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Michael Wickens (Cardi¤ University, University of York and CEPR)z

Yongdeng Xu (Cardi¤ University)x

March 2018

Abstract

Indirect inference testing can be carried out with a variety of auxiliary models. Asymptotically
these di¤erent models make no di¤erence. However, the small sample properties can di¤er. We explore
small sample power and estimation bias both with di¤erent variable combinations and descriptive models
(Vector Auto Regressions, Impulse Response Functions or Moments) in the auxiliary model. We �nd
that both power and bias are similar when the number of variables used is the same. Raising the number
of variables lowers the bias but may also raise the power unacceptably because it lowers the chances of
�nding a tractable model to pass the test.

Keywords: Indirect Inference, DGSE model, Auxiliary Models, Simulated Moments Method, Im-
pulse Response Functions, VAR, Moments, power, bias

JEL Classi�cation: C12; C32; C52; E1

1 Introduction

This paper joins a large and rapidly expanding literature on the estimation and evaluation of dynamic sto-
chastic general equilibrium (DSGE) models by indirect inference (II). Indirect inference involves representing
the data simulated from a DSGE model by an auxiliary model and comparing estimates of this auxiliary
model with those obtained from observed data. The key issues are how to choose this auxiliary model and
what features of the auxiliary model to exploit. In estimation the aim is to select the auxiliary model and
its features to minimize bias and in testing to maximize power. In large samples these choices are often
unimportant. The aim in this paper is to examine whether this is true in small samples.
The natural choice of auxiliary model for a DSGE model is a VAR. This is because, when (log-) linearized,

the solution to a DSGE model can be represented by a VAR. And if any exogenous variables in the DSGE
model are also represented by a VAR then the whole data set has a VAR representation (see Wickens 2014).
The coe¢ cients of the VAR solution are functions of the structural parameters. In some simple cases the
precise function can be established analytically, but in general this is not possible.
An issue of concern in this paper is how the variables in the auxiliary VAR should be chosen. They could

include all of the variables in the DSGE model or only a sub-set of them. Another issue is which features
of the auxiliary model to exploit. We refer to these two issues as the choice of data descriptors. Possible
choices of features of the auxiliary model to use are the VAR coe¢ cients (e.g. Le et al. 2011), the impulse
response functions � IRFs � (e.g. Hall et al. 2012), the Moments or the Scores. All have been used in the
literature and all should give the same results asymptotically. We will focus on the small sample properties
(estimation bias and test power) from using the coe¢ cients, the IRFs, and the moments. Our results indicate
that increasing the dimension of the data vector yields better small sample properties (in terms of smaller
bias in estimation and large power in testing).
Estimating a DSGE model by II was originally proposed by Smith (1993), later Gourieroux et al. (1993),

and the literature has expanded rapidly recently. Among them, Dridi, Guay and Renault (2007) derive
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an asymptotic distribution of the II estimator and show that it is asymptotically normal under regular
conditions. Hall et al. (2012) use the impulse response function as a particular data descriptor in the
auxiliary model and discuss both the small and large sample property of the II estimator. They show by
Monte Carlo simulation that II estimation has good small sample properties (in terms of bias and e¢ ciency
of the estimator). These results are con�rmed by Guerron-Quintana et al. (2017).
Another particularly interesting question for policy makers is how to test an already calibrated (or

estimated) DSGE model by II. The II test has been discussed, for example, in Boivin and Giannoni (2006)
and Dridi, Guay and Renault (2007), which mainly focus on asymptotic theory. More intensive studies have
been carried out by Le et al. (2011, 2016a and b), which focus on the small sample properties of the II test.
Le et al. (2011, 2016a) � using a Wald test based on the VAR coe¢ cients - and the papers they refer to
have been able to discover by Monte Carlo experiments both the power and the estimation bias for various
types of structural model when di¤erent auxiliary models are chosen. In particular, they compare the II test
with other model evaluation methods (e.g. Likelihood Ratio (LR) and the out of sample forecasting test)
and �nd that the II test has much more power than the LR test (which is commonly used in evaluating a
model). They give a explanation of why II has much larger power than LR test. The test could also be
based on other features of the model, such as the associated impulse response functions or the moments.
Dridi, Guay and Renault (2007) propose a two-step procedure to achieve both estimation and the eval-

uation of misspeci�ed DSGE models. In the �rst step the model is estimated using a well chosen set of
moments; in the second step, the model is evaluated with chosen features of the data that the model tries to
replicate. Their procedure di¤ers in practice from those used by Guerron-Quintana et al. (2017) and Le et
al. (2011, 2016a), solely in the choice of weighting matrix for the Wald statistic: Dridi, Guay and Renault
(2007) use the matrix derived from the asymptotic distribution of VAR coe¢ cients from the data-based VAR
whereas Guerron-Quintana et al. (2017) and Le et al. (2011, 2016a) use the empirical distribution from the
model-simulated data VARs. Le et al. (2016a) found that the use of the asymptotic weighting matrix results
in a loss of power compared with the use of a simulation-based weighting matrix.
Although there is an extensive literature on the asymptotic theory of indirect inference, there is a lim-

ited literature on its small sample properties. In particular, the small sample properties of using di¤erent
descriptors has not been examined in any detail.
As already noted, the use of a VAR as the auxiliary model follows naturally from the solution to a

