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Do we need to listen to all stakeholders?: communicating in a

coordination game with private information∗

Antonio Cabrales†, Michalis Drouvelis‡§, Zeynep Gurguc¶and Indrajit Rayk

10th November 2018

Abstract

We consider an experiment with a version of the Battle of the Sexes game with two-sided private

information, preceded by a round of either one-way or two-way cheap talk. We compare different

treatments to study truthful revelation of information and subsequent payoffs from the game. We

find that the players are overall truthful about their types in the cheap-talk phase in both one-way

and two-way talk. Furthermore, the unique symmetric cheap-talk equilibrium in the two-way cheap

talk game is played when the players fully reveal their information; however, they achieve higher

payoffs in the game when the talk is one-way as the truthful reports facilitate desired coordination.
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1 INTRODUCTION

Organizations very often confront situations in which it is important that its members choose a common

action: selecting a candidate for a job opening, a programming language in a project, or a location for

a new office building. Yet, the preferences about those actions are not, in general, common knowledge

(who is the preferred job market candidate for each member of the organization: the search theorist,

or the trade economist?). One possible solution in this context is to foster communication to achieve

the desired coordination. Executives and managers are often recommended to improve communication

(Smidts et al, 2001; Eisenberg andWitten, 1987), encouraged to perform 360 degree reviews (Yammarino

and Atwater, 1997; Atwater and Waldman, 1998), and generally told to facilitate “making the views of

all stakeholders heard” (Scholes and Clutterbuck, 1998; Morsing and Schultz, 2006).

The purpose of our research is to test the hypothesis that improved communication is always

efficiency-enhancing within organizations, and particularly the idea that it is important to “listen to all

stakeholders.” In order to do this, we design a simple strategic game of coordination with private in-

formation, and test in a laboratory experiment whether two-way communication is superior to one-way

communication.

To be more specific, the participants in our experiment play a two-player game where each of them

has two actions, that we call  and  . It is common knowledge that taking different actions leads to

the worst payoff, and that player 1 prefers the outcome achieved with the profile () and player

2 prefers that with (  ). However, the payoff for the player from her less profitable outcome is her

private information, and can take one of two values  ∈ {}, with   . Efficiency, or at least

total surplus maximization, suggests that the partner should choose the profile with the lower loss for

the “damaged” player. But choosing the efficient option is difficult because whether  is the low ()

or the high () value is private information of the player.

In our experiment, the  and  actions are chosen only after some communication ensues. The

participants can choose a message from  and , before choosing actions. There are three treatments. In

one of them, there is no communication, the participants just choose actions. The other two treatments

have communication; in one of those treatments, only one (randomly chosen) player can send a message,

while, in the other treatment with communication, both players choose a message simultaneously. After

the player(s) send the message(s), both players choose actions.

There are at least two possible benchmarks against which we can compare our experimental results.

First, we can compute the most informative symmetric Bayesian-Nash equilibrium with purely self-

interested and consequentialist players, who care only about their own final payoffs and are Bayes-

rational. We will call this the standard prediction. One potential alternative assumes that it is common

knowledge that players always send truthful messages and otherwise they are standard Bayes-rational
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and self-interested. We will call this the truthful prediction.

Under two-way communication, these two predictions coincide (as proved in Ganguly and Ray,

2017). The most informative symmetric Bayesian-Nash equilibrium of the game posits that both players

announce their types truthfully. If the two announced types do not coincide, the players then play the

actions leading to the efficient outcome; when the two players announce the same type, the players use

the symmetric (and thus mixed) equilibrium in the corresponding subform.

Under one-way communication, the two predictions diverge. The truthful prediction states that

the player who sends the message announces her type truthfully. The players then play the actions

corresponding to an equilibrium of the Bayesian game in which the type of the sender is common

knowledge and that of the receiver is private information. The standard prediction, on the other hand,

is that the players either babble at the communication stage, by sending the same (possibly mixed)

uninformative message, or they choose the same action at the action stage. That is, in equilibrium, one

of two things will happen. One is that the messages are independent of the players’ types and then at

the action stage, the players play the Bayesian-Nash equilibrium of the game without communication.

The other is that the players’ actions are independent of their messages, even if the messages are true

reports.

The results of our experiment are, in essence, as follows. In the game with two-way communication,

the common standard and truthful prediction hold remarkably well. Both players tell the truth a very

large fraction of the time and, conditional on truth-telling, their subsequent behavior is also very much

in line with the prediction. On the other hand, in the game with one-way communication, the observed

play is statistically in line with the truthful prediction. By and large, senders tell the truth, and receivers

act accordingly. Thus, the standard prediction is rejected. Players do not use the same message, and

they do not ignore the sender’s message after communicating.

An important implication of our observations is that aggregate payoffs are significantly larger under

one-way communication than those under two-way communication, and both of them are higher than

those without communication. This is in stark contrast with the standard prediction.

Our result that payoffs are higher under one-way than two-way communication would seem super-

ficially related to the previous experimental research on cheap-talk games under complete information,

such as Cooper et al (1989). But they are in fact quite different. In the corresponding games with

complete information, as Cooper et al (1989) recognize, “the sender of the message simply chooses his

preferred equilibrium and the receiver best responds.” In our game, when the sender in one-way commu-

nication tells the truth, she in fact gets her worst outcome when she is of the High type; and this is why

telling the truth is not an equilibrium. Yet, this is what we observe in our experiment, and this is the

reason why one-way communication yields overall higher payoffs. It is indeed fairly remarkable, because

a straight application of the logic from the experiments with complete information would suggest that
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the sender should pretend that she is of Low type in order to achieve her preferred outcome.

Since reality is fraught with information asymmetries, our results are thus very significant because of

its implications: a policy of unrestrained communication where “everyone can express their views” might

not always be in the organization’s best interest, although clearly some communication is necessary.

Although necessarily stylized, we believe the setup of our experiments reflects important aspects

of reality. One can think of our game as one of effort allocation within a partnership. There are two

available projects. Success requires that both partners put the effort in the same project. The benefits

accrue asymmetrically, as project 1 is preferred by partner  and project 2 by partner . But the

partner who does not benefit as much can be “harmed” to different extents by putting the effort on

the less-preferred project. This could be because working in an area away from the main expertise

has varying degrees of difficulty, and that difficulty is hard to assess for an outsider. The leader of

the partnership can decide to allow the views of only one or both members of the partnership to be

heard before they decide to exert the efforts. Another important aspect of the design is that our game

is repeated and the type of each player changes over time. This is realistic as partnerships undertake

diverse projects over time, and the “less able” partner could vary with the nature of the project.

Note that our results are obtained in a one-shot game, where there is no chance of establishing a

reputation for reliability and trustworthiness. We expect these results to be even stronger in the context

of a long-lived organization where the actors have an incentive to establish themselves as trustworthy

partners (Wilson and Sell, 1997).

1.1 Related literature

Many games of economic interest involve multiple (pure) Nash equilibria and it is therefore important to

understand how, if at all, players coordinate to play a particular equilibrium outcome. This problem of

equilibrium selection has been theoretically analyzed using different criteria, such as, payoff-dominance

(Colman and Bacharach, 1997), or risk-dominance (see Harsanyi and Selten, 1988, and Straub, 1995,

for experimental evidence).

The experimental literature shows that in coordination games with multiple equilibria, players often

fail to coordinate (Van Huyck et al, 1991; Cooper and John, 1988; Straub, 1995) unless the game

has special features, such as a very strong kind of risk-dominance (Cabrales et al, 2000). It is also

well-known, since the work by Cooper et al (1989), that cheap-talk (Farrell, 1987) and in general,

pre-play non-binding communication can significantly improve coordination in experiments with games

like Battle of the Sexes (see Crawford, 1998; Costa-Gomes, 2002; Burton et al, 2005, for details and

Ochs, 1995, for a survey). In contrast with the previous literature, we concentrate on games with

private information. These games are very realistic in many contexts, and the coordination potential of
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communication is severely threatened in them because of the incentive problems of the players.

There is little evidence on coordination with incomplete information; most of it concentrates on

the effect of adding public information about a common state (McKelvey and Page, 1990; Marimon

and Sunder, 1993; McCabe et al, 2000; Heinemann et al, 2004; Cabrales et al, 2007; Cornand and

Heinemann, 2008) in the spirit of global games (Carlsson and Van Damme, 1993; Morris and Shin,

1998, 2002) and on the effect of sunspots (Duffy and Fisher, 2005). Our experiment concentrates on

the problem of coordination when the incomplete information is about private, not common, values.

Some other literature has shown experimentally that communication and recommendations of play can

serve to achieve correlated equilibria (Moreno and Wooders, 1998; Cason and Sharma, 2007; Duffy and

Feltovich, 2010; Bone et al, 2013; Anbarci et al, 2017; Duffy et al, 2017; Georgalos et al, 2017) à la

Aumann (1974, 1987).

A different strand of experimental literature concentrates on analyzing the sender-receiver games à

la Crawford and Sobel (1982). In these games, coordinating actions is not a problem (unlike our case),

since only the receiver takes an action, after the sender’s message; however, there is still multiplicity of

equilibria arising from the existence of equilibria where the messages are ignored (“babbling equilibria”).

One main result in that literature (e.g., Dickhaut et al, 1995; Blume et al, 1998, 2001; Kawagoe and

Takizawa, 1999) is that the players tend to behave as in the informative equilibrium when their interests

are well-aligned. Duffy and Feltovich (2002) explain why cheap talk or observation is likely to be the

more effective device for achieving good outcomes in some specific 2 x 2 games.

