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ORIGINAL ARTICLE

LONG RANGE DEPENDENCE FOR STABLE RANDOM PROCESSES
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a Institute of Stochastics, Ulm University, Ulm, Germany
b Department of Mathematics, University of Siegen, Siegen, Germany

We investigate long and short memory in 𝛼-stable moving averages and max-stable processes with 𝛼-Fréchet marginal distribu-
tions. As these processes are heavy-tailed, we rely on the notion of long range dependence based on the covariance of indicators
of excursion sets. Sufficient conditions for the long and short range dependence of 𝛼-stable moving averages are proven in
terms of integrability of the corresponding kernel functions. For max-stable processes, the extremal coefficient function is used
to state a necessary and sufficient condition for long range dependence.
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1. INTRODUCTION

The occurrence of long memory in time series has been known for a long time starting from the work of Hurst
(1951). Since then, this phenomenon has been observed and studied in applications in various fields including
biophysical data (Burnecki, 2012), network traffics (Pilipauskaitė and Surgailis, 2016), neuroscience (Botcharova
et al., 2014), geosciences (Montillet and Yu, 2015), and so on. A typical example in financial applications (see e.g.
Cheung and Lai, 1995; Panas, 2001) is a stationary solution of a autoregressive moving average FARIMA(p, d, q)
process with 𝛼-stable innovations. In light of the variety of applications, a wide range of statistical models and
methods for long range dependent processes has been developed, see, for instance, Avram and Taqqu (), Kasahara
et al. (1988), Kokoszka and Taqqu (1996) for classical ones, and Magdziarz and Weron (2007) Beran et al. (2012),
Jach et al. (2012), Koul and Surgailis (2018) for more recent developments. For a broader overview, we recommend
the books of Doukhan et al. (2003), Beran et al. (2013), and Samorodnitsky (2016). These instruments rely on
the explicit definition of long range dependence (LRD, for short) of a stationary time series or, more generally,
a stationary stochastic process X = {X(t), t ∈ T}. Here and throughout this article, stationarity is understood in
the sense that all finite-dimensional distributions of X are invariant under translations. There are many definitions
of LRD in the literature depending on the class of processes to which X belongs. For instance, if X has a finite
variance the following definition is classical cf. Samorodnitsky, 2016, pp. 194–5:

Definition 1.1. A stationary stochastic process X = {X(t), t ∈ T} on some domain T ⊂ ℝ with 𝔼
[|X(0)|2] < ∞

is called long range dependent if

∫T

|C(t)| dt = ∞,

where C(t) = Cov(X(0),X(t)), t ∈ T , is its covariance function. For processes in discrete time, the integral above
should be changed to a sum.
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Also, X is antipersistent if ∫T |C(t)| dt < ∞, ∫T C(t) dt = 0, and short range dependent, otherwise.

Alternative definitions of long memory rely, for example, on the unboundedness of the spectral density of X at
zero, growth comparisons of partial sums, phase transition in limit theorems for sums or maxima and so on (cf.
Heyde and Yang, 1997; Dehling and Philipp, 2002; Samorodnitsky, 2004; Lavancier, 2006; Giraitis et al., 2012;
Beran et al., 2013; Paulauskas, 2016; Samorodnitsky, 2016; Jach et al., 2012).

Many of these approaches fail for heavy-tailed stochastic processes whose variance does not exist. Such
processes occur, for instance, in modelling of network data, in finance and in insurance (see e.g. Kokoszka
and Mikosch, 1997 who call the FARIMA(p, d, q) process with 𝛼-stable innovations long range dependent if
d ∈ (0, 1−1∕𝛼) or Embrechts et al., 1997; Resnick, 2007). To allow for the analysis of long memory behaviour in a
broader setting, Kulik and Spodarev (2020) propose to consider the covariance of indicator functions of excursions
and introduce

Definition 1.2. A real-valued stationary stochastic process X = {X(t), t ∈ T} where T is an unbounded subset
of ℝ is short range dependent (SRD) if

∫T ∫ℝ ∫ℝ

|||Cov(𝟙{X(0) > u}, 𝟙{X(t) > v})|||𝜇(du)𝜇(dv) dt < ∞ (1)

for any finite measure 𝜇 onℝ. Otherwise, that is, if there exists a finite measure 𝜇 such that the integral in inequality
(1) is infinite, X is long range dependent. For stochastic processes in discrete time, the integral ∫T dt should be
replaced by the summation

∑
t∈T∶ t≠0.

One major advantage of this definition is that the above covariance exists in any case due to the boundedness
of the indicators. Furthermore, the definition turns out to be useful as it offers the applicability of limit theorems
for certain functionals of the process of interest.

In practice, however, the computation of the multiple integral in (1) might prove to be tricky. Therefore,
we restrict ourselves here to the wide class of positively associated stochastic processes, including the class of
infinitely divisible moving average processes with nonnegative kernels (Bulinski and Shashkin, 2007, Chapter 1,
Theorem 3.27). This will allow us to eliminate the absolute value in (1).

To introduce the notion of positive association, we need the class (n) of real-valued bounded coordinate-wise
nondecreasing Borel functions on ℝn, n ∈ ℕ. For a real-valued stochastic process X = {X(t), t ∈ T} and a set
I ⊂ T , we denote XI = {X(t), t ∈ I}.

Definition 1.3. A real-valued stochastic process X = {X(t), t ∈ T} is positively associated ifCov(f (XI), g(XJ)) ≥
0 for any disjoint finite subsets I, J ⊂ T and all functions f ∈ (|I|) and g ∈ (|J|).

By setting I = {0} and J = {t} for t ≠ 0, f (x) = 𝟙{x > u} and g(x) = 𝟙{x > v} for u, v ∈ ℝ, we have
f ∈ (|I|) and g ∈ (|J|). Consequently, for a positively associated stochastic process X, it holds Cov(𝟙{X(0) >
u}, 𝟙{X(t) > v}) = Cov(f (XI), g(XJ)) ≥ 0, i.e. the absolute value in (1) can be omitted.

In this article, we consider two important subclasses of positively associated stationary processes that satisfy
certain stability properties. More precisely, we study 𝛼-stable moving averages and max-stable processes with
𝛼-Fréchet marginals. As these processes are heavy-tailed, the classical definition of LRD (Definition 1.1) does not
apply. Instead, we check Definition 1.2.

With regard to this endeavor, we first establish a general framework to compute the double integral
∫ℝ ∫ℝ Cov(𝟙{X(0) > u}, 𝟙{X(t) > v})𝜇(du)𝜇(dv) by inverting the univariate characteristic function 𝜑(s) of X(0)
and the bivariate characteristic function 𝜑t(s1, s2) of (X(0),X(t)). Thus, our Theorem 2.4 yields

∫ℝ ∫ℝ
Cov(𝟙{X(0) > u}, 𝟙{X(t) > v})𝜇(du)𝜇(dv)

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 161–185 (2021)
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= 1
2𝜋2 ∫ℝ+

∫ℝ+

1
s1s2

Re

{(
𝜑t(s1,−s2) − 𝜑(s1)𝜑(−s2)

)
𝜓(s1)𝜓(s2)

}

− 1
s1s2

Re

{(
𝜑t(s1, s2) − 𝜑(s1)𝜑(s2)

)
𝜓(s1)𝜓(s2)

}
ds1 ds2

where 𝜓(s) = ∫ℝ exp{isx}𝜇(dx) is the Fourier transform of measure 𝜇.
Integrating this relation with respect to t will establish short or long range dependence according to Definition

1.2. Subsequently, we will apply this result to get the LRD of symmetric 𝛼-stable (S𝛼S) moving averages which
are defined as follows.

Definition 1.4 (Samorodnitsky and Taqqu (1994)). Let m be a measurable function with m ∈ 𝛼(ℝ), 𝛼 ∈ (0, 2).
Then, a S𝛼S moving average process with parameter 𝛼 ∈ (0, 2) and kernel function m is a stochastic process
X = {X(t), t ∈ ℝ} defined by

X(t) = ∫ℝ
m(t − x) Λ(dx), t ∈ ℝ, (2)

where Λ is a S𝛼S random measure with Lebesgue control measure.

Here and throughout the article, we use the notation m ∈ p(A), p > 0, to imply that ∫A |m(x)|p dx < ∞.
Regarding the SRD/LRD of the process X given in (2), our main result relies on the notion of 𝛼-spectral covari-

ance 𝜌t = ∫ℝ(m(−x)m(t − x))𝛼∕2 dx, t ∈ ℝ, where m(x) ≥ 0, x ∈ ℝ. The 𝛼-spectral covariance was first introduced
by Paulauskas (1976) and its properties were studied in Damarackas and Paulauskas (2014) and Damarackas and
Paulauskas (2017). In Paulauskas (2016), it was discussed how the integrability of 𝜌t can be used for the definition
of the memory property. Here, we establish by Theorem 3.4 that X is short range dependent if 𝜌t ∈ 1(ℝ) or, equiv-
alently, m ∈ 𝛼∕2(ℝ). Also, Theorem 3.5 establishes long range dependence if ∫ℝ ∫ℝ(m𝛼(x) ∧ m𝛼(t)) dx dt = ∞
where a ∧ b is the minimum of a and b. These results hold also for 𝛼-stable linear time series if integrals are
replaced by sums.

To put our results into context, one may refer to other research and discussion on memory properties of 𝛼−stable
processes such as Rachev and Samorodnitsky (2002), Maejima and Yamamoto (2003), Samorodnitsky (2004).
Also, we demonstrate how our findings are meaningful in practice by detecting LRD in a real world data set
consisting of daily log-returns based on the opening price of the Intel corporation share.

