−1ĥi(∑F
i=1 Ŝi−1

) (10)

Clearly, for i = 1..F, 1 > âi > 0. For F = 1, â1 = 1.

Proposition 2.
∑F

i=1 âi = 1.

To see why Proposition 2 holds, note that∑F

i=1
âi = h̄

∑F

i=1
iŜi−1ĥi

= h̄
∑F

i=1
i
(
Ŝi−1 − Ŝi

)
= h̄

[∑F

i=1

(
Ŝi−1 − Ŝi

)
+
∑F

i=2

(
Ŝi−1 − Ŝi

)
+ ..

∑F

i=j

(
Ŝi−1 − Ŝi

)
+ ŜF−1

]
= h̄

[
Ŝ0 + Ŝ1 + Ŝ2.. + ŜF

]
= 1

If we have a balanced panel, we can think of this as the cross-sectional
distribution of completed lifetimes. In the case of a single cohort, we can
think of DCL as being the distribution of completed lifetimes where we take
an observation over each of the F periods. In the first period, we have all
of the spells. In the second period, the one-period spells drop out and we
have the spells with a duration of 2 and above and so on. Hence the i period
contracts will be counted i times. Thus the distribution of the completed
lifetimes for the cohort is given by the distribution of durations âdi , the DCL
is given by ai = h̄iâdi . In effect, we can think of the DCL as weighting the
spells by their length, which as was suggested by Baharad and Eden (2004).

2.4 The Three Distributions

The survival function, hazard function, and the three distributions are differ-
ent ways of describing the same data. They are all linked by identities. These
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Table 1: Relationships among different distributions
Si hi adi aAi ai

Si I
∏i

j=1 (1− hj) for i = 1..F. 1−
∑i

j=1 a
d
j

aAi+1

aA1
1− 1∑F

k=1
ak
k

∑i
j=1

aj
j

hi
Si−1−Si

Si−1
I

∏i−1
j=1 (1− hj)

aAi −aAi+1

aAi

ai
i

[∑F
i=1

ai
i

]−1

adi Si−1 − Si hi

∏i−1
j=0 (1− hj) I

aAi −aAi+1

aA1

ai
i
∑F

j=1

aj
j

aAi

[∑F−1
i=0 Si

]−1

Si−1

[∑F
i=1

∏i−1
j=0 (1− hj)

]−1∏i−1
j=0 (1− hj)

1−
∑i−1

j=1 a
d
j∑F

i=1 ia
d
i

I
∑F

k=1
ak
k
−
∑i

j=1
aj
j

ai i
[∑F−1

i=0 Si

]−1

(Si−1 − Si) i
∏i−1

j=1 (1− hj)hi

[∑F
i=1

∏i−1
j=0 (1− hj)

]−1
adi

i.
∑F

j=1 ja
d
j

i.
(
aAi − aAi+1

)
I

h̄
[∑F−1

i=0 Si

]−1 [∑F
i=1

∏i−1
j=0 (1− hj)

]−1 ∑F
i=1 ia

d
i aA1

∑F
i=1

ai
i

identities hold for the estimators as well. If we take a particular survival
function, then we can express the hazard function and the three distributions
in terms of the survival function. Likewise, if we pick a particular hazard
function, we can express the survival function and all three distributions in
terms of the particular hazard function.

The full set of relationships is given in table(1). Each column represents
the basic function:

{
Si, hi, a

d
i , a

A
i , ai

}
: each row shows how the element can

be written in terms of the element of that column. Thus the first row has
the different ways of writing the survival probability Si in terms of itself (the
indicator I), the hazard function hi, and then the three distributions. The
last two expresses the key statistic h̄ in terms of all the functions. Note
that these identities apply to any and all possible functions. The identities
also apply to the estimators if they are unbiased: the estimated values must
belong to the set of possible values.