Our game is one where the players’ interests do not coincide, and thus we are closer to another strand

of the literature (Sánchez-Pagés and Vorsatz, 2007; Kawagoe and Takizawa, 2005; Cai and Wang, 2006;

Wang et al, 2010) dealing with games where the players’ interests are misaligned. They tend to find

that in games where interests do not align well, the senders sometimes tell the truth even when this

is not in equilibrium. This finding can be explained by a truth-telling norm. For example, Duffy and

Feltovich (2006) observe that senders’ signals tend to be truthful in games played repeatedly against

changing opponents, while Capraro (2017) shows that even in an one-shot interaction, time pressure

increases honest behavior. An exception to the above is Cabrales et al (2016), who also find some

evidence of aversion to lying, but in addition a substantial amount of deception/misinformation even

when lying does not increase the sender’s payoff; this happens more often for the subjects who display

non-pro-social or envious preferences, which they measure independently. Agranov and Schotter (2012)

show that in coordination games where players’ interests are not aligned, it is sometimes useful for a

utilitarian third party who communicates types with the players to do so in an ambiguous or vague

manner.

Gneezy (2005) explores deception for message-senders who could benefit materially from a deception,

while harming the receiver, though, the experimenter does not inform the receivers of the payoffs of
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the sender, who is then unaware of the potential conflict of interest. In that case, many participants

decide not to deceive the receiver. In contrast, in ultimatum games with private information, Kriss et

al (2013) generally observe very high frequencies of dishonesty.

One important paper adding to this literature is Abeler et al (2018). They conduct a meta-analysis

of previous experiments, as well as some new experiments. They aim to test between a large number of

extant theories explaining why people sometimes tell the truth even against their own material interest.

The conclusion is that “only combining a preference for being honest with a preference for being seen

as honest (or a model whose intuition and prediction are very similar) can explain the data.”

All these results are important for our paper, because in our context, there is also a tension between

truth-telling norms and fairness preferences, which in our case seems to be resolved in favor of the

truth-telling norm. This is likely because of repetition, since the participants are not always on the

“losing” side of the coordination game.

Another relevant literature is the one relating “promises,” as in Ellingsen and Johannesson (2004),

Charness and Dufwenberg (2006, 2013). That literature establishes that individuals in a partnership

often make promises to undertake an action that is not beneficial to themselves, when in the partnership

to convince other to participate in said partnerships. Those promises are often kept even if, as we said,

it is not in their own self-interest to do so. The explanation appears to be “guilt aversion” towards not

behaving as others expect the promising party. This is relevant for us because, in our game, especially

under one-way communication, a lie can be interpreted as not keeping a promise to behave in an efficient

way. Of course, we are dealing with a game of private information/adverse selection, rather than private

actions/moral hazard, but the results in this literature can be useful to interpret our own findings.

Our experiment uses a limited language for players, who can only communicate their type. An

alternative approach allows participants in the experiment to use free-form communication using chat

boxes. Sometimes those experiments lead to different outcomes than those predicted by Nash equilibrium

(in Moreno and Wooders, 1998), or alternatively they allow outcomes that are consistent with Nash

equilibria, but which were not reached without communication (as in Agranov and Tergiman, 2014, or

Baranski and Kagel, 2015).1 Since chat box communication is more “realistic” than our approach, one

can ask whether freer communication could change our results. Although that is ultimately an empirical

question, we should note that coordination in those games is considerably more complicated than in

ours. In fact, we achieve a very large amount of coordination in both our treatments, even with our

limited language. We think a larger language would be unlikely to lead to much more coordination.

1Guarnaschi et al (2000) and Goeree and Yariv (2011) study the closely related issue of deliberation in jury settings à

la Feddersen and Pesendorfer (1996).
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2 EXPERIMENT

We first present the theoretical concepts behind our experiment.

2.1 Game

We consider the following two-person Bayesian game in which each player has two pure strategies,

namely,  and  :

1\2  

 1 2 0 0

 0 0 1 1

Table 1: Battle of the Sexes with private information

where ’s are independent random variables taking two values, {}, with    and  being

the probability of ;  is private information for player ,  = 1 2. Players get a positive payoff only

when they coordinate their strategies either on  or  .

We study an extended game in which the players are first allowed to have a round of simultaneous

cheap talk, where they may reveal their private information about the value of , before they play

the above Battle of the Sexes (henceforth, BoS). The typical set-up is a three-stage game where, if the

communication is two-way:

0 Nature tells players the value of ,

1 Players simultaneously report a value of  from the feasible set, {},

2 Players choose  or  ;

and if communication is one-way, the game is as above except that in stage 2 only one player reports

her type.

At the end of the game, payoffs are realized according to Table 1, based on the realized values of

’s.

In the communication stage of this game, an announcement strategy for player  is thus a function

 : {} → ∆({}), where ∆({}) is the set of probability distributions over {}. With
some abuse of notation, one may write ( | ) for the probability that strategy () of player  with
valuation  assigns to the announcement .

For the two-way communication game, in the action stage, a strategy for player  is a function

 : {} × {} × {} → ∆({ }), where ∆({ }) is the set of probability distributions
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over { }. We write ( |; 1 2 ) for the probability that strategy (; 1 2) of player  with

valuation  assigns to the action  when the communication stage announcements are (1 2). Simi-

larly, for the one-way communication game, such a strategy of player  with valuation  will be (; )

that assigns probability to the action  when the communication stage announcement is  .

2.2 Theoretical Benchmark

Ganguly and Ray (2017) showed that there exists a unique fully revealing symmetric perfect Bayesian

equilibrium of this two-way communication game for a range of values of . In that equilibrium, called

, the players announce their types truthfully, that is, ( | ) = 1 and ( | ) = 0, for

 = 1 2. Then, in the action stage, when both players’ types are identical, each player plays the mixed

Nash equilibrium strategies of the complete information BoS (in which player 1 plays  with probability

1 (1 + 2) and player 2 plays  with probability 1 (1 + 1)); and when only player 1’s value is  ()

they play the coordinated outcome (  ) (()) . Theorem 1 in Ganguly and Ray (2017) confirms

that  is the unique fully revealing symmetric perfect Bayesian equilibrium and it exists if and

only if

2 +2

1 ++2 +2
≤  ≤  +2

1 ++ +2
. (1)

One may also be interested in knowing what happens in the corresponding game with one-way

communication. In particular, we want to know whether any truthful equilibrium exists in this game

or not. As the game is asymmetric in this case (as only one of the players is talking), we cannot resort

to symmetry any further. It can be easily shown that there are multiple asymmetric equilibria.

In the game with one-way communication, players may babble at the cheap-talk stage, that is, they

may report the same value (or distribution over values) regardless of the original value and then play

any of the equilibria of the BoS. Also, in this case, truthfully revealed messages followed by actions

that depend meaningfully on the messages are no longer equilibrium profiles. More formally, in the

game with one-way cheap talk (say, by player 1), there does not exist an equilibrium in this game with a

non-babbling strategy profile where player 1 reports his type truthfully in the cheap talk stage (Theorem

4 in Ganguly and Ray, 2017).2

Ganguly and Ray (2017) also provided (Proposition 1 in their paper) the full characterization of the

unique symmetric Bayesian-Nash equilibrium of the above BoS with no communication.

2An action profile is called non-babbling if at least one of the following conditions holds: (i) 1( |; ) 6= 1( |; ),
(ii) 2( |; ) 6= 2( |; ), (iii) 2( |; ) 6= 2( |; ), that is, if at least one type of one player chooses a
different action.
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2.3 Parameters

We now focus our attention on specific values of the parameters (the private values) in the BoS presented

in Table 1, to be used in our experimental analysis. Since we would like to test for the validity of the fully

revealing symmetric perfect Bayesian equilibrium, , in the two-way communication game, we

choose values of ,  such that condition 1 is respected. In particular, a pair that works well is  = 065

and  = 09, with  = 04.

A remark is in order regarding our choice of values. These values of  and  are chosen because we

want the coordination-payoff at state  to be sufficiently different from that at  so that the surplus

difference is significant. Moreover, we know (from Ganguly and Ray, 2017) that the upper bound of  in

1 is such that   05. We would like the states () and () to happen sufficiently often because

these are the states when there can be coordination in an outcome that does not maximize surplus. The

combined probability of these states with our choice of  = 04 turns out to be 2 (1− ) = 048, which

we think is sufficiently large for our purposes.

In the rest of the paper, we call a player of type- (Low-type) when  = 065 and of type- (High-

type) when  = 09. As a short-hand, four possible type profiles or four possible states will also be

denoted by , ,  and , respectively. The game therefore can be presented in four different

type-profiles as in Table 2 below.

State  (both players are of type-) State  (player 1: type-; player 2: type-)

 

 1 065 0 0

 0 0 065 1

 

 1 09 0 0

 0 0 065 1

State  (player 1: type-; player 2: type-) State  (both players are of type-)

 

 1 065 0 0

 0 0 09 1

 

 1 09 0 0

 0 0 09 1

Table 2: The Bayesian game with two types for each player

One may check that, for these parameter values, when the players follow the equilibrium strategy

, they coordinate on (  ) (()) when only player 1’s value is  () and they play the

mixed Nash equilibrium when both players’ types are identical. This means that in the  state, player

1 plays  (and by symmetry, player 2 plays  ) with probability 2033 (' 061) while in the  state,

player 1 plays  (and player 2 plays  ) with probability 1019 (' 053). Thus,  generates
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the following distribution (as shown in Table 3) over the outcomes, with the (expected) payoff for each

player being 1759826125 (' 067).3

       

 024 037  1 0  0 0  025 028

 015 024  0 0  0 1  022 025

State  State  State  State 

Table 3: The two-way cheap-talk equilibrium distribution

Note that, as is evident from Table 3, this equilibrium, , generates a fair amount (about

50% in the  state and 52% in the  state) of miscoordination when the types are the same, as the

players mix in these states.

One can also compare the cheap-talk equilibrium  with the unique symmetric Bayesian-

Nash equilibrium of the BoS with no communication, given our parameter values, which can be computed

easily (see Proposition 1 in Ganguly and Ray, 2017 for details).

