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Abstract

We review recent findings in the application of Indirect Inference to DSGE models. We show that
researchers should tailor the power of their test to the model under investigation in order to achieve a
balance between high power and model tractability; this will involve choosing only a limited number of
variables on whose behaviour they should focus. Also recent work reveals that it makes little difference
which these variables are or how their behaviour is measured whether via A VAR, IRFs or Moments.
We also review identification issues and whether alternative evaluation methods such as forecasting or
Likelihood ratio tests are potentially helpful.

Keywords: Pseudo-true inference, DSGE models, Indirect Inference; Wald tests, Likelihood Ratio
tests; robustness

JEL classification: C12, C32, C52, E1

1 Introduction

Indirect Inference is a method for testing and estimating models of any size, complexity or nonlinearity, by
comparing their simulation behaviour with the behaviour of selected data. This data behaviour is summarised
by a set of descriptive features, known as the auxiliary model; the structural model being investigated is then
simulated many times to generate many samples for the same period as the data and the auxiliary model
is then also estimated on each sample. The data-based estimates occur with some probability within this
model-generated distribution and the test rejects the model if this probability lies below the test threshold.
The structural model is estimated by finding the set of coeffi cients for which the data behaviour gets closest
to the model-simulated behaviour.
The use of indirect inference in the testing and estimation of macroeconomic and other structural models

has increased in the past few years and has posed many questions about its detailed application as a relatively
novel procedure. In the survey by Le et al (2016) some of these questions were answered; however since then
the need for answers to further questions has become apparent. In this further survey we attempt to provide
answers to at least some of these questions.
The earlier survey discussed the power of the procedure in small samples, by comparison with the main

frequentist testing alternative based on data likelihood, and suggested ways in which modellers could use
this power to determine the robustness of their policy or other user results. In that survey it was assumed
that the auxiliary model would be a VAR of low order in a few variables while the structural model would
be a DSGE model of some sort, whether of small size as in Clarida et al (1999), or large as in Smets and
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Wouters (2007). Since then the method has spread to microeconomic and trade models, where the features
of the structural model are quite different; we do not consider these here but the issues we consider and the
answers we give should be easy to extend to them.
Within macroeconomic DSGE models, which we focus on here, a number of questions have surfaced.

Some econometricians have suggested such models are too absurdly unrealistic to be treated as potentially
’true’under the test; instead they should be regarded as misspecified and evaluated accordingly. Then others
have asked whether using VARs of low order in only a few variables can be adequate for a large model such
as Smets and Wouters given that its true reduced form is a VAR of fourth order in seven variables; or would
the SW parameters be very weakly identified; also whether it would matter which variables were selected for
the low order/low number of variables auxiliary model? Yet again, why use a VAR as the auxiliary model
instead of moments (as in the Simulated Method of Moments) or Impulse Response Functions (IRFs) as
in some applied work on matching of structural models to the facts? There has also been interest in the
relationship of these small sample properties to asymptotic properties of the method. These are some of the
questions we address in this new survey. In some cases they have been answered in published papers, in
which cases we have drawn on these in summary form, to bring them into this conspectus of available work.
We hope this will be helpful to applied economists using Indirect Inference.
We begin with the philosophical question of whether DSGE models can be treated as ’true’for testing

purposes; in some recent years a number of econometricians have dismissed DSGE models as so ’unrealistic’
that one must consider them as inherently ’mis-specified’. We regard this as essentially a philosophical
misunderstanding in the sense that models are not intended by construction to be ’realistic’but rather to
embody economic decision-making in a logical set-up which could capture suffi cient elements of economic
behaviour to pass empirical tests. Such models could be termed ’pseudo-true’, that is not close representations
of ’reality’ but rather abstract approximations designed to match the key data behaviour according to
frequentist tests- much in the sense of Friedman (1953). Having renamed models in this way we can proceed
in the usual manner to test them; we also show that the Indirect Inference test we use on them which tests
them by treating them for the test purposes as being true, is also the most powerful way to test them for
mis-specification. We set out the full philosophical argument in Appendix A.
In practice all tests are carried out on DSGE models necessarily in small samples of 200 or less obser-

vations. Hence our key concern in this paper is to review the performance of Indirect Inference in small
samples. In the next section we compare it with the main alternative frequentist method, the Likelihood Ra-
tio test, in such small samples- asymptotically the tests cannot be distinguished under the usual assumption
that the model is true as Appendix C explains; we describe these two available frequentist tests – the LR
and the indirect inference IIW test – and investigate the power of the IIW test to detect parameter falsity
and mis-specification and ask how it can establish the extent of a model’s ’truth; this section largely recaps
material from our earlier survey. In section 3, we review a variety of issues in carrying out the test: such as
how many and which variables it should use, and whether moments, IRFs or a VAR are preferable auxiliary
models. In section 4 we review the relationship between indirect inference and identification. In section 5
we conclude with a review of our main findings.

2 Testing DSGE models by frequentist methods-Indirect Infer-
ence and the Likelihood Ratio

In our previous Survey we devoted much space to comparing the standard ’direct inference’test, the Likeli-
hood Ratio, to the Indirect Inference test, the IIW, in the context of small samples. What we showed was
two main things: that the LR test had no power at all against a mis-specified model, whereas the IIW test
had very high power, effectively rejecting a mis-specified model 100% of the time.
Secondly, in the situation where the model is well specified but the parameters are numerically inaccurate,

we found that the IIW test had considerably more power, rejecting 100% of the time models whose parameters
were randomly wrong by 5-7%, whereas the LR test rejects such models with only small frequency and to
reject 100% of the time it needs parameters to be wrong by as much as 20% .
We explained these results by noting that the LR test when faced with a numerically incorrect model is

similar in power to an indirect inference test where the distribution of the auxiliary model parameters- eg
the VAR coeffi cients- is found from the data, as opposed to from the restricted model. Thus the IIW test
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itself is simulated from the structural model being tested; and it is the distribution of the VAR coeffi cients
that this structural model implies, that is used in the test. Plainly this distribution is tightly related to the
features of the structural model. The LR test by contrast takes the distribution implied by the sample data,
as generated by the (unknown) true model.
When one considers the low power of the LR test against mis-specification, the reason is different. When

one tests a mis-specified model by LR, one first has to estimate it by ML. Thus one is asking: is this structural
model (mis-specified in fact) the model generating the data sample? To give the model the best chance of
passing the test, one reestimates the model first. However ML finds a well-fitting model by substituting
fitted error processes that are good at creating low forecast error. Thus the mis-specified model is hard
to distinguish from the true model by LR. The data sample from the true model will also easily fit the
mis-specified model.
By contrast when one reestimates the mis-specified model by II, there is simply no way the structural

model can generate the same data behaviour as the true model. Whatever estimates are found will generate
a different reduced form behaviour. Hence the very high rejection rate.
In what follows we show the key results on this from our previous paper and add some further ones.

2.1 Mis-specification

First we show the experiment where we test a mis-specified model: the example in the Table below shows
where the true (Smets-Wouters) model is New Keynesian and the mis-specified is a New Classical version;
and vice versa where the true model is New Classical and the mis-specified is New Keynesian. As can be
seen the power of the II test is close to 100%, whereas that of the LR test is simply zero.