Analogously to 𝛼-stable processes, which have become popular as limits of rescaled sums of stochastic pro-
cesses, max-stable processes have become a widely used concept in extreme value analysis occurring as limiting
models for maxima. Thus, they have found applications in various areas such as meteorology (see e.g., Coles,
1993; Buishand et al., 2008; Davison and Gholamrezaee, 2012; Oesting et al., 2017), hydrology (Asadi et al.,
2015) and finance (Zhang and Smith, 2010). Max-stable processes are defined as follows.

Definition 1.5. A real-valued stochastic process X = {X(t), t ∈ T} is called a max-stable process if, for all
n ∈ ℕ, there exist functions an ∶ T → (0,∞) and bn ∶ T → ℝ such that

{
n

max
i=1

Xi(t) − bn(t)
an(t)

, t ∈ T

}
d
= {X(t), t ∈ T},

where the processes Xi, i ∈ ℕ, are independent copies of X, and
d
= means equality in distribution. If the index set

T is finite, X is also called a max-stable vector.

J. Time Ser. Anal. 42: 161–185 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
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It follows from the univariate extreme value theory that the marginal distributions of a max-stable process are
either degenerate or follow a Fréchet, Gumbel or Weibull law. While covariances always exist in the Gumbel and
Weibull case and, thus, the classical notion of long-range dependence applies, we will consider the case when X
is a stationary max-stable process with 𝛼-Fréchet marginal distributions, that is, ℙ(X(t) ≤ x) = exp(−x−𝛼) for all
x > 0 and some 𝛼 > 0 and all t ∈ T . Here, covariances do not exist if 𝛼 ≤ 2.

In combination with Definition 1.2, a well-established dependence measure for max-stable stochastic processes
allows for an easily tractable condition for short and long memory respectively. More specifically, we use the
pairwise extremal coefficient {𝜃t, t ∈ ℝ} defined via the relation ℙ(X(0) ≤ x, X(t) ≤ x) = ℙ(X(0) ≤ x)𝜃t , which
holds for all x > 0, to show that a stationary max-stable process with 𝛼-Fréchet marginal distributions is long
range dependent if and only if ∫ℝ(2 − 𝜃t) dt = ∞ (cf. Theorem 4.3).

To summarize, our article is structured as follows: Section 2 establishes the framework to invert the bivariate
characteristic functions. In Section 3, we make use of this framework to find conditions for long range dependence
of symmetric 𝛼-stable moving averages and linear time series, while, in Section 4, we investigate long range
dependence of a stationary max-stable process with 𝛼-Fréchet marginals. Finally, we model the daily log-returns
of an Intel corporation share by a S𝛼S moving average X and show that X is LRD in Section 5. For the sake of
legibility, some of the proofs have been left out of the main part of this article. They can be found in the Appendix.

2. FROM CHARACTERISTIC FUNCTION TO COVARIANCE OF INDICATORS

We express the covariance of indicators of excursions of random variables above some levels u, v through their
uni- and bivariate characteristic functions. Notice that for random variables U and V it holds that

Cov(𝟙{U > u}, 𝟙{V > v}) = ℙ(U ≤ u,V ≤ v) − ℙ(U ≤ u)ℙ(V ≤ v). (3)

Theorem 2.1. Suppose U and V are identically distributed random variables with marginal characteristic func-
tion 𝜑U and joint characteristic function 𝜑UV . Then, for a finite measure 𝜇 with its Fourier transform denoted by
𝜓 ∶ ℝ → ℂ, 𝜓(s) = ∫ℝ exp{isx}𝜇(dx) it holds that

∫ℝ ∫ℝ
Cov(𝟙{U > u}, 𝟙{V > v})𝜇(du)𝜇(dv)

= 1
4𝜋2 ∫ℝ ∫ℝ

1
s1s2

(
𝜑U(s1)𝜑U(s2) − 𝜑UV (s1, s2)

)
𝜓(s1)𝜓(s2) ds1 ds2

= 1
2𝜋2 ∫ℝ+

∫ℝ+

[
1

s1s2

Re

{(
𝜑UV (s1,−s2) − 𝜑U(s1)𝜑U(−s2)

)
𝜓(s1)𝜓(s2)

}

− 1
s1s2

Re

{(
𝜑UV (s1, s2) − 𝜑U(s1)𝜑U(s2)

)
𝜓(s1)𝜓(s2)

}]
ds1 ds2. (4)

Proof. Let U′ and V ′ be independent copies of U and V . Then

∫ℝ ∫ℝ
Cov(𝟙{U > u}, 𝟙{V > v})𝜇(du)𝜇(dv)

= ∫ℝ ∫ℝ
𝔼
[
𝟙{U > u,V > v} − 𝟙{U′ > u,V ′ > v}

]
𝜇(du)𝜇(dv)

= lim
a→∞

𝔼∫ℝ ∫ℝ

[
𝟙
{

U > u > −a,V > v > −a
}
− 𝟙

{
U′ > u > −a,V ′ > v > −a

}]
𝜇(du)𝜇(dv). (5)

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 161–185 (2021)
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If we denote the difference of the two indicators by fa(u, v), then by Schilling (2017, Theorem 19.12)1 we get that
the last equality in (5) simplifies to

lim
a→∞

1
4𝜋2

𝔼∫ℝ ∫ℝ
f̂a(s1, s2)𝜓(s1)𝜓(s2) ds1 ds2, (6)

where f̂a(s1, s2) = ∫ℝ ∫ℝ ei(s1u+s2v)fa(u, v) du dv. By Lemma A.1 one can interchange the expectation and the
integrals in (6) and computes

𝔼f̂a(s1, s2) =
1

s1s2

(
𝜑U(s1)𝜑U(s2) − 𝜑UV (s1, s2)

)
(7)

which is independent of a. Thus, (6) simplifies to

1
4𝜋2 ∫ℝ ∫ℝ

1
s1s2

(
𝜑U(s1)𝜑U(s2) − 𝜑UV (s1, s2)

)
𝜓(s1)𝜓(s2) ds1 ds2.

The second identity in (4) follows from splitting the integrals into the positive and negative half-lines and
substituting afterwards.

Corollary 2.2. Under the assumptions of Theorem 2.1, suppose that the random vector (U,V) is symmetric.
Then relation (4) simplifies to

∫ℝ ∫ℝ
Cov(𝟙{U > u}, 𝟙{V > v})𝜇(du)𝜇(dv)

= 1
2𝜋2 ∫ℝ+

∫ℝ+

[
1

s1s2

(
𝜑UV (s1,−s2) − 𝜑U(s1)𝜑U(−s2)

)
Re

{
𝜓(s1)𝜓(s2)

}
− 1

s1s2

(
𝜑UV (s1, s2) − 𝜑U(s1)𝜑U(s2)

)
Re

{
𝜓(s1)𝜓(s2)

}]
ds1 ds2 (8)

= 1
2𝜋2 ∫ℝ+

∫ℝ+

1
s1s2

(
𝜑UV (s1,−s2) − 𝜑UV (s1, s2)

)
Re{𝜓(s1)}Re{𝜓(s2)}

+ 1
s1s2

(
𝜑UV (s1,−s2) + 𝜑UV (s1, s2) − 2𝜑U(s1)𝜑U(s2)

)
Im{𝜓(s1)}Im{𝜓(s2)} ds1 ds2. (9)

Proof. Equality (8) follows immediately from 𝜑U and 𝜑UV being real-valued as characteristic functions of a
symmetric random variable and random vector respectively.

Equality (9) follows from Re{xy} = Re{x}Re{y} − Im{x}Im{y} for any x, y ∈ ℂ.

If the stationary real-valued stochastic process X = {X(t), t ∈ ℝ} is positively associated, we can apply Theorem
2.1 and, in the symmetric case, Corollary 2.2 to X(0) and X(t) to check the long range dependence of X.
To do so, let T = ℝ in integral (1). However, the resulting expressions in (4), (8) or (9) might prove difficult to
integrate w.r.t. t over the whole real line. Thus, it is worth noting that the following lemma allows us to restrict
integration to unbounded subsets over which it might be easier to integrate.

1 We thank René Schilling for his idea which simplifies our original proof.
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Lemma 2.3. Let | ⋅ | denote the Lebesgue measure on ℝ and let A ⊂ ℝ be an arbitrary subset with |Ac| < ∞.
Then, a process X = {X(t), t ∈ ℝ} is SRD or LRD iff XA = {X(t), t ∈ A} is SRD or LRD respectively.

Proof. We split up the integral in relation (1) into A and Ac

∫ℝ ∫ℝ ∫ℝ

||||Cov

(
𝟙
{

X(0) > u
}
, 𝟙
{

X(t) > v
})||||𝜇(du)𝜇(dv) dt

= ∫A ∫ℝ ∫ℝ

||||Cov

(
𝟙
{

X(0) > u
}
, 𝟙
{

X(t) > v
})||||𝜇(du)𝜇(dv) dt

+ ∫Ac ∫ℝ ∫ℝ

||||Cov

(
𝟙
{

X(0) > u
}
, 𝟙
{

X(t) > v
})||||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤1

𝜇(du)𝜇(dv) dt.

As the integral over Ac is finite in any case, the integral in relation (1) is finite iff XA is SRD.

Now we give the main result of this section showing the use of characteristic functions to check the short or
long range dependence of X.

Theorem 2.4. Suppose we have a stationary real-valued, positively associated stochastic process X = {X(t), t ∈
ℝ} with absolutely continuous marginal distributions. Denote the univariate characteristic function of X(0) by 𝜑
and the bivariate characteristic function of (X(0),X(t)) by 𝜑t. Furthermore, let A ⊂ ℝ be an arbitrary subset with|Ac| < ∞.