Remark 1 It is easy to verify, as  (1 +) (' 039) ≤  (= 04) ≤  (1 +) (' 047), that in the
unique Bayesian-Nash equilibrium of the game without any communication, player 1 type- plays the

pure strategy  and type- plays  (by symmetry, player 2 type- plays  and type- plays ). Thus,

in this (pure) Bayesian-Nash equilibrium, the players fully coordinate when their types are different;

however, they completely miscoordinate when their types are the same. The expected payoff for each

player in this equilibrium therefore is 0456.

2.4 Reduced Games

The original Bayesian game, as in Table 2, can be reduced if we assume that only one of the players

is communicating and thereby revealing the type truthfully. In such a case, we will have a reduced

(Bayesian) game with one-sided private information, in which one of the players will have two types.

For example, consider the case where player 1 truthfully reports to be of type-; then the reduced game

will have two types,  and , for player 2 only, as shown in Table 4 below.

3We present the approximate values (up to 2-decimal points) for the equilibrium distribution in Table 3 for the ease of

comparison with our experimental findings (see Table 10 below). The actual probabilities are the products of the individual

mixing probabilities; for example, in the  state, the probability of the outcome  is 20
33
x 13
33
= 260

1089
' 024.
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Player 2: type-A Player 2: type-B

 

 1 065 0 0

 0 0 09 1

 

 1 09 0 0

 0 0 09 1

Table 4: The reduced Bayesian game with player 1 as type-

For the above Bayesian game, one may easily find strategy profiles involving a strategy of player 1

and strategies of player 2 for different types that form a Bayesian-Nash equilibrium. Not surprisingly,

this game has multiple equilibria. It is indeed easy to check that the profiles (;) and ( ;  )

are both (pure) Bayesian-Nash equilibria. Moreover, one may prove that the mixed strategy profile

given by (20
33
; 7

57
) in which player 1 plays  with probability 20

33
( with 13

33
) and player 2 with

type- plays  with probability 7
57
( with 50

57
) while type- plays the pure strategy  is also a

Bayesian-Nash equilibrium of this game. Similarly, when player 1 is of type-, then one may show

that the set of equilibria for the corresponding reduced Bayesian game (with player 1 as type- and

player 2 with two possible types,  and ) consists of the pure profiles (;) and ( ;  ) and

the mixed profile given by ( 10
19
; 65

66
), in which player 1 plays  with probability 10

19
( with 9

19
)

and player 2 with type- plays pure strategy  while type- plays  with probability 65
66
( with 1

66
).

By symmetry, using the above analysis, one can also easily find the corresponding sets of equilibrium

profiles for two other reduced games in which player 2 is of a given specific type ( or ) but player 1

has private information, with two types ( and ). We will use some of the above equilibria of these

reduced games in our hypotheses and experimental analysis below.

2.5 Hypotheses

As noted already, we have chosen our parameters (prior probabilities and the payoffs in the game) so

that the truthful equilibrium exists in two-way communication. We expect to observe the equilibrium

in two-way communication. However, we believe that the individuals will report their values truthfully

in the communication stage regardless of the treatment (one-way or two-way), even though it is not

part of an equilibrium to report the type truthfully in the one-way communication game. Thus, our

first hypothesis is as below.

Hypothesis 1 Individuals truthfully report their values in the communication stage in both the two-way

and the one-way treatments.

Hypothesis 1 also implies that we do not expect any difference in truth-telling between the two types

of players within a given game and between the two (one-way and two-way) communication treatments.
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Our main hypothesis regarding the players’ behavior in the two-way communication treatment is

straight-forward: we believe that the players do follow the equilibrium strategy  in the game

with two-way communication.

Hypothesis 2 Players follow the fully revealing symmetric perfect Bayesian equilibrium strategy, that

is, they report their values truthfully and then choose the actions in  in the two-way

communication treatment.

Note that, under Hypothesis 2, the outcomes in the game are as in Table 3.

We now focus on one-way communication and hypothesize the expected outcome in this treatment.

Given Hypothesis 1, the announcer’s report in the communication stage can be treated as her true type.

Therefore, the game is reduced to one in which only one player has private information, such as the one

described in Table 4 (in which player 2 has two types). As explained earlier, such a game has multiple

(Bayesian-Nash) equilibria. We hypothesize a natural selection from the set of equilibria in such a

reduced game. First, we think that the selected equilibrium will be the one where there is coordination,

which is desirable and thereby acceptable for both players. We further believe that coordination will

occur in the favorite equilibrium of the announcer. That is, if the announcer is a row (column) player

of type-, the choices will be () ((  )) and when she is of type-, the choices will be (  )

(()). We pose this as our next hypothesis formally.

Hypothesis 3 In the one-way communication treatment, if the row (column) player truthfully an-

nounces the low value, 0 65 , then the players coordinate on the equilibrium strategy profile (;)

((  ; )), while the players coordinate on the equilibrium strategy profile ( ;  ) ((;))

if the row (column) player truthfully announces the high value, 0 90 , in the corresponding reduced

Bayesian game in which only the column (row) player has private information with two types.

Our hypothesis regarding the players’ behavior in the no communication game is that the players

follow the unique Bayesian-Nash equilibrium strategy of the game as described in Remark 1.

Hypothesis 4 In the no communication treatment, the row (column) player plays the pure strategy X

(Y ) when the value  is 0 65 and the pure strategy Y (X ) when the value  is 0 90 .

One may easily calculate the expected payoff of a player from the chosen equilibria in different

treatments under our Hypotheses 2, 3 and 4. One may recall (from the previous section) that 

generates an expected payoff of 067 (approximately) for each player, whereas the expected payoff

for each player from the Bayesian-Nash equilibrium of the game (without communication) is 0456.

Hypothesis 3 suggests that the players always get positive payoffs following the equilibrium selection

using one-way communication. As an announcer (the probability of which is 05), a player gets either
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1 (with probability 06) or 09 (with probability 04) while as a non-announcer, a player gets either 1

(with probability 04) or 065 (with joint probability 036) or 09 (with joint probability 024); hence, the

expected payoff of a player in the game under Hypothesis 3 is 0905. This leads us to our final hypothesis

regarding the level of coordination (measured by the sum of () and (  )) and the payoffs achieved

by the players in the game. Note that under Hypothesis 3 (coupled with Hypothesis 1), the players

fully coordinate on either () or (  ) equilibrium in the game, for all type-profiles in the one-way

treatment; however, in the two-way communication treatment, they do not fully coordinate when their

types are the same under Hypothesis 2, following the equilibrium strategy . Also, the players

completely miscoordinate in the no communication treatment when their types are the same, under

Hypothesis 4, following the Bayesian-Nash equilibrium of the game. Therefore, we believe that the level

of coordination and thus the payoffs are expected to be higher in the one-way treatment than those in

the two-way treatment which in turn are expected to be higher than those in no-communication. We

pose this as our final, and the most important, hypothesis.

Hypothesis 5 Coordination on either () or (  ) equilibrium and thus the individual payoffs in

the game are higher in the one-way communication than in the two-way communication treatment;

these in turn are higher in two-way communication than the no communication treatment.

Hypothesis 5 suggests that communication helps the players to achieve more coordination and pay-

offs; however, it’s better to allow one-way communication.

2.6 Design and Procedures

Our experiment consists of three treatments which differ in the communication possibilities: two-way

communication, one-way communication and no communication. In each of our treatments, we ran two

sessions with 24 subjects; in total, 144 students participated in 6 sessions. The subjects were asked to

choose what to announce in the communication stage and what to play in the game in the action stage,

as described in the model above.4

4As a robustness check, we also conducted sessions with the strategy method (following Mitzkewitz and Nagel, 1993;

also see, Brandts and Charness, 2011, for a survey), where the subjects were asked to submit contingent decisions about

their announcements and actions. Under this method, in the communication stage (in the two-way and the one-way

treatments), subjects made announcement decisions conditional on their values; in the action stage, they chose  or 

in 2, 4 or 8 different situations defined by their types, their hypothetical announcements (if any) and the hypothetical

announcements of their counterpart (if any) in the no-communication, one-way and two-way communication treatments

respectively. Once both subjects in a matched pair made all the conditional decisions, the values of  and  were randomly

and independently generated by the computer, with the probability of the low value (065) being 06; given the realized

values of  and , the participants’ announcements (if any) and their corresponding action choices, one of the situations

was identified to determine the payoffs. We ran one session with 24 subjects per treatment; hence, 72 subjects participated

in a total of three sessions. We have 3 independent observations per treatment, hence a total of 9.
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We used a “between subjects” design, where each participant took part in only one session and thus

only in one treatment. For each of the sessions, we used 3 matching groups, each comprising 8 subjects

(i.e., 4 pairs) in order to increase the number of independent observations. Each of these matching

groups represents an independent observation; hence, we have a total of 6 independent observations per

treatment. The overview of the experimental design is summarized in Table 5 below.

Treatment #Subjects #Ind. Obs. #Periods #Realized Obs. #Realized Obs.

(Comm.) (type-) (type-)

Two-way 48 6 20 576 384

One-way 48 6 20 576 384

None 48 6 20 576 384

Table 5: Summary of the experimental design

Each treatment lasted for 20 rounds. We randomly re-matched the subjects in every round in order

to create an environment as close as possible to a one-period interaction between subjects. Subjects

were informed that they had been randomly paired with participants; however, they were not aware

of the identity of the subjects they were matched with. The same matching protocol was used in all

matching groups. In this paper, all our non-parametric tests are based on matching group averages of

the relevant variables for each treatment.

All sessions used an identical protocol. At the beginning of a session, subjects were seated and then

the instructions were read aloud by the experimenter to all the subjects. Then, they were given a few

minutes to complete a brief comprehension test (see Appendix 1), to ensure that they had understood

the instructions. When the subjects had done the test, we went around to them individually to make

sure that they had all the correct answers. The experiment did not proceed until every subject had

the correct answers to these questions. Subjects were not allowed to communicate with one another

throughout the session, except via the decisions they made during the experiment.