Percentage Rejected
NK data
NC model

NC data
NK model

II 99.6% 77.6%
LR 0% 0%

Table 1: Power of the test to reject a false model

We now investigate a more subtle form of mis-specification: here it takes the form of a failure to include
in our model features from a more complex model that is treated as the DGP that in fact generates the
data. A fortiori LR testing would be again quite unable to detect this more subtle form of mis-specification.
We set up a Monte Carlo experiment in which the DGP generating the data is such a more complex

model. Our starting point will be as in Le et al (2011, 2016a) the well-known Smets-Wouters model on
US data from the early 1980s. Le et al (2011, 2016b) found that this model when modified to allow for a
competitive sector and for banking, can explain the main US macro variables, output, inflation and interest
rates well. It is this model and versions similar to it that we have used in previous Monte Carlo experiments.
To this model we can add money and a regime shift contingent on the state of the economy, from the

Taylor Rule to the zero bound, as in Le et al (2016b). This makes the model’s parameters state-contingent
so that it has this form of nonlinearity. We then treat this nonlinear model as if it were the DGP generating
the data. Using the Indirect Inference test procedure with a VAR as the auxiliary model we estimate the
power function for the falseness criterion we described above in order to assess the sensitivity of this function
to the presence of greater nonlinearity in the true model than the ‘assumed true’DSGE model we started
with.
We looked at three very similar models, of varying complexity. All three are based on the Smets-Wouters

model as modified in Le et al (2011). Model 1 is that model exactly. Model 2 is that model with the financial
shock replaced by the Bernanke, Gertler and Gilchrist (1999) model of banking (the ‘financial accelerator’).
Model 3 is the same model, together with an extension in which collateral is required and base money acts as
cheap collateral, and the additional nonlinearity of the zero bound constraint, triggered whenever the Taylor
Rule interest rate falls below a low threshold. These last two models are set out in Le et al (2016b).
From the point of view of ‘realism’and ‘truth’we regard model 3 as the most realistic; model 2 as a

linear approximation to it; and model 1 as a simpler approximation to model 2. We investigate whether in
each case the simpler, less realistic model can be treated as a valid approximation to the more realistic one.
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We carried out the following three experiments with sample sizes between 75 and 200, and with 1000
sample replications. Our IIW test was based in all cases on the coeffi cients of a three variable (y, π,R)
VAR(1) (including the three variances, as is the usual practice in applying these tests; so 12 values in all).
Table 6 shows that in all cases there is an overwhelming probability of rejection, close to 100% and falling
to 80 with the smallest sample size of 75 and the two models closest in complexity (models 1 and 2).

3 variable VAR(1) T=200 T=125 T=75
1) Generating data from model 2 as true data,
testing model 1 by IIW 99.9 98.2 79.7

2) Generating data from model 3 as true data,
testing model 2 by IIW 100 99.3 95.2

3) Generating data from model 3 as true data,
testing model 1 by IIW 100 100 98.1

Table 2: Testing mis-specified models: percentage rejection rates using IIW

The models we used for this experiment were those that Le et al (2011, 2016a,b) where the parameters
were estimated by indirect estimation using US data. In practice when we carry out the IIW test on a
model for a particular sample, in practice, we re-estimate the model. We therefore carried out the test on
this basis, re-estimating the tested model on each sample generated by the true model. As this is highly
time-consuming, we did this selectively for two model pairs and different sample sizes: for a sample of 125,
model 3 is the complex model and model 1 is the simpler model; with a sample of 75, model 2 is the complex
model and model 1 is the simpler model.
Table 7 shows that the rejection rate for model 1 for the first pair is still 100%, even though there is

some increase in closeness. Thus, even for a sample as small as 125, the rejection of mis-specification remains
virtually 100%.
In the second case, Table 8, where model 1 is tested using data from model 2 with a sample of only 75,

it is somewhat harder to distinguish model 1 from model 2, the two closest models: the rejection rate falls
to 68.6%. However, rejection is still overwhelmingly probable.

Transformed Wald Min Max Mean Rejection rate
(Critical value=1.645)

Re-estimated by II 1.686 79.314 21.739 100%
Original estimates 2.459 9.07E + 15 2.57E + 14 100%

Table 3: Transformed Wald for model 1 when tested on model 3 samples, T=125

Transformed Wald Min Max Mean Rejection rate
(Critical value=1.645)

Re-estimated by II 1.480 8.412 2.409 68.6%
Original estimates 1.291 11.818 2.909 79.7%

Table 4: Transformed Wald for model 1 when tested on model 2 samples, T=75

As noted above a Likelihood Ratio test would have given no power for these mis-specification tests.
However, plainly the IIW test manages to provide considerable power against mis-specification, as we found
above.
What we find therefore is that our IIW test can establish for users a) whether they have a model that

can predict relevant features of data behaviour and if so b) the bounds within which they can be sure of its
specification and parameter values. With the widely-used DSGE model examined here, we found that if the
model passes the test on the behaviour of three key macro variables, the power of the test largely guarantees
that no other specification can be correct and that its parameter values lie within a 7-10% region of the
estimated ones.
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2.2 Parameter inaccuracy within a correct specification

Second, we show the results for numerical inaccuracy.

VAR – no of coeffs TRUE 1% 3% 5% 7% 10% 15% 20%
IIW TEST with unrestricted VAR
2 variable VAR(1) – 4 5.0 6.2 20.3 69.6 61.0 99.8 100.0 100.0
3 variable VAR(1) – 9 5.0 3.4 7.5 30.7 75.0 97.4 100.0 100.0
3 variable VAR(2) – 18 5.0 3.8 5.2 19.1 57.5 84.3 98.4 99.5
3 variable VAR(3) – 27 5.0 3.9 6.4 21.6 54.5 84.0 97.5 98.7
5 variable VAR(1) – 25 5.0 2.8 3.2 2.6 5.4 6.2 4.5 100.0
7 variable VAR(3) – 147 5.0 5.1 3.4 1.4 0.9 0.2 0.0 100.0
IIW TEST with restricted VAR
2 variable VAR(1) – 4 5.0 9.8 37.7 80.8 96.8 100.0 100.0 100.0
3 variable VAR(1) – 9 5.0 9.5 36.1 71.0 98.1 100.0 100.0 100.0
3 variable VAR(2) – 18 5.0 8.3 35.5 80.9 96.9 100.0 100.0 100.0
3 variable VAR(3) – 27 5.0 9.2 32.9 78.0 95.1 100.0 100.0 100.0
5 variable VAR(1) – 25 5.0 17.8 85.5 99.8 100.0 100.0 100.0 100.0
7 variable VAR(3) – 147 5.0 77.6 99.2 100.0 100.0 100.0 100.0 100.0
LIKELIHOOD RATIO TEST
2 variable VAR(1) – 4 5.0 12.0 28.3 45.9 63.4 83.2 97.0 99.7
3 variable VAR(1) – 9 5.0 9.4 21.8 37.5 58.9 84.0 99.0 100.0
3 variable VAR(2) – 18 5.0 8.9 20.7 36.8 57.6 82.9 98.7 100.0
3 variable VAR(3) – 27 5.0 8.9 20.4 36.7 56.7 82.2 98.7 100.0
5 variable VAR(1) – 25 5.0 8.9 22.4 44.3 68.6 89.6 99.6 100.0
7 variable VAR(3) – 147 5.0 5.7 10.6 23.6 46.3 83.2 99.6 100.0

Table 5: Comparison of rejection rates at 95% level for Indirect Inference and Direct Inference

We show in this Table for a wide variety of VAR auxiliary models how the LR test performs, as compared
with the IIW test based on the simulations of the structural model being tested. Two things can be seen in
the comparison of these two tests in the bottom two panels. First, in general the power of the LR test does
not reach 100% rejection until the model parameters reach 20% falsity, regardless of the VAR order. This
last measures the detail with which data behaviour is described. Second, by contrast, as the detail included
in the VAR description rises with higher order, the IIW test acquires more and more power. But it has high
power already when the detail is kept rather low- eg with a VAR1 in just three variables, where a structural
model that is just 7% false is rejected with 98% frequency.
Turning to the top panel, where the II test is carried out using the distribution of VAR coeffi cients derived

from the data sample VAR itself (ie. unrestricted by the structural model being tested), one can see two
things. First, as the size of the VAR increases, the information from the data sample becomes increasingly
unable to give well-defined estimates of the VAR coeffi cient distribution, as too many coeffi cients’variation
has to be evaluated on too little data. Second, for lower order VARs where evaluation is possible, the power
is similar to that of the LR test. This is the case because these two tests are transforms of each other, as
noted in Appendix C, and therefore tend to produce similar test results.
This section has summarised the findings of our earlier survey paper, from which we concluded that LR

testing would provide no power against mis-specification and rather low power against numerical inaccuracy,
whatever VAR was used as the benchmark comparator model for the Likelihood Ratio. It has also elaborated
how more subtle aspects of mis-specification are detected with high precision by Indirect Inference.
In the rest of this paper we move on from any comparison with the LR test and consider IIW tests on

their own, in different forms. This is to establish how best one should use IIW tests and in what particular
forms.
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3 Comparing different ways of carrying out the IIW test- Monte
Carlo experiments with small samples

3.1 Different variables and different features

Indirect Inference is not well known among economists as an empirical tool; it attracted attention in the
1990s as a way of estimating nonlinear models and a variety of papers were written then on its estimation
properties, essentially seeking to discover whether it could mimic the asymptotic properties of maximum
likelihood (it did). But its potential role in testing models, especially in small samples, and its properties
as an estimator in small samples, was not explored until the work described here which began around 2000.
Hence there are a variety of practical concerns about its nature and reliability as a testing procedure.
One is whether it matters which features of the data are chosen as the ’descriptors’for the Wald test.