3 Asymptotic Variances of the New Statistics

There are two equivalent ways to derive the variance formulas for the three
distributions. The first method is the (multivariate) delta method which
can be combined with the first order Taylor expansion to derive the variance
of the cumulative functions. Another one is the counting process theory
combined with the statistical method to derive the continuous-time version
of the variances of the distribution functions. First, we will use the delta
method since it fits more easily with the discrete time framework. This
method is also introduced by Greenwood (1926) to derive the variance of the
survival function. The delta method gives more information with the higher
order terms and converges to the true value more quickly than the counting
process.
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Assume the survival function Ŝi converges to the mean value Si. It can
be expressed as: √

Ni[Ŝi − Si]→ N(0, V ar(Ŝi))

By Taylor expansion:

g(Ŝi) = g(Si) + g′(Si)(Ŝi − Si) + O((Ŝi − Si)
2)

Where O(.) is the asymptotic notation or Bachmann–Landau notation. From
Slutsky’s theorem2, there exist the relationships:√

Ni[g(Ŝi)− g(Si)]→ N(0, [g′(Si)]
2V ar(Ŝi))

3.1 Asymptotic Variance for Durations.

We begin with the distribution function of durations. We will then extend
this result to cover the distributions of age and DCL. Recall the distribution
of durations which can be written as:

âdi = Ŝi−1ĥi

with variance:
V ar(âdi ) = V ar(Ŝi−1ĥi)

Theorem 1: Assume that we have the hazard function hi ∈ [0, 1)F−1 and
the survival function Si−1 ∈ [0, 1)F−1 for i= 1, 2...F , the variance of the
estimators âdi of the distribution of durations are given by:

V ar(âdi ) = (Ŝi−1 ∗ ĥi)
2 ∗ [

i−1∑
k=1

Dk

Nk(Nk −Dk)
+

Ni −Di

NiDi

] (11)

2Slutsky’s theorem means that there exist two random variables or vectors Xi and Yi. If

those variables or vectors satisfy Xi
d.−→ X and Yi

p.−→ c, then there exist the relationships:

f(Xi, Yi)
d.−→ f(X, c)

Where Xi
d.−→ X means that Xi converges to the fixed value X in distribution; Yi

p.−→ c
means that Yi converges to the constant point c in probability.
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All proofs for theorem 1 are in the appendix.
To derive the variance of DCL, some additional formula should be de-

rived. In equation (10), it can be seen that it is the product of the constant
value i, and three random variables Ŝi, ĥi and h̄.As Breslow and Crowley
(1974) derived the properties of the KM estimator and the hazard function.
They consider a very complicated model including both censored and un-
censored data. They divided the original data into two groups and derived
the distribution of the survival function and the hazard function in large
sample size. They found that the survival function and the hazard function
followed the normal distribution. The diagonal variance-covariance matrix
of the hazard function is the variance formula for the hazard function while
the off-diagonal terms are all equal to zero. It means that the hazard func-
tion is independent in different periods. On the other hand, they show the
covariance for the survival function did not equal to zero.

We adopt a different method to derive the covariance of Ŝi and Ŝj for

i < j. Recall the Taylor expansion for Ŝi and Ŝj:

exp(lnŜi) = exp(lnSi) + (lnŜi − lnSi)exp(lnSi) + O((lnŜi − lnSi)
2)

exp(lnŜj) = exp(lnSj) + (lnŜj − lnSj)exp(lnSj) + O((lnŜj − lnSj)
2)

Rearrange those two equations:

Ŝi − Si
∼= Si(lnŜi − lnSi)

Ŝj − Sj
∼= Sj(lnŜj − lnSj)

Then multiply them and take the expectation:

Cov(Ŝi, Ŝj) = E[Ŝi − Si)(Ŝj − Sj)]

= SiSjE[(lnŜi − lnSj)(lnŜj − lnSj)]

= SiSjCov(lnŜi, lnŜj)

= SiSjCov(
i∑

k=1

ln(1− ĥk),

j∑
k=1

ln(1− ĥj))

= SiSjV ar(
i∑

k=1

ln(1− ĥk) (12)

The delta method is applied to derive the covariance of the KM estimators in
equation (12). Since the hazard function hk follows the binomial distribution
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and it is independent in each period, therefore, the Cov(ĥm, ĥn) = 0 for m 6=
n. Therefore, Cov(

∑i
k=1 ln(1−ĥk),

∑j
k=1 ln(1−ĥj)) = V ar(

∑i
k=1 ln(1−ĥk))

when i < j. Replace the formula that V ar[
∑i

k=1 ln(1−ĥk)] =
∑i

k=1
Dk

Nk(Nk−Dk)

which is shown in theorem 1. Applying the large sample properties of the
maximum likelihood estimator, the formula of the covariance between Ŝi and
Ŝj can be written as:

Cov(Ŝi, Ŝj) = ŜiŜj[
i∑

k=1

Dk

Nk(Nk −Dk)
] for i < j (13)