At the beginning of a round, subjects were shown the payoff matrix corresponding to the game

and the value of  ( or ). For any treatment, in all sessions, we used the same random sequence

of values to reduce across-subject variation. After the subjects decided which action to choose, they

were provided with the feedback on their own announcement (depending on the treatment), own chosen

action, counterpart’s announcement (depending on the treatment), counterpart’s chosen action, own

payoff and counterpart’s payoff, after each round. Subjects were not presented a history of the game,

however they were given a record sheet in which they may be able to write down their previous decisions

as well as the decisions of their counterparts and their own payoffs (see Appendix 1 for details).
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At the end of round 20, the experimental session ended. Subjects were asked to complete a brief on-

screen questionnaire with some supplementary private (anonymous) information and then were privately

paid according to their point earnings from all 20 rounds. We used an exchange rate of £1 per point.

Sessions lasted, on average, for 45 minutes. The average payment over all treatments was about £11

(approximately $15) which is higher than student jobs in the UK that offer about £700 per hour.

The experiment was programmed and conducted with the software z-Tree (Fischbacher, 2007) at the

laboratory of the Centre for Experimental Economics (EXEC) at the University of York. The subjects

were recruited, using the ORSEE software (Greiner, 2015), from various fields of studies, including, but

certainly not confined to, Economics or other Social Sciences, of the University of York.5

3 RESULTS

We divide our statistical analysis in different subsections below based on the hypotheses stated above.

In each of these subsections, we discuss our findings and the results from the direct method only; a

similar analysis for the strategy method can be found in Appendix 2.

3.1 Truthfulness

The first question that we are interested in is the truthfulness of the individuals while reporting their

types in the communication treatments. The short answer is yes; we find that the proportion of truthful

behavior is high. We further split this answer into categories by types ( and ) and by treatments

(two-way and one-way communication). Table 6 provides the proportion of truthful reports by all

individuals (of two different types, as both row and column players) in the two-way and the one-way

communication treatments. Evidently, for the one-way communication treatment, we only considered

the announcers (as either row or column players).

Individual Truthfulness

Two-way Communication One-way Communication

Type Yes No Total Yes No Total

 459 (80%) 117 (20%) 576 240 (82%) 54 (18%) 294

 290 (76%) 94 (24%) 384 147 (79%) 39 (21%) 186

Total 749 (78%) 211 (22%) 960 387 (81%) 93 (19%) 480

Table 6: Truthfulness in all individual reports (by types and by treatments)

5The sessions for the strategy method were conducted at the Economic Learning and Social Evolution (ELSE) at the

University College London.
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Table 6 shows that individuals are overall truthful (about 80% across types and communication

treatments); it also indicates that there is hardly any difference between two types and between two

different communication treatments.

One may look at the truthfulness within a pair in the two-way communication treatment. Using

paired data, we find that in 61% of the pairs, both individuals are truthful while in another 34% of

pairs, one of them is truthful.

We can also follow each individual over time and check how truthful she has been. Figure 1 demon-

strates the cumulative distribution of truthfulness in one-way and two-way communication treatments.

First, in the two-way treatment, we find that 11 (out of 48 individuals) are completely (100%) truthful

which is also the modal frequency in the corresponding frequency distribution of individual truthfulness.

We also note that the median individual is 85% truthful (25 out of 48 individuals report their true types

in at least 17 rounds, out of 20). We find a very similar distribution for the one-way treatment, where

13 (out of 48 individuals) are completely (100%) truthful, which also is the modal frequency and that

the median individual is 83% truthful.

Figure 1: Truthfulness among individuals in one-way and two-way communication

To see if there is any time-trend in truth-telling, one may look at the data in five-period blocks. The

frequencies (and the percentages) of reporting the true type, over 20 periods, divided into four equal
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five-period blocks for two types of individuals are separately presented in Table 71 (for the one-way

treatment) and in Table 72 (for the two-way treatment).6

Type Periods Frequency

1− 5 6− 10 11− 15 16− 20 Total

 46 out of 60 (77%) 61/78 (78%) 60/72 (83%) 73/84 (87%) 240/294 (82%)

 49/60 (82%) 29/42 (69%) 37/48 (77%) 32/36 (89%) 147/186 (79%)

Total 95/120 (79%) 90/120 (75%) 97/120 (81%) 105/120 (88%) 387/480 (81%)

Table 71: Frequencies of truthfulness over period by types in one-way communication

Type Periods Frequency

1− 5 6− 10 11− 15 16− 20 Total

 102 out of 138 (74%) 128/168 (76%) 112/132 (85%) 117/138 (85%) 459/576 (80%)

 76/102 (75%) 53/72 (74%) 82/108 (76%) 79/102 (77%) 290/384 (76%)

Total 178/240 (74%) 181/240 (75%) 194/240 (81%) 196/240 (82%) 749/960 (78%)

Table 72: Frequencies of truthfulness over period by types in two-way communication

Result 1 Individuals are overall truthful in reporting their types during the cheap talk phase, regardless

of their private values, in both one-way and two-way communication treatments; truth-telling

increases significantly over time.

Based on Result 1 above, we can say that Hypothesis 1 (that the individuals are truthful in the

cheap talk phase) finds support in our data.

3.2 Equilibrium Play in Two-way Communication

In this subsection, we test our main equilibrium hypothesis (Hypothesis 2) for the two-way commu-

nication treatment. As noted already, given our parameters, the fully revealing separating cheap talk

equilibrium of the game, , does exist and is unique. Under this equilibrium, having truthfully

revealed their types, the players coordinate on the pure Nash equilibrium, () and (  ), respec-

tively, in the  and  states; the equilibrium strategy in the  state is given by:  ( ) with

6We ran a Probit regression clustered at individual level for both our treatments with communication using Truth as

a binary dependent variable (1 if the subject is truthful and 0 otherwise); and, Player (1 if column player, 0 otherwise),

Period (1 to 20) and Value (0 when equal to 065, 1 otherwise) as independent variables. The period variable is significant

at 5% level for both one-way and two-way communication treatments.
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probability 1165 ' 061 for the row (column) player, while for the  state it is given by:  ( )

with probability 119 ' 053 for the row (column) player.
We ask the question whether the individuals indeed played the equilibrium, , in our two-

way communication treatment. We therefore look at what the individuals actually chose to play in the

game after reporting their types. We present the data organized by individual truthfulness in this table

as we have already seen that individuals are mostly truthful (Result 1). Table 8 shows the choices made

by the individuals in the game for the two-way communication treatment, along with the theoretical

prediction as in the equilibrium strategy profile , under truthfulness.

Truthful Value C’part Row Player Column Player

Talk   Total   Total

Yes   Expt 89 (62%) 55 (38%) 144 57 (44%) 73 (56%) 130

Theory 61% 39% 39% 61%

  Expt 86 (84%) 16 (16%) 102 6 (7%) 77 (93%) 83

Theory 100% 0% 0% 100%

  Expt 4 (5%) 72 (95%) 76 65 (79%) 17 (21%) 82

Theory 0% 100% 100% 0%

  Expt 24 (35%) 44 (65%) 68 27 (42%) 37 (58%) 64

Theory 53% 47% 47% 53%

No   10 (31%) 22 (69%) 32 31 (84%) 6 (16%) 37

  12 (55%) 10 (45%) 22 6 (23%) 20 (77%) 26

  9 (47%) 10 (53%) 19 19 (58%) 14 (42%) 33

  16 (94%) 1 (6%) 17 5 (20%) 20 (80%) 25

Table 8: Choices made in the game by all individuals in two-way communication

Individuals appear to play the equilibrium strategy within  when they are truthful (from

the top half of Table 8). For example, having truthfully reported their own types, individuals of type-

as the row player choose to play  in 95% (72 out of 76) of the cases if the counterpart’s reported type is

 (which may or may not be a true report); also, the truthful type- row player plays  in 62% cases if

the counterpart’s report is  (compared to the theoretical equilibrium of 61%). These observations are

highlighted in Figure 2 that presents the frequencies of the choices by the individuals having truthfully

reported own type, compared to the corresponding equilibrium strategies.
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Figure 2: Individuals’ choices following own truthful reports in two-way communication

As seen in Figure 2, truthful individuals seem to choose the equilibrium action, except perhaps the

row players in the  state. We have formally checked if this experimental data statistically fits our

equilibrium predictions by using an appropriate 2-Square goodness of fit test. The test accepts the

null hypothesis that our experimental data follows the experimental predictions, except for the case of

row players in the  state for which the data significantly differs from the equilibrium prediction.

To understand which factors affected the individuals’ choices in the game, we run a Probit regres-

sion using 960 (48 x 20) individual observations from the 20 periods for the two-way communication

treatment. Our dependent variable here is a binary variable called Choice that takes value 1 if  is

chosen in the game and 0 otherwise. We use the independent variables: Player (takes value 1 if the

individual is a column player and 0 otherwise), Period (takes integer values from 1 to 20), Value (takes

value 0 when the type for any individual is , that is, the private value in the game is 065 and 1 when

it is 090) and Truth (takes value 1 when the reported type is the true type and 0 otherwise) and the

variable Player*Value that is the product of the two named variables. We can report that the marginal

effects of the variables Player, Value and Player*Value are significant, indicating column players and

type-’s are more likely to choose  ; however, more importantly, this effect is reversed for column

players with type- (only case when the variable Player*Value takes the value 1), something that is

fairly compatible with our Hypothesis 2. This result is even more pronounced if we perform the same

regression within the truthful sub-sample (586 observations where both individuals are truthful) while

dropping the independent variable Truth, as shown in Table 9.7

7This is with clustering at the individual level; clustering at both individual and matching group levels yield very

similar results.
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Dependent Variable: Choice = 1 if  ; = 0 otherwise

Number of Observations: 586; Pseudo 2 = 01239

Independent Variables Marginal Effects Robust Standard Errors -value

Player 034∗∗∗ 007 0000

Period 000 000 0813

Value 044∗∗∗ 006 0000

Player*Value −075∗∗∗ 008 0000

Note: ∗ denotes significance at 10% level, ∗∗ at 5% level and ∗∗∗ at 1% level.