It does not appear to matter as noted above: Minford, Wickens and Xu (2016a) showed that one may use
Moments, Impulse Response Functions or VAR coeffi cients and the test results are largely the same. The
key element in the power of the test is how many of these descriptors are used; this relates to the point made
above that using more is equivalent to requiring the model to replicate more detailed features of the data, as
with pixels in a photograph. Thus we showed above how increasing the number of VAR coeffi cients raised
the power.
Another concern is with the choice of variables used for the data description. For example, in evaluating

the Smets-Wouters model we showed the test results using the three main macro variables, output, inflation
and interest rates. Would it be any different had we used three other variables, say consumption, investment
and real wages? The answer is not or negligibly (Meenagh, Minford, Wickens and Xu, 2018). Any three
variables give much the same results. The reason is related to the last issue: provided the same amount of
information about the data features is included, the test works similarly. One can think of each piece of
information being a nonlinear combination of the model’s structural coeffi cients; the question is whether this
is matched by the data value. The number of pieces of information gives the number of matches required by
the test. What matters is the amount: more VAR coeffi cients for example, but not which VAR coeffi cients.

Table 6: Power of the II test across data descriptors
Rejection Rate

Degree of falseness 0 1% 3% 5% 7% 10% 15% 20%
Var coeffs 0.05 0.128 0.866 0.997 1.000 1.000 1.000 1.000
IRF 0.05 0.140 0.852 0.998 1.000 1.000 1.000 1.000
Moment 0.05 0.114 0.326 0.665 0.913 0.997 1.000 1.000
Notes: Three variables are used in VAR are (y, pi, r), as in Le et al. (2011)

Source: Minford, Wickens and Xu (2016a)

Table 7: Power of the II test across variable choice
Rejection Rate

Degree of falseness 0 1% 3% 5% 7% 10% 15% 20%
(y, pi, r) 0.05 0.128 0.866 0.997 1.000 1.000 1.000 1.000
(c, i, l) 0.05 0.094 0.561 0.923 0.986 1.000 1.000 1.000
(q, w, r) 0.05 0.072 0.276 0.771 0.984 1.000 1.000 1.000
Notes: VAR coeffi cients used as data descriptors, as in Le et al. (2011). Source: Meenagh, MInford, Wickens and Xu (2017)

This may appear to be puzzling: the original ideas in DSGE modelling of comparing data behaviour,
such as moments, as found the data with those found in model simulations, stressed that it was good to
select data features of interest to the user. However what has been found in this Monte Carlo work on
small sample properties is that all these tests, provided the number of descriptive features is held constant,
provide roughly the same power and the estimates much the same bias, whichever variables are focused on,
and however their behaviour is measured, whether by moments, IRFs or VAR coeffi cients. What is going
on?
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Notice that if they have the same power these tests are evaluating the whole model and not just its ability
in some selected variables’behaviour. An analogy would be with taking a fingerprint or footprint or skin
sample from a person; given that person’s DNA, each would be a test of whether that person was the source.
Here we take a sample of behaviour and ask whether it comes from this DSGE model? It would seem that
provided our data sample is of reasonable size and samples enough features, it can act as a rather accurate
test of whether the DSGE model generated it.
For policymakers this is a reassuring conclusion. If they find a model that passes ANY of these tests,

whichever they choose, they can establish from the test’s power with certainty how false their model could
be, in different respects that concern them. Usually they will be concerned with ’general falseness’where
any or all of their parameters could be mis-estimated: they can then say within what bounds such general
falseness would lie for their model and calculate robustness tests accordingly on their policy proposals.

3.2 Forecasting tests

Out-of-sample forecasting tests are similar to in-sample tests through the Likelihood Ratio which depends
on how accurate ’nowcasting’ is (i.e. the size of current predictive errors). However their power is lower.
The next Table shows the power of forecasting tests for three variables jointly 4 and 8 quarters ahead, side
by side with the IIW test. It can be seen that it is weak; the rejection rises close to 100% only with 20% or
more falsity. Non-stationarity does not appear to affect these results.
Source: Minford, Xu and Zhou, 2015, Table 2, p 341.

3.3 Tests of parts of models

The focus in our tests tothis point has been on a full DSGE model. because this is what policymakers need
to answer policy questions and whose reliability must be gauged in answering those questions. Sometimes
however a model simply cannot be found that will pass the test set by the policymaker; or alternatively the
investigator has not got the time and resources to investigate a full model but is concerned only with a few
equations of a partial model. In this case a powerful Indirect Inference test for any part of a model can be
carried out under Limited Information (Minford, Wickens and Xu, 2016b) whereby the rest of the model is
simulated using the data VAR (from the unknown true model) while the part under examination is simulated
as it is specified. This test mimics closely what one would obtain had one been able to simulate the rest of
the model as it truly was (which of course one cannot know) jointly with the part being examined.
We show a fairly typical experiment with each of two parts of the SW model: the wage-price equations

and the consumption-investment equations

Wage-price equations tested on auxiliary model with wages and prices VAR1

Consumption-investment equations tested on auxiliary model with consumption and investment VAR1

What we see here in the first line of each table is the power of the test for the model part using a VAR1
on all variables other than the two being explained by the equations being tested. Notice that they are being
tested on whether they can match a VAR1 in these two variables.
There is strong power in the wage-price test; it seems that these two equations have a big effect on the

model performance. For consumption-investment test there is less power; it seems that they are not so
important to the model behaviour.
In the second line of each table one sees what the same test would have done if instead of using the VAR1

on all other variables, we had used the true model, as in the full Wald test. In both cases we find that the
Limited Information test behaves rather similarly to the Full test, had we had access to the Full true model.
This is reassuring as we can use the Limited Information test with some confidence when we really do not
know the rest of the model- or indeed wish to test it.

4 Estimation in small samples

So far in this review we have considered only the properties of tests of models, especially their power in
small samples. However, tests are of little use unless one can find a model which is close enough to the
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truth to pass the test. Tests without estimation are like a opera tenor without top notes- of little practical
operatic use. However slight reflection reveals that effective estimation is closely related to high test power:
an estimator that uses a powerful test as a guide to choosing parameter values will be rejecting values that
are not close to the truth. It should have low small sample bias.
When looking for a tractable model it is thus necessary to have a good estimator in the usual situation

of a small sample; the key feature in this situation is low small sample bias. As is well-known the maximum
likelihood estimator suffers from large small sample bias- this is directly related to its low power as a test
since it it is hard to distinguish between models where different combinations of parameters, including error
parameters, can give similar forecasts. The Indirect Inference estimator however has low small sample bias,
typically around 1% for the average absolute bias across the DSGE parameters. This property comes from
the high power of the test in rejecting false parameter values: the IIW tends to rise increasingly rapidly
as the parameter estimates diverge from the true values. What we find is that regardless of whether the
estimator is based on VAR coeffi cients, IRFs or Moments, the small sample bias is small: it is essentially
the same for the first two, with a slightly larger bias for Moments. When one compares estimation using
different three-variable sets, again we find that the bias is small and hardly differs.