(a) Then, X is short range dependent if

∫A ∫ℝ ∫ℝ
Cov(𝟙{X(0) > u}, 𝟙{X(t) > v})𝜇(du)𝜇(dv) dt

= 1
2𝜋2 ∫A ∫ℝ+

∫ℝ+

[
1

s1s2

Re

{(
𝜑t(s1,−s2) − 𝜑(s1)𝜑(−s2)

)
𝜓(s1)𝜓(s2)

}

− 1
s1s2

Re

{(
𝜑t(s1, s2) − 𝜑(s1)𝜑(s2)

)
𝜓(s1)𝜓(s2)

}]
ds1 ds2 dt < ∞ (10)

for any finite measure 𝜇 with Fourier transform 𝜓(s) = ∫ℝ exp{isx}𝜇(dx).
(b) Additionally, if (X(0),X(t)) is symmetric for all t ∈ ℝ, then condition (10) rewrites as

∫A ∫ℝ ∫ℝ
Cov(𝟙{X(0) > u}, 𝟙{X(t) > v})𝜇(du)𝜇(dv) dt

= 1
2𝜋2 ∫A ∫ℝ+

∫ℝ+

[
𝜑t(s1,−s2) − 𝜑t(s1, s2)

s1s2

Re{𝜓(s1)}Re{𝜓(s2)}

−
𝜑t(s1,−s2) + 𝜑t(s1, s2) − 2𝜑(s1)𝜑(s2)

s1s2

Im{𝜓(s1)}Im{𝜓(s2)}
]

ds1 ds2 dt < ∞. (11)

Otherwise, that is, if there exists a finite measure 𝜇 such that the integral in (10) is infinite, X is long range
dependent.

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 161–185 (2021)
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Proof.

(a) Take U = X(0) and V = X(t), where t ∈ ℝ in Theorem 2.1. Then, U and V are absolutely continuous
and identically distributed random variables. Therefore, the equality in (10) is established by Theorem 2.1. It
follows by relation (10) and Lemma 2.3 that X is SRD. Similarly, X is LRD if (10) is infinite.

(b) Follows analogously by using Corollary 2.2.

3. LONG RANGE DEPENDENCE OF 𝛼-STABLE MOVING AVERAGES

We investigate the LRD of S𝛼S moving averages in continuous and discrete time.
By Definition 1.4, a symmetric 𝛼-stable moving average with kernel function m ∈ 𝛼(ℝ), 𝛼 < 2, is defined by

X(t) = ∫ℝ m(t − x) Λ(dx), t ∈ ℝ, where Λ is a symmetric 𝛼-stable random measure.

Remark 3.1.

(a) Note that the S𝛼S moving average process X = {X(t), t ∈ ℝ} is stationary, X(0) is absolutely continuous
and, by Property 3.2.1 from Samorodnitsky and Taqqu (1994), the random vector (X(0),X(t)) is symmetric for
every t ∈ ℝ.

(b) By Bulinski and Shashkin (2007), Theorems 1.3.5 and 1.3.27, X is positively associated if the kernel function
m is nonnegative.

(c) To exclude the trivial case X(t) = 0 for all t ∈ ℝ we always assume that the Lebesgue measure of the set
{x ∈ ℝ | m(x) > 0} is positive.

By Samorodnitsky and Taqqu (1994), Proposition 3.4.2, the characteristic function 𝜑 ∶ ℝ → ℂ of X(t), t ∈ ℝ,
is given by

𝜑(s) = exp

{
− |s|𝛼 ∫ℝ

|m(x)|𝛼 dx

}
, s ∈ ℝ. (12)

Moreover, the bivariate characteristic function 𝜑t ∶ ℝ ×ℝ → ℂ of
(
X(0),X(t)

)
, t ∈ ℝ is given by

𝜑t(s1, s2) = exp

{
− ∫ℝ

|s1m(−x) + s2m(t − x)|𝛼 dx

}
, s1, s2 ∈ ℝ. (13)

Before we get to our main result, we need to introduce the 𝛼-spectral covariance of a stable vector as defined by
Damarackas and Paulauskas (2017, equation (11)). Let 𝕊1 = {x ∈ ℝ2 ∶ ‖x‖ = 1} be the unit circle. Recall that
a random vector Z = (X1,X2) is symmetric 𝛼-stable with parameter 𝛼 if there exists a finite measure Γ on 𝕊1, the
so-called spectral measure, such that the characteristic function of Z is given by

𝔼ei⟨s,Z⟩ = exp

{
− ∫𝕊1

|⟨s, x⟩|𝛼Γ(dx)
}
, s ∈ ℝ2,

where ⟨⋅ , ⋅⟩ is the standard inner product on ℝ2.

Definition 3.2. Suppose (X1,X2) is an 𝛼-stable random vector with spectral measure Γ, then the 𝛼-spectral
covariance of X1 and X2 is given by

𝜌 = ∫𝕊1

|s1s2|𝛼∕2 sgn(s1s2) Γ(d(s1, s2)). (14)

Let us calculate the 𝛼-spectral covariance of (X(0),X(t)), t ∈ ℝ, where X is a S𝛼S moving average.
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Lemma 3.3. Suppose X = {X(t), t ∈ ℝ} with X(t) = ∫ℝ m(t − x) Λ(dx) is a S𝛼S moving average process. Then,
the 𝛼-spectral covariance of (X(0),X(t)), t ∈ ℝ, is given by

𝜌t = ∫ℝ
m𝛼∕2(−x)m𝛼∕2(t − x) sgn(m(−x)m(t − x)) dx. (15)

Proof. Denote m1(x) = m(−x) and m2(x) = m(t − x), Proposition 3.4.3 in Samorodnitsky and Taqqu (1994) and
the the symmetry of Λ yields that (X(0),X(t)) is S𝛼S with spectral measure Γ defined for all Borel sets A ⊂ 𝕊1 by

Γ(A) = 1
2 ∫g−1(A)

(
m2

1(x) + m2
2(x)

)𝛼∕2
dx + 1

2 ∫g−1(−A)

(
m2

1(x) + m2
2(x)

)𝛼∕2
dx

= 𝛾(g−1(A)) + 𝛾(g−1(−A)) =∶ (𝛾◦g−1)(A) + (𝛾◦g−1)(−A),

where

g(x) =

(
m1(x)(

m2
1(x) + m2

2(x)
)1∕2

,
m2(x)(

m2
1(x) + m2

2(x)
)1∕2

)
, x ∈ ℝ.

Hereby 𝛾 is an absolutely continuous measure w.r.t. the Lebesgue measure with density 1

2
(m2

1(x) +m2
2(x))

𝛼∕2. With
f (s1, s2) = |s1s2|𝛼∕2 sgn(s1s2) we get

∫𝕊1

f d(𝛾◦g−1) = ∫g−1(𝕊1)
f◦g d𝛾 = ∫ℝ

m𝛼∕2
1 (x)m𝛼∕2

2 (x) sgn(m1(x)m2(x))(
m2

1(x) + m2
2(x)

)𝛼∕2
𝛾(dx)

= 1
2 ∫ℝ

m𝛼∕2
1 (x)m𝛼∕2

2 (x) sgn(m1(x)m2(x)) dx.

Thus,

𝜌t = ∫𝕊1

|s1s2|𝛼∕2 sgn(s1s2) Γ(d(s1, s2)) = ∫ℝ
m𝛼∕2

1 (x)m𝛼∕2
2 (x) sgn(m1(x)m2(x)) dx.

Now, a sufficient condition for the short range dependence of X can be formulated in terms of 𝜌t or, equivalently,
in terms of the kernel function m.

Theorem 3.4. Let X = {X(t), t ∈ ℝ} be a S𝛼S moving average process with parameter 𝛼 ∈ (0, 2), nonnegative
kernel function m and 𝛼-spectral covariance 𝜌t given in (15). X is SRD if

𝜌t ∈ 1(ℝ), (16)

or, equivalently, m ∈ 𝛼∕2(ℝ).

Proof. Without loss of generality, assume 𝜇 is a probability measure. Now, apply Theorem 2.4 to X for some
𝜀 ∈ (0, ‖m‖𝛼

𝛼
) and choose A = {t ∈ ℝ | 𝜌t ∈ [0, 𝜀)}. It follows from the integrability of 𝜌t that 𝜌t → 0 as

t → ±∞. Thus, there exists a constant t̃ > 0 such that 𝜌t < 𝜀 for all t ∈ ℝ where |t| > t̃. Hence, it holds that
Ac ⊂

{
t ∈ ℝ || |t| ≤ t̃

}
and |Ac| < ∞.
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Obviously, the right-hand side of the equality in (11) is bounded by

1
2𝜋2 ∫A ∫ℝ+

∫ℝ+

|𝜑t(s1,−s2) − 𝜑t(s1, s2)|
s1s2

||Re{𝜓(s1)}Re{𝜓(s2)}||
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤1

ds1 ds2dt

+ 1
2𝜋2 ∫A ∫ℝ+

∫ℝ+

|𝜑t(s1,−s2) + 𝜑t(s1, s2) − 2𝜑(s1)𝜑(s2)|
s1s2

||Im{𝜓(s1)}Im{𝜓(s2)}||
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤1

ds1 ds2 dt

≤ 1
𝜋2 ∫A ∫ℝ+

∫ℝ+

|𝜑t(s1,−s2) − 𝜑(s1)𝜑(s2)|
s1s2

ds1 ds2dt

+ 1
𝜋2 ∫A ∫ℝ+

∫ℝ+

|𝜑t(s1, s2) − 𝜑(s1)𝜑(s2)|
s1s2

ds1 ds2 dt =∶ 1
𝜋2

(
I1 + I2

)
. (17)

By inequalities (A.6) and (A.7) in Lemma A.3 we get

I1, I2 ≤ 8𝜋
𝛼2‖m‖2𝛼

𝛼
∫A

𝜌t√‖m‖2𝛼
𝛼
− 𝜌2

t

dt ≤ 8𝜋
𝛼2‖m‖2𝛼

𝛼

1√‖m‖2𝛼
𝛼
− 𝜀2 ∫A

𝜌t dt <∞.

