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ORIGINAL ARTICLE

A NEW APPROACH FOR OPEN-END SEQUENTIAL CHANGE POINT
MONITORING

JOSUA GÖSMANN,a* TOBIAS KLEYa AND HOLGER DETTEa

a Fakultät für Mathematik, Ruhr-Universität Bochum, Bochum, Germany
b School of Mathematics, University of Bristol, Bristol, UK

We propose a new sequential monitoring scheme for changes in the parameters of a multivariate time series. In contrast to
procedures proposed in the literature which compare an estimator from the training sample with an estimator calculated from
the remaining data, we suggest to divide the sample at each time point after the training sample. Estimators from the sample
before and after all separation points are then continuously compared calculating a maximum of norms of their differences.
For open-end scenarios our approach yields an asymptotic level 𝛼 procedure, which is consistent under the alternative of a
change in the parameter. By means of a simulation study it is demonstrated that the new method outperforms the commonly
used procedures with respect to power and the feasibility of our approach is illustrated by analyzing two data examples.
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1. INTRODUCTION

Nowadays, nearly all fields of applications require sophisticated statistical modeling and statistical inference to
draw scientific conclusions from the observed data. In many cases, data are time dependent and the involved model
parameters or the model itself may not be necessarily stable. In such situations, it is of particular importance to
detect changes in the processed data as soon as possible and to adapt the statistical analysis accordingly. These
changes are usually called change points or structural breaks. Due to its universality, methods for change point
analysis have a vast field of possible applications – ranging from natural sciences, like biology and meteorology,
to humanities, like economics, finance, and social sciences. Since the seminal papers of Page (1954, 1955) the
problem of detecting change points in time series has received substantial attention in the statistical literature.
The contributions to this field can be roughly divided into the areas of retrospective and sequential change point
analysis.

In the retrospective case, historical data sets are examined with the aim to test for changes and identify their
position within the data. In this setup, the data are assumed to be completely available before the statistical analysis
is started (a posteriori analysis). A comprehensive overview of retrospective change point analysis can be found
in Aue and Horváth (2013). In many practical applications, however, data arrive consecutively and breaks can
occur at any new data point. In such cases, the statistical analysis for changes in the processed data has to start
immediately with the target to detect changes as soon as possible. This field of statistics is called sequential change
point detection or online change point detection.
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64 J. GÖSMANN, T. KLEY, AND H. DETTE

In the major part of the 20th century the problem of sequential change point detection was tackled using pro-
cedures, which are optimized to have a minimal detection delay but do usually not control the probability of a
false alarm (type I error). These methods are called control charts and a comprehensive review can be found in Lai
(1995, 2001). A new paradigm was then introduced by Chu et al. (1996), who use initial data sets and therefrom
employ invariance principles to also control the type I error. The methods developed under this paradigm (see
below) can again be subdivided into closed-end and open-end approaches. In closed-end scenarios monitoring is
stopped at a fixed pre-defined point of time, while in open-end scenarios monitoring can – in principle – continue
forever if no change point is detected.

In the article at hand we develop a new approach for sequential change point detection in an open-end scenario.
To be more precise let {Xt}t∈ℤ denote a d-dimensional time series and let Ft be the distribution function of the
random variable Xt at time t. We are studying monitoring procedures for detecting changes of a parameter 𝜃t =
𝜃(Ft), where 𝜃 = 𝜃(F) is a p-dimensional parameter of a distribution function F on ℝd (such as the mean, variance,
correlation, etc.). In particular, we will develop a decision rule for the hypothesis of a constant parameter, that is

H0 ∶ 𝜃1 = · · · = 𝜃m = 𝜃m+1 = 𝜃m+2 = · · · , (1.1)

against the alternative that the parameter changes (once) at some time m + k⋆ with k⋆ ≥ 1, that is

H1 ∶ ∃k⋆ ∈ ℕ ∶ 𝜃1 = · · · = 𝜃m+k⋆−1 ≠ 𝜃m+k⋆ = 𝜃m+k⋆+1 = · · · . (1.2)