α: income share of capital
h: external habit formation
ιp: degree of price indexation
ιw: degree of wage indexation
ξp: degree of price stickiness
ξw: degree of wage stickiness
ϕ: elasticity of the capital adjustment cost function
Φ:1+the share of fixed costs in production
ψ: elasticity of the capital utilization adjustment cost
r∆y:Taylor rule coeffi cient
ρ: Taylor rule coeffi cient (interest rate smoothing)
rπ: Taylor rule coeffi cient
ry: Taylor rule coeffi cient
σc: elasticity of intertemporal substitution for labor
σl: elasticity of labor supply to real wage
This bias can be driven as low as one wishes by increasing the number of features in the auxiliary model,

since the power rises with this number until the point where the full reduced form VAR is used (or its
equivalent in moments or IRFs). However, this bias reduction comes at the cost of massive power against
even the slightest parameter falsity. It follows that if one has a tractable model that is not exactly the true
model the parameter values it will estimate a) may not pass this powerful test- as they are simply the values
that get closest to passing it b) may not pass the weaker-powered test either-since they were not selected
as the values that get closest to passing this weaker test. From the user’s viewpoint the key aim is to find
a tractable model with parameter values that pass the test; having found such a model it is then possible
to assess the robustness of the whole-model results to potential falsity as described earlier. However if one
cannot find a model that passes the test, there is no way to make this assessment. Hence our view is that it
is best to use as the estimator the same test statistic as is used in the testing process.
It is notable that Dridi et al. (2007) propose a two-step procedure to achieve both objectives: estimation

and evaluation of misspecified DSGE models. In the first step the model is estimated using a well chosen
set of moments; in the second step, the model is evaluated with chosen features of the data that the model
tries to replicate. They derive the asymptotic distribution of the test statistic under the hypothesis that the
DSGE model is misspecified and therefore use the variance-covariance matrix from the unrestricted VAR.
Hall et al. (2012), and Guerron-Quintana et al. (2017) use the IRFs as the data descriptor in the auxiliary
model and discuss both the small sample and large sample properties of II as an estimation approach, but
not as a method of testing a model (Minford, Wickens and Xu, 2016 as we have seen above compare the test
with different data descriptors and find that mostly the properties are quite similar). However, the two are
closely related, as noted above.
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5 Identification

A further question concerns identification. There has been a persistent suspicion that DSGE models’para-
meters cannot be uniquely recovered from the data- a fairly recent contribution is Canova and Sala (2009).
In response to such concerns various efforts have been made to establish whether various prominent DSGE
macro models are identified. One avenue has been to use the rank condition which tests whether with no
limits on data availability a DSGE model’s parameters can be uniquely discovered- Iskrev (2010), Komunjer
and Ing (2011), Qu and Tkachenko (2012). Another avenue is to use indirect inference in a way suggested
by Le et al (2017) for the same purpose. These two methods establish ’precise’identification- i.e. whether
another set of parameters can be found that generate exactly the same reduced form as the DSGE model in
question in the presence of unlimited data.
A related question is that of ’weak identification’: by this is meant whether individual model parameter

values can be distinguished from other values (from some false, competing, model version) with any con-
fidence. Plainly as the data sample becomes smaller this becomes an increasing concern. When data is
unlimited this boils down to the same as precise identification. But in practice data is limited and one would
like to know about such weakness in the context of much but not unlimited data. This can be addressed by
indirect inference, by asking how much power the test has against false parameter values in relevant data
sample sizes. Le et al (2017) find that Smets-Wouters parameters are generally strongly identified according
to this criterion but that in the small three equation New Keynesian model along the lines of Clarida et al
(1999) several parameters suffer from weak identification.
This analysis was done using the model’s full reduced form which gives maximum discrimination against

false parameter values. In practice we use, as we have seen, a low order VAR in only a few variables (or the
equivalent in moments or IRFs). Does using such a low order approximation to the reduced form create a
weakness of identification?

5.1 Weak identification

We know that the Smets Wouters model is identified, in the sense that its full reduced form is unique to
it- see Le et al (2017). However we may be concerned that as we reduced the number of variables and the
VAR order of the (approximate) reduced form the amount of information included drops suffi ciently to give
highly imprecise estimates of the DSGE model parameters. When the sample is also small, this problem
could become more acute. This is the problem of ’weak identification’.
We can investigate this problem through Monte Carlo experiment. We now falsify individual parameters

of the SW model progressively and check the rejection rate over many samples from the true model. If the
power is poor so that the rejection rate barely rises with the falsity we can regard the parameter as weakly
identified, since plainly we cannot distinguish well between different possible paremeter values if false cannot
be distinguished from true ones.
What we can see from this exercise is that while three parameters’rejection rates rise only slowly, those

of the others rise quite fast; thus the stregth of identification varies across parameters but never deserts any
of them. This rather mirrors what Le et al (2017) found, using the full VAR reduced form of Smets and
Wouters’model on a large sample. It seems that reducing the VAR to only three variables and order 1,
together with a much smaller sample, does not create weak identification.

6 Conclusions

Indirect Inference is a method for testing and estimating models of any size, complexity or nonlinearity,
by comparing their simulation behaviour with the behaviour of selected data. Its use in the testing and
estimation of macroeconomic and other structural models has increased in the past few years and has posed
many questions about its detailed application as a relatively novel procedure, that go beyond the scope of
the survey in Le et al (2016a). In this latest survey we have provided answers to some of these questions.
The earlier survey discussed the power of the procedure in small samples, by comparison with the main

frequentist testing alternative based on data likelihood, and suggested ways in which modellers could use
this power to determine the robustness of their policy or other user results. In that survey it was assumed
that the auxiliary model would be a VAR of low order in a few variables while the structural model would
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be a DSGE model of some sort. Within such macroeconomic DSGE models, we have argued that it is a
misconception to think of a DSGE model as too ’unrealistic’to test: DSGE models can be effective models
and the most effi cient way to test them is ’as if true’(even if they are in fact misspecified). We have also
shown that using VARs of low order in only a few variables can be adequate to provide a powerful test of
a large model such as Smets and Wouters (2007) even though its true reduced form is a much higher order
VAR in more variables; and that which variables are selected for this task makes little difference. It also
makes little difference to the test results whether one uses a VAR as the auxiliary model instead of moments
(as in the Simulated Method of Moments) or Impulse Response Functions (IRFs) as in some recent applied
work.
We also showed how by using indirect inference one can test parts of models powerfully; and check too

for both precise and weak identification- DSGE models do not seem to suffer much from these problems.
Just as Likelihood Ratio test provide low power within sample, so too do forecasting tests out of sample.
In general we continue to think as suggested by the original survey of Le et al (2016a) that indirect

inference provides a powerful test of structural macro models, which enables policymakers and other users
to assess rather accurately how robust their models are to possible errors of specification and estimation.
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7 Appendix A:

8 An inferential framework for testing DSGE models- models as
’pseudo-true’

In this paper we suggest a frequentist econometric approach to testing DSGE models under the classical
null hypothesis that they are true. This approach is an alternative to other ways in which DSGE models
are evaluated today, often under the assumption that they are (highly) mis-specified. We show, using both
asymptotic analytic and numerical methods, that the approach has considerable advantages for users of
DSGE models1 . Thus our aim is to allow DSGE models to be used and tested in the same way as traditional
’econometric’models of the economy once were. DSGE models are the workhorse of modern policymakers,
especially in central banks; and yet they are rarely tested with traditional econometric tools, so that a divide
has in practice opened up between policymakers and the econometrics community. It is this divide we wish
to address and try to bridge in this paper with the approach to testing DSGE models that we propose.
Much of classical econometrics was developed with a view to estimating and testing macroeconomic

models. It was an integral component of the aim of making economics a science. But since the advent
of DSGE macroeconomic modelling, formal tests have rarely been carried out. Calibration and Bayesian
estimation of DSGE models have replaced the classical estimation of traditional macroeconometric models,
arguably therefore undermining the status of macroeconomics as a science.
There is an irony in this as the impetus behind the use of DSGE rather than traditional macroeconomic

models was Lucas’s critique that the latter were essentially reduced form and not structural models and
therefore could not be used for policy or control purposes. Moreover, using best-fit classical time series
methods of estimation of macroeconometric models with their flexible dynamics has come to be viewed as
data-mining and to have undermined the credibility of tests of these models.
DSGE modelling is, however, not without its problems. Lucas and Prescott soon found that when tested

using classical methods, DSGE models were invariably rejected by classical likelihood tests. They therefore
proposed the use of calibration rather than classical estimation, and their tests consisted of an informal
comparison of moments simulated from the calibrated model with those observed in actual data, rather than
formal statistical tests.