After deriving the covariance, we can use the delta method of ratio variable
to derive the formula of the DCL. At this point, the delta method has
been applied twice. The first, the delta method is applied to derive the
variance of the distribution of the duration. The second step, we treat the
ai as the ratio distribution as x̂i/ŷ with x̂i = iŜi−1ĥi and ŷ =

∑F
k=0 Ŝk. In

other words, the numerator can be known as the Ŝi−1ĥi and the denominator
is 1/h̄ =

∑F
k=0 Ŝk. Using the delta method for the ratio estimator x̂i/ŷ

expansion at the mean value xi and y is:

x̂i

ŷ
=

xi

y
+

x̂i − xi

y
− xi

y2
(ŷ − y) + O((x̂i − xi)

2 + (ŷ − y)2)

Take the expectation on both sides, it can be seen that:

E[
x̂i

ŷ
] ≈ xi

y
(14)

Therefore, the variance of the ratio estimator âi = x̂i/ŷ is:

V ar(
x̂i

ŷ
) ≈ V ar(x̂i)

y2
+

x2
i

y4
V ar(ŷ)− 2

xi

y3
Cov(x̂i, ŷ) (15)

Apply the large sample properties of the maximum likelihood estimator, re-
place xi by x̂i and y by ŷ where x̂i = iŜi−1ĥi and ŷ = 1/h̄.3 First, note that
the variance of 1

h̄
is:

V ar(
1

h̄
) = V ar(

F∑
i=0

Ŝi) =
F∑
i=1

V ar(Ŝi) + 2
∑
i 6=j

Cov(Ŝi, Ŝj) (16)

3As Greenwood (1926) showed that the maximum likelihood estimator Ŝi is close to
the mean value of Si in large sample size. the Si can be replaced by Ŝi in Greenwood
formula. At this point, we replace xi by x̂i and y by ŷ since xi and y consist of the survival
function Si and the hazard function hi
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Theorem 2 Substitute equation (11)(12),(16) into equation (15), the vari-
ance of the DCL can be defined as:

V ar(âi) = i2h̄2V ar(Ŝi−1ĥi)+(iŜi−1ĥi)
2h̄4V ar(

1

h̄
)−2i2Ŝi−1ĥih̄

3Cov(Ŝi−1ĥi,
1

h̄
)

(17)

For i = 1, 2, ......F.

Since the variance of the DCL is derived, we can find out the variance of
the age distribution. In terms of the age distribution.

Corollary 1 : Assume that we have the inverse summation of the survival
function h̄ following the multivariate normal distribution, the survival
function Si−1 ∈ [0, 1)F−1 for i ∈ Z+ = (1, 2, ......,∞), the variance of
the age distribution can be derived as:

V ar(âAi ) = h̄2V ar(Ŝi−1) + Ŝ2
i−1h̄

4V ar(
1

h̄
)− 2Ŝi−1h̄

3Cov(Ŝi−1,
1

h̄
) (18)

For i = 1, 2, ......, F.

3.2 Censored Problem and the Non-parametric Maxi-
mum Likelihood Estimation

The KM estimators can be estimated by the non-parametric maximum likeli-
hood estimators (NPMLE). The NPMLE gives the same results as the prod-
uct limited estimator (PL). NPMLE is the numerical method to solve out the
hazard function.The maximum likelihood function for the survival function
can be written as:

L =
F∏
i=1

[Si−1 − Si]
DiSNi−Di

i (19)

Assume the S0=1, this maximum likelihood formula can be applied to esti-
mate the survival function for F period. This function can be modified if the
survival function is replaced by the hazard function:

Si =
i∏

k=0

(1− hk)

13



Define the value Ni to be the total number of the observations at the risk in
the period i. Then the NPMLE function can be rewritten as:

L =
F∏
i=1

(1− hi)
Ni−Dih

(Di)
i (20)

Take the first order derivatives with respect to hi:

∂lnL

∂hi

= −Ni −Di

1− hi

+
Di

hi

= 0

hi =
Di

Ni

Since the NPMLE provides the estimator of the hazard function, the sur-
vival function can be calculated as Si =

∑i
k=1(1−hk). The age distribution,

distribution of duration and DCL can be also calculated since they can be
expressed as Si and hi.