In this setup, which was originally introduced by Chu et al. (1996), the first m observations are assumed to be
stable and will serve as an initial training set. The problem of sequential change point detection in the hypotheses
paradigm as pictured above has received substantial interest. Since the seminal paper of Chu et al. (1996) several
authors have worked in this area. Berkes et al. (2004) designed a detector for changes in the coefficient in the
parameters of a GARCH-process. Horváth et al. (2004), Aue et al. (2006, 2009b, 2014), and Fremdt (2015) devel-
oped methodology for detecting changes in the coefficients of a linear model, while Wied and Galeano (2013) and
Pape et al. (2016) considered sequential monitoring schemes for changes in special functionals such as the cor-
relation or variance. A MOSUM-approach was employed by Leisch et al. (2000), Horváth et al. (2008), or Chen
and Tian (2010) to monitor the mean and linear models respectively. Recently, Hoga (2017) used an 𝓁1-norm to
detect changes in the mean and variance of a multivariate time series, Kirch and Weber (2018) defined a unifying
framework for detecting changes in different parameters with the help of several statistics and Otto and Breitung
(2020) considered a Backward CUSUM, which monitors changes based on recursive residuals in a linear model.
A helpful but not exhaustive overview of different sequential procedures can be found in Section 1, in particular
Table 1, of Anatolyev and Kosenok (2018).

A common feature of all procedures in the cited literature consists in the comparison of estimators from different
subsamples of the data. To be precise, let X1,… ,Xm denote an initial training sample and X1,… ,Xm,… ,Xm+k be
the available data at time m + k. Several authors propose to investigate the differences

𝜃̂m
1 − 𝜃̂m+k

m+1, (1.3)

(in dependence of k), where 𝜃̂j
i denotes the estimator of the parameter from the sample Xi,… ,Xj. In the sequential

change point literature monitoring schemes based on the differences (1.3) are usually called (ordinary) CUSUM
procedures and have been considered by Horváth et al. (2004), Aue et al. (2006, 2009b, 2014), Schmitz and
Steinebach (2010), or Hoga (2017). Other authors suggest using a function of the differences{

𝜃̂m
1 − 𝜃̂m+k

m+j+1

}
j=0,…,k−1

(1.4)

(in dependence of k) and the corresponding procedures are usually called Page-CUSUM tests (see Fremdt, 2015;
Aue, et al. 2015; or Kirch and Weber, 2018 among others). As an alternative we propose – following ideas of Dette
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and Gösmann (2019) – a monitoring scheme based on a function of the differences{
𝜃̂

m+j
1 − 𝜃̂m+k

m+j+1

}
j=0,…,k−1

. (1.5)

A possible advantage of (1.5) over (1.3) is the screening for all potential positions of the change point, which takes
into account that the change point not necessarily comes with observation Xm+1 and so 𝜃̂m+k

m+1 maybe ‘corrupted’ by
pre-change observations. This issue is also partially addressed by (1.4), where different positions are examined
and compared with the estimator of the parameter from the training sample. We will demonstrate in Section 4 that
sequential monitoring schemes based on the differences (1.5) yield a substantial improvement in power compared
to the commonly used methods based on (1.3) and (1.4). To avoid misunderstandings, the reader should note that
a (total) comparison based on differences of the form (1.5) is typically also called a CUSUM-approach in the
retrospective change point analysis, see Aue and Horváth (2013) for a comprehensive overview of (retrospective)
change point analysis.

This article is devoted to a rigorous statistical analysis of a sequential monitoring based on the differences
defined in (1.5) in the context of an open-end scenario. In Section 2 we introduce the new procedure and develop
a corresponding asymptotic theory to obtain critical values such that monitoring can be performed at a controlled
type I error. The theory is broadly applicable to detect changes in a general parameter 𝜃 of a multivariate time
series. As all monitoring schemes in this context the method depends on a weight function and we also discuss
the choice of this function. In particular, we establish an interesting result regarding this choice and establish a
connection to corresponding ideas made by Horváth et al. (2004) and Fremdt (2015), which may also be of interest
in closed-end scenarios.

In Section 3 we discuss several special cases and demonstrate that the new methodology is applicable to detect
changes in the mean and the parameters of a linear model. We present a small simulation study in Section 4,
where we compare our approach to those developed by Horváth et al. (2004) and Fremdt (2015). In particular we
demonstrate that the monitoring scheme based on the differences (1.5) yields a test with a controlled type I error
and a smaller type II error than the procedures in the cited references. In Section 5 we illustrate our approach and
compare it to other monitoring schemes by applying it to two examples where the parameter of a linear model of
financial data is monitored around the time of the United Kingdom European Union membership referendum 2016.
Finally, all proofs are deferred to the Supporting information (Gösmann et al., 2020), in which we additionally
provide some extra simulation results and briefly discuss how our statistic can be used in closed-end scenarios.