1Le et al, 2016a, gives an earlier practical guide to these methods.
Here we provide an extended fundamental examination of the issues
that have been raised in connection with them.
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Bayesian estimation is now widely used instead of calibration or classical estimation. Its attraction is that
it is a compromise between using strong priors, as in calibration, and diffuse priors, which would give the
same result as classical estimation. In practice, however, the Bayesian posterior estimates are often found
to be little different from their prior values but considerably different from their classical estimates, thereby
providing prima facie evidence that the prior beliefs are not supported by the data, and that the model
may be misspecified. If the mode of the posterior distribution is used as the point estimate then Bayesian
estimation is, in effect, a weighted average of the prior values and the maximum likelihood estimates, where
the weights are inversely proportional to the strength of the prior beliefs and the precision of the maximum
likelihood estimates. The stronger the priors, therefore, the more likely that the posterior estimates will be
close to their prior values, and the more like calibration would Bayesian estimation become.
The focus in DSGE models on structural modelling (estimating deep structural rather than "reduced-

form" parameters) has resulted in the models being smaller and simpler than traditional macroeconometric
models, especially in their dynamic specification. Friedman (1953) regarded the use of simple rather than
complicated models as an advantage, but it makes it more likely that DSGE models are misspecified. This is
one reason why DSGE models fit the data less well and are frequently rejected. The structural disturbances
of DSGE models, which are the residuals between the data and the model and can be regarded as exogenous
variables, are commonly found to have autocorrelated errors which are often regared as a signal of mis-
specifcation of the model. The rejection of DSGE models using conventional testing procedures, the arbitrary
weight given to prior distributions, and the presence of highly serially correlated structural disturbances,
have all seemed to undermine the high ideals originally envisaged for the DSGE approach to macroeconomic
modelling. This has led some econometricians to regard DSGE models as mis-specified and of little empirical
relevance.
These arguments reveal a fundamental methodological divide between traditional macroeconometric mod-

elling and DSGE macro modelling. Traditional macroeconometric models are not structural but, due to the
flexibility this allows, particularly in their dynamic specification, they can be specified in such a way that
they pass statistical tests, whereas DSGE models are structural, deliberately simple and, because they are
usually rejected using classical inference, strong prior restrictions are imposed in their estimation. DSGE
models are also a useful theoretical policy tool and have become the workhorse of modern macroeconomics.
Rather than dismiss DSGE models as ‘incredible’, as some have done, or accept that there is no point

in testing them because they would fail the test, it would be better to find a way of putting them on firmer
statistical foundations. In addition to devising suitable tests, and because, being deliberate simplications
of reality, all macroeconomic models are "false" - both DSGE models and conventional macroeconometric
models - we might, nonetheless, wish to know the "extent of their falseness" in order to be able to judge how
useful they might still be. This has been expressed by the question "how true is your false model?" In order to
answer this question we require an inferential framework that can gauge the degree of falsity of macroeconomic
models. Traditional statistical tests adopt the null hypothesis that a theory is true; the power of a test is the
probability of rejecting the theory if it is false. This framework does not fit easily if one starts from the premiss
that the theory is false and we seek to find how true or false it is. However an alternative to the traditional
approach is the null hypothesis that a model is "pseudo-true". The idea, which was developed from testing
non-nested hypotheses - Cox (1961, 1962) - is to test an approximation to the "true" - if it exists - but
unknown, and probably highly complex, model using the estimates of the parameters of the approximating
model. (If estimated by maximum likelihood these are called quasi-maximum likelihood estimates.) In
other words, we may treat DSGE models as deliberately simplified representations or approximations of
the economy for which it is appropriate to apply a pseudo-true inferential framework rather than classical
statistical inference. The same argument can be applied to traditional macroeconometric models. The
difference is that instead of testing DSGE models directly we will use indirect inference.
This has been the focus of work of ours and coauthors in the past decade and a half in which we have

used indirect inference to test prominent DSGE models estimated by others but not tested by them. Indirect
inference can be seen as an example of pseudo-true inference. It involves approximating the DSGE model
by an auxiliary model based on its solution, and conducting inference on this. This auxiliary model will
also be a pseudo-true representation of the economy. The idea is to simulate the DSGE model and to base
a test of the model on a formal comparison of estimates of the auxiliary model derived from the simulated
and actual data. This is, in effect, a generalisation and formalisation of the original method used to judge
the performance of calibrated DSGE models through a comparison of the moments of simulated and actual
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data.
This idea is, in effect, a return to Friedman’s (Friedman, 1953) ‘as if’methodology in which a model

is treated as if it is true and is tested on that basis even though it is known to be strictly and literally
untrue. The ‘as if true’assumption asserts that the model has a data generating mechanism that is a close
approximation to the true model, so close that statistical testing will not be able to distinguish between the
two. Such a model is ‘pseudo-true’in our use of Cox’s definition. Strictly, if the structural model is untrue,
then so is its reduced form; however, both are hypothesised to be pseudo-true.
It is helpful to illustrate these ideas using Friedman’s own favourite example of a pseudo-true model:

perfect competition. This, Friedman says without fear of contradiction, cannot truly exist any more than
the speed of a falling object can be accurately calculated as if it is in a vacuum- the ‘gravity model’. But,
Friedman goes on, perfect competition is an excellent model of a highly competitive market. Aspects that are
poorly modelled, due to the frictions created by such things as temporary monopoly rents, can be replaced
by error terms. These can be modelled as univariate time-series processes which may be autocorrelated
because such frictions may persist for some time. Thus the structural model would consist of the systematic
demand and supply equations - first order conditions - and the market-clearing condition, together with the
structural errors; while the reduced form model can be obtained, for example, as a VAR solution of the
structural model with its own reduced form error processes derived from the structural error processes. We
assert that the DGP of each model is a close approximation to the true DGP of the corresponding structural
and reduced form model: they are both ‘pseudo-true’. As we cannot know what the true models are, in
practice we cannot check whether any candidate model is true. But we can use normal statistical methods
to test whether any candidate pseudo-true model has a DGP that conforms to the actual data where the
test is defined in terms of properties of the data relevant to the user. If it passes our test at the chosen
confidence level then we treat it as pseudo-true and hence as if it is true.
We show in this paper that an Indirect Inference Wald (IIW) test that focuses on the parameters of the

auxiliary model performs better than a maximum likelihood test which is, in effect, based on predictions
from the auxiliary model. We then ask how concerned users should be about the possible mis-specification of
their pseudo-true model. To investigate this we generate data from a DSGE model constructed to be more
complex than the DSGE model from which we form the pseudo-true model used in our test. We find that
in a typical small sample the IIW test will reject any mis-specified pseudo-true model with a probability
of virtually 100%. This shows that if a pseudo-true model passes the test, it provides a suffi ciently good
representation of the generated data to be regarded as if it were the true model. More generally, it implies
that the non-rejection of a pseudo-true model is a useful guide to the validity of the DSGE model it is based
on. By calculating the power of the test as parameters are moved further away from their estimated values
it is possible to establish bounds for their possible numerical falsity.
This implies that a DSGE model can be tested using classical statistical inference as if it were a true

representation of the economy even though the economy’s "reality" is unknown. The test of the model is
whether it is pseudo-true and hence a valid statistical representation of the relevant data properties. In
effect as we have said this returns us to Friedman’s original methodology whereby a model is a deliberate
simplification of the economy’s complex reality, and in which we should test the model as if it is true in
order to see whether it can get ’close’to those aspects of reality relevant for the model’s user. Under this
interpretation traditional macroeconometric models may also be regarded as being only pseudo-true. What
distinguishes DSGE models from traditional models is their interpretation as being structural.

