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Repeated Implementation with Overlapping
Generations of Agents

Helmuts Āzacis∗

December 15, 2017

Abstract

We study repeated implementation in a model with overlapping ge-
nerations of agents. It is assumed that the preferences of agents do not
change during their lifetime. A social choice function selects an alternative
in each period as a function of the preferences of agents who are alive in that
period. We show that any social choice function satisfying mild necessary
conditions is repeatedly implementable in subgame perfect equilibrium if
there are at least three agents and they live sufficiently long.

Keywords: Repeated Implementation, Subgame Perfect Implementa-
tion, Overlapping Generations, Necessary and Sufficient Conditions

JEL Classification Numbers: C72; C73; D71; D82

1 Introduction

Implementation theory studies what social choice rules (SCRs) can be imple-
mented in various solution concepts. These SCRs explicitly or implicitly capture
what the society considers desirable. Most of SCRs, however, are motivated
by static problems; for example, how to redistribute initial endowments in static
exchange economies. Consequently, the literature has also largely focused on one-
shot implementation even if the mechanisms that are used to implement SCRs
can themselves be dynamic.

However, if one considers issues like environmental protection or pension re-
form, it is natural to view them as dynamic problems that give rise to normative
considerations like intergenerational equity and to corresponding SCRs that do
not appear in static problems (see, for example, essays in Roemer and Suzu-
mura, 2007). Therefore, our objective is to have a setup that allows for different
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generations of agents and we study what SCRs or, more precisely, social choice
functions (SCFs) can be implemented in this setup.

Specifically, every period there are n agents alive. These agents have different
ages. Every T periods the oldest agent passes away and a new agent is born.
Thus, each agent lives for nT periods. It is assumed that the agent’s type,
which determines his preferences, does not change during his lifetime and the
preferences are additively separable over time. In each period, an SCF specifies
an alternative, which only depends on the types of agents who are alive in that
period. Because a social designer never observes agents’ types, she needs to design
a sequence of mechanisms, called a regime, that allows her to elicit information
about agents’ types and, at the same time, to select the desired alternative in
every period on the equilibrium path. If there exists such a regime, we say that
the SCF is repeatedly implementable. We assume complete information among
agents and use subgame perfect equilibrium (SPE) as our solution concept.

First, we derive two necessary conditions. They deal with two extreme cases.
In one case, all agents can get their best possible lifetime utility, given their true
preferences, while in the other, all agents must get their worst lifetime utility,
given the reported preferences. If the premises of either of these conditions apply,
we show that an SCF is repeatedly implementable only if it is a constant function.
Intuitively, at these extremes, either the agents do not have incentives to reveal
their true types because they already get the best, or they cannot be given such
incentives because they are supposed to get the worst.

Second, we construct a regime and show that the two necessary conditions are
also sufficient if there are at least three agents, n ≥ 3, and they live sufficiently
long, that is, T is sufficiently large. The regime borrows elements of the canoni-
cal mechanism that is used in one-shot subgame perfect implementation (Moore
and Repullo, 1988). The connection between repeated implementation that we
study and one-shot implementation in SPE is extensively discussed in Section
3, but intuitively the similarity between the two implementation problems arises
because we assume that the agent’s type does not change during his lifetime.
Clearly, the two implementation problems also differ: in the repeated implemen-
tation problem, an alternative is selected in every period, while in the one-shot
implementation problem, an alternative is selected only in the final period. Since
the alternatives selected in earlier periods cannot be undone, repeated imple-
mentation is more restrictive. However, the larger is T , the less these restrictions
matter. For this reason, we need a large T to establish the sufficiency result.

Repeated implementation has been studied by Kalai and Ledyard (1998);
Chambers (2004); Lee and Sabourian (2011); Mezzetti and Renou (2017); Āzacis
and Vida (2015). However, in all these papers, the same set of agents are alive in
all periods. Thus, these papers do not consider the implementation of SCFs that
can capture any intergenerational social choice considerations. Further, Kalai
and Ledyard (1998) and Chambers (2004) assume that the state of the world
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is drawn only once and is kept fixed for all periods,1 while Lee and Sabourian
(2011); Mezzetti and Renou (2017); Āzacis and Vida (2015) assume that a new
state is drawn in each period. Even though the state of the world is also changing
over time in our setup, the setup is nevertheless closer to that in the first two
papers because the type of agent is kept fixed throughout his lifetime.

The distinction between our setup and that in the latter three papers can
also be explained from another angle. Salant (1991); Kandori (1992); Smith
(1992) derive folk theorems for repeated games played by overlapping genera-
tions of players. The main message of these papers is that if the players are
sufficiently long-lived, then the set of equilibrium payoffs is the same as in the
repeated games with infinitely-lived players and discounting when the discount
factor is sufficiently high. On the other hand, Lee and Sabourian (2011) show
that if infinitely-lived agents are sufficiently patient, then only efficient SCFs are
repeatedly implementable. Therefore, one might also expect that only efficient
SCFs are repeatedly implementable in our setup when T is large. However, this
is not the case because unlike Lee and Sabourian (2011), a new state is not drawn
in every period in our setup.

Finally, as mentioned above, our setup shares commonalities with one-shot
subgame perfect implementation that has been studied by Moore and Repullo
(1988); Abreu and Sen (1990); Vartiainen (2007). We explain the connection in
detail in Section 3.

The rest of the paper is organized as follows. Section 2 contains the descrip-
tion of the problem studied. Section 3 compares repeated implementation that
we study with one-shot subgame perfect implementation that has already been
studied in the literature. Section 4 derives the necessary conditions, while Section
5 proves also the sufficiency of these conditions for large T . Section 6 contains the
discussion of several extensions to the model. Some of the proofs are relegated
to the Appendix.

2 The Model

We consider a setup with overlapping generations of agents. Each generation
consists of a single agent. Each agent lives for exactly nT periods where n and
T are two positive integers. Let Z be the set of integers equal or greater than
−n + 1. The agent of generation z ∈ Z, or agent z for short, is born at the
beginning of period zT and dies at the end of period (z + n)T − 1. Hence, there
are exactly n agents alive at any moment.

Let A be a set of feasible alternatives that does not change over time. Let
Θ be a finite set of possible agent’s types, and it is the same for all generations.

1Hayashi and Lombardi (2016) also study implementation in a dynamic setup with persis-
tent states, but in any given period, the socially desirable alternative depends not only on the
state, but also on the history of alternatives that have been selected in the previous periods.
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We assume that the types are drawn independently and identically across the
generations according to the probability distribution p such that p(θ) > 0 for
each θ ∈ Θ. Agent’s type does not change over his lifetime and we will write θz to
denote the type of agent z. The payoff of agent z in period t = zT, . . . , (z+n)T−1
is u(at, θz) if alternative at ∈ A is implemented in that period,2 and his lifetime
payoff is simply

(z+n)T−1∑
t=zT

u(at, θz).

Throughout, we make the following assumptions about u. First, we assume that
the agents have strict preferences over the alternatives in every state of the world:

Assumption A1 u(a, θ) ̸= u(b, θ) for all a, b ∈ A such that a ̸= b, and for all
θ ∈ Θ.

Second, we assume that the change in the state leads to the change in the ordinal
preferences:

Assumption A2 For every θ, ϕ ∈ Θ such that θ ̸= ϕ there exists a pair a, b ∈ A
such that u(a, θ) > u(b, θ) and u(a, ϕ) < u(b, ϕ).

Later it will be convenient to write the pair (a, b) as (a(θ, ϕ), b(θ, ϕ)) with the
convention that the first alternative is more desirable in state θ and the second
alternative is more desirable in state ϕ. We will discuss in Section 6 how these
assumptions can be relaxed.

We consider the implementation of socially desirable alternatives from pe-
riod 0 onwards. In period t, a social choice function f assigns an alternative
in A as a function of types of all agents that are alive in that period, that
is, f(θz−n+1, . . . , θz) ∈ A where z = ⌊t/T ⌋ is the quotient (the integer part)
when dividing t by T . Note that the first argument of f denotes the type of
the oldest agent who is alive in that period; the second argument denotes the
type of the second oldest agent who is alive and so on. f does not need to
be symmetric in its arguments. That is, the socially desirable alternative can
change if we exchange the types of old and young generations. Note, however,
that f is time independent. That is, f(θz−n+1, . . . , θz) = f(θk−n+1, . . . , θk) if
(θz−n+1, . . . , θz) = (θk−n+1, . . . , θk) for any z and k. In particular, the socially
desirable alternative remains the same during periods zT to (z+1)T − 1 for any
z.3

In principle, the socially desirable alternative of the current period could be
allowed to depend on the entire history of the realized types up to and including

2At the cost of additional notation, we could allow u also to depend on the agent’s identity,
that is, to depend on z.