Next, show that condition (16) holds true iff m ∈ 𝛼∕2(ℝ). By Fubini’s theorem we get

∫ℝ
𝜌t dt = ∫ℝ ∫ℝ

m𝛼∕2(−x)m𝛼∕2(t − x) dx dt

= ∫ℝ
m𝛼∕2(−x)

(
∫ℝ

m𝛼∕2(t − x) dt

)
dx

=
(
∫ℝ

m𝛼∕2(−x) dx

)2

= ‖m‖𝛼
𝛼∕2 < ∞.

Naturally, one may also ask for sufficient conditions for the long range dependence of X. Such a condition is
given by

Theorem 3.5. Let X = {X(t), t ∈ ℝ} be a S𝛼S moving average process with parameter 𝛼 ∈ (0, 2) and
nonnegative kernel function m. Then, X is long range dependent if

∫ℝ ∫ℝ
(m𝛼(x) ∧ m𝛼(t)) dx dt = ∞. (18)

Proof. Given in the appendix.

Additionally, if the kernel function m is eventually monotonic, then we can simplify condition (18) as follows.

Corollary 3.6. Let X = {X(t), t ∈ ℝ} be a S𝛼S moving average process with parameter 𝛼 ∈ (0, 2) and non-
negative kernel function m ∈ 𝛼(ℝ) which is eventually monotonic, i.e. there is a number a > 0 such that m is
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monotonically decreasing on (a,∞) or monotonically increasing on (−∞,−a). Then, X is long range dependent if

∫
∞

a

t m𝛼(t) dt = ∞ or ∫
−a

−∞
t m𝛼(t) dt = −∞. (19)

Additionally, if m is symmetric, the two sufficient conditions (19) are equivalent.

Proof. Suppose m is monotonically decreasing on (a,∞) and compute the integral (18). Thus, we have

∫ℝ ∫ℝ
(m𝛼(x) ∧ m𝛼(t)) dx dt ≥ ∫

∞

a

(
∫

t

a

m𝛼(t) dx + ∫
∞

t

m𝛼(x) dx

)
dt ≥ ∫

∞

a

tm𝛼(t) dt − a‖m‖𝛼
𝛼
.

The claim follows from the fact that m ∈ 𝛼(ℝ). The case of m monotonically increasing on some interval
(−∞,−a) follows analogously.

Now let us give an example of a kernel function m ∈ 𝛼(ℝ) whose corresponding S𝛼S moving average is long
range dependent if m ∉ 𝛼∕2(ℝ).

Example 3.7. Suppose we have a S𝛼S moving average process X = {X(t), t ∈ ℝ} with parameter 𝛼 ∈ (0, 2)
and nonnegative kernel function m(x) ∼ C|x|−𝛿 as |x| → ∞ where 𝛿 > 1

𝛼
and C > 0. Obviously, m ∈ 𝛼(ℝ) and

m(x) ≥ C

2
|x|−𝛿 where |x| ≥ a for some a > 0. Notice that

∫
∞

a

t ⋅
(

C
2
|t|−𝛿)𝛼

dt =
(

C
2

)𝛼

∫
∞

a

t1−𝛿𝛼 dt = ∞

if 1 − 𝛿𝛼 ≥ −1 or, equivalently, 𝛿 ≤ 2

𝛼
. Analogously to the proof of Corollary 3.6, this implies that m fulfills (18)

if m ∉ 𝛼∕2(ℝ). Thus, X is long range dependent if 𝛿 ∈
(

1

𝛼
, 2

𝛼

]
by Theorem 3.5 and is short range dependent if

𝛿 > 2

𝛼
by Theorem 3.4.

Remark 3.8. On one hand, this example was given to illustrate that the conditions (19) in Corollary 3.6 are useful
when the kernel function itself is not eventually monotonic but rather asymptotically equivalent to such a function.
On the other hand, this example motivates our conjecture that a S𝛼S moving average is long range dependent iff
m ∉ 𝛼∕2(ℝ). However, the conjecture’s proof is still to be found.

Similar results as above can be obtained for symmetric 𝛼-stable linear time series Y .

Definition 3.9 (Hosoya (1978)). Let {Z(t), t ∈ ℤ} be a sequence of i.i.d. S𝛼S random variables with characteristic
function 𝜑(s) = exp{−𝜏𝛼|s|𝛼}, 𝜏 > 0, 0 < 𝛼 < 2, s ∈ ℝ. Let {aj, j ∈ ℤ} be a sequence of numbers such that∑+∞

j=−∞ |aj| < ∞. The stochastic process defined by

Y(t) =
+∞∑

j=−∞
ajZ(t − j), t ∈ ℤ, (20)

is called a linear S𝛼S time series.
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Notice that Y can be written as a continuous time S𝛼S moving average with parameter 𝛼 ∈ (0, 2) and kernel
function m(x) =

∑∞
j=−∞ aj𝟙[(j−1)𝜏𝛼 ,j𝜏𝛼 )(x) sampled at time instants t ∈ ℤ. Thus, Y is positively associated if the

coefficients aj are nonnegative for all j ∈ ℤ. Moreover, the function 𝜌t simplifies to 𝜌t =
∑∞

j=−∞ a𝛼∕2
−j a𝛼∕2

t−j , t ∈ ℤ.

Remark 3.10. Theorems 3.4 and 3.5 as well as Corollary 3.6 apply to linear processes with the obvious substitute
of

∑∞
t=−∞ for ∫ℝ dt. Indeed, let Y = {Y(t), t ∈ ℤ} be a stationary S𝛼S time series with parameter 𝛼 < 2 and

nonnegative coefficients {aj, j ∈ ℤ}. If

∞∑
t=−∞

𝜌t < ∞ or, equivalently,
∞∑

j=−∞
a𝛼∕2

j < ∞, (21)

then Y is short range dependent. If

∞∑
j=−∞

∞∑
t=−∞

(a𝛼j ∧ a𝛼t ) = ∞, (22)

then Y is long range dependent. Additionally, if the coefficients aj are for some a > 0 monotonically increasing
for all j < −a or monotonically decreasing for all j > a , then Y is long range dependent if

∑∞
j=a j a𝛼j = ∞ or∑a

j=−∞ j a𝛼j = −∞ respectively.

4. LONG RANGE DEPENDENCE OF MAX-STABLE PROCESSES

We demonstrate that it is possible to use already existing dependence properties to check Definition 1.2 instead of
inverting characteristic functions as in the previous sections.

Any max-stable process is positively associated, see for instance Proposition 5.29 in Resnick (2013). Its
dependence properties are typically summarized by its pairwise extremal coefficients {𝜃t, t ∈ T} defined via

ℙ(X(0) ≤ x, X(t) ≤ x) = ℙ(X(0) ≤ x)𝜃t for all x > 0,

(cf. Schlather and Tawn, 2003). By a series expansion of the logarithm, it can be seen that 𝜃t = 2−limx→∞ ℙ(X(t) >
x ∣ X(0) > x). Thus, 𝜃t ∈ [1, 2], where 𝜃t = 2 corresponds to the case of (asymptotic) independence between X(0)
and X(t) while 𝜃t = 1 means full dependence. Even though the joint distribution of (X(0),X(t)) is not uniquely
determined by 𝜃t, this characteristic turns out to be a useful tool for the identification of dependence properties. For
instance, Stoev (2008), Kabluchko and Schlather (2010) and Dombry and Kabluchko (2017) provide necessary
and sufficient conditions for ergodicity and mixing of a max-stable process in terms of its pairwise extremal
coefficients.

Here, we focus on the property of long-range dependence given by Definition 1.2. We obtain bounds for
Cov

(
𝟙{X(0) > u}, 𝟙{X(t) > v}

)
, t ∈ T , u, v > 0, by making use of the following lemma.

Lemma 4.1. Let (X,Y) be a bivariate max-stable random vector with 𝛼-Fréchet margins, 𝛼 > 0, and extremal
coefficient 𝜃 ∈ [1, 2]. Then, we have

exp

(
− 1

u𝛼
− 1

v𝛼
+ 2 − 𝜃

(u ∨ v)𝛼

)
≤ ℙ(X ≤ u,Y ≤ v) ≤ exp

(
− 1

u𝛼
− 1

v𝛼
+ 2 − 𝜃

(u ∧ v)𝛼

)
for all u, v > 0.
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Proof. It is well-known that the cumulative distribution function of a bivariate max-stable random vector (X,Y)
with 𝛼-Fréchet margins is of the form

ℙ(X ≤ u,Y ≤ v) = exp

(
−𝔼

[(
WX

u
∨

WY

v

)𝛼])
, u, v ≥ 0,

where (WX ,WY ) is a bivariate random vector with 𝔼W𝛼
X = 𝔼W𝛼

Y = 1 cf. Chapter 5 in Resnick (2013), for
instance. This so-called spectral vector (WX ,WY ) is closely connected to the extremal coefficient via the relation
𝜃 = 𝔼(W𝛼

X ∨ W𝛼
Y ). Thus, we obtain

− logℙ(X ≤ u,Y ≤ v) = 𝔼
[(

WX

u

)𝛼

∨
(

WY

v

)𝛼]
= 𝔼

[(
W𝛼

X

(u ∨ v)𝛼
+ W𝛼

X ⋅
(

1
(u ∧ v)𝛼

− 1
(u ∨ v)𝛼

)
⋅ 1{u ≤ v}

)
∨
(

W𝛼
Y

(u ∨ v)𝛼
+ W𝛼

Y ⋅
(

1
(u ∧ v)𝛼

− 1
(u ∨ v)𝛼

)
⋅ 1{v < u}

)]
. (23)