9 Appendix B: The auxiliary model: a VAR representation of a
DSGE model

There are several ways of deriving a VAR representation of a DSGE model. We make use of the ABCD
framework of Fernandez-Villaverde et al. (2007). We consider solely what these authors call the ‘square’
case, where the number of errors and the number of observable variables are the same. We also consider only
DSGE models with no observable exogenous variables. Both the Smets-Wouters model (Smets and Wouters,
2003;2007) and the 3-equation model New Keynesian model used by Le et al. (2013) and Liu and Minford
(2014) for their numerous IIW tests fit this framework. (Other classes of models, for example those with
‘news shocks’, require a different treatment which is beyond our scope here.)
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To illustrate, consider the 3-equation New Keynesian model of Le et al. (2013):2

πt = ωEtπt+1 + λyt + eπt, ω < 1 (1)

yt = Etyt+1 −
1

σ
(rt − Etπt+1) + eyt

rt = γπt + ηyt + ert

eit = ρiei,t−1 + εit (i = π, y, r)

This has the solution  πt
yt
rt

 = KH

 eπt
eyt
ert

 (2)

where

K =

 1 + η
σ − ρπ λ −λσ

− 1
σ (γ − ρπ) 1− ωρy − 1

σ (1− ωρr)
γ − (γ − η

σ )ρπ λγ + η − ηωρy 1− (1 + ω + λ
σ )ρr + ωρ2

r

 ,
H =

 H11 0 0
0 H22 0
0 0 H33

 ,
H11 =

1

1 + η+λγ
σ − [λσ + ω(1 + η

σ )]ρπ + ωρ2
π

H22 =
1

1 + η+λγ
σ − [λσ + ω(1 + η

σ )]ρy + ωρ2
y

H33 =
1

1 + η+λγ
σ − [λσ + ω(1 + η

σ )]ρr + ωρ2
r.

or

zt = Φet (3)

et = Pet−1 + εt (4)

where z′t = [πt, yt, rt], e
′
t = [eπt, eyt, ert],Φ = K ×H. Thus the matrix Φ is restricted, having 9 elements but

consists of only 5 structural coeffi cients (the ρi can be recovered directly from the error processes), implying
that the model is over-identified according to the order condition. The model is not identified, however, if
the ρi = 0 for all i.3

The solved structural model can be written in ABCD form as follows where y (replacing z above) is now
the vector of endogenous variables and x (replacing e above) is the vector of error processes:

(1) xt = Axt−1 +Bεt

(2) yt = Cxt−1 +Dεt

where A = P =

 ρπ 0 0
0 ρy 0
0 0 ρr

 ;B = I;C = ΦP ;D = Φ.

Note that yt = Φxt is the (solved) structural model. Hence xt = Φ−1yt. The VAR representation is 4

yt = ΦPΦ−1yt−1 + Φεt = V yt−1 + ξt (5)
2Further lags in both endogenous variables and the errors could be added; but for our main treatment we suppress these.

Our results can be extended to deal with them, without essential change.
3Le et al., 2013, also establish that it is identified using the IIW test in unlimited-size sampling.
4 If the DSGE model also had one-period lags in one or more of the equations so that the solution became zt = Φet + Λzt−1

then we would obtain a VAR(2) as follows:
(1) xt = Axt−1 +Bεt
(2) yt = Cxt−1 +Dεt + Λyt−1
Using xt−1 = Φ−1(yt−1 − Λyt−2) we obtain
yt = (ΦPΦ−1 + Λ)yt−1 − Φ−1Λyt−2 + Φεt
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We may also note that

yt = Φ

∞∑
i=0

P iεt−i =

∞∑
i=0

P iξt−i.

More generally, the solution of a linearised DSGE model (including the SW model and the 3-equation
model) can be summarised by a state-space representation:5

xt = Axt−1 +Bεt

yt = Cxt

where xt is an n×1 vector of possible unobserved state variables, yt is a k×1 vector of variables observed by
an econometrician, and εt is an m× 1 vector of economic shocks affecting both the state and the observable
variables, i.e., shocks to preferences, technologies, agents’information sets, and economist’s measurements.
The shocks εt are Gaussian vector white noise satisfying E(εt) = 0, E(εtε

′
t) = I. The matrices A,B and C

are functions of the underlying structural parameters of the DSGE model. Using the ABCD framework of
Fernandez-Villaverde et al. (2007), the state-space representation can be written as the VAR

yt = V yt−1 + ηt (6)

where E(ηtη
′
t) = ΦΦ′ = Σ.

We have assumed that the DSGE model includes no observable exogenous variables. If it does then the
solution to the DSGE model contains exogenous variables as well as lagged endogenous variables: in general,
lagged, current and expected future exogenous variables. If, however, the exogenous variables are assumed to
be generated by a VAR process then the combined solution of both the endogenous and exogenous variables
is a purely backward-looking model that can be represented as a VAR.6

10 Appendix C: The LR and the IIW test statistics- asymptotic
comparisons

In indirect inference we do not impose the restrictions on the coeffi cients of the auxiliary model that are
implied by the structural model. Instead, we estimate the auxiliary model on data simulated from the
structural model and compare these estimates with those obtained from using the observed data. In both
cases the auxiliary model is estimated without any coeffi cient restrictions. The restrictions imposed by the
DSGE model are reflected in the simulated data and not through explicit restrictions on the auxiliary model.
Since both the LR test and the IIW test involve estimation of an unrestricted VAR, first we briefly review

the maximum likelihood estimation (MLE) of a standard unrestricted VAR. Consider a randomly generated
sample of yt of size T . If ηt is assumed to be NID (0,Σ) then the log-likelihood function is

lnL(V,Σ) = −[
Tn

2
ln(2π) +

T

2
ln |Σ|+ 1

2

T∑
t=1

(yt − V yt−1)′Σ−1(yt − V yt−1)]

Maximising with respect to Σ−1 gives

∂ lnL(V,Σ)

∂Σ−1
=
T

2
Σ− 1

2

∑T
t=1(yt − V yt−1)(yt − V yt−1)′

Setting this to zero and solving gives the MLE estimator of Σ as

ˆ

Σ =
1

T

∑T
t=1(yt − V yt−1)(yt − V yt−1)′ (7)

5The solution of the model can be obtained by using either Blanchard and Kahn (1980) or Sims (2002) type of algorithms.
6For further discussion on the use of a VAR to represent a DSGE model, see for example Canova (2005), Dave and DeJong

(2007), Del Negro and Schorfheide (2004, 2006) and Del Negro et al. (2007a,b) (together with the comments by Christiano
(2007), Gallant (2007), Sims (2007), Faust (2007) and Kilian (2007)), and Wickens (2014).
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Substituting this back into the likelihood function gives the concentrated likelihood

lnL(V,
ˆ

Σ) = −[
Tn

2
ln(2π) +

T

2
ln |

ˆ

Σ|+ Tn

2
]

Maximising this with respect to V is identical to minimising ln |
ˆ

Σ| with respect to V . Thus

∂ ln |
ˆ

Σ|
∂V

= 2
ˆ

Σ−1∑T
t=1(yt − V yt−1)y

′

t−1 = 0

and hence the MLE of V is
V̂ = (

∑T
t=1 yty

′

t−1)(
∑T
t=1 yt−1y

′

t−1)−1

and can be calculated by applying OLS to each equation separately. The MLE of Σ becomes

ˆ

Σ =
1

T

∑T
t=1(yt − V̂ yt−1)(yt − V̂ yt−1)′ (8)

In order to find the variance matrix of V̂ it is convenient to re-express the VAR. Denoting the T obser-
vations on the ith element of yt as the T × 1 vector yi and of ηt as ηi, each equation of the VAR may be
written as

yi = Zvi + ηi (9)

where v′i is the i
th row of V and Z is a T × k matrix with tth row yt−1. The VAR may now be written in

matrix form as
Y = Xv + η (10)

where

Y =

 y1

.
yT

 , X=

 Z ... 0
.. .. ..
0 ... Z

 = Ik ⊗ Z, ...η =

 η1

.
ηT

 , ...v =

 v1

.
vk


⊗ denotes a Kronecker product. Hence η is N(0,Ω) where Ω = Σ⊗ IT . Generalised least squares estimation
gives the MLE of v as

ˆ
v = (X ′Ω−1X)−1X ′Ω−1Y

= [Ik ⊗ (Z ′Z)−1Z ′]Y

= v + [Ik ⊗ (Z ′Z)−1Z ′]η

In general
ˆ
v is a biased estimate of v as Z consists of lagged endogenous variables, but plim