3From now on, zT should be understood as max{zT, 0}.
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that period. Therefore, the assumed specification of f can be thought as corre-
sponding to the steady state. To illustrate it, consider the following example.4

Example: Let n = 2 and consider an exchange economy with two perishable
goods X and Y that cannot be carried from one period to the next. The aggre-
gate endowment is

(
wX , wY

)
in every period. The set of feasible allocations is

A =
{((

wX − x,wY − y
)
, (x, y)

)
|0 < x < wX , 0 < y < wY

}
, where (x, y) is the

consumption bundle of the younger of two agents who are alive in that period.
Let Θ = {θ, θ′} with p (θ) = 1

2
. The per-period utility function is

u (x, y, ϕ) = log (x) + ϕ log (y)

for all ϕ ∈ Θ. A sequence of allocations (which are expressed in terms of the
consumption bundle of the younger agent) is stationary if the period t allocation
only depends on that period’s state of the world. We write stationary allocations
as (x (ϕ, ψ) , y (ϕ, ψ)) for all (ϕ, ψ) ∈ Θ2 with the convention that the first and
second arguments refer to the types of the older and younger agents, respectively.
The following maximization problem gives stationary Pareto optimal allocations
(with equal weights attached to each state):

max
{x(ϕ,ψ),y(ϕ,ψ)|(ϕ,ψ)∈Θ2}

∑
ϕ∈Θ

∑
ψ∈Θ

[
u (x (ϕ, ψ) , y (ϕ, ψ) , ψ)

+
1

2

∑
η∈Θ

u
(
wX − x (ψ, η) , wY − y (ψ, η) , ψ

) ]
The first order condition w.r.t. x (ϕ, ψ) is

1

x (ϕ, ψ)
− 1

wX − x (ϕ, ψ)
= 0,

implying x (ϕ, ψ) = 1
2
wX for all (ϕ, ψ) ∈ Θ2. The first order condition w.r.t.

y (ϕ, ψ) is
ψ

y (ϕ, ψ)
− ϕ

wY − y (ϕ, ψ)
= 0,

implying y (ϕ, ψ) = ψ
ϕ+ψ

wY for all (ϕ, ψ) ∈ Θ2. Given these allocations, we can
define a social choice function

f (ϕ, ψ) =

(
1

2
wX ,

ψ

ϕ+ ψ
wY

)
for all (ϕ, ψ) ∈ Θ2 that selects a stationary Pareto optimal allocation in every
period and state.

4The example does not satisfy Assumption A1. We will comment on this in Section 6.
Also, strictly speaking, A in the example changes over time since agents who are dead or who
are not yet born, cannot receive positive consumption bundles. We can fix it by assuming free
disposal.
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A mechanism consists of messages that the agents can announce and an out-
come function that selects a feasible alternative as a function of these messages.
Let the message space of every agent in every period be M . It is without loss
of generality, since we can always choose M to be sufficiently large. Hence, we
can associate every mechanism with its outcome function. We restrict attention
to deterministic mechanisms in which the agents announce their messages simul-
taneously. Let G be the set of all feasible mechanisms or, equivalently, outcome
functions with a typical element g. Thus, given g ∈ G and m ∈ Mn, alternative
a = g(m) ∈ A is implemented.

We assume that all agents that are alive in period t observe the entire history
(to be defined below) up to period t, including the types of their opponents. That
is, we are in a complete and perfect information environment. We also assume
that the types of those agents who were born before period 0 are also known to
a social designer. We will again relax these assumptions in Section 6.

A history of types at the start of period t ≥ 0 is ζt = (θ−n+1, . . . , θ0, . . . , θ⌊t/T ⌋),
while a history of messages at the start of period t > 0 is µt = (m0, . . . ,mt−1)
where mt = (mt

⌊t/T ⌋−n+1, . . . ,m
t
⌊t/T ⌋) is a profile of period t messages with mt

z

being the message of agent z. A history is ht = (ζt, µt) for t > 0 and h0 = ζ0.
Let Ht denote the space of all period t histories. We assume that the agents
who are alive in period t, can distinguish between any two period t histories.
In particular, it means that the agents learn at the start of each period what
messages were announced in the previous period. On the other hand, the designer
cannot distinguish between any two period t histories ht = (ζt, µt) and h′t =
(ζ ′t, µ

′
t) if µt = µ′

t, and ζt and ζ
′
t share the same first n−1 elements θ−n+1, . . . , θ−1.

A regime, r describes which mechanism is selected after each possible history:
g = r(ht) ∈ G subject to the restriction that r(ht) = r(h′t) if the designer can-
not distinguish between histories ht and h′t. Note that we restrict attention to
deterministic regimes. Because of that and also because the mechanisms are de-
terministic, it is fine to omit from the description of history ht which mechanisms
and alternatives have been selected in periods 0, . . . , t − 1. We assume that the
designer commits to a regime at the start of period 0 and that the agents know
what regime the designer employs.

A pure strategy of agent z, sz maps histories into messages: sz(ht) ∈ M for
all t = zT, . . . , (z + n)T − 1 and ht ∈ Ht. Let Sz be the space of agent z’s
strategies. Let s be a profile of strategies, one strategy for each z ∈ Z. Also, let
s(ht) = (s⌊t/T ⌋−n+1(ht), . . . , s⌊t/T ⌋(ht)). Given ht and s, let q(ht|ht, s) = 1 and for
any τ > t, let

q(hτ |ht, s) =


q(hτ−1|ht, s) if τ/T ̸∈ Z, ζτ = ζτ−1, µτ = (µτ−1, s (hτ−1)) ,
q(hτ−1|ht, s)p (θ) if τ/T ∈ Z, ζτ = (ζτ−1, θ) , µτ = (µτ−1, s (hτ−1)) ,
0 otherwise.

For any z ∈ Z, any t = zT, . . . , (z+n)T −1, and any ht, the (expected) payoff

6



of agent z for the rest of his life is

vz(s|ht, r) =
(z+n)T−1∑

τ=t

∑
hτ∈Hτ

q(hτ |ht, s)u(g(s(hτ )), θz),

where θz is the z + n-th element of ζt (since the first element of ζt is θ−n+1) and
g = r(hτ ) in g(s(hτ )).

5

A strategy profile s is a subgame perfect equilibrium (SPE) of r if for all z ∈ Z,
all t = zT, . . . , (z+n)T−1, all ht ∈ Ht, and all s′z ∈ Sz, it is true that vz(s|ht, r) ≥
vz((s

′
z, s−z)|ht, r). A regime r repeatedly implements f in SPE if the set of SPE is

non-empty and for each SPE s, we have that g(s(ht)) = f(θ⌊t/T ⌋−n+1, . . . , θ⌊t/T ⌋)
for all t and ht such that q(ht|h0, s) > 0, where (θ⌊t/T ⌋−n+1, . . . , θ⌊t/T ⌋) are the
last n elements of ζt. f is repeatedly implementable in SPE if there exists r that
repeatedly implements it in SPE.

3 Comparison with One-shot Subgame Perfect

Implementation

Our model shares similar features with one-shot subgame perfect implementation
that has been studied by Moore and Repullo (1988); Abreu and Sen (1990);
Vartiainen (2007). Therefore, we will now briefly sketch the problem of one-shot
implementation in SPE (which we adapt to make comparable to our model) and
then explain how it relates to the problem we study.

Thus, let the set of agents be N = {1, . . . , n}, the set of states be Θn with a

typical element θ⃗ = (θ1, . . . , θn), and the set of alternatives be A. The objective

of the designer is to implement alternative f(θ⃗) ∈ A when the state is θ⃗. To do
that, the designer employs a multi-stage mechanism.

Abreu and Sen (1990) show in their Theorem 1 that if f is one-shot imple-
mentable in SPE, then it satisfies the following Condition C1 with respect to
some B ⊆ A.

Condition C1 For all (θ⃗, ϕ⃗) ∈ Θn × Θn such that f(θ⃗) ̸= f(ϕ⃗), there ex-
ist a sequence of agents z(1), . . . , z(K) ∈ N and a sequence of alternatives

a1, . . . , aK+1 ∈ B with a1 = f(θ⃗) such that

1. u(ak, θz(k)) > u(ak+1, θz(k)) for k = 1, . . . , K,

2. u(aK , ϕz(K)) < u(aK+1, ϕz(K)),

3. ak ̸= argmaxa∈B u(a, θz(k)) for k = 1, . . . , K.