Now we introduce the concept of censored data. The left-censored data
are when the starting point cannot be observed, being outside the period
of observation, the sample period. However, the endpoint is included in
the sample period. Right censored data are where the endpoint cannot be
observed but the start is. The KM estimator is applied for the right-censored
data. In this section, we will we just consider the implications of right-
censored data here. The maximum length of a spell is F periods. Nk means
the number of spells that survived up to the k − th period. Define the Tj

as the true lifetime of a spell j ∈ (1, 2, ......N). N is the total number of the
sample size in the initial period. The observed lifetime ti can be defined as:

tj = min(Tj, Cj) and ωj = I(Tj ≤ Cj) j = 1, 2, ......Nj.

Where the Cj means the censored time of the observation for the j-th obser-
vation; Tj is the survival time of the j-th observation; The observed lifetime
tj is the minimum of Cj and Tj. ωj is the uncensored coefficient. If the
observation tj is censored, ωj is equal to 0. Otherwise, ωj is equal to 1. If
the period of observation is less than the true lifetime, then the data is right
censored:

Cj < Tj, tj = Cj (right censored) and ωj = 0

Otherwise, the data is uncensored:

Tj ≤ Cj, tj = Tj (uncensored) and ωj = 1

14



4 Monte Carlo Simulation

The variance formulas of the DCL, age distribution and distribution of du-
ration have been derived using the Taylor expansion and the delta method.
In this part, we are going to investigate the properties of those formulas.
Depending on the simulation, the bias of the asymptotic variances can be
evaluated. The data is generated from the exponential distribution func-
tion. The sample sizes are chosen to be N = 25, 50, 100 and 200. Both
the no-censored and censored situations are considered in the simulations.
However, we assume that the data is collected in discrete time. We col-
lect the raw continuous time data and transfer them into intervals defined
as (0, r1], (r1, r2], ...(rk−1, rk], ...(rF−1, rF ]. For tj ∈ (0, r1] we set duration
tj = r1. For tj ∈ (rk−1, rk] we set tj = rk and so on. The simulation process
is:

Step 1: assume the observed duration is tj = min(Tj, Cj). The sample
size is chosen to be N = 25, 50, 100, 200. The results are reported
separately. Both the lifetime time Tj and the censored time Cj follow
the exponential distribution. The censored time and the lifetime have
the probability density functions (PDF):

p(Cj) = 0.5exp(−0.5Cj) p(Tj) = 2exp(−2Tj) (21)

Therefore, they have the survival function for each ri-th period:

p(Cj > rk) = exp(−0.5rk) p(Tj > rk) = exp(−2rk) (22)

j is the j − th observation where j ∈ (1, 2, ......, N). N is the total
sample size. There exists the 2

2+0.5
4 uncensored proportion of the total

observations depending on the PDF. For the uncensored problems, we
can just generate the survival time tj = Tj and assume they are all
uncensored with the censored coefficient ωj = 1 for all the j. In other
words, the observation can be written as (Tj, 1) for all the j. For
the censored problem, we also need to generate the censored time Cj.
If Tj < Cj, the j − th observation is non-censored and we assign a
parameter ωj = 1 write the as (Tj, ωj). If Cj < Tj, it means the

4Since the parameter of the exponential distribution of Censored time and observed
time are 0.5 and 2, separately. The censored proportion of the total sample can be known
as 0.5

2+0.5 . The algebra is shown by Efron (1981).
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observation is censored. Therefore, we written it as (Cj, ωj) with ωj =
0. After that, the survival data are allocated into F group. In other
words, different survival periods are transformed into some fixed period
group. In this case, F is chose to be 5. We separate them into five
regions: (0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.5], and (0.5,∞). This can
be known as case 1. In case 2, another five regions are generated:
(0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and (0.8,∞)

Step 2: The formula (17), (18) and (11) are applied to calculate the variance
of the DCL, age distribution and duration of distribution for each
period.

Step 3: Repeat step 1 and step 2 by M times. M is chosen to be 10000. One
important thing is that there may exist zero observations in one of the
5 intervals in the simulated samples. If there exists this situation, this
sample is eliminated and another sample is re-simulated again until we
have 10000 samples.