ˆ
v = v and the

limiting distribution of
√
T (

ˆ
v − v) is N(0,W ) where

W = plim T [Ik ⊗ (Z ′Z)−1Z ′](Σ⊗ IT )[Ik ⊗ (Z ′Z)−1Z ′]′

= Σ⊗ (plim T−1Z ′Z)−1

10.0.1 The LR test

The LR test for a DSGE model based on the observed data compares the likelihood function of the auxiliary
VAR derived from the DSGE model with the likelihood function of the unrestricted VAR computed on the
observed data. The former is based on the estimate of the variance matrix of the structural errors from the
solution to the DSGE model. On the assumption that the auxiliary model is the solution to the DSGE model
and is a VAR, this is also the error variance matrix of a restricted version of the auxiliary VAR. The latter
is based on the estimate of the error variance matrix of the unrestricted auxiliary VAR. As the auxiliary
model is a VAR, the LR test is, in effect, based on the one-period ahead forecast error matrix. Thus, the
logarithm of the likelihood ratio test is

LR = 2(lnLU − lnLR)

= T
(

ln |ΣR| − ln
∣∣∣Σ̂∣∣∣) (11)
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where LR and LU denote the likelihood values of the restricted and unrestricted VAR, respectively, and ΣR
and Σ̂ are the restricted and unrestricted error variance matrices. Note that, given estimates of the DSGE
model, we can solve the model for v, and hence we can calculate ηt and ΣR = T−1

∑T
t=1 ηtη

′
t. Note also

that the LR test can be routinely transformed into a (direct inference) Wald test between the unrestricted
and the restricted VAR coeffi cients, v.
To obtain the power function of the LR test we endow the structural model with false values of the

structural coeffi cients and compare the restricted VAR with the unrestricted VAR on the observed data
which are assumed to be generated by the true model. The implied false model has the VAR

yt = VF yt−1 + ηFt (12)

The forecast errors for the false model are

ηFt = yt − VF yt−1 = ηt + (V − VF )yt−1 = ηt + qt

where qt = Yt−1(v − vF ). If we let

ΣF =
1

T

T∑
t=1

ηFtη
′
Ft =

1

T

T∑
t=1

(ηt + qt) (ηt + qt)
′

then the LR test for the false model is given by:

LRF = T [ln |ΣF | − ln
∣∣∣Σ̂∣∣∣] (13)

Thus the power of the test derives from the distance

ln |Σ
F
| − ln |Σ

R
| . (14)

10.0.2 The IIW test

In the IIW test we simulate data from the solution to the already estimated DSGE, randomly drawing the
samples from the DSGE model’s structural errors. We then estimate the auxiliary VAR using these simulated
data. We repeat this many times to obtain the average estimate of the coeffi cients of the VAR which we
take as the estimate of the unrestricted VAR. The simulated VAR may be written

yS,t = VSyS,t−1 + ηSt

where yS,t is the data simulated from the DSGE model and VS is the (average estimate of v) or, in the form
of equations (9) and (10), as

yS,i = ZSvS,i, + ηS,i

YS = XSvS + ηS

where E(ηS,iη
′
S,i) = ΣS . The IIW test statistic, which computes the distance of these estimates from the

unrestricted estimates based on the observed data, is:

IIW = [v̂ − vS ]′W−1
S [v̂ − vS ] (15)

where WS is the covariance matrix of the limiting distribution of vS , and is given by

WS = ΣS ⊗ (plim T−1Z ′SZS)−1 (16)

On the null hypothesis that the DSGE model – and hence the auxiliary VAR – are correct, the asymptotic
distribution of the estimate of vS is the same that of the MLE v̂. Moreover, asymptotically, this IIW statistic
will have the same distribution as [v̂−v]′W−1[v̂−v] and hence will have the same critical values.7 In general,

7The IIW test can also be carried out for a sub-set of v.
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the IIW statistic differs from a standard Wald statistic in indirect inference which is [v̂ − vS ]′W−1[v̂ − vS ]
whereW is the covariance matrix of the unrestricted model; we refer to this as the unrestricted IIW statistic.
The power of the IIW test is calculated, like that for the power calculations for the LR test, by simulating

the DSGE model using false values of its coeffi cients and now using these data to estimate the unrestricted
VAR from equation (12). The IIW statistic is then computed from

IIW = [v̂ − vF ]′W−1
F [v̂ − vF ] (17)

where vF is the mean vector of coeffi cients and WF is their variance matrix, which corresponds to WS .
Consider the decomposition

v̂ − vF = (v̂ − v) + (v − vF ).

It follows that the IIW statistic can be decomposed as

[v̂ − vF ]′W−1
F [v̂ − vF ] (18)

= η′[Ik ⊗ (Z ′Z)−1Z ′]′W−1
F [Ik ⊗ (Z ′Z)−1Z ′]η

+[v − vF ]′W−1
F [v − vF ]

= η′[Σ−1 ⊗ plim T (Z ′Z)−1]η + [v − vF ]′W−1
F [v − vF ] (19)

where the last term is based on the difference between the true and the false values of the coeffi cients. Hence
the power of the IIW test derives from the second term on the right-hand side of equation (19).

10.0.3 Comparing the power of the two tests

We have seen that the LR test compares the one-step ahead forecast error matrix of the unrestricted VAR
with that of the model-restricted VAR using the observed data, whereas the IIW test asks whether the
distribution of the VAR coeffi cients based on the simulated data (the restricted model) covers the VAR
coeffi cients based on the observed data (the unrestricted model). We have also found that on the null
hypothesis that the DSGE model is true the limiting distributions of the two sets of estimates are the same.
It follows from equation (7) that, on the null hypothesis, the error variance matrix using simulated data is

ΣS =
1

T

∑T
t=1(ySt − VSyS,t−1)(ySt − VSyS,t−1)′

=
1

T

∑T
t=1(yt − VSyt−1)(yt − VSyt−1)′ + ∆

=
ˆ

Σ + (V̂ − VS)
1

T

T∑
t=1

yt−1y
′
t−1(V̂ − VS)′ + ∆

where Σ̂ is the error variance matrix of the unrestricted VAR using the observed data and ∆ is Op(T−
1
2 ).

Using the result that vec(AXB) = (B′ ⊗A)vec(X), and vec(V ′) = v, it can be shown that

vec[(V̂ − VS)
1

T

T∑
t=1

yt−1y
′
t−1(V̂ − VS)′] = v′(I ⊗ 1

T

T∑
t=1

yt−1y
′
t−1)v

Hence,

LR = T
(

ln |ΣS | − ln
∣∣∣Σ̂∣∣∣)

= T [ln |1 +

(V̂ − VS) 1
T

T∑
t=1

yt−1y
′
t−1(V̂ − VS)′ + ∆∣∣∣Σ̂∣∣∣ |]

= T [ln |1 + (v̂ − vS)′(Σ̂⊗ 1

T

T∑
t=1

yt−1y
′
t−1)−1(v̂ − vS) +

∆∣∣∣Σ̂∣∣∣ |]
→ IIW +Op(T

− 1
2 )
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In other words, on the null hypothesis that the DSGE model is the true model, the LR test based on observed
data is asymptotically equivalent to using the IIW test, which is based on simulated data.
In the power calculations we use

LR = T
(

ln |ΣF | − ln
∣∣∣Σ̂∣∣∣)

= T
(

ln |ΣS | − ln
∣∣∣Σ̂∣∣∣)+ T (ln |ΣF | − ln |ΣS |)

The power of the test derives from the last term which reflects the difference between VS and VF . This
makes ∆ of order Op(1), which does not vanish as T →∞, but causes the power of the test to tend to unity.
It is worth relating this finding to the work of Dridi et al (2007) who propose a Wald II test that treats

the model being investigated as mis-specified; they therefore use the variance-covariance matrix from the
unrestricted VAR which is generated by the unknown true model. This II test is asymptotically equivalent
to the LR test, as we have seen, and differs from the IIW test proposed here which is based on the restricted
VAR generated by the DSGE model being investigated- in effect this IIW test treats the DSGE model as
pseudo-true and therefore as the null. In what follows we systematically compare the small sample properties
of these different tests; as we will see the IIW test has the greatest power.It is really irrelevant whether the
DSGE model being tested is regarded as ’mis-specified’or not, since as we have already argued, this not the
issue: the issue is whether such a model is suffi ciently close to the data on the test chosen to be regarded as
’pseudo-true’. For establishing this it is helpful to have a test with as much potential power as possible; as
we will show below, that potential power can then be tailored flexibly to the user’s problem.
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% Misspecified II Wald in-sample Joint 3:4Q :8Q
True 5.0 5.0 5.0
1 19.8 6.0 4.9
3 52.1 9.4 5.2
5 87.3 15.3 6.0
7 99.4 22.9 6.6
10 100.0 36.2 9.8
15 100.0 73.8 29.5
20 100.0 99.8 90.7

Table 8: Rejection Rates for Wald and Likelihood Ratio for 3 Variable VAR(1)

Table 9: Rejection Rates at 95% level: falseness is given by +/- alternation, test 3 variables (yt, pt, rt)
VAR(1).