5Note that g(mt) need not coincide with g(mτ ) even ifmt = mτ since the outcome functions
can differ in periods t and τ .
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Vartiainen (2007) shows in his Theorem 4 that Condition C1 together with
unanimity are necessary and sufficient for subgame perfect implementation when
n ≥ 3 and the preferences are strict. The unanimity condition requires that if for
some θ⃗ ∈ Θn, there exists b ∈ B such that b = argmaxa∈B u(a, θz) for all z ∈ N ,

then f(θ⃗) = b.
Condition C1 requires the existence of agent z(K) who has a preference rever-

sal between aK and aK+1 when the state changes from θ⃗ to ϕ⃗. This is ensured by
Assumption A2. Further, alternatives f(θ⃗) and aK are connected in a particular
way. One can think about this connection as follows. Suppose that at stage 1,
agents announce that the state is θ⃗. Now, in stage k, agent z(k) has a choice

either to agree that the state is θ⃗ and alternative ak is implemented, or to claim
that the state is ϕ⃗, in which case we proceed to stage k+ 1 where agent z(k+ 1)

gets to choose. If the true state is θ⃗ but agent z(k) claims that it is ϕ⃗, then in

equilibrium, he expects alternative ak+1. Since he prefers ak to ak+1 in state θ⃗
according to C1.1, he will not want to falsely claim the state to be ϕ. Since it
is true for all k, alternative a1 = f(θ⃗) is implemented as desired. If, however,

the true state is ϕ⃗ and agent z(k) claims it to be ϕ⃗, then he will get his best
alternative in B rather than ak+1 in stage k + 1. Therefore, unless ak is already
his best alternative, agent z(k) has incentives to announce the true state. C1.3
ensures that the agent has this incentive. This eliminates an equilibrium in which
agents claim that the state is θ⃗, when it is ϕ⃗.

Suppose that the set of alternatives is A = AT with a typical element a⃗ =
(a1, . . . , aT ) and the utility function is additively separable, u(⃗a, θ) =

∑T
t=1 u(at, θ).

The major difference between the repeated implementation studied here and the
one-shot implementation is that in the former case, alternative a1 is implemented
in period 1, alternative a2 in period 2, and so on, while in the latter case, all the
alternatives in a⃗ are implemented at the end once all the communication is done.
The sequential nature of repeated implementation imposes further restrictions
beyond those specified in Condition C1. For example, under repeated implemen-
tation, it must be that a⃗k and a⃗k+1 share the first k − 1 elements.6 Also, agent
z(k) may not anymore be able to obtain his best profile of alternatives in B when
challenging a lie. For example, agent z(1) is only guaranteed to get his best in
{(a1, . . . , aT ) ∈ B|a1 = â1} where â1 is the alternative that is implemented in pe-
riod 1. We avoid these complications by assuming that T is large. With large T ,
alternatives that are implemented in the initial K periods while the state of the
world is being elicited, have negligible impact on agent’s lifetime utility. There-
fore, one can think that the communication by the agents with the mechanism is
effectively over before any implementation of alternatives takes places, which is
exactly what happens in the one-shot implementation.

Even more, when T is large, not only there are no further necessary conditions

6The sequence a⃗1, . . . , a⃗K+1 would look as follows: a⃗1 = (a1, a2, a3, . . . , aT ), a⃗2 =
(b1, b2, b3, . . . , bT ), a⃗3 = (b1, c2, c3, . . . , cT ), a⃗4 = (b1, c2, d3, . . . , dT ) and so on.
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beyond those that arise under one-shot implementation in SPE, but even these
latter conditions can be sharpened further. First, one can set K = 2 in Condition
C1. Suppose when the state changes from θ⃗ to ϕ⃗, the type of, say, agent 1 changes,
that is, θ1 ̸= ϕ1. Then, because of Assumption A2, C1.2 is satisfied if we set
z(2) = 1. Second, we can choose as z(1) any agent for whom a⃗1 = f(θ⃗) does
not result either in his lowest or highest possible lifetime utility. If a⃗1 gives the
lowest possible lifetime utility to agent z(1), then we cannot find a⃗2 that gives
even lower utility than a⃗1, that is, C1.1 is violated. In turn, if a⃗1 gives the highest
possible lifetime utility to agent z(1), then C1.3 is violated.7 Third, as mentioned
before, Vartiainen (2007) shows that the unanimity condition is also necessary
for subgame perfect implementation. If all agents agree that b ∈ B is the best
profile of alternatives and b belongs to the range of f , then this case is already
covered by C1.3. If b does not belong to the range of f , then we can exploit
the fact that the agents are born and pass away in different periods in order to
modify B so that there is no agreement anymore between the agents on what is
best (even if all agents have identical preferences). In either case, we can ignore
the unanimity condition.

Thus, the only necessary conditions for repeated implementation of f in SPE
are the ones that correspond to a situation where either f(θ⃗) gives the worst
possible utility to every agent or it gives the best possible utility to every agent
in state θ⃗. These conditions will be derived in the next section where we will also
take into account the overlapping pattern of agents’ lifes.

4 The Necessary Conditions

Now we return back to our original setup. Let f(Θ) = {a ∈ A|∃(θ1, . . . , θn) ∈
Θn s.t. f(θ1, . . . , θn) = a} denote the range of f . Let a(θ) = argmaxa∈A u(a, θ)
and a(θ) = argmina∈A u(a, θ), which are assumed to exist.8 Let Z+ be the set of
non-negative integers.

Condition C2 If there exist a ∈ A and an infinite sequence of types θ0, θ1, . . .
such that

1. a(θ) = a for all θ ∈ Θ, and

2. f(θz, . . . , θz+n−1) = a for all z ∈ Z+,

then f(θ1, . . . , θn) = a for all (θ1, . . . , θn) ∈ Θn, that is, f is constant.

7Therefore, in general, z(1) ̸= z(2) and one cannot set K = 1, that is, Maskin monotonicity
of f is not guaranteed.

8If, say, the maximum did not exist for some θ, then there must be a ∈ A\f(Θ) such that
u(a, θ) > u(b, θ) for all b ∈ f(Θ). Then, let a(θ) = a. a(θ) can be defined similarly. This will
not affect the necessary conditions as their premises only apply when either a(θ) ∈ f(Θ) or
a(θ) ∈ f(Θ).
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The first premise of Condition C2 says that all types agree on the best alternative,
while the second premise ensures that a can be selected by f in every period. In
particular, there exists an infinite sequence of types such that if one evaluates
the social choice function for any n adjacent types in this sequence, the selected
alternative according to f will be a. Further, the statement of the second premise
can be strengthened by noting that this infinite sequence of types consists of
repetitions of the same finite sequence. This follows from the fact that Θ is finite
and f only depends on the types of n consecutive generations. Hence, there must
exist k and z in Z+ such that (θk, . . . , θk+n−1) = (θz, . . . , θz+n−1). But then we
can construct another sequence that consists of repetitions of θk, . . . , θz−1.

We claim that if the above two premises hold, then there exists an equilibrium
in which a is selected in every period irrespective of the realized types. Hence, if
f is repeatedly implementable, then it must be a constant function that selects
a for all possible realizations of types. The intuition is simple: a is the best
alternative for all types and they can ensure that it is selected in every period by
pretending to have types as defined by the sequence θ0, θ1, . . .. Clearly, no agent
will have incentives to deviate. Therefore, there exists an equilibrium in which a
is implemented in every period. Thus, f must be constant. Formally,

Proposition 1 If f is repeatedly implementable in SPE, then Condition C2 must
hold.

The proof of Proposition 1 appears in the Appendix.

Condition C3 If there exists θ ∈ Θ such that f(θ, θ2, . . . , θn) = a(θ) for all
(θ2, . . . , θn) ∈ Θn−1, then f(θ1, . . . , θn) = a(θ) for all (θ1, . . . , θn) ∈ Θn, that is, f
is constant.

Note that if Condition C3 also holds for θ′ ̸= θ, then it must be that a(θ′) =
a(θ) since f is assumed to be a function. More importantly, if the premise of
Condition C3 is not true for type θ, then this type never expects his lowest
possible lifetime payoff of nTu(a(θ), θ) when f is implemented.

We claim that if the premise of Condition C3 holds, then there exists an
equilibrium in which a(θ) is selected in every period irrespective of the realized
types. That is, there is an equilibrium in which every agent is claimed to be
of type θ. Hence, if f is repeatedly implementable, then it must be a constant
function that selects a(θ) for all possible realizations of types. If in the case of
Condition C2, no type wanted to deviate because he received his best alternative
in every period, now no type can deviate because he must receive the worst
alternative of type θ in every period. Formally,

Proposition 2 If f is repeatedly implementable in SPE, then Condition C3 must
hold.