The real value of the variance of DCL can be calculated by:

V ar(ai)real =
M∑

m=1

(ih̄Sk−1,mhi,m −
∑M

m=1 ih̄Si−1,mhi,m

M
)2/(M − 1) (23)

The real value of the variance of age distribution can be calculated by:

V ar(aAi )real =
M∑

m=1

(aAi,m −
∑M

m=1 a
A
i

M
)2/(M − 1) (24)

The real value of the variance of duration distribution can be calculated
by:

V ar(adi )real =
M∑

m=1

(adi,m −
∑M

m=1 a
d
i

M
)2/(M − 1) (25)

In other words, we collect M estimators of ai,a
A
i and adi and calculate the

variance of them5. Equation (23), (24) and (25) can be known as the real
variance of the three distributions depending on the properties of the Monte

5In the simulation result, the coefficient i is ignored when the DCL are calculated even
it exists in the formula. The reason is that i is a constant parameter for each ai
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Carlo simulations. The benchmark real variances are applied to compare with
the analytic variance derived by delta method whether the approximation
results are close to the real value. Since the formula Ŝi−1ĥi = Ŝi−1 − Ŝi is
replaced in the variance formula to calculate the true value of the variance of
the distribution of duration, so the first period of the variance of DCL can
be known as the variance of the age distribution. In addition, the final period
variance of DCL is also a special case of the variance of the age distribution
when all the observations are uncensored.

Table (2) reports the simulation results for the non-censored data for
case 1. Those data are divided into (0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.5],
and (0.5,∞). In table (2), all the censored parameters ωj are equal to 1 for
all the j, which means that the observations are all uncensored. As we can see
from table (2), when the sample size equal to 25, there exists a slight bias for
the variance. When the sample size increased to 50, the asymptotic formula
of the variance performs very well for all the regions. When the sample size
increased to either n=100 or n=200, the gap between the benchmark value
and the analytic value of the variance are reduced. With the increase of the
sample size, the approximation value is closer to the true value when the
observations are uncensored.

Table 2: The Variance of the Duration of case 1 with Non-censored Simula-
tion. All the Results Are Multiplied by 103

True Value
N V ar(ad0.1) V ar(ad0.2) V ar(ad0.3) V ar(ad0.5) V ar(ad∞)
25 5.6497 4.6783 3.7561 5.6901 9.1525
50 2.9913 2.5801 2.1244 2.9637 4.6877
100 1.4844 1.2554 1.0757 1.4705 2.2919
200 0.7451 0.6293 0.5404 0.7406 1.1594

Asymptotic Value
N E[V ar(ad0.1)] E[V ar(ad0.2)] E[V ar(ad0.3)] E[V ar(ad0.5)] E[V ar(ad∞)]
25 5.6880 4.9125 4.2650 5.6862 8.8820
50 2.8987 2.4790 2.0904 2.9041 4.5610
100 1.4677 1.2533 1.0613 1.4640 2.3022
200 0.7367 0.6293 0.5318 0.7355 1.1578

In table (3), the data are simulated by the same process. There still exists
a slight bias for the variance of the DCL when the sample size is N = 25.
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Table 3: The Variance of the DCL of Case 1 with Non-censored Simulation.
All the Results Are Multiplied by 103

True Value
N V ar(a0.1) V ar(a0.2) V ar(a0.3) V ar(a0.5) V ar(a∞)
25 0.7378 0.51417 0.3606 0.4858 0.46588
50 0.36525 0.27085 0.19608 0.24835 0.2327
100 0.1777 0.1299 0.0986 0.1228 0.1137
200 0.0879 0.0646 0.0494 0.0616 0.0575

Asymptotic Value
N E[V ar(a0.1)] E[V ar(a0.2)] E[V ar(a0.3)] E[V ar(a0.5)] E[V ar(a∞)]
25 0.7719 0.5478 0.4084 0.4752 0.4460
50 0.3644 0.2638 0.1951 0.2418 0.2256
100 0.1782 0.1305 0.0982 0.1221 0.1140
200 0.0877 0.0647 0.0489 0.0613 0.0572

When the sample size increase to 50, all the asymptotic results are improved
and they are all close to the true value. With respect to N = 100 and 200,
the asymptotic variance tends to be closer to the real variance. However,
it can be found that the asymptotic variances do not always overestimate
the true value. Sometimes it underestimates the true variance of the DCL.
In conclusion, the asymptotic variance formula of DCL is reduced with the
increase of the sample size.