Distinguishing between the two cases u ≤ v and v < u, it can be seen that the right-hand side of (23) can be
bounded from above by

1
(u ∨ v)𝛼

𝔼
(
W𝛼

X ∨ W𝛼
Y

)
+
(

1
(u ∧ v)𝛼

− 1
(u ∨ v)𝛼

)
⋅ 𝔼

(
W𝛼

X ⋅ 1{u ≤ v} + W𝛼
Y ⋅ 1{v < u}

)
= 𝜃

(u ∨ v)𝛼
+
(

1
u𝛼

+ 1
v𝛼

− 2
(u ∨ v)𝛼

)
⋅ 1 = − 2 − 𝜃

(u ∨ v)𝛼
+ 1

u𝛼
+ 1

v𝛼
,

where we used the fact that 𝔼W𝛼
X = 𝔼W𝛼

Y = 1. This gives the lower bound stated in the lemma. Analogously, we
obtain

− logℙ(X ≤ u,Y ≤ v) = 𝔼
[(

WX

u

)𝛼

∨
(

WY

v

)𝛼]
= 𝔼

[(
W𝛼

X

(u ∧ v)𝛼
− W𝛼

X ⋅
(

1
(u ∧ v)𝛼

− 1
(u ∨ v)𝛼

)
⋅ 1{v < u}

)
∨
(

W𝛼
Y

(u ∧ v)𝛼
− W𝛼

Y ⋅
(

1
(u ∧ v)𝛼

− 1
(u ∨ v)𝛼

)
⋅ 1{u ≤ v}

)]
≥ 1

(u ∧ v)𝛼
𝔼
(
W𝛼

X ∨ W𝛼
Y

)
−
(

1
(u ∧ v)𝛼

− 1
(u ∨ v)𝛼

)
⋅ 𝔼

(
W𝛼

X ⋅ 1{v < u} + W𝛼
Y ⋅ 1{u ≤ v}

)
= 𝜃

(u ∧ v)𝛼
−
(

2
(u ∧ v)𝛼

− 1
u𝛼

− 1
v𝛼

)
⋅ 1 = − 2 − 𝜃

(u ∧ v)𝛼
+ 1

u𝛼
+ 1

v𝛼
,

which gives the corresponding upper bound.

Remark 4.2. Note that the lower bound in Lemma 4.1 corresponds to the bound given in Strokorb and Schlather
(2015). For the so-called Molchanov–Tawn model, we even have

ℙ(X ≤ u,Y ≤ v) = exp

(
− 1

u𝛼
− 1

v𝛼
+ 2 − 𝜃

(u ∨ v)𝛼

)
, u, v > 0,

that is, the bound is sharp in this case.
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Using Equation 3, Lemma 4.1 yields the following bounds for Cov
(
𝟙{X(0) > u}, 𝟙{X(t) > v}

)
:

exp
(
− 1

u𝛼
− 1

v𝛼

)
⋅
[

exp

(
2 − 𝜃t

(u ∨ v)𝛼

)
− 1

]
≤ Cov

(
𝟙{X(0) > u}, 𝟙{X(t) > v}

)
≤ exp

(
− 1

u𝛼
− 1

v𝛼

)
⋅
[

exp

(
2 − 𝜃t

(u ∧ v)𝛼

)
− 1

]
for u, v > 0 and Cov

(
𝟙{X(0) > u}, 𝟙{X(t) > v}

)
= 0 if u ∧ v ≤ 0 due to the 𝛼-Fréchet margins. Consequently,

one obtains for the integral in (1) that

∫ℝ+
∫ℝ+

exp
(
− 1

u𝛼
− 1

v𝛼

)
∫T

[
exp

(
2 − 𝜃t

(u ∨ v)𝛼

)
− 1

]
dt 𝜇(du)𝜇(dv)

≤ ∫T ∫ℝ+
∫ℝ+

||Cov (𝟙{X(0) > u}, 𝟙{X(t) > v}
)||𝜇(du)𝜇(dv) dt

≤ ∫ℝ+
∫ℝ+

exp
(
− 1

u𝛼
− 1

v𝛼

)
∫T

[
exp

(
2 − 𝜃t

(u ∧ v)𝛼

)
− 1

]
dt 𝜇(du)𝜇(dv). (24)

From the lower and the upper bound in (24), we directly obtain a necessary and sufficient condition for long
range dependence. Interestingly, unlike in case of 𝛼-stable processes, the criterion does not depend on 𝛼 > 0.

Theorem 4.3. Let X = {X(t), t ∈ T} be a stationary max-stable process with 𝛼-Fréchet marginal distributions,
𝛼 > 0, and pairwise extremal coefficients {𝜃t, t ∈ T}. Then, X is long range dependent if and only if

∫T

(2 − 𝜃t) dt = ∞. (25)

.

Proof. First, assume that (25) holds. Choosing the finite measure 𝜇 = 𝛿{1} as the Dirac measure, we obtain from
the lower bound in (24) and the inequality exp(x) ≥ 1 + x for all x ≥ 0 that

∫T ∫ℝ ∫ℝ
|Cov (𝟙{X(0) > u}, 𝟙{X(t) > v}

)| 𝛿{1}(du) 𝛿{1}(dv) dt

≥ ∫ℝ+
∫ℝ+

exp
(
− 1

u𝛼
− 1

v𝛼

)
∫T

[
exp

(
2 − 𝜃t

(u ∨ v)𝛼

)
− 1

]
dt 𝛿{1}(du) 𝛿{1}(dv)

= exp(−2) ⋅ ∫T

[
exp

(
2 − 𝜃t

)
− 1

]
dt ≥ exp(−2) ⋅ ∫T

(2 − 𝜃t) dt = ∞.

Conversely, assume that (25) does not hold, that is,

C = ∫T

(2 − 𝜃t) dt <∞.

As 0 ≤ 2 − 𝜃t ≤ 1 for all t ∈ T , we obtain that

∫T

(2 − 𝜃t)k dt ≤ ∫T

(2 − 𝜃t) dt = C
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for all k ∈ ℕ and therefore

exp(−u−𝛼)∫T

[
exp((2 − 𝜃t)u−𝛼) − 1

]
dt = exp(−u−𝛼)∫T

∞∑
k=1

u−𝛼k

k!
(2 − 𝜃t)k dt

= exp(−u−𝛼)
∞∑

k=1

u−𝛼k

k! ∫T

(2 − 𝜃t)k dt ≤ exp(−u−𝛼)
∞∑

k=1

u−𝛼k

k!
C ≤ C

for all u ≥ 0. Combining this inequality with the upper bound in (24), we have

∫T ∫ℝ ∫ℝ

||Cov (𝟙{X(0) > u}, 𝟙{X(t) > v}
)||𝜇(du)𝜇(dv) dt

≤ ∫ℝ+
∫ℝ+

∫T

exp
(
− 1

u𝛼
− 1

v𝛼

)
∫T

[
exp

(
2 − 𝜃t

(u ∧ v)𝛼

)
− 1

]
dt 𝜇(du)𝜇(dv)

≤ ∫ℝ+
∫ℝ+

∫T

exp

(
− 1
(u ∧ v)𝛼

)
∫T

[
exp

(
2 − 𝜃t

(u ∧ v)𝛼

)
− 1

]
dt 𝜇(du)𝜇(dv)

≤ ∫ℝ+
∫ℝ+

C 𝜇(du)𝜇(dv) ≤ C𝜇2(ℝ+)

for any finite measure 𝜇 on ℝ. Thus, X is short range dependent.

Example 4.4. Here, we consider two popular examples of max-stable processes, namely the extremal Gaussian
process and the Brown–Resnick process.

1. The extremal Gaussian process (Schlather, 2002) is a max-stable process with 1-Fréchet marginal distributions
and finite-dimensional distributions of the form

ℙ(X(t1) ≤ x1,… ,X(td) ≤ xd) = exp

(
−
√

2𝜋 max
i=1,…,d

max{W(ti), 0}
xi

)
, ti ∈ T , xi > 0,

where {W(t), t ∈ T} is a centered stationary Gaussian process on T = ℝ. The extremal coefficients of the
extremal Gaussian process are given by

𝜃t = 1 +
√

1 −
1 + 𝜌t

2
, t ∈ T ,

where 𝜌t = Corr(W(t),W(0)) denotes the correlation function of the underlying Gaussian process W. Provided
that 𝜌t ≥ 0 for all t ∈ T , we have that 𝜃t ≤ 1 +

√
1∕2, and, consequently,

∫T

(2 − 𝜃t) dt ≥ ∫ℝ
(1 −

√
1∕2) dt = ∞,

that is, the process is long range dependent by Theorem 4.3.
2. The Brown–Resnick process (Kabluchko et al., 2009) is a max-stable process with 1-Fréchet marginal

distributions and finite-dimensional distributions of the form

ℙ(X(t1) ≤ x1,… ,X(td) ≤ xd) = exp

(
− max

i=1,…,d

exp(W(ti) −
1

2
Var[W(ti)])

xi

)
,
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ti ∈ T , xi > 0, where W is a centered Gaussian process with stationary increments on T = ℝ. The extremal
coefficients of the Brown–Resnick process can be expressed in terms of the variogram 𝛾(t) = 𝔼[(W(t)−W(0))2],
t ∈ ℝ, of the underlying Gaussian process W via the relation

𝜃t = 2Φ

(√
𝛾(t)
2

)
, t ∈ ℝ,

where Φ denotes the standard normal distribution function.
Now assume that there exists some constant C > 8 such that 𝛾(t) ≥ C log |t| for |t| being sufficiently large.