The proof of Proposition 2 is again in the Appendix.
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5 The Sufficient Conditions

Our main result is that Conditions C2 and C3 are not only necessary but also
sufficient if there are at least three agents alive at any moment and they live
sufficiently long.

Theorem 1 Suppose f satisfies Conditions C2 and C3 and n ≥ 3. Then, there
exists T ∗ such that for all T ≥ T ∗, f is repeatedly implementable in SPE.

We will define a regime that implements f in SPE for sufficiently large T .
(In particular, the description of the regime assumes that T ≥ 2.) Although the
definition of the regime is rather involved, it shares similarities with the canonical
mechanism of Moore and Repullo (1988) that is used for one-shot subgame perfect
implementation. (See, for example, Appendix B in Abreu and Sen (1990) for its
description.) Before we describe it formally, we give some intuition. The regime
has five parts. Part I applies as long as agents send unanimous messages. This
part is used to elicit the type of the newly-born agent, say, agent z in period
zT . Although in the equilibrium, the type of agent z − 1 is elicited in period
(n− 1)T , we must give the opportunity to the agents to “confess” in period zT
that they have lied about his type. This is done in part II. If we omitted this
part, we would have subgames that do not have any Nash equilibrium. Thus,
the role of part II is to ensure that the extensive game, which is induced by the
regime, has a Nash equilibrium in every subgame. Part III gives incentives to
agent z to deviate if the other agents unanimously lie about his type in period
zT . Similarly, part IV gives incentives to agent z to deviate if the other agents
lie about the type of agent z − 1. In all other cases, part V applies, which is the
so-called integer game.

We exploit the fact that the periods, in which different agents live, do not
coincide and design parts III-V in such a way so as to ensure that the agents
disagree about the most preferred sequence of alternatives that is obtainable and
always have incentives to deviate. Therefore, parts III-V are not played on the
equilibrium path. Part II is also not played on the equilibrium path because agent
z − 1 prefers to deviate in period (z − 1)T rather than to confess in period zT .
Thus, only part I is played on the equilibrium path in which the agents truthfully
report the type of the newly-born agent.

Let M = Θ × Θ × Z+. We fix two distinct, arbitrary alternatives c, d ∈ A.
Given any t, let z = ⌊t/T ⌋ be the youngest agent who is alive in period t. Also,
let Nt = {z−n+1, . . . , z} denote the set of agents who are alive in period t. Let
θ−n+1, . . . , θ−1 be given.

The regime r is defined as follows. We start in period t = 0 and apply the
following algorithm:

I. If there is θ ∈ Θ s.t. mt
k = (θz−1, θ, ·) for at least n − 1 agents k ∈ Nt in-

cluding agent z, then set θz = θ and let g(mt) = g(mτ ) = f(θz−n+1, . . . , θz)
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for all τ = t+ 1, . . . , t+ T − 1 and all mτ . (Thus, the messages in periods
τ = t + 1, . . . , t + T − 1 play no role.) Once period t = (z + 1)T arrives,
we go back to the beginning of the algorithm and start it over again for
t = (z + 1)T .

II. If there is (η, θ) ∈ Θ\{θz−1} ×Θ s.t. mt
k = (η, θ, ·) for at least n− 1 agents

k ∈ Nt including agent z, then g(mt) = g(mt+2j+2) = c and g(mt+2j+1) = d
for all j ∈ Z+ and all mt+j+1.

III. If there is (η, θ) ∈ Θ2 such that mt
k = (η, θ, ·) for all k ∈ Nt\{z} and

mt
z = (·, ϕ, ·) where ϕ ̸= θ, then g(mt) = a(θ, ϕ) and we proceed to period

t+ 1 where9

(a) Ifmt+1
k = (·, ·, 0) for at least n−1 agents k ∈ Nt, then g(m

t+1) = b(θ, ϕ)
and g(mτ ) = a(ϕ) for all τ > t+1 and all mτ where ϕ and θ are given
by mt.

(b) If mt+1
k = (·, ·, 1) for at least n − 1 agents k ∈ Nt, including agent z,

then g(mt+1) = g(mt+2) = a(θ, ϕ) and g(mτ ) = a(θ) for all τ > t + 2
and all mτ .

(c) If mt+1
k = (·, ·, 1) for all k ∈ Nt\{z} while mt+1

z = (·, ·, l) where l ̸= 1,
then g(mt+1) = b(θ, ϕ), g(mt+2) = a(θ, ϕ), and g(mτ ) = a(θ) for all
τ > t+ 2 and all mτ .

(d) For all other messages, let k∗ be the agent who has announced the
highest integer and suppose mt+1

k∗ = (ψ, ·, l). (Ties are always broken
in favour of the agent with the highest index.) Then, g(mt+1) = b(θ, ϕ)
and g(mτ ) = a(ψ) for all τ > t+ 1 and all mτ .

IV. If there is (η, ϕ) ∈ Θ2 such that mt
k = (η, ϕ, ·) for all k ∈ Nt\{z} and

mt
z = (θ, ϕ, ·) where θ ̸= η, then g(mt) = a(ϕ, θ) and we proceed to period

t+ 1 where

(a) Ifmt+1
k = (·, ·, 0) for at least n−1 agents k ∈ Nt, then g(m

t+1) = b(ϕ, θ)
and g(mτ ) = a(ϕ) for all τ > t+ 1 and all mτ .

(b) If mt+1
k = (·, ·, 1) for at least n−1 agents k ∈ Nt, including agent z−1,

then g(mt+1) = a(η, θ) and g(mτ ) = a(ϕ) for all τ > t+ 1 and all mτ .

(c) If mt+1
k = (·, ·, 1) for all k ∈ Nt\{z − 1} while mt+1

z−1 = (·, ·, l) where
l ̸= 1, then g(mt+1) = b(η, θ) and g(mτ ) = a(ϕ) for all τ > t + 1 and
all mτ .

(d) For all other messages, let k∗ be the agent who has announced the
highest integer and suppose mt+1

k∗ = (ψ, ·, l). Then, g(mt+1) = b(ϕ, θ)
and g(mτ ) = a(ψ) for all τ > t+ 1 and all mτ .

9Recall our convention that type θ agent prefers a(θ, ϕ) to b(θ, ϕ), while type ϕ agent prefers
b(θ, ϕ) to a(θ, ϕ).
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V. For all other messages, let k∗ be the agent who has announced the highest
integer and suppose mt

k∗ = (θ, ·, l). Then,

(a) If k∗ = z, then g(mt) = c, g(mt+1) = d, and g(mτ ) = a(θ) for all
τ > t+ 1 and all mτ .

(b) If k∗ ̸= z, then g(mt) = g(mτ ) = a(θ) for all τ = t + 1, . . . , t + T − 1
and all mτ , g(mt+T+2j) = c and g(mt+T+2j+1) = d for all j ∈ Z+ and
all mt+T+j.

If the messages fall under part I in period zT , we will say that they are
unanimous. Thus, note that if the messages are unanimous in period zT , then
they must also have been unanimous in periods kT for all 0 ≤ k < z. We will
say that the unanimous messages are truthful if the agents report the true types
of agents z − 1 and z.

Any constant f is trivially implementable. Therefore, we assume that f is not
constant. But then, the necessary conditions will only be satisfied if their premises
are empty. In particular, it means that for every θ1 ∈ Θ there exists (θ2, . . . , θn) ∈
Θn−1 such that f(θ1, θ2, . . . , θn) ̸= a(θ1). Therefore, if f is implemented, no type
expects his lowest possible lifetime payoff when he is born.

We first construct equilibrium strategies that implement f in SPE when T is
sufficiently large. We only specify what the strategies prescribe agents to do on
the equilibrium path and after unilateral deviations. (At the end of the proof,
we argue that there is a Nash equilibrium in every subgame.) Let θk denote
the true type of agent k for all k ∈ Z. Let in period t = 0, m0

k = (θ−1, θ0, 0)
for all k ∈ N0. For any t > 0, let z = ⌊(t − 1)/T ⌋ now denote the youngest
agent that was alive in the previous period, and mt

k = (θ⌊t/T ⌋−1, θ⌊t/T ⌋, 0) for all
k ∈ N⌊t/T ⌋ if m

zT
k = (θz−1, θz, 0) for at least n− 1 agents k ∈ NzT including agent

z; otherwise, mt
k = (·, ·, 1) for all k ∈ N⌊t/T ⌋. That is, the strategies require every

period to announce the true types of two youngest agents who are alive in that
period and integer 0 as long as the last time when a new agent was born, at least
n− 1 agents including the newborn did exactly this; otherwise, keep announcing
integer 1 forever. If they follow these strategies, f is clearly implemented in every
period. Agent z ∈ Z can unilaterally change the outcome only if he deviates in
period zT . (Hence, agents −n+1, . . . ,−1 cannot unilaterally change the outcome
at all.) The deviation will trigger either part IIIb, IIIc, or IVb. Since type θ (we
now drop the subscript z) prefers a(θ, ϕ) to b(θ, ϕ) for any ϕ ̸= θ, agent z strictly
prefers the outcome in IIIb to that in IIIc. It remains to check that the deviation
to either IIIb or IVb is not profitable, and that the defined strategies form Nash
equilibria in the subgames corresponding to IIIb and IVb.