DSGE model having a VAR representation. Instead of matching the moments of the data to simulated
second moments of the calibrated model, as was done in the early analysis of RBC models, matching the
coe¢ cients of an auxiliary VAR estimated on data simulated from the structural model and from the original
data, or matching the corresponding impulse response functions, provides a richer set of desciptors. In their
empirical analysis, Hall et al. (2012) and Guerron-Quintana et al. (2017) proposed to use the IRF as the data
descriptor, while Le et al. (2011, 2016a) proposed instead the use of the VAR coe¢ cients (and the VAR error
variances). Based on asymptotic distribution theory, the three types of comparison, as they simply involve
di¤erent functions of all the structural parameters, would give the same result. The interesting question that
remains is whether the di¤erent data descriptors have di¤erent small sample properties.
A second issue relating to the choice of descriptors is whether the selection of variables in the auxiliary

VAR a¤ects the small-sample properties of II inference. The DSGE models that have been most often
used in empirical analysis are typically similar to a Smets and Wouters (2007) type of medium-scale New
Keynesian model (see, e.g. Christiano et al., 2005; Altig et al., 2011; Guerron-Quintana et al. 2013). There
are normally many variables in such a model, and hence in its VAR representation. Le et al. (2011, 2016a)
have found that the more of these variables that are included in the auxiliary model, the greater is the power
of the test in small samples, but the lower are the chances of �nding a tractable model that can pass the
test. This suggests that there is a trade-o¤ between power and �nding a tractable (i.e. unrejected) model.
They therefore suggest using a low-order VAR in only a few variables when using indirect inference for both
the estimation of and tests of a DSGE model. This leaves open the question of which variables to include in
the auxiliary model and whether this choice a¤ects the outcome.
These questions have been raised with us by researchers and policy-makers who are users of indirect

inference in model-building. In this paper we provide some new evidence on these issues and issues related
to them. Minford, Wickens and Xu (2016) �nd that the power of the II test based on three di¤erent data
descriptors (VAR coe¢ cients, IRFs, sample moments) are similar. We extend this study of di¤erent data
descriptors to the issue of estimation bias; and we also ask how both test power and estimation bias are
a¤ected by the choice of di¤erent features of the auxiliary model and di¤erent variable combinations. We
do so by Monte Carlo analysis of a widely-used macro DSGE model, the Smets and Wouters (2007) model
of the US.
Our main �ndings are that, just as the power of the II test is similar across VAR coe¢ cients, IRFs and
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moments, so also small sample bias in estimation is similar and very low. We �nd that the choice of di¤erent
variable combinations in the auxiliary model makes little di¤erence in both the estimation and the tests.
In particular, we obtain similar results whether we use any three of the variables in the model or the three
principal components of the complete set of variables in the model. When more variables are included in the
auxiliary model, the estimation bias falls slightly and the power of the test rises sharply, which suggests that
for the Smets-Wouters model and similar macro models increasing the number of variables in an auxiliary
VAR is likely to reduce the likelihood of �nding a tractable model that can pass the test.

2 Indirect Inference on a DSGE model

DSGE models (possibly after linearization) have the general form:

A0Etyt+1 = A1yt +Bzt (1)

zt = Rzt�1 + "t

where yt contains the endogenous variables and zt the exogenous variables. The exogenous variables may
be observable or unobservable. For example, they may be structural disturbances. We assume that zt may
be represented by an autoregressive process with disturbances "t that are NID(0;�). Assuming that the
conditions of Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007) are satis�ed, the solution to
this model can be represented by a VAR of form�

yt
zt

�
= F

�
yt�1
zt�1

�
+G

�
�t
"t

�
: (2)

where �t are innovations.
A special case of the DSGE model is where all of the exogenous variables are unobservable and may

be regarded as structural shocks. An example is the Smets and Wouters (2007) US model to be examined
below. This case, and its solution, can be represented as above for the complete DSGE model.

2.1 II test

The II test criterion is based on the di¤erence between features of the auxiliary model (such as coe¢ cients
estimates, impulse response functions, moments or scores) obtained using data simulated from an estimated
(or calibrated) DSGE model and those obtained using actual data; these di¤erences are then represented by
a Wald statistic, hence we call it an IIW (Indirect Inference Wald) test. The speci�cation of the auxiliary
model re�ects the choice of descriptor variables.
We begin with the philosophical question of whether DSGE models can be treated as �true�for testing

purposes; in recent years a number of econometricians have dismissed DSGE models as so �unrealistic�
that one must consider them as inherently �mis-speci�ed�. We regard this as essentially a philosophical
misunderstanding in the sense that models are not intended by construction to be �realistic�but rather to
embody economic decision-making in a logical set-up which could capture su¢ cient elements of economic
behaviour to pass empirical tests. Such models could be termed �pseudo-true�, i.e. not close representations
of �reality� but rather abstract approximations designed to match the key data behaviour according to
frequentist tests � much in the sense of Friedman (1953). Having renamed models in this way, we can
proceed to test them in the usual manner. Thus the Indirect Inference test we propose supposes for the
purposes of statistical testing that the model is true. Even if DSGE models are inherently �mis-speci�ed�,
it is still of interest to evaluate how misspeci�ed they are. This test provides a very powerful way to do so.
Further discussion of these philosophical issues can be found in Meenagh et al. (2018).
If the DSGE model is correct (the null hypothesis) then, whatever the descriptors chosen, the features of

the auxiliary model on which the test is based will not be signi�cantly di¤erent whether based on simulated
or actual data. The simulated data from the DSGE model are obtained by bootstrapping the model using
the structural shocks implied by the given (or previously estimated) model and computed from the historical
data. We estimate the auxiliary model � a VAR(1) � using both the actual data and the N samples of
bootstrapped data to obtain estimates aT and aS(�0) of the vector �. We then use a Wald statistic based
on the di¤erence between aT , the estimates of the data descriptors derived from actual data, and aS(�0),
the mean of their distribution based on the simulated data, which is given by:

WS = (aT � aS(�0))0W�1(�0)(aT � aS(�0))
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where �0 is the vector of parameters of the DSGE model on the null hypothesis that it is true and W (�0) is
the weighting matrix. Following Guerron-Quintana et al. (2017) and Le et al. (2011, 2016a), W (�0) can be
obtained from the variance-covariance matrix of the distribution of simulated estimates aS

W (�0) =
1

N
�Ns=1(as � as)0(as � as) (3)

where as = 1
N�

N
s=1as. WS is asymptotically a �2(r) distribution, with the number of restrictions equal to

the number of elements in aT : Appendix A shows the steps involved in �nding the Wald statistic. A detailed
description of the IIW test can also be found in Le et al. (2016a).
We know from Le et al. (2017) that the particular DSGE models we are examining are over-identi�ed, so

that the addition of more VAR coe¢ cients (e.g. by raising the order of the VAR) increases the power of the
test, because more nonlinear combinations of the DSGE structural coe¢ cients need to be matched. Since
these combinations are di¤erent, the chances of false values being accepted by the same samples that accept
the previous combinations are low; hence the joint probability of acceptance will fall for a given degree of
falseness, thereby raising the frequency of joint rejection and so the power. Le et al. (2016a) noted that
increasing the power in this way also reduced the chances of �nding a tractable model that would pass the
test, so that there was a trade-o¤ for users between power and tractability. The question addressed in this
paper is whether, and for the same reason, adding discriptor variables also raises the power of the test.1

2.2 II Estimation

Estimation based on indirect inference focuses on extracting estimates of the structural parameters from
estimates of the coe¢ cients of the auxiliary model by choosing parameter values that minimise the distance
between estimates of the auxiliary model based on simulated and actual data. A scalar measure of the
distance may be obtained using a Wald statistic. This can be minimised using any suitable algorithm.
Details of the algorithm are given in Appendix A.
The II estimation may be expressed as

�̂ = argmin WS(�) (4)

Under the null hypothesis of full encompassing and some regularity conditions, Dridi, Guay and Renault
(2007) show the asymptotic normality of II estimator b�,

p
T (b� � �0) v N(0;�(N;W ) (5)

with

�(N;W ) =

�
@0(a)

@(�0)
W (�0)

�1 @
0(a)

@(�0)

��1
: (6)

W (�0) is the weighting matrix, which can obtained either from bootstrap samples as in equation (3):

W (�0) =
1

N
�Ns=1(as � as)0(as � as) (7)

or, as Dridi, Guay and Renault (2007) show, the optimal asymptotic weighting matrix is

W �(�0) = J�10 I0J
�1
0 +

1

N
J��10 I�0J

��1
0 +

�
1� 1

N

�
J��10 K�

0J
��1
0

�J�10 K0J
��1
0 � J��10 K 0

0J
��1
0 (8)

where I0 and J0 is information and Hessian matrix from observed data. I�0 and J�0 is information and
Hessian matrix from simulated data. K0 is the covariance matrix of the score vector from two independent
simulators. The score vector and Hessian matrix from observed and simulated data can be computed under
a standard MLE framework. In the case where the structural model is well speci�ed, W (�0) reduces to�
1 + 1

N

�
J�10 (I0 � K0)J

�1
0 , since then K0 = K�

0 . Also see Appendix B for the details of the asymptotic
properties.

1Hence the decision to use a low order VAR even though the full VAR reduced form of the DSGE model will in general be
of more variables and of higher order (Fernandez-Villaverde et al. 2007).
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2.3 The Auxiliary Models

Di¤erent data descriptors

We consider three di¤erent features of the auxiliary model on which to assess II estimation and power:
VAR coe¢ cients, IRFs and Moments. Minford, Wickens and Xu (2016) have compared them and we brie�y
review their �ndings below. The IRFs and the Moments can be derived from the VAR coe¢ cients and are
therefore closely related (see Appendix C, repeated for convenience from Minford, Wickens and Xu, 2016);
asymptotically, the three features should give the same results, but it is not clear whether this carries over
in small samples.

Di¤erent data combinations

For a simple three equation New Keynesian model (Clarida, et al,. 1999), all variables can be included in the
auxiliary model. However, for a medium to large scale New Keynesian DSGE model (see, e.g. Christiano
et al. 2005; Smets and Wouters, 2007; Altig et al. 2011; Guerron-Quintana et al. 2013), which has been
extensively discussed in the macroeconomics literature, there are many variables of interest in the model.
For example, there are 14 variables (7 observed and 7 unobserved variables) in Smets-Wouters 2007 and in
the Guerron-Quintana et al. 2017 model. A practical question is to consider which variable combinations
should be used in VAR model estimation. In II estimation, one may consider including all variables in the
VAR model (Guerron-Quintana et al. 2017). However, there is a cost in terms of the computation time
which increases signi�cantly. In the II test, Le et al. (2011, 2016a) �nd that the more variables that are
included, the higher is the power of the II test. This is because there are more features of the data that need
to be jointly matched, each of which is, in general, a nonlinear combination of the structural parameters.
Consequently, the lower is the chance of �nding a tractable model that can pass the test. In other words,
there is a trade-o¤ between power and tractability. The authors suggest using a three variable VAR(1) as
the auxiliary model. Again an interesting question is whether there would be any di¤erence if one included
a di¤erent three variable combination in the VAR model.
A further alternative is to use the �rst three principal components of a wider set of possible descriptors.

This may be better than arbitrarily choosing three variables from the set of potential descriptors. This
involves incorporating a standard factor analysis within the II process: thus the data, whether from the
actual sample or from the samples generated by simulation, has the three factors extracted from it which
are then used in the subsequent VAR estimation.