From Mill’s ratio 1 −Φ(x) ∼ x−1𝜑(x) as x → ∞ with 𝜑 being the standard normal density function, it follows
that

2 − 𝜃t = 2[1 − Φ(
√
𝛾(t)∕2)] ≤ 2[1 − Φ(

√
C log |t|∕2)]

∼ 4√
C log |t|𝜑(

√
C log |t|∕2) =

2
√

2√
𝜋C log |t| |t|−C∕8, |t| → ∞,

is integrable. Thus, by Theorem 4.3, the Brown–Resnick process is SRD if

lim inf|t|→∞
𝛾(t)∕ log |t| > 8,

which is true, for instance, for any fractional Brownian motion W.
If, in contrast, the variogram 𝛾 of the underlying Gaussian process W is bounded as in the case of a stationary

process, we obtain that supt∈T 𝜃t < 2. Thus, analogously to the case of the extremal Gaussian process, the
Brown-Resnick process can be shown to be LRD.

Note that these conditions also appear in the literature when analyzing the existence of a mixed moving
maxima (M3) representation of a Brown-Resnick process: In Kabluchko et al. (2009), it is shown that a M3
representation exists if lim inf|t|→∞ 𝛾(t)∕ log |t| > 8. In case of a bounded variogram, however, the resulting
Brown-Resnick is not even mixing. As sufficient and necessary conditions for the existence of a M3 represen-
tation are stated in terms of the asymptotic behavior of the sample paths of the underlying Gaussian process
rather than in terms of its variogram (cf. Wang and Stoev, 2010; Dombry and Kabluchko, 2017, for instance),
to the best of our knowledge, there is no general treatment of the gap between these two cases. Similarly, for
SRD/LRD, a detailed analysis of further cases is beyond the scope of this article.

Remark 4.5. Using known dependency properties allows to avoid complex calculation such that no restrictions
on the index set T are required. In particular, all the results are also valid for max-stable random fields, that is, the
case that T ⊂ ℝd.

5. APPLICATION TO DATA

We want to motivate our theoretical results by showing their applicability to real world data. To do so, let us
consider the daily log-returns of the Intel corporation share from March 3, 2013 to August 21, 2017 depicted in
Figure 1. Preliminary analysis has shown that the marginal distribution of these log-returns fits reasonably well to
that of a symmetric 𝛼-stable distribution with estimated index of stability �̂� = 1.56 and scale parameter �̂� = 0.0072
as depicted in Figure 2. For simplicity, here we use the simple and consistent estimation procedure proposed by
McCulloch (1986).

Furthermore, we model this time series using a linear S𝛼S process Y(t) =
∑+∞

j=−∞ ajZ(t−j), t ∈ ℤ with 𝛼 ∈ (0, 2),
as described in Definition 3.9. By Remark 3.10, we can apply our previous continuous-time results from Section 3
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Figure 1. Daily log-returns based on the opening price of the Intel corporation share from March 3, 2013 to August 21, 2017
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Figure 2. Estimated density of the log-returns (in blue) compared to the theoretical density of a symmetric 𝛼-stable distribution
with index of stability �̂� = 1.56 and scale parameter �̂� = 0.0072 (in red)

by considering a continuous-time S𝛼S moving average X with a piecewise constant kernel function and interpreting
the time series Y as X sampled at time instances t ∈ ℤ.

To do so, we estimate a continuous-time kernel function by a non-parametric approach and check the conditions
in Theorems 3.4 and 3.5. By Example 3.7, it suffices to check the condition m ∈ 𝛼∕2(ℝ) , if the estimated kernel
function exhibits power decaying tails.

However, to the best of our knowledge, there is no universally applicable non-parametric approach for ker-
nel estimation in our setting. For instance, the procedure proposed by Kampf et al. (2020) estimates the
kernel of a S𝛼S moving average under certain conditions posed on the underlying kernel function m. How-
ever, the authors of this particular article conclude that under their assumptions, m must be bounded and
m ∈ p(ℝ) for all p ∈ (1∕a,∞] where a > max{2, 1∕𝛼} which, in particular, implies that m ∈ 𝛼∕2(ℝ).
Consequently, Theorem 3.4 implies that this kernel estimation procedure is applicable in our setting only if
X is SRD.

Therefore, let us choose a simple parametric minimal contrast method based on the codifference

𝜏(t) = ‖X(0)‖𝛼c,𝛼 + ‖X(t)‖𝛼c,𝛼 − ‖X(0) − X(t)‖𝛼c,𝛼
wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 161–185 (2021)

Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12560
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Figure 3. Parametric bootstrap of 𝜏(t). Black: boxplots of 𝜏(t) based on 2000 S�̂�S time series simulated with kernel parameters
𝛿 and ĉ; blue: 𝜏(t) based on data; red: kernel function with parameters 𝛿 and ĉ (plotted as a line for better visibility)

of X(0) and X(t) as defined in Samorodnitsky and Taqqu (1994, Definition 2.10.1). Here ‖ ⋅ ‖c,𝛼 describes the
covariation norm of a S𝛼S random variable given by Samorodnitsky and Taqqu (1994, Definition 2.8.1).

We assume that the kernel function of X is causal, that is, supported on the positive half-line, and parametrized
like

m(t) =
∞∑

k=1

c
1 + k𝛿

𝟙{t ∈ [k − 1, k), t ≥ 0},

where c, 𝛿 > 0. By Example 3.7, the process X is well-defined iff 𝛿 > 1∕𝛼 and long range dependent iff 𝛿 ≤ 2∕𝛼.
By Samorodnitsky and Taqqu (1994, Example 3.6.2) we have that ‖X(0)‖𝛼c,𝛼 = ‖X(t)‖𝛼c,𝛼 = ‖m‖𝛼

𝛼
and ‖X(0) −

X(t)‖𝛼c,𝛼 = ‖m(⋅) − m(t − ⋅)‖𝛼
𝛼
. By simple calculations, we get that for all t ∈ ℕ

‖m‖𝛼
𝛼
= c𝛼

∞∑
k=1

(1 + k𝛿)−𝛼,

‖m(⋅) − m(t − ⋅)‖𝛼
𝛼
= c𝛼

( t∑
k=1

(1 + k𝛿)−𝛼 +
∞∑

k=1

|||(1 + k𝛿)−1 − (1 + (k + t)𝛿)−1|||𝛼
)
.

Note here that despite the process X being defined on the whole real line, we are only interested in sample time
points t ∈ ℕ for our data analysis. Consequently, the codifference 𝜏(t) of X(0) and X(t) writes

𝜏(t) = c𝛼
( ∞∑

k=1

(1 + k𝛿)−𝛼 +
∞∑

k=t+1

(1 + k𝛿)−𝛼 −
∞∑

k=1

|||(1 + k𝛿)−1 − (1 + (k + t)𝛿)−1|||𝛼
)
. (26)

By Samorodnitsky and Taqqu (1994, Prop. 2.8.2) it holds that ‖X(t)‖𝛼c,𝛼 = 𝜎 and ‖X(0) − X(t)‖𝛼c,𝛼 = 𝜎t for all
t ∈ ℕ where 𝜎 and 𝜎t are the scale parameters of X(0) and X(0) − X(t) respectively. We compare the theoretical
quantity (26) to

𝜏(t) = 2�̂� − 𝜎t
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where �̂� and 𝜎t are estimators of 𝜎 and 𝜎t respectively. Again, we use the approach proposed by McCulloch (1986)
to estimate 𝜎. When estimating 𝜎t, we do the same based on computed observations X(i)−X(i+ t), i = 1,… , n− t,
where n denotes the length of the original sample.

Now, let us estimate the parameters 𝛿 and c by minimizing the 2-distance of 𝜏 and 𝜏 based on the first 25
time instances. We choose this value based on the computation costs of a higher threshold and on the fact that this
value has proven useful in simulation studies as part of the preliminary analysis. Using our procedure, we estimate
𝛿 = 1.0474 and ĉ = 0.0019. To validate our estimation, we ran a parametric bootstrap and simulated 1000 S�̂�S
time series with kernel parameters 𝛿 and ĉ to get a grasp on the variance of 𝜏 in our chosen model. The results
of our parametric bootstrap are depicted in Figure 3. It shows that despite some discrepancies with regard to the
empirically computed 𝜏, which is to be expected in real data, our model exhibits a reasonable fit for the data set.

Notice that, due to the empirical estimation of the scale parameters 𝜎 and 𝜎t, it happens that 𝜏(t) < 0 for some
t > 0, which is impossible for the theoretical codifference 𝜏. This, however, does not substantially affect the
quality of the fit of 𝜏 to 𝜏. By the same parametric bootstrap we find the standard deviations of 0.1802 for 𝛿 and
0.0005 for c. It holds that 𝛿 = 1.0474 < 2∕𝛼 = 1.2821 which implies by Example 3.7 that the log-returns of Intel
Corporation are long range dependent.
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APPENDIX A.

Lemma A.1. Suppose U and V are identically distributed random variables with marginal characteristic function
𝜑U and joint characteristic function 𝜑UV . Also, let U′ and V ′ be independent copies of U and V respectively. Then,
for a Fourier transform of a finite measure 𝜇 denoted by 𝜓 ∶ ℝ → ℂ, 𝜓(s) = ∫ℝ exp{isx}𝜇(dx) it holds that

𝔼∫ℝ ∫ℝ
f̂a(s1, s2)𝜓(s1)𝜓(s2) ds1 ds2 = ∫ℝ ∫ℝ

𝔼f̂a(s1, s2)𝜓(s1)𝜓(s2) ds1 ds2,

where f̂a(s1, s2) = ∫ℝ ∫ℝ ei(s1u+s2v)fa(u, v) du dv, a > 0 and

fa(u, v) = 𝟙
{

U > u > −a,V > v > −a
}
− 𝟙

{
U′ > u > −a,V ′ > v > −a

}
.