Table 9: Probit regression on choice in two-way communication for the truthful sub-sample

Another way of presenting the observation that the truthful individuals play to coordinate on ()

and (  ), respectively in the  and  states is just to focus on the truthful subsample (when both

players are truthful in a pair), as Figure 3 demonstrates.

Figure 3: Individuals’ play in two-way communication (within truthful pairs)

In Figure 3, we observe that individuals play to coordinate on the desirable Nash outcome when

their types are different. For example, the second bar from the top shows that the type- row player

plays  in 95% cases when the counterpart is of type-.
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We now test whether the observed distribution over the outcomes is the same as the theoretical

equilibrium distribution for all possible type profiles (as described in Table 3 earlier). To test this

equilibrium hypothesis (Hypothesis 2), we use a 2-test with the null hypothesis that the observed

distribution is indeed same as the theoretical distribution. Table 10 reports the observed distributions

under the truthful (where both individuals are truthful) and non-truthful sub-samples and the results

of the corresponding 2-tests for hypothesis testing.8

Paired Types Outcomes 2 (d.f.) -value

     Total

 (Theory Eqm) 24% 37% 15% 24% 100%

 (Both Truthful) 34 (29%) 40 (34%) 17 (14%) 27 (23%) 118 154 (3) 0674

 (Not Truthful)∗∗∗ 27 (40%) 18 (26%) 4 (6%) 19 (28%) 68 1324 (3) 0004

 (Theory Eqm) 100% 0% 0% 0% 100%

 (Both Truthful)∗ 46 (67%) 9 (13%) 10 (14%) 4 (6%) 69 767 (3) 0053

 (Not Truthful)∗∗∗ 11 (24%) 12 (28%) 11 (24%) 11 (24%) 45 2569 (3) 0000

 (Theory Eqm) 0% 0% 0% 100% 100%

 (Both Truthful) 0 (0%) 3 (5%) 3 (5%) 50 (90%) 56 064 (2) 0725

 (Not Truthful)∗∗∗ 7 (21%) 7 (21%) 8 (23%) 12 (35%) 34 1424 (3) 0002

 (Theory Eqm) 25% 28% 22% 25% 100%

 (Both Truthful) 9 (18%) 11 (22%) 13 (26%) 17 (34%) 50 361 (3) 0307

 (Not Truthful)∗ 9 (22%) 7 (18%) 7 (18%) 17 (42%) 40 694 (3) 0074

Note: ∗ denotes significance at 10% level, ∗∗ at 5% level and ∗∗∗ at 1% level.

Table 10: Equilibrium predictions and experimental data for two-way communication

The statistical tests reported in Table 10 check whether our equilibrium predictions hold for the

truthful and the non-truthful samples for different type profiles (, ,  and ). Based on the

-values, we conclude that our experimental data significantly (at 1% level) differs from our equilibrium

predictions in the non-truthful samples, whereas for the truthful samples, our experimental data does

not differ significantly from the equilibrium distributions.

Result 2 Individuals’ choices in the two-way communication treatment are consistent with the equilib-

rium strategy, when they are truthful in the cheap talk phase; the unique symmetric fully separat-

ing equilibrium outcome is observed in this treatment within the sub-sample when both players are

truthful in the cheap talk phase.

8These tests are done by pooling all observations for all subjects and periods, where we treated each choice as inde-

pendent for the 2 test of goodness-of-fit. Further tests with independent observations are presented later.
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Based on Result 2 above, we find support for our main equilibrium Hypothesis 2. The fully revealing

separating cheap talk equilibrium is observed and the individuals play the equilibrium strategies in the

game when they report truthfully their types.

3.3 Play in One-way Communication

We now present our results for the one-way communication treatment and thereby test our Hypothesis

3. To do so, we look at the choices made by the players in the game, split into two parts, one for

the announcers and the other for the listeners. We first present the frequencies of announcer’s choices

(separating for row and column players respectively in Table 111 and Table 112), in the one-way

treatment, along with the theoretical prediction (under truthfulness) according to the equilibrium in

the corresponding reduced games as mentioned in Hypothesis 3.9

Truthful Value Row Player

  Total 2 (d.f.) -value

Yes  Experiment 133 (87%) 20 (13%) 153 261 (1) 0106

Theory 100% 0%

 Experiment 10 (13%) 67 (87%) 77 130 (1) 0255

Theory 0% 100%

No  12 (36%) 21 (64%) 33

 21 (84%) 4 (16%) 25

Table 111: Equilibrium and choices of announcers (row) in one-way communication

Truthful Value Column Player

  Total 2 (d.f.) -value

Yes  Experiment 10 (11%) 77 (89%) 87 115 (1) 0284

Theory 0% 100%

 Experiment 61 (87%) 9 (13%) 70 116 (1) 0282

Theory 100% 0%

No  12 (57%) 9 (43%) 21

 2 (14%) 12 (86%) 14

Table 112: Equilibrium and choices of announcers (column) in one-way communication

9Note that there is only one announcer in this treatment and thus the total number of data analyzed here is 480.
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The top halves of Tables 111 and 112 show the behavior of a truthful announcer (in 387 out of 480

cases as reported earlier in Table 6): as a row player, type- plays  (87%) and type- plays  (87%).

Conversely, as a column player, type- plays  (89%) and type- plays  (87%) which fits well with

our hypothesis of equilibrium selection for this treatment (as stated in Hypothesis 3).10

We now consider the listeners’ choices to check the behavior as hypothesized in Hypothesis 3. Table

12 presents the listeners’ choices (by type) following the counterpart’s announcements given counter-

part’s role, along with the equilibrium predictions as in Hypothesis 3.

Own (Listener’s)

Counterpart’s (Announcer’s) Choice

Role Announcement Value   Total 2 (d.f.) -value

Row   Expt∗∗ 79 (70%) 34 (30%) 113 1023 (1) 0014

Theory 100% 0%

 Expt 55 (85%) 10 (15%) 65 154 (1) 0215

Theory 100% 0%

  Expt 3 (5%) 52 (95%) 55 016 (1) 0686

Theory 0% 100%

 Expt 6 (11%) 49 (89%) 55 065 (1) 0419

Theory 0% 100%

Column   Expt∗∗∗ 24 (41%) 35 (59%) 59 976 (1) 0002

Theory 0% 100%

 Expt 10 (24%) 32 (76%) 42 238 (1) 0123

Theory 0% 100%

  Expt 48 (87%) 7 (13%) 55 089 (1) 0345

Theory 100% 0%

 Expt 27 (75%) 9 (25%) 36 225 (1) 0134

Theory 100% 0%

Note: ∗ denotes significance at 10% level, ∗∗ at 5% level and ∗∗∗ at 1% level.

Table 12: Equilibrium choices of the listeners in one-way communication (given the counterpart)

10Pooling all observations for all subjects and all periods, we check whether equilibrium predictions for the truthful

announcer are significantly different than experimental observations by using 2-tests with the null hypothesis that the

observed distribution is indeed same as the theoretical distribution. Based on the -values, we find that our experimental

data does not significantly differ from the equilibrium distributions.
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Table 12 shows that the choices made by the listeners are broadly in the direction of our Hypothesis

3. For example, given that the row player announcement is  (taken as a true report), the listeners

play  as a column player regardless of their own types (70% and 85%) and when this announcement

is , the listeners, play  as a column player regardless of their own types (95% and 89%).11

Tables 111, 112 and 12 together indicate that following truthful announcements by the announcers,

specific equilibrium profiles of the corresponding reduced games are played as indicated in Hypothesis

3; for example, having truthfully announced type , a row player plays  and then the listener as a

column player plays  regardless of own type, resulting in the equilibrium strategy profile (;)

in this reduced game.

We now present the actual outcomes of the game achieved in this treatment in Table 13.

Announcer’s Outcomes

Role Announcement Observations       Total

Row  All 114 (64%) 40 (23%) 20 (11%) 4 (2%) 178

Truthful 96 (63%) 37 (24%) 18 (12%) 2 (1%) 153

Theory 100% 0% 0% 0%

 All 3 (3%) 19 (17%) 6 (5%) 82 (75%) 110

Truthful 1 (1%) 9 (12%) 6 (8%) 61 (79%) 77

Theory 0% 0% 0% 100%

Column  All 4 (4%) 30 (30%) 8 (8%) 59 (58%) 101

Truthful 4 (5%) 27 (31%) 6 (7%) 50 (57%) 87

Theory 0% 0% 0% 100%

 All 62 (68%) 13 (14%) 11 (12%) 5 (6%) 91

Truthful 52 (74%) 8 (12%) 9 (13%) 1 (1%) 70

Theory 100% 0% 0% 0%

Table 13: Equilibrium predictions and experimental outcomes in the game in one-way communication

Table 13 indicates that following the truthful announcements, players coordinate on the pure Nash

equilibria (() and (  )) of the game as suggested by our Hypothesis 3. The message of this section

therefore is that even though it’s not an equilibrium to play the truthful fully revealing profile in the

11Again, pooling all observations for all subjects and all periods, we check whether equilibrium predictions for the

listener are significantly different than experimental observations by using 2-tests with the null hypothesis that the

observed distribution is indeed same as the theoretical distribution. Based on the -values, we find that our experimental

data does not significantly differ from the equilibrium distributions for most cases except for two as shown in Table 12.
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one-way communication treatment, players are indeed truthful and do play a Bayesian-Nash equilibrium

of the corresponding reduced game with one-sided private information.

Result 3 In the one-way communication treatment, individuals play a particular Bayesian-Nash equi-

librium in the reduced game with one-sided private information, if the announcer is truthful. When

the row (column) player announces “type A”, the players play the strategy profile () ((  ));

when the row (column) player announces “type B”, the players play (  ) (()) .