3 Monte Carlo Experiments

We use Monte Carlo simulation to explore the two issues raised above based on a popular model in the
macroeconomics literature: the Smets and Wouters model (2007) DSGE model. A sample size of 200 is
chosen, as this is typical for macro data. We compare the power of the II test and the II estimates using
di¤erent data descriptors and di¤erent variable combinations. Our aim is to see whether better results in
terms of higher test power or lower small sample estimation bias can be found by altering the choice of
descriptors or variables.

3.1 Comparing the Power of the II test

We follow the same approach as Le et al. (2016a). Speci�cally, we generate falseness by introducing a
rising degree of numerical mis-speci�cation for the model parameters. Thus we construct a model whose
parameters are moved x% away from their true values in both directions (+=� alternatively); similarly
the higher moments of the error processes (standard deviation) are altered by the same x%.2 For all the
experiments, the eigenvalues of reduced form VAR coe¢ cients are all strictly less than unity in modulus, so
Fernandez-Villaverde et al.�s (2007) condition that the DSGE model has a VAR representation is satis�ed.
We create 1000 samples from the true model: then we obtain from these samples the distribution of the
Wald statistic by bootstrapping the false model (the bootstrap number is 500) as if it is true. We use this
distribution to assess how many times the x% False model is rejected with 95% con�dence; notice that this
�xes the size of the test throughout at 5%. The Monte Carlo simulation results are presented in Tables 2
and 3, where y: real GDP, pi : in�ation rate, r : real interest rate, c : consumption, i : investment, l :
employment, q : Tobin�s q, w : the real wage.

2See Le et al. (2016b) section 4.1 for full details of the experiments.
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1) Comparing the Power of the II test across data descriptors

Table 1: Power of the II test across data descriptors
Rejection Rate

Degree of falseness 0 1% 3% 5% 7% 10% 15% 20%
VAR coe¢ cients 0.05 0.128 0.866 0.997 1.000 1.000 1.000 1.000
IRF 0.05 0.140 0.852 0.998 1.000 1.000 1.000 1.000
Moment 0.05 0.114 0.326 0.665 0.913 0.997 1.000 1.000
Notes: Three variables are used in VAR are (y; pi; r); as in Le et al. (2011)

Source: Minford, Wickens and Xu (2016)

We reproduce these results from Minford, Wickens and Xu (2016) for completeness; details can be found
there. What is rather remarkable about these comparisons is how similar the power is across all three
methods for the VAR coe¢ cients and IRF as data descriptors.

2) Comparing the Power of the II test across variable choice

Le et al. (2011, 2016a, 2017) use the variable combination (y; pi; r) in their II test. In this experiment, we
consider in addition two more variable combinations: (c; i; l) and (q; w; r). The results are reported in Table
2.

Table 2: Power of the II test across variable choice (3 variables)
Rejection Rate

Degree of falseness 0 1% 3% 5% 7% 10% 15% 20%
(y; pi; r) 0.05 0.128 0.866 0.997 1.000 1.000 1.000 1.000
(c; i; l) 0.05 0.094 0.561 0.923 0.986 1.000 1.000 1.000
(q; w; r) 0.05 0.072 0.276 0.771 0.984 1.000 1.000 1.000
Notes: VAR coe¢ cients are used as data descriptors, as in Le et al. (2011)

The combinations all produce tests with very similar power.
Next we consider groups of four variables by adding a variable to the previous combinations. The results

are reported in Table 3. As we can see, this raises power consistently for each group. But the power, while
similar for each group, preserves much the same di¤erences as in the three-variable sets.

Table 3: Power of the II test across variable choice (4 variables)
Rejection Rate

Degree of falseness 0 1% 3% 5% 7% 10% 15% 20%
(y; pi; r; i) 0.05 0.166 1.000 1.000 1.000 1.000 1.000 1.000
(c; i; l; r) 0.05 0.131 0.896 0.977 1.000 1.000 1.000 1.000
(q; w; r; c) 0.05 0.118 0.658 0.991 1.000 1.000 1.000 1.000
Notes: VAR coe¢ cients are used as data descriptors, as in Le et al. (2011)

In all cases these four-variable sets give huge power, so that even 3% falsity induces almost 100% rejection.
A test with such high power would make it likely that only a model extremely close to reality would not be
rejected. In practice, users may therefore prefer to use the less powerful 3-variable sets.
Table 4 reports the power of the test when using all seven variables and when using the three principal

components of the seven variables. Not surprisingly, using seven variables gives a test with even larger
power than one with the three or four variables. 1% falsity induces 37% rejection and 3% falsity induces
100% rejection whereas the three principal components have similar power to the previous four variable
combinations.
To summarise, including more descriptors improves the power of the test, but if one wishes to limit the

number of descriptors, any three variables gives similar power. This includes the use of principal components,
which e¤ectively coincide with the use of output, in�ation and interest rates as the three variables chosen,
as indeed these three factors are likely to largely coincide with these three.
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Table 4: Power of the II test across variable choice (7 variables)
Rejection Rate

Degree of falseness 0 1% 3% 5% 7% 10% 15% 20%
All 7 Variables 0.05 0.368 1.000 1.000 1.000 1.000 1.000 1.000
3 PCs 0.05 0.142 0.843 0.998 1.000 1.000 1.000 1.000
Notes: VAR coe¢ cients are used as data descriptors, as in Le et al. (2011)

3.2 Comparing II estimation in small samples

In the following subsection, we examine the e¤ect in small samples of the choices of di¤erent data descriptors
and di¤erent variable combinations on the estimation bias of the parameters of the Smets-Wouters model.
The True values are the estimates reported by Smets-Wouters.