Proof. Let us define ga(s1, s2) = f̂a(s1, s2)𝟙{s1, s2 ∈ (−r, r)} for r > 0 and denote

ar = ∫ℝ ∫ℝ
ga(s1, s2)𝜓(s1)𝜓(s2) ds1 ds2 = ∫ℝ ∫ℝ

ĝa(s1, s2) 𝜇(s1)𝜇(s2),

where we have used (Schilling, 2017, Theorem 19.12) in the last equality and ĝa is the inverse Fourier transform
of ga. It can be computed by tedious, yet simple calculations as

ĝa(s1, s2) =
(
∫

r

−r

e−is1x

ix

(
eixU − e−ixa

)
dx

)(
∫

r

−r

e−is2y

iy

(
eiyV − e−iya

)
dy

)
−
(
∫

r

−r

e−is1x

ix

(
eixU′ − e−ixa

)
dx

)(
∫

r

−r

e−is2y

iy

(
eiyV ′ − e−iya

)
dy

)
. (A.1)

Computing one of these factors gives us

∫
r

−r

e−is1x

ix

(
eixU − e−ixa

)
dx = ∫

r

−r ∫
U

−a

e−is1xeixt dt dx = ∫
U

−a ∫
r

−r

eix(t−s1) dx dt

= 2∫
r(a−s1)

r(U−s1)

1
t

eit − e−it

2i
dt = 2∫

r(a−s1)

r(U−s1)

sin t
t

dt < C

for some finite constant C > 0 which is independent of U, V and r. This constant exists because the function
Si(x) = ∫ x

0
sin t

t
dt is bounded. Thus, |ĝa(s1, s2)| ≤ 2C2 for all s1, s2 ∈ ℝ by equality (A.1) and |ar| ≤ 2C2𝜇2(ℝ).

Therefore, we can apply the dominated convergence theorem and 𝔼[limr→∞ ar] = limr→∞ 𝔼[ar].
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Lemma A.2. (a) Suppose a, b ∈ ℝ and 𝛼 ∈ (0, 2). Then it holds that

||||a|𝛼 + |b|𝛼 − |a − b|𝛼||| ≤ 2|a|𝛼∕2|b|𝛼∕2.

(b) Suppose a, b ≥ 0 and 𝛼 ≥ 0, then |a − b|𝛼 ≤ a𝛼 + b𝛼 .
(c) Let 𝛼 > 0, a ≥ 0, b ≥ 0, then

∫
1

0 ∫
1

0

(as1 + bs2)𝛼 − |as1 − bs2|𝛼
s1s2

ds1ds2 ≥ C𝛼 (a𝛼 ∧ b𝛼) , (A.2)

where C𝛼 =
2

𝛼
∫ 1

0
(1+u)𝛼−(1−u)𝛼

u
du ≥ 4(2𝛼−1)

𝛼(𝛼+1)
.

Proof. (a) Recall that the covariance function of a fractional Brownian motion BH = {BH
t , t ∈ ℝ} with Hurst

index H ∈ (0, 1) equals

𝔼[BH
t BH

s ] =
1
2
(|t|2H + |s|2H − |t − s|2H), (A.3)

where s, t ∈ ℝ. Using the Cauchy-Schwarz inequality we have that

|𝔼[BH
t BH

s ]|2 ≤ 𝔼[(BH
t )

2]𝔼[(BH
s )

2] = |t|2H|s|2H . (A.4)

Denoting 𝛼 = 2H and combining (A.3) and (A.4) we get
|||| 1

2
(|t|𝛼 + |s|𝛼 − |t − s|𝛼)||||

2 ≤ |t|𝛼|s|𝛼, or, equivalently,|||||t|𝛼 + |s|𝛼 − |t − s|𝛼|||| ≤ 2|t|𝛼∕2|s|𝛼∕2.

(b) Suppose a < b, then

a𝛼 + b𝛼 − |a − b|𝛼 = a𝛼 + b𝛼 − (b − a)𝛼 ≥ a𝛼 + b𝛼 − b𝛼 = a𝛼 ≥ 0.

The claim follows analogously if a ≥ b.
(c) For simplicity, consider the case 0 < a < b. After the change of variable, the integral in (A.2) rewrites

∫
a

0 ∫
b

0

(z2 + z1)𝛼 − |z1 − z2|𝛼
z1z2

dz1dz2 = 2∫ ∫0≤z1≤z2≤a

(z2 + z1)𝛼 − (z2 − z1)𝛼

z1z2

dz1dz2

+ ∫
a

0 ∫
b

a

(z2 + z1)𝛼 − (z2 − z1)𝛼

z1z2

dz2dz1 ≥ 2∫
a

0

[
∫

z2

0

(z2 + z1)𝛼 − (z2 − z1)𝛼

z1

dz1

]
dz2

z2

= 2∫
a

0
z𝛼−1

2 dz2

[
∫

1

0

(1 + u)𝛼 − (1 − u)𝛼

u
du

]
= C𝛼a𝛼. (A.5)

Lemma A.3. Let X = {X(t), t ∈ ℝ} be a S𝛼S moving average process with parameter 𝛼 ∈ (0, 2), nonnegative
kernel function m ∈ 𝛼(ℝ), m(x) > 0 on a set of positive Lebesgue measure and 𝛼−spectral covariance 𝜌t. Let 𝜑
and 𝜑t, t ∈ ℝ, be the characteristic functions given in (12) and (13). Then,

I1 = ∫ℝ+
∫ℝ+

|𝜑t(s1,−s2) − 𝜑(s1)𝜑(s2)|
s1s2

ds1 ds2 ≤ 8𝜋
𝛼2‖m‖2𝛼

𝛼

𝜌t√‖m‖2𝛼
𝛼
− 𝜌2

t

, (A.6)
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I2 = ∫ℝ+
∫ℝ+

|𝜑t(s1, s2) − 𝜑(s1)𝜑(s2)|
s1s2

ds1 ds2 ≤ 8𝜋
𝛼2‖m‖2𝛼

𝛼

𝜌t√‖m‖2𝛼
𝛼
− 𝜌2

t

. (A.7)

Proof. First, compute for 𝛼 ∈ (0, 2) the absolute value of the difference of characteristic functions in I1 for any
s1, s2 > 0:

|𝜑t(s1,−s2) − 𝜑(s1)𝜑(s2)| = 𝜑t(s1,−s2) ⋅
||||1 −

𝜑(s1)𝜑(s2)
𝜑t(s1,−s2)

||||
= 𝜑t(s1,−s2) ⋅

||||1 − exp

{
− ∫ℝ

( |s1m(−x)|𝛼 + |s2m(t − x)|𝛼 − |s1m(−x) − s2m(t − x)|𝛼
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0 by Lemma A.2(b)

)
dx

}||||
≤ 𝜑t(s1,−s2) ⋅ ∫ℝ

(|s1m(−x)|𝛼 + |s2m(t − x)|𝛼 − |s1m(−x) − s2m(t − x)|𝛼) dx(
by using |e−x − 1| ≤ x for all x ≥ 0

)
≤ 𝜑t(s1,−s2) ⋅ 2s𝛼∕2

1 s𝛼∕2
2 ∫ℝ

m𝛼∕2(−x)m𝛼∕2(t − x) dx, (A.8)

where we have used Lemma A.2(a) in the last inequality.
Similarly, we compute |𝜑t(s1, s2) − 𝜑(s1)𝜑(s2)| for the case 𝛼 ∈ (1, 2) as

|𝜑t(s1, s2) − 𝜑(s1)𝜑(s2)|
= 𝜑(s1)𝜑(s2) ⋅

|||| 𝜑t(s1, s2)
𝜑(s1)𝜑(s2)

− 1
||||

= 𝜑(s1)𝜑(s2) ⋅
|||| exp

{
− ∫ℝ

( |s1m(−x) + s2m(t − x)|𝛼 − |s1m(−x)|𝛼 − |s2m(t − x)|𝛼
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0 since 𝛼>1

)
dx

}
− 1

||||
≤ 𝜑(s1)𝜑(s2) ⋅ ∫ℝ

(|s1m(−x) + s2m(t − x)|𝛼 − |s1m(−x)|𝛼 − |s2m(t − x)|𝛼) dx

≤ 𝜑(s1)𝜑(s2) ⋅ 2s𝛼∕2
1 s𝛼∕2

2 ∫ℝ
m𝛼∕2(−x)m𝛼∕2(t − x) dx

≤ 𝜑t(s1,−s2) ⋅ 2s𝛼∕2
1 s𝛼∕2

2 ∫ℝ
m𝛼∕2(−x)m𝛼∕2(t − x) dx, (A.9)

where, again, we have used Lemma A.2(a) in the last inequality. Using the same arguments, we get for the case
𝛼 ∈ (0, 1) that

|𝜑t(s1, s2) − 𝜑(s1)𝜑(s2)| = 𝜑t(s1, s2) ⋅
||||1 −

𝜑(s1)𝜑(s2)
𝜑t(s1, s2)

||||
= 𝜑t(s1, s2) ⋅

||||1 − exp

{
− ∫ℝ

( |s1m(−x)|𝛼 + |s2m(t − x)|𝛼 − |s1m(−x) + s2m(t − x)|𝛼
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0 since 𝛼<1

)
dx

}||||
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≤ 𝜑t(s1, s2) ⋅ 2s𝛼∕2
1 s𝛼∕2

2 ∫ℝ
m𝛼∕2(−x)m𝛼∕2(t − x) dx

≤ 𝜑t(s1,−s2) ⋅ 2s𝛼∕2
1 s𝛼∕2

2 ∫ℝ
m𝛼∕2(−x)m𝛼∕2(t − x) dx, (A.10)