We argued before that type θ does not expect his lowest possible lifetime
payoff if f is implemented. Let b(θ) = argmaxa∈f(Θ)\{a(θ)} u(a, θ) and b(θ) =
argmina∈f(Θ)\{a(θ)} u(a, θ) denote the best and worst alternatives for type θ in
the range of f , which are different from a(θ) and a(θ), respectively. Also, let
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π = minθ∈Θ p(θ). We can lower-bound the lifetime payoff of type θ, when f
is implemented, by nTu(a(θ), θ) + πT (u(b(θ), θ) − u(a(θ), θ)). (Note that the
same alternative is selected during periods kT . . . , (k+1)T − 1 if the agents send
unanimous messages in period kT .) On the other hand, the payoffs of agent z
from parts IIIb and IVb can be upper-bounded by (nT−3)u(a(θ), θ)+3u(a(θ), θ).
Thus, agent z will not want to trigger either IIIb or IVb if this payoff is less than
the lower bound on his lifetime payoff when f is implemented, which implies:

πT (u(b(θ), θ)− u(a(θ), θ)) ≥ 3(u(a(θ), θ)− u(a(θ), θ)). (1)

(1) will be satisfied if T is sufficiently large.
Also, it is easy to verify that the defined strategies form Nash equilibria in the

subgames corresponding to IIIb and IVb. Only agent z can unilaterally deviate
from IIIb and trigger IIIc, but we have already argued that it is not profitable.
Similarly, only agent z−1 can unilaterally deviate from IVb and trigger IVc, but
again it is not profitable because he strictly prefers a(θz−1, ϕ) to b(θz−1, ϕ) for any
ϕ ̸= θz−1. This completes the proof that the constructed strategies indeed form
an SPE if T satisfies (1) for all θ.

In the remainder of the proof, we will argue that there do not exist undesirable
equilibria. Thus, suppose we are in period t = zT for some z ∈ Z+ and suppose
that up to that period, agents had been sending unanimous messages in periods
0, T, 2T, . . . (z − 1)T , that is, part I of the regime has applied so far. Suppose,
however, the messages of period t fall under part V. These messages cannot be
part of SPE: even if all agents in Nt had the same type θ, there is a disagreement
between agents z and z − n + 1 because of the overlapping nature of their life
spans. Agent z strictly prefers the sequence given in Va, while agent z − n + 1
strictly prefers the sequence given in Vb. Hence, each of them will want to win
the integer game in part V.

Likewise, period t = zT messages cannot fall under part III in any SPE. If this
part is triggered, agent z − n + 1 does not get his highest possible continuation
payoff because a(θ, ϕ) ̸= b(θ, ϕ) and a(θ, ϕ) ̸= a(θ) (the latter is true because type
θ strictly prefers a(θ, ϕ) to b(θ, ϕ)). On the other hand, if this agent deviates and
triggers part V, he can get his highest possible continuation payoff. Hence, such
a deviation is profitable. A similar argument implies that part IV cannot be
triggered in any SPE. Later we will also rule out equilibria in which part II is
played on the equilibrium path, but now we study equilibria, in which the agents
are sending unanimous messages in periods t = zT for all z ∈ Z+.

We first prove the following lemma:

Lemma 1 Suppose there exists an equilibrium in unanimous but untruthful mes-
sages. Then, there always exists an agent, say, agent z and type of this agent,
say, ϕ such that he expects less than his maximal lifetime payoff of nTu(a(ϕ), ϕ)
and either the agents have sent untruthful messages about his type or the type of
agent z − 1.
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Proof of Lemma 1: Consider an equilibrium in unanimous but untruthful
messages.

Because the premises of Condition C2 are empty, either there is no a ∈ A
that is the best alternative for all types, or there is no sequence of types θ0, θ1, . . .
such that f(θz, . . . , θz+n−1) = a for all z ∈ Z. We will consider each of these two
cases separately.

Suppose first there does not exist a ∈ A that is the best alternative for all
types. Suppose that the agents in period zT lie about the true type, say, θ of
agent z. If this agent does not receive his maximal lifetime payoff, we are done
with the claim. If he receives the maximal payoff, it must be that alternative
a(θ) is implemented in every period during his lifetime. But by the assumption,
there exists a type of agent z+1 for whom a(θ) is not the best alternative, which
again establishes the claim.

Suppose now that there exists a ∈ A that is the best alternative for all
types, but there does not exist an infinite sequence of types θ0, θ1, . . . such that
f(θz, . . . , θz+n−1) = a for all z ∈ Z. Let ϕ0, ϕ1, . . . denote the true types and
θ0, θ1, . . . denote the reported types of agents 0, 1, . . .. Suppose that θz ̸= ϕz,
but agent z expects the maximal possible lifetime payoff, that is, alternative a is
implemented (at least) during periods zT, . . . , (z+ n)T − 1. We claim that there
exists a profile of types (ϕz+1, . . . , ϕz+n−1) ∈ Θn−1 such that the type of at least
one of the agents among z+1, . . . , z+n−1 is misreported. Suppose not. Then, it
must be that f(θz, ϕz+1, . . . , ϕz+n−1) = a for all (ϕz+1, . . . , ϕz+n−1) ∈ Θn−1. But
this contradicts the assumption that there does not exist an infinite sequence
of types θ0, θ1, . . . such that f(θk, . . . , θk+n−1) = a for all k ∈ Z: if every agent
(starting agent z + 1), irrespective of his true type, reported that his type is θz,
the alternative a would be selected forever. Thus, there exists a realization of
types ϕz+1, . . . , ϕz+n−1 such that the type of some agent among z+1, . . . , z+n−1
is misreported. Pick this agent (if there exist several, then pick the one with the
highest index), and repeat now the above argument for this agent. Since we have
assumed that there does not exist an infinite sequence of types θ0, θ1, . . . that
would allow the agents to obtain alternative a forever, ultimately there must be
an agent whose type is misreported and who does not receive his highest possible
lifetime payoff. This completes the proof of the lemma.

Thus, in any equilibrium with unanimous, but untruthful messages, there is
an agent, say, z who expects less than his highest possible lifetime payoff and
either the agents send untruthful messages about his type or the type of agent
z − 1. We will show that this agent can obtain higher payoff by triggering either
part III or IV in period zT . To do that, we first analyse the equilibria of subgames
after either part III or IV has been triggered.

Suppose first that period t = zT messages fall under part III, that is, all
agents in Nt\{z} announce (η, θ, ·), while agent z announces (·, ϕ, ·) with ϕ ̸= θ
and ϕ is his true type. First, there is an equilibrium that falls under part IIIa, in
which everyone in Nt announces 0. There could also be an equilibrium that falls

15



under part IIId if all agents in Nt agree on the best alternative. There cannot
be an equilibrium falling under part IIIb because agent z would prefer to deviate
and trigger part IIIc. Neither there can be an equilibrium falling under part IIIc
because any agent in Nt\{z} would prefer to deviate and trigger part IIId. To
summarize, in any equilibrium after part III has been triggered, the sequence
a(θ, ϕ), b(θ, ϕ), a(ϕ), a(ϕ), . . . is implemented.

Suppose now that period t = zT messages fall under part IV, that is, agents
in Nt\{z} all announce (η, ϕ, ·), while agent z announces (θ, ϕ, ·) where θ ̸= η, ϕ
is the true type of agent z, and θ is the true type of agent z−1. Like above, there
is an equilibrium that falls under part IVa and possibly there is an equilibrium
that falls under part IVd. There cannot be an equilibrium falling under part IVb
because agent z − 1 would prefer to trigger part IVc. Neither there can be an
equilibrium falling under part IVc because agent z is better off by triggering part
IVd: even if b(η, θ) = a(ϕ) and b(ϕ, θ) = a(ϕ), agent z receives his best alternative
for more periods in part IVd. To summarize, in any equilibrium after part IV
has been triggered, the sequence a(ϕ, θ), b(ϕ, θ), a(ϕ), a(ϕ), . . . is implemented.