Falseness is given by +/- x% alternation
0% 1% 3% 5% 7% 10% 15% 20%

Using VAR 0.050 0.076 0.345 0.923 1.000 1.000 1.000 1.000
Using Full Model 0.050 0.074 0.385 0.973 1.000 1.000 1.000 1.000

Table 10: Rejection Rates at 95% level: falseness is given by +/- alternation, test 3 variables (yt, pt, rt)
VAR(1).

Falseness is given by +/- x% alternation
0% 1% 3% 5% 7% 10% 15% 20%

Using VAR 0.050 0.051 0.086 0.094 0.123 0.174 0.311 0.288
Using Full Model 0.050 0.055 0.057 0.056 0.056 0.069 0.103 0.140

Table 11: Bias of II estimates by using different data descriptors
Data Descriptor VAR coeffs IRF Moments

II estimates II estimates II estimates
True Values Mean Std Bias Mean Std Bias Mean Std Bias

α 0.19 0.189 0.020 0.32% 0.191 0.021 0.37% 0.197 0.018 1.50%
h 0.71 0.692 0.065 2.51% 0.684 0.069 3.61% 0.669 0.049 2.77%
ιp 0.22 0.221 0.023 0.45% 0.223 0.026 1.32% 0.229 0.021 4.08%
ιw 0.59 0.586 0.060 0.69% 0.584 0.068 0.96% 0.570 0.058 3.40%
ξp 0.65 0.664 0.068 2.08% 0.659 0.074 1.35% 0.674 0.063 3.71%
ξw 0.73 0.725 0.075 0.71% 0.731 0.083 0.17% 0.702 0.073 3.82%
ϕ 5.48 5.531 0.557 0.93% 5.555 0.608 1.36% 5.712 0.524 4.24%
Φ 1.61 1.607 0.166 0.16% 1.635 0.182 1.53% 1.576 0.140 2.14%
ψ 0.54 0.540 0.057 0.00% 0.543 0.062 0.57% 0.561 0.051 3.88%
r∆y 0.22 0.222 0.023 1.05% 0.222 0.024 1.09% 0.210 0.020 1.38%
ρ 0.81 0.787 0.047 2.80% 0.770 0.060 4.95% 0.842 0.058 3.91%
rπ 2.03 2.007 0.188 1.12% 1.992 0.204 1.86% 1.965 0.188 3.20%
ry 0.08 0.079 0.009 1.25% 0.081 0.009 1.38% 0.082 0.008 2.96%
σc 1.39 1.358 0.137 2.29% 1.377 0.155 0.95% 1.356 0.132 2.45%
σl 1.92 1.930 0.208 0.54% 1.944 0.211 1.24% 1.981 0.191 1.18%
Average 0.113 1.13% 0.124 1.51% 0.106 3.04%
Notes: The true parameter values are from Smets and Wouters (2007), table 4. Three variables used in VAR

are (y, pi, r), as in Le et al. (2011). Std denotes sdandard deviation. Source: Meenagh, Minford, Wickens and Xu (2017)
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Table 12: Bias of II estimates by using different variable combinations
Var Comb (y, pi, r) (c, i, l) (q, w, r)

II estimates II estimates II estimates
True Values Mean Std Bias Mean Std Bias Mean Std Bias
α 0.19 0.189 0.020 0.32% 0.188 0.021 1.2% 0.193 0.020 1.74%
h 0.71 0.692 0.065 2.51% 0.711 0.073 0.2% 0.674 0.057 5.08%
ιp 0.22 0.221 0.023 0.45% 0.215 0.025 2.3% 0.223 0.024 1.40%
ιw 0.59 0.586 0.060 0.69% 0.571 0.068 3.2% 0.580 0.063 1.70%
ξp 0.65 0.664 0.068 2.08% 0.635 0.073 2.3% 0.666 0.069 2.53%
ξw 0.73 0.725 0.075 0.71% 0.727 0.082 0.4% 0.719 0.080 1.49%
ϕ 5.48 5.531 0.557 0.93% 5.385 0.613 1.7% 5.575 0.579 1.73%
Φ 1.61 1.607 0.166 0.16% 1.595 0.141 0.9% 1.583 0.172 1.69%
ψ 0.54 0.540 0.057 0.00% 0.524 0.062 3.0% 0.553 0.057 2.36%
r∆y 0.22 0.222 0.023 1.05% 0.218 0.025 1.1% 0.217 0.024 1.49%
ρ 0.81 0.787 0.047 2.80% 0.797 0.088 1.6% 0.816 0.065 0.74%
rπ 2.03 2.007 0.188 1.12% 2.015 0.234 0.7% 1.983 0.205 2.32%
ry 0.08 0.079 0.009 1.25% 0.078 0.009 2.3% 0.080 0.009 0.10%
σc 1.39 1.358 0.137 2.29% 1.370 0.156 1.4% 1.345 0.141 3.26%
σl 1.92 1.930 0.208 0.54% 1.876 0.218 2.3% 1.957 0.204 1.93%
Average 0.113 1.13% 0.123 1.70% 0.118 1.97%
Notes: The true parameter values are from Smets and Wouters (2007), table 4.

VAR coeffi cients are used as data descriptors, as in Le et al. (2011) Source:Meenagh, Minford, Wickens and Xu (2017)

Table 13: Rejection rates for individual parameters falsified
Degree of Falseness

1% 2% 3% 5% 10% 20% 50% 75%
α 0.0700 0.0720 0.0720 0.0710 0.0810 0.1230 0.6020 0.9480
h 0.0720 0.0710 0.0760 0.0900 0.1950 0.6720 1.0000 1.0000
ιp 0.0700 0.0700 0.0700 0.0720 0.0730 0.0790 0.1000 0.1350
ιw 0.0690 0.0690 0.0690 0.0760 0.0830 0.1820 0.8490 0.9870
ξp 0.0670 0.0620 0.0650 0.0670 0.1440 0.6360 0.9950 0.9960
ξw 0.0710 0.0740 0.0770 0.0860 0.0970 0.4970 1.0000 1.0000
ϕ 0.0700 0.0700 0.0700 0.0710 0.0710 0.0700 0.0740 0.1410
Φ 0.0700 0.0690 0.0720 0.0770 0.0930 0.2420 0.5230 0.8340
ψ 0.0700 0.0700 0.0710 0.0740 0.0720 0.0780 0.3270 0.9930
r∆y 0.0690 0.0710 0.0690 0.0750 0.1260 0.5070 1.0000 1.0000
ρ 0.0870 0.1570 0.3590 0.8910 1.0000 1.0000 1.0000 1.0000
rπ 0.0750 0.0850 0.1160 0.2160 0.8710 1.0000 1.0000 1.0000
ry 0.0710 0.0690 0.0680 0.0770 0.1380 0.5370 1.0000 1.0000
σc 0.0710 0.0720 0.0730 0.0750 0.1050 0.3140 1.0000 1.0000
σl 0.0700 0.0720 0.0730 0.0740 0.0770 0.0800 0.1060 0.1390
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