Based on Result 3 above we find evidence in favor of our Hypothesis 3 that players play a specific

Bayesian-Nash strategy profile in the one-way communication game.

3.4 Play without Communication

We now present our results for the no communication treatment and thereby test our Hypothesis 4. We

ask the question whether the individuals indeed played the unique Bayesian-Nash equilibrium of the

game without communication. Table 14 shows the choices made by the individuals of different types in

the game for the no communication treatment, along with the theoretical equilibrium.

Value Row Player Column Player

  Total   Total

 Expt 213 (71%) 87 (29%) 300 107 (39%) 169 (61%) 276

Theory 100% 0% 0% 100%

 Expt 89 (49%) 91 (51%) 180 146 (72%) 58 (28%) 204

Theory 0% 100% 100% 0%

Table 14: Choices made in the game with no communication

Table 14 does indicate that the Bayesian-Nash strategies are very weakly followed; for example, row

(column) players with type  () play the pure strategy  in more than 71% cases which is in line with

the equilibrium (pure) strategy, however in all other cases the frequencies do not really match with the

corresponding equilibrium strategies.

We test whether the observed distribution over the outcomes is the same as the theoretical equi-

librium distribution for all possible type profiles (i.e., Hypothesis 4). Table 15 reports the observed

distributions and the results of the corresponding 2-tests for the hypothesis testing.
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Paired Types Outcomes 2 (d.f.) -value

     Total

 (Theory Eqm) 0% 100% 0% 0% 100%

 (Observed)∗∗∗ 56 (30%) 73 (39%) 19 (10%) 38 (21%) 186 6865 (3) 0000

 (Theory Eqm) 100% 0% 0% 0% 100%

 (Observed)∗∗∗ 61 (53%) 23 (20%) 19 (17%) 11 (10%) 114 2464 (3) 0000

 (Theory Eqm) 0% 0% 0% 100% 100%

 (Observed)∗∗∗ 17 (19%) 33 (37%) 15 (16%) 25 (28%) 90 4694 (3) 0000

 (Theory Eqm) 0% 0% 100% 0% 100%

 (Observed)∗∗∗ 29 (32%) 10 (11%) 37 (41%) 14 (16%) 90 3121 (3) 0000

Note: ∗ denotes significance at 10% level, ∗∗ at 5% level and ∗∗∗ at 1% level.

Table 15: Equilibrium predictions and experimental data for no communication

The statistical tests reported in Table 15 check whether our equilibrium outcome predictions hold for

different type profiles (, ,  and ). Based on the -values, we conclude that our experimental

data significantly (at 1% level) differs from the predicted outcome distribution for all states.

Result 4 In the no communication treatment, the observed outcomes are different to those that would

be obtained under the unique Bayesian-Nash equilibrium of the game.

Based on the analysis in this subsection and Result 4, we do not find strong evidence to support

our Hypothesis 4 that the players play the unique Bayesian-Nash equilibrium in the game without

communication. However, in some cases (such as, row (column) players with type  ()), players do

seem to play according to the equilibrium strategy.

Result 4 is in sharp contrast with the previous couple of results (Results 2 and 3) that suggest that

the players follow the equilibrium in games with communication. The following subsection exploits this

contrast even further.

3.5 Coordination and Payoffs

Having analyzed individuals’ truthfulness and strategies played in the one-way and two-way commu-

nication games, we now focus on the payoffs in the game for different treatments, with and without

communication. Evidently, payoffs are positively correlated with the level of coordination on the Nash

equilibrium outcomes (() and (  )) in the game. Table 16 reports the frequencies of all outcomes

chosen in the game. As we are interested in the cases where the individuals report their types truthfully,

we also separately list the frequencies in the truthful sub-sample in the treatments with communication
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(truthfulness refers to the announcer being truthful in the one-way treatment, and both individuals

being truthful for the two-way treatment).

All

Treatments      

Two-way 143 (30%) 107 (22%) 73 (15%) 157 (33%) 480

One-way 183 (38%) 102 (22%) 45 (9%) 150 (31%) 480

No Comm 163 (34%) 139 (29%) 90 (19%) 88 (18%) 480

Total 489 (34%) 348 (24%) 208 (14%) 395 (28%) 1440

Truthful

Treatments       Total

Two-way 89 (30%) 63 (22%) 43 (15%) 98 (33%) 293

One-way 153 (40%) 81 (21%) 39 (10%) 114 (29%) 387

No Comm     

Total 242 (36%) 144 (21%) 82 (12%) 212 (31%) 680

Table 16: Frequencies of outcomes in the game in different treatments

Table 16 suggests that there is hardly any difference between the whole dataset and the truthful

sub-sample in terms of the frequencies of outcomes in the game. It also shows the level of coordination in

the game, as measured by the proportion of Nash equilibrium outcomes (() and (  )). We can see

that the percentage of coordination is highest in the one-way communication treatment (69%) followed

by the two-way treatment (63%), while the the percentage of coordination in the no communication

treatment is only 52%.

One may even look at the above frequencies split into five-period blocks. Figure 4 presents the

percentages of coordination (() and (  )), over 20 periods, divided into four equal five-period

blocks for three different treatments.
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Figure 4: Frequencies (in percentages) of coordination over period blocks by treatments

We now present the actual payoffs in the game in a similar way. Figure 5 below mimics Figure 4

and shows the average payoffs for a pair (sum of payoffs for two players), over 20 periods, divided into

four equal five-period blocks for three different treatments.

Figure 5: Average payoffs for a pair of players in the game over period blocks by treatments
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The two figures above show that there are differences among the three treatments especially from

periods 11 to 20. For the comparison of coordination levels (average percentages per treatment and

block period are shown in Figure 4), the results of the Mann-Whitney test, using pooled data, show

that the difference between one-way and no-communication treatments is significant at 1% level for

periods 6 to 20 (with -values being 00093, 00001 and 00004 for the blocks of periods 5− 10, 11− 15
and 16 − 20, respectively). Again, for periods 6 to 20, we find significant differences between two-way
and no communication treatments at 5% to 10% level (with -values being 00703, 00123 and 00647

for the blocks of periods 5− 10, 11− 15 and 16− 20, respectively). Finally, we find that the difference
between one-way and two-way communication is subtle and there is a significant difference between

these two treatments for the last block of periods (16− 20) at 10% level (with -value being 00863).

The differences between the treatments comparing pair payoffs (averages per treatment and per

block period are shown in Figure 5) are more prominent. The results of the Mann-Whitney test, using

pooled data, show that the differences between one-way and no-communication is again significant at

1% level for periods 6 to 20 (with -values being 00003, 00000 and 00000 for the blocks of periods

5 − 10, 11 − 15 and 16 − 20, respectively). This time, we find significant differences between two-way
and no communication treatments at 1% to 5% level (with -values being 00145, 00004 and 00001 for

the blocks of periods 5− 10, 11− 15 and 16− 20, respectively). Finally, we find significant differences
between one-way and two-way communication at 5% to 10% level for periods 11 to 20 (with -values

being 00737 and 00273 for the blocks of periods 11− 15 and 16− 20, respectively).
The charts in Figures 4 and 5 also suggest a time-trend for the two-way and the one-way treatments

which can indeed be shown to be significant using a suitable regression analysis.

Finally, we focus on the differences in payoffs among the treatments. A simple way of presenting the

differences in payoffs among the treatments is to plot the payoff levels from a rank-sum test for different

treatments as shown in Figure 6 below. Given the time-trend shown above, we focus here on periods

11− 20 only.
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Figure 6: Comparisons of average payoffs for a pair of players in the game by treatments

Figure 6 shows that the payoffs are highest in the one-way treatment. Formally, we use a Kruskal-

Wallis equality-of-populations rank test and find these three treatments are significantly different from

each other (-value = 00051). Using the similar test for each pair of treatments, we also find that

each pair is indeed significantly different (at least at 10% level); the -value for the comparison of no

communication and one-way is 00039, the corresponding -value for no communication and two-way

is 00374 and the -value for one-way and two-way is 00782. All these levels of significance are even

stronger for periods 11 − 20 only; for example, the -value in this case (periods 11 − 20 only) for
comparing one-way and two-way is now 00374, indicating that the payoffs are higher in the one-way

communication treatment than the two-way treatment.

Result 5 By using cheap talk individuals coordinate more in the game and thus achieve higher payoffs.

Coordination and payoffs increase over time and they are the highest in the one-way communication

treatment.

30



Based on Result 5 above, we accept our Hypothesis 5 that cheap talk helps the players to achieve

more coordination and thereby higher payoffs in the game. We also show that one-way communication

achieves the best results in this respect.

4 Conclusion

We performed an experiment using a version of the Battle of the Sexes game with two-sided private

information. The main aim was to compare the outcomes when the game is played after either one-way

or two-way cheap talk, as well as with no communication. We find that the players are overall truthful

about their types in the cheap-talk phase in both one-way or two-way talk, something that is consistent

with equilibrium behavior for the two-way treatment, but is not under one-way communication. We

also find that payoffs are the highest when the communication is one-way.

This is certainly an important result, as it suggests that maximum communication does not always

enhance efficiency under private information. It would be interesting to know the extent to which this

is maintained for other classes of games, for example, games where coordination is not the over-arching

driver of payoffs.

An important extension to this work would be to do the experiment with “real” stakeholders in a

more naturalistic setting. Our results suggest that an artifactual field experiment is a likely profitable

avenue for further research.
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5 APPENDIX 1: INSTRUCTION MATERIALS

(Supplementary materials, not intended for publication)

We report below the full set of instructions, the test and the record sheet only for the two-way treatment

of the direct method. The instructions (and the corresponding test and record sheet) for the one-way

and no-way treatments differ in a natural way; thus, for obvious reasons, these have been omitted here.

For the strategy method, we report just the instructions for the two-way treatment. The rest of the

materials are available upon request.

5.1 Instructions (Two-way)

All participants in this session have the following identical instructions.