1) Comparing II estimation across data descriptors

While we know from earlier work that the estimators have similar asymptotic properties, there is no work
comparing their small sample properties. We use the same Monte Carlo experiment with the Smets and
Wouters (2007) model treated as the true model; and we re-estimate the model for each of 100 samples of
data simulated from the true speci�cation of the model. The true parameter values are from Smets and
Wouters (2007), table 4. Also see Appendix D for the parameter descriptions.
In estimation, we start the initial parameter values by falsifying them by 10% in both directions (+/�

alternately). We then estimate each sample and report the Mean and average bias of the II estimators. The
results are reported in the Table 5.

Table 5: Bias of II estimates by using di¤erent data descriptors
Data Descriptor VAR Coe¢ cients IRF Moments

II estimates II estimates II estimates
True Values Mean Std Bias Mean Std Bias Mean Std Bias

� 0.19 0.189 0.020 0.32% 0.191 0.021 0.37% 0.197 0.018 1.50%
h 0.71 0.692 0.065 2.51% 0.684 0.069 3.61% 0.669 0.049 2.77%
�p 0.22 0.221 0.023 0.45% 0.223 0.026 1.32% 0.229 0.021 4.08%
�w 0.59 0.586 0.060 0.69% 0.584 0.068 0.96% 0.570 0.058 3.40%
�p 0.65 0.664 0.068 2.08% 0.659 0.074 1.35% 0.674 0.063 3.71%
�w 0.73 0.725 0.075 0.71% 0.731 0.083 0.17% 0.702 0.073 3.82%
' 5.48 5.531 0.557 0.93% 5.555 0.608 1.36% 5.712 0.524 4.24%
� 1.61 1.607 0.166 0.16% 1.635 0.182 1.53% 1.576 0.140 2.14%
 0.54 0.540 0.057 0.00% 0.543 0.062 0.57% 0.561 0.051 3.88%
r�y 0.22 0.222 0.023 1.05% 0.222 0.024 1.09% 0.210 0.020 1.38%
� 0.81 0.787 0.047 2.80% 0.770 0.060 4.95% 0.842 0.058 3.91%
r� 2.03 2.007 0.188 1.12% 1.992 0.204 1.86% 1.965 0.188 3.20%
ry 0.08 0.079 0.009 1.25% 0.081 0.009 1.38% 0.082 0.008 2.96%
�c 1.39 1.358 0.137 2.29% 1.377 0.155 0.95% 1.356 0.132 2.45%
�l 1.92 1.930 0.208 0.54% 1.944 0.211 1.24% 1.981 0.191 1.18%
Average 0.113 1.13% 0.124 1.51% 0.106 3.04%
Notes: The true parameter values are from Smets and Wouters (2007), table 4. Three variables used in VAR are

(y; pi; r), as in Le et al. (2011). Std denotes the standard deviation. Bias denotes the bias of II estimates.

We �nd that the II estimator has very small bias. The average absolute biases of the II estimator based
on using VAR coe¢ cients and the IRFs as auxiliary models are 1:1% and 1:5% respectively. This very low
bias is related to the high power of the IIW test which, as we have seen, rejects parameters as little as 7%
distant from the true values 100% of the time, regardless of which three-variable combination is used. Le et
al. (2016a) �nd that the comparable FIML estimates are heavily biased in small samples. II estimation is, by
contrast, found to be almost unbiased, which is clearly a very useful property for those using DSGE models
in practice. The average bias of the II estimator based on moments as the auxiliary model is somewhat
higher at 3%, but is also more e¢ cient.
The II estimator is therefore not much a¤ected by varying the three di¤erent data descriptors in the

auxiliary model.
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2) Comparing the II estimation across variable choice

Next we compare the II estimates in small samples across di¤erent variable combinations. We use the same
sets of variable combinations as those in the II test experiment. We start the initial parameter values by
falsifying them by 10% on both directions (+/� alternatively). We then estimate each sample and report
the Mean and average bias. The results are reported in the Table 6.

Table 6: Bias of II estimates by using di¤erent variable combinations

Var Comb (y; pi; r) (c; i; l) (q; w; r)
3 Factors for
the 7 variables

II estimates II estimates II estimates II estimates
True Values Mean Std Bias Mean Std Bias Mean Std Bias Mean Std Bias
� 0.19 0.189 0.020 0.32% 0.188 0.021 1.2% 0.193 0.020 1.74% 0.194 0.023 1.89%
h 0.71 0.692 0.065 2.51% 0.711 0.073 0.2% 0.674 0.057 5.08% 0.692 0.081 2.55%
�p 0.22 0.221 0.023 0.45% 0.215 0.025 2.3% 0.223 0.024 1.40% 0.225 0.027 2.12%
�w 0.59 0.586 0.060 0.69% 0.571 0.068 3.2% 0.580 0.063 1.70% 0.583 0.072 1.21%
�p 0.65 0.664 0.068 2.08% 0.635 0.073 2.3% 0.666 0.069 2.53% 0.652 0.082 0.28%
�w 0.73 0.725 0.075 0.71% 0.727 0.082 0.4% 0.719 0.080 1.49% 0.732 0.088 0.25%
' 5.48 5.531 0.557 0.93% 5.385 0.613 1.7% 5.575 0.579 1.73% 5.554 0.676 1.35%
� 1.61 1.607 0.166 0.16% 1.595 0.141 0.9% 1.583 0.172 1.69% 1.600 0.199 0.59%
 0.54 0.540 0.057 0.00% 0.524 0.062 3.0% 0.553 0.057 2.36% 0.541 0.069 0.13%
r�y 0.22 0.222 0.023 1.05% 0.218 0.025 1.1% 0.217 0.024 1.49% 0.220 0.027 0.17%
� 0.81 0.787 0.047 2.80% 0.797 0.088 1.6% 0.816 0.065 0.74% 0.809 0.096 0.10%
r� 2.03 2.007 0.188 1.12% 2.015 0.234 0.7% 1.983 0.205 2.32% 2.014 0.246 0.80%
ry 0.08 0.079 0.009 1.25% 0.078 0.009 2.3% 0.080 0.009 0.10% 0.081 0.010 1.47%
�c 1.39 1.358 0.137 2.29% 1.370 0.156 1.4% 1.345 0.141 3.26% 1.370 0.168 1.46%
�l 1.92 1.930 0.208 0.54% 1.876 0.218 2.3% 1.957 0.204 1.93% 1.937 0.234 0.90%
Average 0.113 1.13% 0.123 1.70% 0.118 1.97% 0.140 1.02%
Notes: The true parameter values are from Smets and Wouters (2007), table 4. VAR coe¢ cients are used as data

descriptors, as in Le et al. (2011). Std denotes the standard deviation. Bias denotes the bias of II estimates.