The lifetime payoff of agent z of type ϕ if he deviates when the other agents
have sent untruthful messages either about his type or the type of agent z − 1
can be lower-bounded by (nT − 2)u(a(ϕ), ϕ) + u(a(ϕ), ϕ) + u(b(ϕ), ϕ) (where we
use the fact that a(θ, ϕ) ̸= b(θ, ϕ) and a(ϕ, θ) ̸= b(ϕ, θ)). On the other hand, if
his lifetime payoff from sticking to unanimous, but untruthful messages is less
than maximal (and we know that there exists such an agent), this payoff can
be upper-bounded by nTu(a(ϕ), ϕ) + πT (u(b(ϕ), ϕ)− u(a(ϕ), ϕ)). The agent will
have incentives to deviate if the former payoff exceeds the latter, which implies
that the following inequality must hold:

2u(a(ϕ), ϕ)− u(a(ϕ), ϕ)− u(b(ϕ), ϕ) < πT (u(a(ϕ), ϕ)− u(b(ϕ), ϕ)). (2)

(2) will be satisfied if T is sufficiently large. We conclude that there are no
equilibria in unanimous, but untruthful messages if T satisfies (2) for all ϕ.

It remains to consider period zT messages that fall under part II. Clearly,
neither agent z − 1, nor agent z expects his maximal lifetime payoff in this case.
Then depending whether the type of agent z−1 is misreported in period (z−1)T
or in zT , either agent z− 1 will deviate in period (z− 1)T or agent z will deviate
in period zT if T satisfies (2). Hence, part II will never be triggered in the
equilibrium.

Finally, we need to verify that there is a Nash equilibrium in every subgame.
Suppose first agents have sent unanimous and truthful messages about the type
of agent z− 1 in period (z− 1)T . Consider a subgame starting in period zT . We
can construct strategies for this subgame similar to those that we constructed to
show that the regime implements f . Basically, the agents announce unanimous
and truthful messages in periods kT for all k ≥ z. Agent k can unilaterally
change the outcome only in period kT to that given either by part IIIb or IVb.
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The inequality in (1) still ensures that such a deviation is not profitable. (Since
the types of agents z − n+ 1, . . . , z − 2 need not be truthfully announced in this
subgame, f might not be implemented during periods zT, . . . , (z + n − 2)T − 1
while agents z − n+ 1, . . . , z − 2 are alive. However, the lower bound on lifetime
payoffs for agents k ≥ z is still nTu(a(θ), θ) + πT (u(b(θ), θ)− u(a(θ), θ)).)

Suppose next agents have sent unanimous but untruthful messages about the
type of agent z − 1 in period (z − 1)T . Consider again a subgame starting in
period zT . Then, there exists an equilibrium in which agents announce the true
types of agents z − 1 and z in that period. These messages fall under part II of
the regime. If agent z deviates, then the outcome is given either by part IIIb or
IVb. Again, (1) ensures that such a deviation is not profitable. This proves that
there are Nash equilibria in subgames starting in periods zT for all z. We already
know that there are also Nash equilibria in subgames starting in periods zT + 1
and they correspond to parts IIIa or IVa. And, finally, there exist equilibria in
subgames starting in all other periods simply because the outcome of the regime
does not depend on the messages of those periods.

To complete the proof, define T ∗ as the smallest T ∈ Z+ that satisfies (1) and
(2) for all θ ∈ Θ. We have shown that the regime r implements f in SPE for any
T ≥ T ∗.

6 Discussion

Relaxing Assumption A1. If we allowed for weak preferences, we would need to
generalize Conditions C2 and C3, but we would still expect them to be not only
necessary, but also sufficient for T large enough. Though, we might also need to
adjust the regime to ensure that parts II-V are still not played on the equilibrium
path. We do not attempt to generalize Conditions C2 and C3, but note that
they remain necessary and sufficient in their current form as long as the best and
worst alternatives, a(θ) and a(θ), are unique for all θ. Thus, Assumption A1 can
already be relaxed quite substantially.

Also, consider the example in Section 2. Even though Assumption A1 is not
satisfied, f in the example and, in fact, any f vacuously satisfies Conditions C2
and C3. Since it is an environment with private goods, there does not exist an
allocation that is best for everyone. Also, since every feasible allocation gives
strictly positive quantities of both goods to every agent who is alive in a given
period, f never selects the worst allocation for any type.

Relaxing Assumption A2. Assumption A2 can also be substantially relaxed at the
cost of requiring even larger T . In particular, it is enough if the utility function
of one type is not an affine transformation of the utility function of another type:

Assumption A3 For every θ, ϕ ∈ Θ, there do not exist α > 0 and β such that
u(a, θ) = αu(a, ϕ) + β for all a ∈ A.
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Assumption A3 says that for every pair θ, ϕ ∈ Θ, we can always find two
lotteries over alternatives in A (where the probabilities are rational numbers)
such that type θ prefers one lottery over the other, while it is opposite for type ϕ.
But with each lottery we can associate a (finite) sequence of alternatives where
the frequency of each alternative in the sequence is equal to the probability that
this alternative is chosen in the corresponding lottery. Then, in the regime,
we can everywhere replace alternatives a(θ, ϕ) and b(θ, ϕ) with the constructed
sequences.10

Stochastic regimes. We have assumed that the designer can only employ deter-
ministic regimes. If T exceeds T ∗ given in the proof of the theorem, then allowing
for stochastic regimes will not expand the set of social choice functions that are
implementable in SPE. However, the use of stochastic regimes can reduce T ∗

that is required for a function to be implementable. In fact, we will now argue
that as long as the necessary conditions are satisfied, f is implementable with a
stochastic regime for T = 2 (even if we replace Assumption A2 with A3). For
that, we modify parts III and IV in our original regime as follows:

III’ If there is (η, θ) ∈ Θ2 such that mt
k = (η, θ, ·) for all k ∈ Nt\{z} and

mt
z = (·, ϕ, ·) where ϕ ̸= θ, then g(mt) = ẽ and we proceed to period t + 1

where

(a) If mt+1
k = (·, ·, 0) for at least n − 1 agents k ∈ Nt, then g(mt+1) =

g(mτ ) = a(ϕ) for all τ > t+ 1 and all mτ .

(b) If mt+1
k = (·, ·, 1) for at least n − 1 agents k ∈ Nt, including agent z,

then g(mt+1) = ã(θ, ϕ) and g(mτ ) = a(θ) for all τ > t+ 1 and all mτ .

(c) If mt+1
k = (·, ·, 1) for all k ∈ Nt\{z} while mt+1

z = (·, ·, l) where l ̸= 1,
then g(mt+1) = b̃(θ, ϕ) and g(mτ ) = a(θ) for all τ > t+ 1 and all mτ .

(d) For all other messages, let k∗ be the agent who has announced the
highest integer and supposemt+1

k∗ = (ψ, ·, l). Then, g(mt+1) = g(mτ ) =
a(ψ) for all τ > t+ 1 and all mτ .

IV’ If there is (η, ϕ) ∈ Θ2 such that mt
k = (η, ϕ, ·) for all k ∈ Nt\{z} and

mt
z = (θ, ϕ, ·) where θ ̸= η, then g(mt) = ẽ and we proceed to period t + 1

where

(a) If mt+1
k = (·, ·, 0) for at least n − 1 agents k ∈ Nt, then g(mt+1) =

g(mτ ) = a(ϕ) for all τ > t+ 1 and all mτ .

(b) If mt+1
k = (·, ·, 1) for at least n−1 agents k ∈ Nt, including agent z−1,

then g(mt+1) = ã(η, θ) and g(mτ ) = a(ϕ) for all τ > t+ 1 and all mτ .

10Although we can, we do not need to replace everywhere. For example, if agent z triggers
either part III or IV of the regime, then in period t = zT , it is enough to give some fixed
alternative.
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(c) If mt+1
k = (·, ·, 1) for all k ∈ Nt\{z − 1} while mt+1

z−1 = (·, ·, l) where

l ̸= 1, then g(mt+1) = b̃(η, θ) and g(mτ ) = a(ϕ) for all τ > t + 1 and
all mτ .

(d) For all other messages, let k∗ be the agent who has announced the
highest integer and supposemt+1

k∗ = (ψ, ·, l). Then, g(mt+1) = g(mτ ) =
a(ψ) for all τ > t+ 1 and all mτ .

In the modified regime, ẽ denotes a lottery that chooses the alternative that
would be selected if agent z had sent the same message as everyone else (that
is, f(θz−n+1, . . . , θz−1, θ) if the messages of others correspond to part I or c if
the messages correspond to part II) with a very high probability and a different
alternative with the remaining probability. ã(θ, ϕ) (resp., ã(η, θ)) is a lottery that
chooses a(θ) (resp., a(ϕ)) with a very high probability and a(θ, ϕ) (resp., a(η, θ))
with the remaining probability. b̃(θ, ϕ) and b̃(η, θ) are defined similarly. (If we
make Assumption A3, a(θ, ϕ), . . . , b(η, ϕ) themselves are lotteries.)