Welcome to this experiment, and thank you for participating. From now onwards please do not talk

to any other participants until the experiment is finished.

You will be given five minutes to read these instructions. Then we will ask you to complete a brief

test to ensure that you have understood them, before starting the experiment itself.

YOUR DECISION PROBLEM

In this experiment you are asked to make a simple choice, in each of 20 successive rounds. In each

round you earn a number of points, as described below. The total number of points you accumulate

over the 20 rounds determines your final money payment, at a conversion rate of 1 point = £1 (= 100

pence).

At the start of the first round, the computer randomly assigns you the role of either Player 1 or

Player 2. You keep this same role throughout all 20 rounds.

But in each round you are randomly paired with another participant. So, if you are assigned the

role of Player 1, then the Player 2 who is paired with you in each round will probably be a different

participant from the Player 2 paired with you in earlier rounds. And likewise, if you are assigned the

role of Player 2, then the Player 1 paired with you in each round will probably be a different participant

from the Player 1 paired with you in earlier rounds.

In each round, Player 1 and Player 2 each have to choose one of two alternatives,  and  . You

do so independently of each other. So at the moment you make your own choice, you do not know the

choice of the other player.

YOUR EARNINGS

The two players’ choices together determine the points you each earn from that round, as described

in the following table.
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Player 2’s Choice

Player 1’s Choice

 

 1  0 0

 0 0  1

The first number in each cell indicates the points earned by Player 1, and the second number indicates

the points earned by Player 2.

In the above table, the number  is known to player 1 only; it is either 065 or 090. The probability

of the low value (065) is 60% while the probably of the high value (090) is 40%. Similarly, the number

 is known to player 2 only; it is either 065 or 090. Here as well, the probability of the low value

(065) is 60% while the probably of the high value (090) is 40%.

At the start of each round, the values of  and  are generated randomly and independently by the

computer.

The interpretation of the table is as follows:

If in some round, the choices made by the two players are different ( or  ), then both players

get 0.

If in some round, both players choose , then from that round Player 1 will earn 1 point (£1) while

Player 2 will earn either 065 (65p) or 090 (90p) which is known to Player 2 only.

If in some round both players choose  , then from that round Player 2 will earn 1 point (£1) while

Player 1 will earn either 065 (65p) or 090 (90p) which is known to Player 1 only.

In each round, you and your counterpart are each informed of the respective values. You are informed

only of the value for you, and you don’t know your counterpart’s value, however, as mentioned, the

chances for your counterpart’s value being 065 (65p) or 090 (90p) are respectively 60% and 40%,

regardless of your own value.

YOUR ANNOUNCEMENT

After learning the value (and before making a choice), you and your counterpart both will be asked

to make an announcement regarding your respectively values. Each of you has two alternative values

to announce: 065 or 090.

It is entirely up to you, in any round, whether or not to announce your true value for that round.

The points that you will earn depend only on the choices made and the actual values, as described on

the previous page, irrespective of the announcements.

THE COMPUTER SCREEN

The main screen for each round looks like this.
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At the top of the screen there is a message which keeps count of the round, out of 20 (in this

example, Round 1). In the centre of the screen is the table which appears on the first page of these

instructions. Immediately below the table is a message informing you which role (Player 1 or 2) you

have been assigned (in this example, Player 1). This is the same in each round.

You know your value from the table (in this example, the value of Player 1 is  = 065); however, the

unknown value is indicated by “??” in the table (in this example, the value of Player 2, , is unknown

to player 1 and is indicated by “??”).

Having seen your value form the table, you may make your announcement of a value of 065 or 090

by selecting the appropriate button and then clicking on Submit.

You may then have to wait a few moments until all participants have made their announcements,

after which will appear the next screen for you (in this example, Player 1) as shown below.
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In this screen, you will be informed of your and your counterpart’s announced values (these may not

be the true values) below the description of the table and will be asked to make a choice. To make your

choice of  or  , select the appropriate button and then click on Submit.

You may then have to wait a few moments until all participants have made their choices, after which

the results for you in that round will appear onscreen.

The result after each round includes information of the values for the both players, choices made by

each of the two players, and the points earned by each player (as below for example).

On your desk there is a Record Sheet on which you can keep a note of these results, if you wish to.
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After all the participants have read their results and clicked Continue, the main screen for the next

round will appear again as shown earlier.

AT THE END OF THE EXPERIMENT

When all 20 rounds have been completed, you will be asked to complete a brief onscreen question-

naire, which provides useful supplementary (anonymous) information for us.

Having completed the questionnaire, you will see a final screen reporting your total points accumu-

lated over the 20 rounds and the corresponding monetary payment (in £).

Please then wait for further instructions from the experimenter, who will pay you in cash before you

leave. While waiting, please complete the receipt form which you will also find on your desk. We need

these receipts for our own accounts.

The results from this experiment will be used solely for academic research. Participants will remain

completely anonymous in any publications connected with this experiment.

Thank you for participating. We hope that you enjoy the experiment, and that you will be willing

to participate again in our future experiments.
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5.2 Test (Two-way)

After reading the instructions you will be asked to complete this brief test, to ensure you have understood

them, before starting the experiment itself.

You may look again at the instructions while answering these questions.

For questions 1− 4, write the answers in the corresponding boxes.

1. If you choose  and your counterpart chooses , how many points do you earn in that round?

2. Suppose your value is 090; if you announce 065 and choose  and your counterpart announces

065 and chooses  , how many points do you earn in that round?

3. Suppose you are Player 1 and your value is 065; if you announce 090 and choose  and your

counterpart also chooses  , how many points do you earn in that round?

4. If over the 20 rounds you accumulate a total of 1065 points, what is your final cash payment (in

£) for the experiment?

For questions 5− 8, circle either True or False.

5. Your counterpart is the same person in each round. True / False

6. If the value for you is 065, then your counterpart’s value must be 065. True / False

7. Suppose you are Player 1; whatever the true and announced values are, you always get more

points when both of you choose the same than different. True / False

8. In any publications arising from this experiment the participants will be completely anonymous.

True / False

Thank you for completing this test. Please leave this completed sheet face up on your desk.

The experimenter will come round to check that you have the correct answers. If any of your answers

are incorrect then the experimenter will give you some explanatory feedback.
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5.3 Record Sheet (Two-way)

Use of this sheet is optional. It is provided so that you can keep a record of the results in each round,

as reported on your computer screen at the end of the round. This may be useful to you in considering

your decisions in subsequent rounds.

You have been assigned the role of the Player (circle one): 1 2

In each cell in the table below, simply circle the correct value as appropriate, while the information

is still on your screen at the end of that round, before clicking Continue.

Round My Value Announce Choice C’part’s Value Announce Choice My Point

1 065 090 065 090   065 090 065 090  

2 065 090 065 090   065 090 065 090  

3 065 090 065 090   065 090 065 090  

4 065 090 065 090   065 090 065 090  

5 065 090 065 090   065 090 065 090  

6 065 090 065 090   065 090 065 090  

7 065 090 065 090   065 090 065 090  

8 065 090 065 090   065 090 065 090  

9 065 090 065 090   065 090 065 090  

10 065 090 065 090   065 090 065 090  

11 065 090 065 090   065 090 065 090  

12 065 090 065 090   065 090 065 090  

13 065 090 065 090   065 090 065 090  

14 065 090 065 090   065 090 065 090  

15 065 090 065 090   065 090 065 090  

16 065 090 065 090   065 090 065 090  

17 065 090 065 090   065 090 065 090  

18 065 090 065 090   065 090 065 090  

19 065 090 065 090   065 090 065 090  

20 065 090 065 090   065 090 065 090  
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5.4 Instructions (Two-way; Strategy Method)

All participants in this session have the following identical instructions.

Welcome to this experiment, and thank you for participating. Please read the instructions carefully.

If you have any questions or concerns, please raise your hand and the experimenter will come to answer

your question in private. From now onwards please do not talk to any other participants until the

experiment is finished. After you read these instructions we will start our experiment but before you

take your actual decisions we will ask you to complete a brief test in the computer screen.

YOUR DECISION PROBLEM

In this experiment you are asked to make choices in 20 successive rounds. In each round, you

earn a number of points as described later. The total number of points you accumulate over the 20

rounds determines your final monetary payment, at a conversion rate of 1 point = £1 (= 100 pence);

additionally, you will earn £5 as a fixed show-up fee. The amount you make will be paid to you in cash

at the end of the experiment.

At the start of the first round, the computer randomly assigns you the role of either Player 1 or

Player 2. You keep this same role throughout all 20 rounds. At the beginning of each round you are

randomly paired with another participant (of different role) and neither of you will know the identity

of your counterpart throughout the experiment.

In each round, you and your counterpart (the person are paired with) will be asked to make an-

nouncement decisions in two situations and will face 8 different situations in each of which you have

to choose one of two alternatives,  or  . Please note that you and your counterpart will make your

decisions independently of each other. So at the moment you make your own choice, you do not know

the choice of the other player.

YOUR POINTS

The two players’ choices together determine the points you each earn from that round, as described

in the following table.

Player 2’s Choice

Player 1’s Choice

 

 1  0 0

 0 0  1
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The first number in each cell indicates the points earned by Player 1, and the second number indicates

the points earned by Player 2. Number A represents Player 1’s value, similarly number  represents

Player 2’s value. Both the values  and  are either 065 or 090. The probability of the low value

(065) is 60% while the probably of the high value (090) is 40%, and the probabilities for  and  are

generated randomly and independently. In other words, the probability of  being 065 or 090 does

not influence the probability of  being equal to 065 or 090 and vice versa.

The interpretation of the table is as follows:

If in some round, the choices made by the two players are different ( or  ), then both players

get 0.

If in some round, both players choose , from that round Player 1 will earn 1 point (£1) while

Player 2 will earn the value of ; that is, either 065 (65p) or 090 (90p).