The biases for individual coe¢ cients vary across the di¤erent variable combinations while the average
bias across all of the coe¢ cients is least using three principal components. Nevertheless the bias is very
small in absolute size across all four sets. Using three principal components the bias is similar to the variable
combination of output, in�ation and interest rates. This set is �central� in the sense that it summarises
the key dimensions of macro variability for real variables, nominal variables, and yields. Clearly, the three
principal components are summarising the e¤ects of these variables. With three factors there is a loss of
e¢ ciency, with the standard deviation rising by about a quarter. This could be due to the large rise (100%
or more) in the computational burden due to extracting the principal components.
Raising each group to four variables reduces the bias of the II estimators, as shown in Table 7; the

average bias is reduced to a range of 1:2 � 1:5%. Again this is consistent with the higher test power of
four variables. Raising the number of variables to seven reduces the bias further but e¢ ciency falls because
the standard deviation of the estimates rises. Again we think the loss of e¢ ciency may be due to the large
rise in computational burden on a PC and could be eliminated by using a large machine with many more
bootstraps. As with the three factor case we have not pursued this issue here, as plainly using 7 variables
would create greatly excessive power for the test.
To summarise, we �nd that the estimation biases of the II estimator based on VAR coe¢ cients and IRFs

are similar and very low (about 1.5%), while that based on moments is only slightly higher. The biases are
not much a¤ected by the choice of descriptor variable set. In particular, using the three main variables gives
very low small sample biases. There is generally a reduction in bias from including more variables in the
auxiliary model, as one would expect from the resulting increase in test power.
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Table 7: Bias of II estimates by using di¤erent variable combinations
Var Comb (y; pi; r; i) (c; i; l; r) (q; w; r; c) All 7 Variables

II estimates II estimates II estimates II estimates
True Values Mean Std Bias Mean Std Bias Mean Std Bias Mean Std Bias
� 0.19 0.196 0.019 3.32% 0.191 0.022 0.68% 0.195 0.021 1.45% 0.193 0.026 1.38%
h 0.71 0.690 0.058 2.86% 0.685 0.068 3.54% 0.682 0.063 2.02% 0.699 0.096 1.59%
�p 0.22 0.221 0.023 0.24% 0.222 0.025 1.05% 0.223 0.025 1.37% 0.220 0.031 0.16%
�w 0.59 0.582 0.063 1.32% 0.582 0.066 1.32% 0.577 0.063 2.26% 0.589 0.079 0.20%
�p 0.65 0.658 0.070 1.24% 0.657 0.074 1.06% 0.669 0.068 1.95% 0.659 0.085 1.34%
�w 0.73 0.721 0.076 1.21% 0.733 0.081 0.40% 0.723 0.081 1.00% 0.724 0.101 0.89%
' 5.48 5.565 0.590 1.54% 5.540 0.621 1.10% 5.568 0.613 1.60% 5.503 0.751 0.41%
� 1.61 1.577 0.166 2.08% 1.595 0.183 0.92% 1.596 0.176 0.87% 1.596 0.218 0.88%
 0.54 0.543 0.057 0.50% 0.550 0.060 1.76% 0.548 0.061 1.51% 0.544 0.071 0.70%
r�y 0.22 0.220 0.023 0.17% 0.226 0.023 2.64% 0.217 0.024 1.25% 0.219 0.030 0.34%
� 0.81 0.792 0.047 2.29% 0.780 0.054 3.67% 0.804 0.071 0.80% 0.812 0.108 0.19%
r� 2.03 2.028 0.199 0.08% 2.005 0.201 1.22% 2.004 0.210 1.28% 2.005 0.271 1.24%
ry 0.08 0.080 0.009 0.19% 0.082 0.009 2.00% 0.081 0.009 1.35% 0.081 0.011 1.17%
�c 1.39 1.387 0.137 0.19% 1.345 0.151 3.21% 1.357 0.148 2.35% 1.377 0.187 0.93%
�l 1.92 1.948 0.203 1.46% 1.938 0.215 0.94% 1.948 0.211 1.45% 1.967 0.260 2.45%
Average 0.116 1.24% 0.106 1.28% 0.123 1.50% 0.154 0.92%
Notes: The true parameter values are from Smets and Wouters (2007), table 4. VAR coe¢ cients are used as data

descriptors, as in Le et al. (2011). Std denotes the standard deviation. Bias denotes the bias of II estimates.

4 Evaluating the Smets and Wouters model in practice

In a �nal exercise we re-estimated the DSGE model of Le, Meenagh and Minford (2016b). This was originally
estimated on the �rst three-variable set. We have re-estimated it on investment, the real wage and the interest
rate and found a set of coe¢ cients that passed the II test with a p-value of 0:0639. The estimated parameters
di¤ered in absolute value on average by only 4:1%, and the policy results under di¤erent monetary policies
were almost identical. Table 8 shows that the stability of the di¤erent policies, as measured by the frequency
of crises, are very similar under both sets of coe¢ cients. This example con�rms our general �nding that the
choice of variable set has little e¤ect on the results of tests or estimation based on indirect inference.