Next, the censored data is considered. Table (4) show the result of the
variance of the distribution of duration. Compared with the benchmark
value, there exists a slight bias in the variance calculated from the analytic
formula when the sample size N = 25. When sample size increased to 50,
the asymptotic variance formula performs well. When the sample size tends
to be a larger (N=100 and 200), the empirical results show that the values of
asymptotic variance are nearly the same as the true values. In conclusion, the
asymptotic variance formula can capture the true value even the sample size
is small(N=25). The asymptotic formula may overestimate or underestimate
the true value.

Table (5) show the simulation results of the DCL variance. When the
sample size is extremely small (N=25), the asymptotic results are still quite
accurate. When the sample size increased to 50, all the asymptotic results are
improved. They are all close to the true value. When the sample size increase
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Table 4: The Variance of the Duration of case 1 with Censored Simulation.
All the Results Are Multiplied by 103

True Value
N V ar(ad0.1) V ar(ad0.2) V ar(ad0.3) V ar(ad0.5) V ar(ad∞)
25 5.4770 4.7128 4.0016 6.1382 9.5321
50 2.8680 2.5773 2.2555 3.4038 5.0703
100 1.4566 1.3187 1.1746 1.7109 2.5091
200 0.7497 0.6525 0.5807 0.8130 1.2539

Asymptotic Value
N E[V ar(ad0.1)] E[V ar(ad0.2)] E[V ar(ad0.3)] E[V ar(ad0.5)] E[V ar(ad∞)]
25 5.6045 5.0796 4.7601 6.4884 9.4990
50 2.8519 2.5617 2.2987 3.3076 4.9242
100 1.4442 1.3024 1.1618 1.6589 2.4841
200 0.7248 0.6537 0.5837 0.8349 1.2496

Table 5: The Variance of the DCL of Case 1 with Censored Simulation. All
the Results Are Multiplied by 103

True Value
N V ar(a0.1) V ar(a0.2) V ar(a0.3) V ar(a0.5) V ar(a∞)
25 0.6767 0.4910 0.3696 0.5094 0.6005
50 0.3311 0.2565 0.2006 0.2770 0.3102
100 0.1645 0.1290 0.1032 0.1381 0.1545
200 0.0832 0.0631 0.0506 0.0656 0.0772

Asymptotic Value
N E[V ar(a0.1)] E[V ar(a0.2)] E[V ar(a0.3)] E[V ar(a0.5)] E[V ar(a∞)]
25 0.6798 0.5162 0.4174 0.5094 0.5824
50 0.3345 0.2557 0.2032 0.2660 0.2992235
100 0.1648 0.1285 0.1025 0.1345 0.1513
200 0.0811 0.0636 0.0511 0.0676 0.0763

to 100 and 200. They asymptotic results show an accurate approximation
value for the true value. Therefore, the asymptotic formula of the variance
of the DCL works in the censored data.

Table (6) to (9) present the variance of the duration and DCL under the
another category. All the data are assigned into another five regions: (0, 0.2],
(0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and (0.8,∞). This can be known as case 2. In
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terms of the uncensored case, all the censored coefficient ωj = 1. In the
censored situation, the p(Cj) = 0.5exp(−0.5Cj) and p(Tj) = 2exp(−2Tj)
are generated. This process is the same as the case 1. In table (6) and
(7), the asymptotic variance can give a accurate approximation for the true
value even in the extremely small sample size (N=25). Both the variance of
the DCL and duration are either overestimate or underestimate without a
unique conclusion. When the sample size tends to be a large number, they
are nearly unbiased from the true value.

With respect to the censored case, the same results can be concluded in
table (8) and table (9).

Table 6: The Variance of the Duration of case 2 with Non-censored Simula-
tion.All the Results Are Multiplied by 103

True Value
N V ar(ad0.2) V ar(ad0.4) V ar(ad0.6) V ar(ad0.8) V ar(ad∞)
25 8.511 6.4731 4.6370 2.9440 6.0651
50 4.4362 3.4353 2.5537 1.7365 3.2366
100 2.1816 1.6982 1.2514 0.8812 1.5987
200 1.1384 0.8610 0.6392 0.4491 0.8074

Asymptotic Value
N E[V ar(ad0.2)] E[V ar(ad0.4)] E[V ar(ad0.6)] E[V ar(ad0.8)] E[V ar(ad∞)]
25 8.4295 6.5750 4.9049 3.6899 6.1695
50 4.3413 3.3608 2.4783 1.7592 3.1459
100 2.1879 1.7030 1.2538 0.8834 1.5953
200 1.0990 0.8550 0.6298 0.4459 0.8012
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Table 7: The Variance of the DCL of Case 2 with Non-censored Simulation.
All the Results Are Multiplied by 103