If in some round both players choose  , from that round Player 2 will earn 1 point (£1) while Player

1 will earn the value of ; that is, either 065 (65p) or 090 (90p).

YOUR DECISIONS

PART 1: YOUR CONDITIONAL ANNOUNCEMENTS

In each round, both you and your counterpart will be asked to make conditional announcements

regarding your respective values of  and . Each of you has two alternative values to announce (065

or 090) for the two possible situations shown in Table 1 below.

Table 1

Situation Your value What do you announce?

1 065 065 or 090

2 090 065 or 090

For example, if you are assigned the role of Player 1, in situation 1 you are informed that  = 065,

and you decide what to announce (065 or 090), whereas in situation 2, you are informed that  = 090,

and again decide your announcement. On the other hand, if you are assigned the role of Player 2, in

situation 1 you are informed that  = 065, and you decide what to announce (065 or 090), whereas

in situation 2, you are informed that  = 090, and decide your announcement.

It is entirely up to you, in any round, whether or not to announce your true value in either situation.

Your and your counterpart’s conditional announcement decisions in this part will determine a situation

in Table 2 in Part 2. The points that you will earn depend only on the choices made and your value for

that situation, as described in the previous page, irrespective of the announcements.
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PART 2: YOUR CONDITIONAL CHOICES

In each round, you and your counterpart will be asked to make conditional choices for 8 situations

as shown in Table 2 below. In Table 2, column 1 represents the number of the situation. Column 2

shows your value (that is, the value of  if you are assigned to be Player 1, and the value of  if you

are Player 2). Columns 3 and 4 show respectively, your and your counterpart’s announcements. Finally,

column 5 is where you choose  or  for each situation.

Table 2

Situation Your value Your announcement C’part’s announcement What do you choose?

1 065 065 065  or 

2 065 065 090  or 

3 065 090 065  or 

4 065 090 090  or 

5 090 065 065  or 

6 090 065 090  or 

7 090 090 065  or 

8 090 090 090  or 

For example, for situation 1, you will have to choose  or  given that your value ( for Player

1 and  for Player 2) is equal to 065, you announced your value to be 065, and you received an

announcement that your counterpart’s value is also 065.

On the other hand, for situation 5, you have to choose  or  given that your value ( for Player 1

and  for Player 2) is 090 but you announced your value to be 065 and you received an announcement

of 065 from your counterpart.

YOUR EARNINGS

In each round, once you and your counterpart have made all the conditional decisions in parts 1

and 2, the values of  and  are randomly and independently generated by the computer, with the

probability of the low value (065) being 60% and the probability of the high value (090) being 40%.

Given the realized values of  and , and your and your counterpart’s announcements from Table

1, one of the 8 situations in Table 2 is identified. Your and your counterpart’s choices of  and  in

the corresponding situation will then determine your points.

AT THE END OF THE EXPERIMENT
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When all 20 rounds have been completed, you will be asked to complete a brief onscreen question-

naire, which provides useful supplementary (anonymous) information for us.

Having completed the questionnaire, you will see a final screen reporting your total points accu-

mulated over the 20 rounds and the corresponding monetary payment including your show-up fee (in

£).

Please then wait for further instructions from the experimenter, who will pay you in cash before you

leave. While waiting, please complete the receipt form provided in your computer screens. We need

these receipts for our own accounts.

The results from this experiment will be used solely for academic research. Participants will remain

completely anonymous in any publications connected with this experiment.

Thank you for participating. We hope that you enjoyed the experiment, and that you will be willing

to participate again in our future experiments.
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6 APPENDIX 2: RESULTS FROM STRATEGY METHOD

As mentioned earlier, we ran three treatments (no communication, one-way communication and two-way

communication) using the strategy method as well. We report below the observations in the strategy

method, following the structure of the main paper.

6.1 Truthfulness

Under the strategy method, in the two treatments with cheap talk (one-way and two-way), individuals

report their strategies as complete plans; first, they submit a plan of reported types based on their true

types and then they submit a plan of actions for the game. There are four possible plans of reporting,

mapping from two possible true types to two possible reported types, which we will denote by 

(reporting  when the true type is  and reporting  when the true type is , that is, always reporting

 regardless of the true type),  (the truthful strategy of reporting  when the true type is  and

reporting  when the true type is ),  (always reporting  regardless of the true type) and 

(reporting the opposite of the true value for both types). Table 1 provides all individuals’ strategies

in the two-way and one-way communication treatments using the strategy method.

Strategies (Maps)  (Truthful)    Total

Two-way 282 (59%) 86 (18%) 74 (15%) 38(8%) 480

One-way (Announcers only) 129 (54%) 53 (22%) 42 (17%) 16 (7%) 240

Table 1: Reporting strategies used by all individuals in the strategy method

We note from Table 1 that the truthful strategy has been used by majority of the individuals;

however, the observed proportion of truthful reports (plans, in this case) is lower than that in the direct

method (as shown in Table 6); also, we note that unlike the direct method (Table 6), individuals are

slightly more truthful in the two-way treatment than one-way. We can also report that in the two-way

communication, among all pairs, in only 33% (79 out of 240) pairs, both individuals used the truthful

strategy () which is way below the corresponding observation (61%) in the direct method; however,

in another 52% pairs, one player is truthful.

To compare the individual truthfulness distribution with the corresponding distribution reported in

Figure 1 in the paper, we look at the individual data in the strategy method as well. We notice that

a big proportion of individuals used one of the non-truthful strategies at least once. Here, our data

reveals that only 17% of the individuals used the truthful strategy () in all the 20 periods in the

two-way communication treatment while 21% did so (in all 20 periods) in the one-way communication

treatment.
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One can also do a Probit regression here to understand the effects of different factors behind truthful

reporting; we find similar results as in the paper.

6.2 Two-way Equilibrium

We first describe what the individuals have chosen in different hypothetical scenarios under the strategy

method. Table 2 is for the two-way communication treatment under the strategy method where

each individual makes conditional choices of  or  for 8 possible situations as shown in Table 2.

Here, the states refer to the situations based on the individual’s type (value), own announcement and

counterpart’s announcement, respectively (see the instructions in Appendix 1). For example, the state

 refer to the situation when the individual is of type-, reports (truthfully) type- while the other

player’s reported value is also .

Situations States Row Player Column Player Total

  Total   Total

1  52 (76%) 16 (24%) 68 42 (65%) 23 (35%) 65 133

2  38 (68%) 18 (32%) 56 7 (23%) 23 (77%) 30 86

3  6 (18%) 27 (82%) 33 19 (46%) 22 (54%) 41 74

4  21 (60%) 14 (40%) 35 16 (47%) 18 (53%) 34 69

5  10 (77%) 3 (23%) 13 9 (31%) 20 (69%) 29 42

6  11 (85%) 2 (15%) 13 9 (64%) 5 (36%) 14 27

7  4 (50%) 4 (50%) 8 5 (45%) 6 (55%) 11 19

8  11 (79%) 3 (21%) 14 10 (63%) 6 (37%) 16 30

Total 153 87 240 117 123 240 480

Table 2: Choices of individuals in the two-way treatment under the strategy method

It is fairly straightforward to interpret the data reported in Table 2. We note, for example, row

players who are truthful of their High-types (value ), having received a reported value  from the

counterpart, plays  in 82% of the cases, indicating the equilibrium behavior as mentioned in our

Hypothesis 2, which is similar to the corresponding observations in Table 8.

6.3 One-way Play

Table 3 shows the choices of the announcers in 4 possible scenarios based on own types and announce-

ments; for example, the situation  refers to the state where the announcer is of type- and the

announcement is .
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Situations States Row Player Column Player Total

  Total   Total

1  115 (80%) 29 (20%) 144 51 (53%) 45 (47%) 96 240

2  70 (49%) 74 (51%) 144 43 (45%) 53 (55%) 96 240

3  87 (60%) 57 (40%) 144 58 (60%) 38 (40%) 96 240

4  72 (50%) 72 (50%) 144 53 (55%) 43 (45%) 96 240

Total 344 232 205 179 960

Table 3: Choices of the announcers in the one-way treatment under the strategy method

Table 4 shows the choices of the listeners in 4 possible scenarios based on own types and the

announcements (of the announcers); for example, the situation  refers to the state where the listener

is of type- and the announcer’s announcement is .

Situations States Row Player Column Player Total

  Total   Total

1  44 (46%) 52 (54%) 96 101 (70%) 43 (30%) 144 240

2  61 (64%) 35 (36%) 96 41 (28%) 103 (72%) 144 240

3  29 (30%) 67 (70%) 96 103 (72%) 41 (28%) 144 240

4  60 (63%) 36 (37%) 96 67 (47%) 77 (53%) 144 240

Total 194 190 312 264 960

Table 4: Choices of the listeners in the one-way treatment under the strategy method

6.4 No communication

We report the data from the no communication treatment under the strategy method. Table 5 shows

the individual choices for each of the two situations they may be in (based on their values).

Situations Values Row Player Column Player

  Total   Total

1 065 187 (78%) 53 (22%) 240 126 (53%) 114 (47%) 240

2 090 147 (61%) 93 (39%) 240 167 (70%) 73 (30%) 240

Table 5: Choices in the no communication treatment under the strategy method
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6.5 Coordination

In the strategy method, individuals choose plans of reports and thereby what to play in the game in

different hypothetical situations. We consider the actual outcomes, from the realizations of the plans,

in the strategy method.

Treatments All Truthful

Coord No Total Coord No Total

Two-way 150 (63%) 90 (37%) 240 93 (67%) 45 (33%) 138

One-way 137 (57%) 103 (43%) 240 101 (57%) 75 (43%) 176

No Communication 133 (55%) 107 (45%) 240   

Total 420 (58%) 300 (42%) 720 194 (62%) 120 (38%) 314

Table 6: Coordination per treatment in the strategy method

From Table 6, we note, contrary to the direct method, the percentage of coordination (in realized

outcomes) is the highest in the two-way communication treatment followed by the one-way treatment.
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