Table 8: Stability under di¤erent monetary regimes
Monetary policy Base Case NGDPT

y; �; r inv; w; r y; �; r inv; w; r
Frequency of crisis per 1000 years 20:8 21:4 1:83 2:04
Note: Base case denotes Monetary Base rule (responds to credit premium). NGDPT denotes

Nominal GDP target (NGDPT) for in�ation.

5 Conclusions

We set out in this paper to answer a frequently asked question: does it make any di¤erence in Indirect
Inference which features of an auxiliary model and which set of variables are chosen to be the data descriptors
to be matched by the structural model under investigation? Based on Monte Carlo experiments with the
widely-used Smets and Wouters (2007) model of the US we �nd that the power of II tests rises dramatically
as the number of variables increases, making it very di¢ cult or impossible to �nd a tractable model capable
of passing the test. Whether basing II tests or estimation on the VAR coe¢ cients, the IRFs, or on moments
a small set of variables � typically three � or the same number of principal components, appears to be
su¢ cient to achieve high power and small biases.
Our results also show that there is hardly any di¤erence either in power or estimation bias between

di¤erent variable sets, including the three main factors driving the data. All three variable sets have such
similar properties that it seems unlikely users will notice much di¤erence in practice. This is con�rmed when
we perform a similar analysis on the version of the model examined in Le et al. (2016a).
As expected, when the number of variables included rises to four, all sets have greatly enhanced power

and much-reduced estimation bias; however, in practice, this power makes it unlikely that a tractable model
can be found to pass the test; using fewer may therefore be preferable.
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These �ndings appear to re�ect the general equilibrium character of a macroeconomy and structural
models of it. The solutions to these models show that the behaviour of the variables determined within
the system have strongly related dynamics which are driven by a common set of parameters and exogenous
shocks and their data behaviour will be driven by reduced forms that consist of similar numbers of di¤erent
nonlinear combinations of the structural parameters. If more of these are added to the test, the test is more
demanding with higher power and the estimation bias falls but the particular features of the data that are
commonly used to carry out the estimation and tests does not much matter.
The II test therefore seems to be e¤ective in producing tests with high power and estimates with low bias

even when based on highly selective information and small samples. This econometric technology appears
to open up wide possibilities for empirical macroeconomics, an area that is at present largely neglected.
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Appendix A: Deriving the Wald statistic

The following steps summarise our implementation of the Wald test by bootstrapping:
Step 1: Estimate the errors of the economic model conditional on the observed data and �0.
Estimate the structural errors "t of the DSGE macroeconomic model, xt(�0), given the stated values �0

and the observed data. The number of independent structural errors is taken to be less than or equal to
the number of endogenous variables. The errors are not assumed to be normally distributed. Where the
equations contain no expectations the errors can simply be backed out of the equation and the data. Where
there are expectations, estimation is required for the expectations; here we carry this out using the robust
instrumental variables methods of McCallum (1976) and Wickens (1982), with the lagged endogenous data
as instruments � thus e¤ectively we use the auxiliary model V AR. An alternative method for expectations
estimation is the �exact�method; here we use the model itself to project the expectations and because these
depend on the extracted residuals there is iteration between the two elements until convergence.
Step 2: Derive the simulated data
Under the null hypothesis the f"tgTt=1 are the structural errors. The simulated disturbances are drawn

from these errors. In some DSGE models, including the Smets-Wouters model, many of the structural
errors are assumed to be generated by autoregressive processes rather than being serially independent. If
they are, then under our method we need to estimate them. We derive the simulated data by drawing
the bootstrapped disturbances by time vector to preserve any simultaneity between them, and solving the
resulting model using Dynare (Juillard, 2001). To obtain the N bootstrapped simulations we repeat this,
drawing each sample independently.
Step 3: Compute the Wald statistic
We estimate the auxiliary model � a VAR(1) � using both the actual data and the N samples of

simulated data to obtain estimates aT and aS(�0) of the vector a. The distribution of aT � aS(�0) and its
covariance matrix W (�0)�1 are estimated by bootstrapping aS(�0). The bootstrapping proceeds by drawing
N bootstrap samples of the structural model, and estimating the auxiliary VAR on each, thus obtaining N
values of aS(�0); we obtain the covariance of the simulated variables directly from the bootstrap samples.
The resulting set of ak vectors (k = 1; ::::; N) represents the sampling variation implied by the structural
model from which estimates of its mean, covariance matrix and con�dence bounds may be calculated directly.
Thus, the estimate of W (�0) is

W (�0) =
1

N
�Nk=1(ak � ak)0(ak � ak) (9)

where ak = 1
N�

N
k=1ak. We then calculate the Wald statistic for the data sample; we estimate the bootstrap

distribution of the Wald from the N bootstrap samples. The Wald statistics are given by

WS = (aT � �as(�o))0W (as(�o))�1(aT � �as(�o)) (10)

We note that the auxiliary model used is a VAR(1) and is for a limited number of key variables. By
raising the lag order of the VAR and increasing the number of variables, the stringency of the overall test
of the model is increased. If we �nd that the structural model is already rejected by a VAR(1), we do not
proceed to a more stringent test based on a higher order VAR.
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Appendix B: The asymptotic distribution

Suppose the actual data consist in the observation of a stochastic process fytgTt=1 or fY 0; Xg. Then for each
given value of the parameters �0 in the structural model, it is possible to simulate data fyst gTt=1 or fY 0s; Xsg
conditional on the observed data and for given initial conditions. This is done by the bootstrap process
discussed in Appendix A.
To derive the asymptotic theory of indirect inference, we need the information and Hessian matrix from

observed and simulated data.These may di¤er, as shown in Dridi, Guay and Renault (2007). We must also
consider a second set of similar matrices associated with the simulator when the pseudo-true values of the
parameters are used for simulation. More precisely, we de�ne:

I�0 =
1

N

NX
s=1

E(Sst (Y
0s; Xs)Sst (Y

0s; Xs)0)

J�0 = � 1
N

NX
s=1

E(Hs
t (Y

0s; Xs))

K0 =
1

N

NX
s=1

E(St(Y
0; X)S�t (Y

0�; X�))

K�
0 =

1

N(N � 1)=2

NX
s 6=l

E(Sst (Y
0s; Xs)Slt(Y

0l; X l)) (11)

where St(:) is the score vector and Ht(:) is the Hessian matrix. The score vector and Hessian matrix from
observed and simulated data can be computed under a standard MLE framework. K�

0 is the covariance
matrix of the score vector from two independent simulators fY 0s; Xsg and (Y 0l; X l) for s 6= l.
Under the null hypothesis of full encompassing and some regularity conditions, Dridi, Guay and Renault

(2007) show that the distribution of the II estimator b� is asymptotic normal
p
T (b� � �0) v N(0;�(N;W ) (12)

with

�(N;W ) =

�
@0(�)

@(�0)
W (�0)

�1 @
0(�)

@(�0)

��1
: (13)

and an asymptotic weighting matrix

W (�0) = J�10 I0J
�1
0 +

1

N
J��10 I�0J

��1
0 +

�
1� 1

N

�
J��10 K�

0J
��1
0

�J�10 K0J
��1
0 � J��10 K 0

0J
��1
0 (14)

When the structural model is well speci�ed K0 = K�
0 and W (�0) reduces to

�
1 + 1

N

�
J�10 (I0 �K0)J

�1
0 .

Appendix C: The three data descriptors (source: Minford, Wickens

and Xu, 2016)

For simplicity, we use �rst order VAR, as an auxiliary model, to compare the three data descriptors,

yt = A1yt�1 + ut (15)

where ut is assumed to be NID(0; �). The MLE/OLS estimates of Â1 and �̂ are:

Â1 = (
TX
t=2

yt�1y
0
t�1)

�1
TX
t=2

yt�1yt
0

�̂ =

PT
t=2 ûtût

0

n� k =

PT
t=2 (yt�1 � Â1yt�1)(yt�1 � Â1yt�1)0

n� k (16)
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The error ut is related to the structural innovations of the DSGE model �t as ut=B�t , where �it is
uncorrelated with �jt for i 6= j. We assume B is known (and imposed from the model being tested) so that
we can identify the structural errors causing the impulses. The IRF to the shocks of the structural errors is
then:

IRF (h) =
dyt+h
du0t

= A1
(h�1)B; h = 0; 1; 2; ::: (17)

The average of IRF over M periods is de�ned as

IRFAve =
1

M + 1

MX
h=0

IRF (h) : (18)

The asymptotic second moments of the yt process can be derived as:

�y(h) = E(yt � �)(yt�h � �)
0

= lim
n!/

nX
i=0

nX
j=0

Ai1E(ut�iu
0
t�h�i)A

j
1
0

=
/X
i=0

Ah+i1 �Ai1
0

(19)

as E(utu
0

s) = 0 for s 6= t and E(utu
0

t) =� for t.
The covariance matrix can be obtained by setting h = 0,

�0 = E(yt � �)(yt � �)0

=

/X
i=0

Ai1�A
i
1

0
(20)

When one compares the IIW statistics, one �nds:

� With VAR coe¢ cients as the data descriptors, the II test/estimation uses the estimated VAR coe¢ -
cients, as given in eq (16).

� With IRF functions as the descriptors, the II test/estimation uses the estimated IRF functions, as
given in eq (17), which reveals that the IRF function is a nonlinear function of VAR coe¢ cients and
the error covariance matrix (which is identi�ed by the B matrix). If we considered the IRF over 4
years (16 periods) and took its average, then this average of IRF has 9 elements for a 3 variable VAR
(1) model. This equals the number of VAR coe¢ cients. So the test utilises a comparable number of
descriptors. We here take averages of IRFs for di¤erent shock/variable combinations.

� With the Simulated Moments (SM) as the data descriptors, the test uses the simulated moments of
the data. Consider the covariance matrix, and use its lower triangular elements. For a 3-variable VAR
model, we have 3(3+1)/2=6 elements to compare. The �rst order autocorrelation coe¢ cients are added
as additional moments. This brings the number of elements in the Wald statistic again to 9. From
the theoretical moments derived above, we know that the data covariance is a nonlinear combination
of VAR coe¢ cients and the error covariance matrix. Again the number of descriptors is comparable
with the number of VAR descriptors.

Appendix D: Parameter Descriptions
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Table 9: Variable Descriptions
Variable Name True Value Description
� 0.19 Income share of capital
h 0.71 External habit formation
�p 0.22 Degree of price indexation
�w 0.59 Degree of wage indexation
�p 0.65 Degree of price stickiness
�w 0.73 Degree of wage stickiness
' 5.48 Elasticity of the capital adjustment cost function
� 1.61 1+the share of �xed costs in production
 0.54 Elasticity of the capital utilization adjustment cost
r�y 0.22 Taylor rule coe¢ cient
� 0.81 Taylor rule coe¢ cient (interest rate smoothing)
r� 2.03 Taylor rule coe¢ cient
ry 0.08 Taylor rule coe¢ cient
�c 1.39 Elasticity of intertemporal substitution for labour
�l 1.92 Elasticity of labour supply to real wage
Note: The true parameter values are from Smets and Wouters (2007), table 4.
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