True Value
N V ar(a0.2) V ar(a0.4) V ar(a0.6) V ar(a0.8) V ar(a∞)
25 2.3456 1.1895 0.6760 0.3829 0.5396
50 1.2091 0.6276 0.3794 0.2329 0.2956
100 0.5764 0.3054 0.1860 0.1176 0.1462
200 0.2987 0.1535 0.0938 0.0602 0.0731

Asymptotic Value
N E[V ar(a0.2)] E[V ar(a0.4)] E[V ar(a0.6)] E[V ar(a0.8)] E[V ar(a∞)]
25 2.4358 1.2334 0.7190 0.4755 0.5430
50 1.2085 0.6222 0.3667 0.2325 0.2828
100 0.5841 0.3095 0.1845 0.1174 0.1440
200 0.2884 0.1540 0.0925 0.0594 0.0727

Table 8: The Variance of the Duration of case 2 with Censored Simulation.
All the Results Are Multiplied by 103

True Value
N V ar(ad0.2) V ar(ad0.4) V ar(ad0.6) V ar(ad0.8) V ar(ad∞)
25 7.9283 6.9220 5.1855 3.6686 6.3243
50 4.2300 3.7601 3.0929 2.3271 3.9246
100 2.1853 1.8781 1.5767 1.2560 1.9910
200 1.0669 0.9379 0.7799 0.6350 0.9996

Asymptotic Value
N E[V ar(ad0.2)] E[V ar(ad0.4)] E[V ar(ad0.6)] E[V ar(ad0.8)] E[V ar(ad∞)]
25 8.1582 7.0511 6.0630 5.5234 7.5641
50 4.2223 3.6962 3.0363 2.4997 3.8673
100 2.1348 1.8690 1.5411 1.2321 1.9587
200 1.0734 0.9371 0.7749 0.6247 0.9865

5 Conclusion

In this paper, we use the delta method to derive the variance of the distri-
bution of duration, distribution of the age and the distribution of completed
lifetimes (DCL). The DCL is cross-sectional distribution among the survival
analysis. Depending on the asymptotic approximation of the variance, we
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Table 9: The Variance of the DCL of Case 2 with Censored Simulation. All
the Results Are Multiplied by 103

True Value
N V ar(a0.2) V ar(a0.4) V ar(a0.6) V ar(a0.8) V ar(a∞)
25 1.9352 1.1768 0.7175 0.4503 0.5984
50 1.0521 0.6580 0.4406 0.2989 0.3947401
100 0.5269 0.3224 0.2233 0.1618 0.2025
200 0.2539 0.1603 0.1108 0.0813 0.1017

Asymptotic Value
N E[V ar(a0.2)] E[V ar(a0.4)] E[V ar(a0.6)] E[V ar(a0.8)] E[V ar(a∞)]
25 1.8620 1.1101 0.7612 0.5964 0.6855
50 1.0220 0.6266 0.4140 0.3027 0.3806
100 0.5159 0.3197 0.2164 0.1557 0.1970
200 0.2561 0.1594 0.1091 0.0798 0.1000

provide the analytic formula to calculate the variance of the three distribu-
tions. The asymptotic variance derived from delta method is straightforward
since it is the same way to derived the Greenwood formula. In addition, the
covariance between different survival function is derived in a clearer way
compared with Breslow and Crowley (1974).

The data is simulated and applied to investigate the accurate the asymp-
totic variance of the DCL, age distribution and the distribution of the du-
ration. There are two cases of simulation considering in this paper. The
observations are assumed to follow the exponential distribution. Depending
on the Monte Carlo results, the asymptotic variance of the DCL, age distri-
bution and the distribution of the duration gives more accurate results as the
increasing of the sample size. In other words, the bias between the asymp-
totic results and the true results are reduced as the sample size increased.