Now, plugging the estimates (A.8), (A.9) and (A.10) into I1 and I2 we get

I1, I2 ≤ 2

(
∫ℝ+

∫ℝ+

𝜑t(s1,−s2)

s1−𝛼∕2
1 s1−𝛼∕2

2

ds1 ds2

)(
∫ℝ

m𝛼∕2(−x)m𝛼∕2(t − x) dx

)

= 2

(
∫ℝ+

∫ℝ+

𝜑t(s1,−s2)

s1−𝛼∕2
1 s1−𝛼∕2

2

ds1 ds2

)
𝜌t. (A.11)

We estimate the integral in (A.11) from above via the density of a bivariate normal law. Thus,

∫ℝ+
∫ℝ+

𝜑t(s1,−s2)

s1−𝛼∕2
1 s1−𝛼∕2

2

ds1 ds2

= ∫ℝ+
∫ℝ+

(
1

s1s2

)1−
𝛼

2
exp

{
− ∫ℝ

|s1m(−x) + (−s2)m(t − x)|𝛼 dx

}
ds1 ds2

= ∫ℝ+
∫ℝ+

(
1

s1s2

)1−
𝛼

2
exp

{
− ∫ℝ

|s1m(−x)|𝛼 dx − ∫ℝ
|(−s2)m(t − x)|𝛼 dx

+ ∫ℝ
|s1m(−x)|𝛼 + |(−s2)m(t − x)|𝛼 − |s1m(−x) + (−s2)m(t − x)|𝛼 dx

}
ds1 ds2

≤ ∫ℝ+
∫ℝ+

(
1

s1s2

)1−
𝛼

2
exp

{
− s𝛼1 ∫ℝ

m𝛼(x) dx − s𝛼2 ∫ℝ
m𝛼(x) dx

+ 2(s1s2)𝛼∕2 ∫ℝ
m𝛼∕2(−x)m𝛼∕2(t − x) dx

}
ds1 ds2

= ∫ℝ+
∫ℝ+

(
1

s1s2

)1−
𝛼

2
exp

{
− (s𝛼∕2

1 𝜎)2 − (s𝛼∕2
2 𝜎)2 + 2𝜌t(𝜎s𝛼∕2

1 )(𝜎s𝛼∕2
2 )

}
ds1 ds2, (A.12)

where we denoted

𝜎2 = 𝜌0 = ∫ℝ
m𝛼(x) dx = ‖m‖𝛼

𝛼
and 𝜌t =

𝜌t

𝜎2
= 1
𝜎2 ∫ℝ

|m(−x)m(t − x)|𝛼∕2 dx (A.13)

in the last equality. Now, we have a substitution

yi√
2(1 − 𝜌t

2)
= 𝜎s𝛼∕2

i , or si =
(

yi

𝜎
√

2(1 − 𝜌t
2)

)2∕𝛼

, i = 1, 2,
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so that

dsi =
2

𝛼
y

2

𝛼
−1

i(
𝜎
√

2(1 − 𝜌t
2)
)2∕𝛼 dyi, i = 1, 2.

Then, relation (A.12) rewrites

∫ℝ+
∫ℝ+

((
2𝜎2(1 − 𝜌t

2)
)2∕𝛼

y2∕𝛼
1 y2∕𝛼

2

)1−
𝛼

2
exp

{
−

y2
1 + y2

2 − 2𝜌ty1y2

2(1 − 𝜌t
2)

} ( 2

𝛼

)2

y
2

𝛼
−1

1 y
2

𝛼
−1

2(
2𝜎2(1 − 𝜌t

2)
)2∕𝛼 dy1 dy2

=
(
2𝜎2(1 − 𝜌t

2)
)−1

(
2
𝛼

)2

∫ℝ+
∫ℝ+

exp

{
−

y2
1 + y2

2 − 2𝜌ty1y2

2(1 − 𝜌t
2)

}
dy1 dy2

= 4𝜋
𝛼2𝜎2

(
1 − 𝜌t

2
)−1∕2

∫
∞

0 ∫
∞

0

1

2𝜋
√

1 − 𝜌t
2

exp

{
−

y2
1 + y2

2 − 2𝜌ty1y2

2(1 − 𝜌t
2)

}
ds1 ds2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤1 as a density of bivariate normal distribution

≤ 4𝜋
𝛼2𝜎2

(
1 − 𝜌t

2
)−1∕2 = 4𝜋

𝛼2‖m‖2𝛼
𝛼

(
𝜌2

0 − 𝜌
2
t

)−1∕2
<∞ for 𝜌t ≠ 𝜌0.

Now, show that
(
𝜌2

0 − 𝜌
2
t

)−1∕2
is only infinite on a null set. More specifically, we show that 𝜌t = 𝜌0 if and only if

t = 0. Recall that the Cauchy–Schwarz inequality (cf. Reed and Simon, 1981, Theorem S.3.) states that

𝜌t = ∫ℝ
m𝛼∕2(−x)m𝛼∕2(t − x) dx ≤ ∫ℝ

m𝛼(−x) dx = 𝜌0,

where equality holds if and only if there exists 𝜆t ∈ ℝ such that m𝛼∕2(−x) = 𝜆tm
𝛼∕2(t− x) a.e. In this case, relation

𝜌t = 𝜌0 yields 𝜆t = 1. Note that due to m being nonnegative, we can rewrite the condition as m(−x) = m(t− x) a.e.
or m(x) = m(x+t) a.e.; hence, m is a t-periodic function with m(x) > 0 on a set of positive Lebesgue measure which
contradicts m ∈ 𝛼(ℝ) because in that case m(x) → 0 as x → ±∞. Consequently, 𝜌t = 𝜌0 if and only if t = 0.

Proof of Theorem 3.5: Let us choose 𝜇 = 𝛿0 where 𝛿0 is the Dirac measure concentrated at zero. Obviously this
measure is finite and by Corollary 2.2 we get for t ∈ ℝ:

∫ℝ ∫ℝ
Cov(𝟙{X(0) > u}, 𝟙{X(t) > v})𝜇(du)𝜇(dv)

= 1
2𝜋2 ∫ℝ+

∫ℝ+

1
s1s2

(
𝜑t(s1,−s2) − 𝜑t(s1, s2)

)
ds1 ds2. (A.14)

We denote A = |s1m(−x) + s2m(t − x)|𝛼 and B = |s1m(−x) − s2m(t − x)|𝛼 . Then, by ex − 1 ≥ x for all x ∈ ℝ we
estimate

𝜑t(s1,−s2) − 𝜑t(s1, s2) = exp

{
− ∫ℝ

B dx

}
− exp

{
− ∫ℝ

A dx

}
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= exp

{
− ∫ℝ

A dx

}(
exp

{
∫ℝ

[A − B] dx

}
− 1

)

≥ exp

{
− ∫ℝ

A dx

}
∫ℝ

[A − B] dx. (A.15)

Thus, we obtain a lower bound for the right-hand side of (A.15):

exp

{
− ∫ℝ

|s1m(−x) + s2m(t − x)|𝛼 dx

}
× ∫ℝ

[
(s1m(−x) + s2m(t − x))𝛼 − |s1m(−x) − s2m(t − x)|𝛼] dx.

Note that for any a, b > 0, (a + b)𝛼 = ((a + b)2)𝛼∕2 ≤ 2𝛼∕2(a2 + b2)𝛼∕2 ≤ 2𝛼∕2(a𝛼 + b𝛼). Thus, for s1, s2 ∈ [0, 1]

exp

{
− ∫ℝ

|s1m(−x) + s2m(t − x)|𝛼 dx

}
≥ exp

{
− (s𝛼1 + s𝛼2)2

𝛼
2 ‖m‖𝛼

𝛼

}
≥ e−4‖m‖𝛼𝛼 .

Consequently, it holds

∫
∞

0 ∫
∞

0

1
s1s2

(
𝜑t(s1,−s2) − 𝜑t(s1, s2)

)
ds1 ds2 ≥ ∫

1

0 ∫
1

0

1
s1s2

(
𝜑t(s1,−s2) − 𝜑t(s1, s2)

)
ds1 ds2

≥∫
1

0 ∫
1

0

1
s1s2

(
exp

{
− ∫ℝ

(s1m(−x) + s2m(t − x))𝛼 dx

}

× ∫ℝ

(
(s1m(−x) + s2m(t − x))𝛼 − |s1m(−x) − s2m(t − x)|𝛼) dx

)
ds1 ds2

≥e−4‖m‖𝛼𝛼 ∫
1

0 ∫
1

0 ∫ℝ

(s1m(−x) + s2m(t − x))𝛼 − |s1m(−x) − s2m(t − x)|𝛼
s1s2

dx ds1 ds2.

Now, by Fubini’s theorem and Lemma A.2(c), this is greater or equal to

e−4‖m‖𝛼𝛼C𝛼 ∫ℝ
m𝛼(−x) ∧ m𝛼(t − x) dx.

Thus, for 𝜇 = 𝛿0 we have that

∫ℝ ∫ℝ
Cov(𝟙{X(0) > u}, 𝟙{X(t) > v})𝜇(du)𝜇(dv) ≥ c∫ℝ

(
m𝛼(−x) ∧ m𝛼(t − x)

)
dx.

Consequently, by Definition 1.2 and Fubini’s theorem, X is long range dependent if

∫ℝ ∫ℝ

(
m𝛼(−x) ∧ m𝛼(t − x)

)
dx dt = ∫ℝ ∫ℝ

(
m𝛼(−x) ∧ m𝛼(t − x)

)
dt dx

= ∫ℝ ∫ℝ

(
m𝛼(x) ∧ m𝛼(t)

)
dt dx = ∞.
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