One can verify that inequalities similar to (1) and (2) are satisfied for T = 2.
Roughly speaking, (1) is satisfied for T = 2 because u(a(θ), θ) on the right hand
side is replaced with a payoff that is arbitrarily close to u(a(θ), θ). Similarly,
(2) is satisfied for T = 2 because u(a(ϕ), ϕ) + u(b(ϕ), ϕ) on the left hand side
is replaced with a payoff that is arbitrarily close to 2u(a(ϕ), ϕ). Also, because ẽ
is not the best alternative for any agent, there still cannot be an SPE in which
either part III’ or IV’ is triggered on the equilibrium path.

(Re)starting the implementation. It is assumed that the designer knows the types
of agents −n+1, . . . ,−1. Suppose that she does not know them. One possibility
is to fix arbitrary types for these agents. Then, if there exists an equilibrium in
unanimous messages, we know from the proof of the theorem that these messages
must be truthful. Although f will not be implemented from period 0, it will be
implemented from period (n− 1)T , once agents −n+ 1, . . . ,−1 will have passed
away. The problem, however, is that this equilibrium might not exist: because
the type of agent −1 is chosen arbitrarily, agent 0 might prefer to trigger part
IV. Instead, the equilibrium strategies would involve period 0 messages that fall
under part II of the regime. To avoid this outcome, we need to elicit the true
type of agent −1 before we apply the regime r.

Suppose we are in period −T . The designer can fix arbitrary types for agents
−n + 1, . . . ,−2 but ask agent −1 to announce his type and select the best al-
ternative for that type during periods −T, . . . ,−1. The agent, however, might
still prefer to lie and receive the outcome corresponding to part II. Therefore, we
modify this part for t = 0 as follows:

II’ If there is (η, θ) ∈ Θ\{θ−1} × Θ s.t. m0
k = (η, θ, ·) for at least n − 1

agents k ∈ N0 including agent 0, then g(m0) = g(mτ ) = a(η) for τ =
1, . . . , (n−1)T−1, and g(mτ ) = a(θ) if a(θ) ̸= a(η); otherwise, g(mτ ) = a(θ)
for all τ ≥ (n− 1)T and all mτ .
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With this modification, it is still true that agent 0 does not want to trigger
either part IIIb or IVb if the agents are truthful about the types of agents −1
and 0 in part II’,11 but he has the incentives to trigger either part IIIa or IVa
if the agents are not truthful. Furthermore, agent −1 does not gain by lying
about his type in period −T . If he lies, he cannot improve his payoff during
periods −T, . . . ,−1, while he gets his lowest possible payoff in the equilibrium
from period 0 on. On the other hand, since f is not constant, agent −1 does
not expect his lowest payoff from period 0 on in the equilibrium with unanimous
messages if he announces his type honestly. Hence, he strictly prefers to announce
his true type in period −T .

The regime also has the property that once the messages differ from those
in part I, one of the predetermined infinite sequences is implemented. This can
be costly from the perspective of the social designer. However, we can modify
the regime in a way that allows to restart the implementation of f if a deviation
from part I has occurred. Specifically, if such a deviation occurs in period zT ,
we can terminate all those sequences that are defined in the regime by the end
of period (z+n)T − 1, when all agents who were alive in period zT , have passed
away. The designer can then fix arbitrary types of agents z + 1, . . . , z + n − 1,
elicit the type of agent z + n as above, and restart r from period (z + n + 1)T .
This will ensure that f is again implemented from period (z+2n− 1)T onwards
(once agents z+1, . . . , z+n−1 have passed away). Thus, the regime has certain
robustness against mistakes of agents.

Less than complete/perfect information. The game induced by the regime r is a
game with perfect information and simultaneous moves. From the proof of the
theorem, it is clear that we can relax the assumption of complete information
about agents’ types. It is enough if the type of agent z is common knowledge
between the agents in NzT ∪ {z + 1}. Further, it is enough if only period zT
messages are observable for all z ∈ Z+ and only by the agents in NzT . With
such less than perfect information, any f satisfying the necessary conditions is
implemented for sufficiently large T by the regime r in extended subgame perfect
equilibrium (for the definition, see page 877 in Kreps and Wilson, 1982) or in any
of its refinements such as sequential equilibrium or belief-free equilibrium.12

11The worst outcome for agent 0 is if he receives a(θ) = a(η) for (n − 1)T periods and
receives a(θ) for T periods. It is strictly better than the outcome in part IIIb if T > 3. On the
other hand, since π ≤ 1

2 and u(b(θ), θ)− u(a(θ), θ) ≤ u(a(θ), θ)− u(a(θ), θ), it follows that (1)
is satisfied if T ≥ 6.

12We choose extended SPE because our view is that the weaker is the equilibrium concept,
the more robust is the implementation. If f is implementable in extended SPE, then it is also
implementable in any of its refinements provided that they exist. The converse obviously need
not be true. Furthermore, we can even relax the assumption about Bayesian updating in the
definition of extended SPE. For example, agents do not need to believe that the types of older
generations are drawn according to p.
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Appendix

Proof of Proposition 1: Suppose f is repeatedly implementable in SPE. Let
s denote an SPE. Suppose that the premises of Condition C2 hold. Using s, we
will construct another equilibrium strategy profile s′ that implements alternative
a forever after some history where a is defined in Condition C2.

Let θ−n+1, . . . , θ−1 be given. Let θ0, θ1, . . . be the sequence defined in Condition
C2. Let ζt = (θ−n+1, . . . , θ⌊t/T ⌋) be period t history of types that is obtained from
these two sequences. Let µt = (µt−1, s(ht−1)) be period t history of messages and
ht = (ζt, µt) be period t history (which are obtained recursively) that would arise
if the agents followed strategies s and the history of types was ζt. We reserve
notation ζt, µt, ht to these particular histories. Also note that these histories occur
with a strictly positive probability if the agents follow strategies s.

For any period t ≥ nT , let Θt denote the set of period t histories of types that
has ζnT as a sub-history and let H ′

t = {h′t = (ζ ′t, µt)|ζ ′t ∈ Θt}. Thus, H ′
t consists

of histories that only differ from ht in their history of types after period nT . Let
H ′
t = {ht} for all t = 0, . . . , nT − 1. Let s′ be defined as follows: s′(h′t) = s(ht)

for all h′t ∈ H ′
t and s

′(h′′t ) = s(h′′t ) for all h
′′
t ∈ Ht\H ′

t. Thus, after any h′t ∈ H ′
t,

the strategies s′ tell the agents to send the same messages as after history ht.

If the agents follow strategies s′, alternative a is implemented forever after
history hnT irrespective of the realised types. We verify that s′ is an SPE. Since
s is an SPE, then by definition, s′ implies Nash equilibrium play in subgames
starting after any h′′t ∈ Ht\H ′

t. Consider a subgame after any h′t ∈ H ′
t for t ≥ nT .

Since the agents receive their best alternative in every period, they do not have
incentives to deviate. Finally, consider a subgame after ht for t = 0, . . . , nT − 1.
The payoff of any agent who is alive in period t and deviates from s′, is the same
as his payoff if he deviated from s. On the other hand, his payoff if he does not
deviate from s′ is higher than his payoff if he follows s (because he obtains his
best alternative in future periods with higher probability). Since he did not have
incentives to deviate from s, he does not have incentives to deviate from s′. Thus,
s′ is an SPE. But then, if f is repeatedly implementable in SPE, it must be a
constant function that always selects a.

Proof of Proposition 2: The proof is somewhat involved. Therefore, we
first try to provide a verbal explanation. Given an equilibrium strategy profile,
we construct another strategy profile with the following properties. Consider a
period zT history such that agents z − n + 1, . . . , z − 1 are of type θ, where θ
is defined in Condition C3. Starting from period zT , agents play according to
the original strategies but as if the types of agents z, z + 1, . . . were also θ, even
if they are not. If there is ever a unilateral deviation, say, in period t, then the
agents continue to play according to the original strategies but as if the types of
those who were born between periods zT and t were θ, while the types of those
who are born after period t correspond to their true types. (There can be further
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deviations, but they all must be unilateral. If a multilateral deviation occurs,
then the agents revert back to the original strategies.)