For the further study, it is attractive to see the bootstrap performance.
Whether the bootstrap corrected variance can provide a better result com-
pared with the asymptotic formula in the small sample size. Another point
is the confidence interval for the DCL. It is worth to evaluate whether the
delta method provides the accurate confidence interval of DCL when the
sample size is small or large.
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6 Appendix

6.1 Proof of Theorem 1

The variance formula can be rewritten as:

V ar(exp[ln âdi ]) = V ar(exp[ln Ŝi−1 + ln ĥi])

V ar(âdi ) = V ar(exp(lnŜi−1 + lnĥi))

Furthermore, we have another Taylor expansion for lnSi and lnhi:

ln Ŝi−1 = lnSi−1 +
Ŝi−1 − Si−1

Si−1

+ O((Ŝi−1 − Si−1)2)

lnhi = lnhi +
ĥi − hi

hi

+ O((ĥi − hi)
2)

Taking the mean value on both sides, we have:

E(ln Ŝi−1) ≈ lnSi−1

E(ln ĥi) ≈ lnhi

Hence, the first-order Taylor expansion applied to the equation exp(ln Ŝi−1 +
ln ĥi) and expanded at the mean value of the E(ln Ŝi−1) ≈ lnSi−1 and
E(ln ĥi) ≈ lnhi

6:

exp(ln Ŝi−1 + ln ĥi) = exp(lnSi−1 + lnhi) + (ln Ŝi−1 − lnSi) exp(lnSi−1 + lnhi)

−(ln ĥi − lnhi) exp(lnSi−1 + lnhi) + O((ln Ŝi−1 − lnSi)
2 + (ln ĥi − lnhi)

2)

6The hazard function can be estimated by the maximum likelihood method, and the KM
estimator consists of the hazard function. Depending on the properties of the maximum
likelihood estimator, it can be known that the KM estimator Ŝi−1 converges to the true
value Si−1 and the marginal hazard function ĥi converges to the true value hi. At this
point, we show that those result can be derived from the delta method
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Rearranging this simplifies to:

Ŝi−1ĥi − Si−1hi ≈ Si−1hi[(lnŜi−1 − lnSi−1) + (lnĥi − lnhi)]

Hence the variance V ar(adi ) can be rewritten as:

V ar(âdi ) = V ar(Ŝi−1ĥi) ∼= (Si−1hi)
2[V ar(ln Ŝi−1) + V ar(ln ĥi)]

Depending on the large sample property of the maximum likelihood estima-
tor, the KM estimator Ŝi−1 converges to the true value Si−1 and the marginal
hazard function ĥi converges to the true value hi. Therefore, V ar(âdi ) can be
written as:

V ar(âdi )
∼= (Ŝi−1ĥi)

2[V ar(lnŜi−1) + V ar(lnĥi)]

This approximation assumes that Ŝi−1 is independent with ĥi, the covariance
between the ln Ŝi−1 and ln ĥi is zero.

The logarithm version of the survival function can be written as:

ln Ŝi−1 =
i−1∑
k=1

ln(1− ĥk)

Assume the Di follows the binomial distribution with parameters Ni and
ĥi. Therefore, V ar(Di) = Niĥi(1 − ĥi). It can be shown that V ar(ĥi) =
V ar(Di

Ni
) = ĥi(1− ĥi)/Ni. By applying the first-order Taylor expansion:

ln(ĥi) = lnhi + (ĥi − hi)
1

hi

+ O((ĥi − hi)
2)

ln(1− ĥi) = ln(1− hi) + (ĥi − hi)
1

1− hi

+ O((ĥi − hi)
2)

To rearrange the formula:

ln(ĥi)− lnhi
∼= (ĥi − hi)

1

hi

ln(1− ĥi)− ln(1− hi) ∼= (ĥi − hi)
1

1− hi
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It can be assumed that the observations are independent Bernoulli dis-
tribution and they are independent with each other. Then the variance of ĥi

can be written as:

V ar(ĥi) = V ar(1− ĥi) =
ĥi(1− ĥi)

Ni

Apply the large sample properties of the maximum likelihood estimator:

V ar(ln(ĥi)) ∼=
1

ĥ2
i

ĥi(1− ĥi)

Ni

∼=
Ni −Di

NiDi

V ar(ln(1− ĥi)) ∼=
1

(1− ĥi)2

ĥi(1− ĥi)

Ni

∼=
Di

Ni(Ni −Di)

We have a formula for the exponential function:

V ar(Ŝi−1ĥi) = (Ŝi−1ĥi)
2[V ar(lnŜi−1) + (lnĥi)]

Therefore:

V ar(Ŝi−1ĥi)) = (Ŝi−1 ∗ ĥi)
2 ∗ [

i−1∑
k=1

Dk

Nk(Nk −Dk)

+
Ni −Di

NiDi

] (26)
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