Now, if the agents follow the new strategies, then a(θ) is implemented forever
from period zT onwards. We claim that no agent has incentives to unilaterally
deviate. If an agent could obtain anything different than a(θ) in any of the pe-
riods during his lifetime, then this agent would have incentives to deviate from
the original strategies when his true type was indeed θ, thus contradicting the
assumption that the original strategies formed an SPE. One can further argue
that the new strategies also form Nash equilibria in subgames after a unilateral
deviation has occurred. If, say, a deviation occurs in period t, then it must still
be the case that the agents who are born before or in period t cannot profitably
deviate in periods t + 1, t + 2, . . .. If they could, then they could also profitably
deviate from the original strategies when their true types were indeed θ. On
the other hand, the agents who are born after period t do not have a profitable
deviation because their play under the new strategies is still conditioned on their
true type, that is, they do not pretend about their type under the new strate-
gies. (And they only care what actions their opponents take, not whether their
opponents pretend or not.)

We now turn to a formal proof. Suppose f is repeatedly implementable in
SPE. Let s denote an SPE. Suppose that the premise of Condition C3 holds.
Using s, we will construct another equilibrium strategy profile s′ that implements
alternative a(θ) forever after some history where θ is defined in Condition C3.

Let θ−n+1, . . . , θ−1 be given. For all t ≥ 0, let ζt denote a history of types
such that θz = θ for all z = 0, . . . , ⌊t/T ⌋, that is, every agent who was born
between periods 0 and t, is of type θ. Let µt = (µt−1, s(ht−1)) be period t history
of messages and ht = (ζt, µt) be period t history (which are obtained recursively)
that would arise if the agents followed strategies s and the history of types was
ζt. We again reserve notation ζt, µt, ht to these particular histories. Also note
that these histories occur with a strictly positive probability if the agents follow
strategies s.

Let H ′
t = {ht} for all t = 0, . . . , 2nT −1. Let Nt = {⌊t/T ⌋−n+1, . . . , ⌊t/T ⌋}

denote the set of agents who are alive in period t. For any period t ≥ 2nT , we
define H ′

t recursively as follows:

H ′
t =

h′t = (ζ ′t, µ
′
t)

∣∣∣∣∣∣
∃h′t−1 = (ζ ′t−1, µ

′
t−1) ∈ H ′

t−1, ϕ ∈ Θ, z ∈ Nt−1,m
t−1
z ∈M

s.t. ζ ′t = (ζ ′t−1, ϕ) if t/T ∈ Z, otherwise ζ ′t = ζ ′t−1,
and µ′

t = (µ′
t−1, (m

t−1
z , s−z(h

′
t−1)))

 .

In words, if h′t ∈ H ′
t, then the message history µ′

t is such that in every period,
at most one agent sends a message different from what is prescribed by s. We
narrow the set H ′

t to

H ′′
t =

{
h′t ∈ H ′

t

∣∣∣∣ if for some τ < t, hτ is a subhistory of h′t, but hτ+1 is not,
then ∃z ∈ Nτ ,m

τ
z ∈M s.t. mτ

z ̸= sz(hτ )

}
.
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That is, the reason why h′t diverged from ht is because in some period τ < t, an
agent deviated from s, and not because the type of agent (τ + 1)/T is different
from θ, provided that (τ + 1)/T ∈ Z. (However, once a deviation takes place,
the types of agents that are born after period τ can differ from θ.) For every
h′t ∈ H ′′

t , let us denote τ that appears in the definition of H ′′
t as τ(h′t). If no such

τ exists, then set τ(h′t) = t. (Note that h2nT−1 is a subhistory for all t ≥ 2nT
and all h′t ∈ H ′′

t . Therefore, the only reason why such τ does not exist, is because
h′t = ht.) Let z(h′t) = ⌊τ(h′t)/T ⌋ denote the youngest agent who is alive in period
τ(h′t).

Below, for all z = −n + 1, . . . , ⌊t/T ⌋, θ′z (resp., θ̂z) will refer to the z + n-th
coordinate of ζ ′t (resp., ζ̂t). Let Ĥt be defined as follows:

Ĥt =

{
ĥt = (ζ̂t, µ̂t)

∣∣∣∣ ∃h′t = (ζ ′t, µ
′
t) ∈ H ′′

t s.t. µ̂t = µ′
t and θ̂z = θ′z

∀z = −n+ 1, . . . , 2n− 1 and z = z(h′t) + 1, . . . , ⌊t/T ⌋

}
.

Thus, every history ĥ ∈ Ĥt only differs from some h′t ∈ H ′′
t in the types of agents

2n, . . . , z(h′t).
Finally, let σ be a mapping that associates for all t ≥ 0, every history ĥt =

(ζ̂t, µ̂t) ∈ Ĥt with a history h′t = (ζ ′t, µ
′
t) ∈ H ′′

t as follows: σ(ĥt) = h′t if µ̂t = µ′
t

and θ̂z = θ′z for all z = −n+ 1, . . . , 2n− 1 and all z = z(h′t) + 1, . . . , ⌊t/T ⌋.
Let s′ be defined as follows: s′(h′t) = s(σ(h′t)) for all h

′
t ∈ Ĥt and s

′(h′t) = s(h′t)
for all h′t ∈ Ht\Ĥt. In words, as long as no deviation occurs, agents play according
to s but as if their types were θ. If a unilateral deviation occurs, they still play
according to s but only as if the types of agents who were born before the deviation
occurred (except possibly types −n+ 1, . . . ,−1), were θ.

If the agents follow strategies s′, alternative a(θ) is implemented forever after
history h2nT−1 irrespective of the realised types. We verify that s′ is an SPE. Since
s is an SPE, then by definition, s′ implies Nash equilibrium play in subgames
starting after any h′t ∈ Ht\Ĥt. The same is true for subgames after ht for all
t = 0, . . . , (n + 1)T − 1 since agents z = −n + 1, . . . , n face exactly the same
incentives under both s and s′. (They will not be alive by period 2nT when s
and s′ start to differ.) Consider a subgame after any h′t ∈ Ĥt for any t ≥ (n+1)T .
Suppose agent z > z(h′t) is alive in period t. The messages that his opponents
send in the subgame after history h′t if they follow s′ are exactly the same as
the messages that they would send in the subgame after history σ(h′t) if they
followed s. Further, the type of agent z is also exactly the same. Since he does
not have incentives to deviate from s in subgame σ(h′t), then he also does not
have incentives to deviate from s′ in subgame h′t. (Note that the regime only
depends on the history of messages.)

Suppose agent n + 1 ≤ z ≤ z(h′t) is alive in period t. We claim that this
agent cannot obtain anything else than alternative a(θ) in every period that he
is alive, starting period t, by unilaterally deviating from s′. If he could obtain a
different sequence of alternatives, then he could also obtain the same sequence
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if the history was σ(h′t) and, hence, he was of type θ, and the agents followed
strategies s. But since any sequence that is different from receiving alternative
a(θ) in every period is strictly preferred by type θ, this agent has a profitable
deviation from s after history σ(h′t), contradicting that s is an SPE. Thus, s′ is
also an SPE. But then, if f is repeatedly implementable in SPE, it must be a
constant function that always selects a(θ).
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Āzacis, H., and P. Vida (2015): “Repeated Implementation,” SFB/TR 15
Discussion Paper 518.

Chambers, C. P. (2004): “Virtual Repeated Implementation,” Economics Let-
ters, 83(2), 263 – 268.

Hayashi, T., and M. Lombardi (2016): “Temporary Implementation,” Avail-
able at SSRN: https://ssrn.com/abstract=2786946.

Kalai, E., and J. O. Ledyard (1998): “Repeated Implementation,” Journal
of Economic Theory, 83(2), 308 – 317.

Kandori, M. (1992): “Repeated Games Played by Overlapping Generations of
Players,” The Review of Economic Studies, 59(1), 81–92.

Kreps, D. M., and R. Wilson (1982): “Sequential Equilibria,” Econometrica,
50(4), 863–894.

Lee, J., and H. Sabourian (2011): “Efficient Repeated Implementation,”
Econometrica, 79(6), 1967–1994.

Mezzetti, C., and L. Renou (2017): “Repeated Nash implementation,” The-
oretical Economics, 12(1), 249–285.

Moore, J., and R. Repullo (1988): “Subgame Perfect Implementation,”
Econometrica, 56(5), 1191–1220.

Roemer, J., and K. Suzumura (eds.) (2007): Intergenerational Equity and
Sustainability, International Economic Association Series. Palgrave Macmillan.

Salant, D. J. (1991): “A Repeated Game with Finitely Lived Overlapping
Generations of Players,” Games and Economic Behavior, 3(2), 244 – 259.

24



Smith, L. (1992): “Folk Theorems in Overlapping Generations Games,” Games
and Economic Behavior, 4(3), 426 – 449.

Vartiainen, H. (2007): “Subgame Perfect Implementation: A Full Characteri-
zation,” Journal of Economic Theory, 133(1), 111 – 126.

25