2. ASYMPTOTIC PROPERTIES

Throughout this article let F denote a d-dimensional distribution function and 𝜃 = 𝜃(F) a p-dimensional parameter
of F. We will denote by

F̂j
i(z) =

1
j − i + 1

j∑
t=i

I{Xt ≤ z} (2.1)

the empirical distribution function of observations Xi,… ,Xj (here the inequality is understood component-wise)

and consider the canonical estimator 𝜃̂j
i = 𝜃(F̂j

i) of the parameter 𝜃 from the sample Xi,… ,Xj.
To test the hypotheses (1.1) and (1.2) in the described online setting in an open-end scenario we propose a

monitoring scheme defined by

Êm(k) = m−1∕2 k−1
max

j=0
(k − j)‖‖‖𝜃̂m+j

1 − 𝜃̂m+k
m+j+1

‖‖‖Σ̂−1
m

, (2.2)

where the statistic Σ̂m denotes an estimator of the long-run variance (LRV) matrix Σ (defined in Assumption 2.3)
and the symbol ‖v‖2

A = v⊤Av denotes a weighted norm of the vector v induced by the positive definite matrix A.

J. Time Ser. Anal. 42: 63–84 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
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66 J. GÖSMANN, T. KLEY, AND H. DETTE

The monitoring is then performed as follows. With observation Xm+k arriving, one computes Êm(k) and compares
it to an appropriate weight function, which is sometimes also called threshold function, say w. If

w(k∕m)Êm(k) > c(𝛼) (2.3)

occurs, monitoring is stopped and the null hypothesis (1.1) is rejected in favor of the alternative (1.2). If the
inequality (2.3) does not hold, monitoring is continued with the next observation Xm+k+1. We will derive the limiting
distribution of sup∞

k=1 Êm(k)w(k∕m) in Theorem 2.7 to determine the constant c(𝛼) involved in (2.3), such that the
test keeps a nominal level of 𝛼 (asymptotically as m → ∞).

Remark 2.1 The statistic (2.2) is related to a detection scheme, which was recently proposed by Dette and Gös-
mann (2019) for the closed-end case, where monitoring ends with observation mT , for some T ∈ ℕ. These authors
considered the statistic

D̂m(k) = m−3∕2 k−1
max

j=0
(m + j)(k − j)‖𝜃̂m+j

1 − 𝜃̂m+k
m+j+1‖Σ̂−1

m
, (2.4)

and showed

mT
max
k=1

w(k∕m)D̂m(k)

=⇒ max

t∈[0,T]
w(t) max

s∈[0,t]
|(s + 1)W(t + 1) − (t + 1)W(s + 1)|, (2.5)

where W denotes a p-dimensional Brownian motion and throughout this article the symbol

=⇒ denotes weak con-

vergence (in the space under consideration). (To avoid confusion, note that in Dette and Gösmann (2019) the weight

function was defined as w = 1
w

for some appropriate function w.) However, this statistic cannot be considered in

an open-end scenario for the typical weight functions considered in the literature satisfying lim supt→∞ tw(t) < ∞
(in this case the limit on the right-hand side of (2.5) would be almost surely infinite for T = ∞). As weight func-
tions satisfying lim supt→∞ t2w(t) < ∞ will cause a loss in power as indicated in an unpublished simulation study,
we propose to replace the factor (m + j) in (2.4) by the size of the initial sample m, which leads to the monitoring
scheme defined by (2.2). The remaining weight factor (k − j) is retained as it allocates smaller weights to the case
when the post-change estimator 𝜃̂m+k

m+j+1 contains greater uncertainty as j is close to k.

Remark 2.2 An essential disadvantage of closed-end scenarios as considered in Dette and Gösmann (2019) is the
problem of choosing the end-point of monitoring before the procedure is launched. This problem drops out when
open-end scenarios are employed, where monitoring can (theoretically) proceed forever if no change has been
detected. Even if the statistical problems of closed- and open-end scenarios are naturally related, the reader should
note, that the mathematical/technical access to both problem is completely different. In the closed-end case it is
usually sufficient to assume the existence of functional central limit theorems (FCLTs) as the underlying time frame
is compact (see for instance Aue et al., 2012; Wied and Galeano, 2013; Pape et al., 2016; Dette and Gösmann,
2019). To the best of the authors’ knowledge, an FCLT is insufficient in the open-end case and one commonly
assumes stronger, uniform stochastic approximations or combines an FCLT with Háyék-Réyni type inequalities
(see also Section 2, Horváth et al., 2004; Aue et al., 2009a, 2009b; Fremdt 2014, 2015; Kirch and Weber, 2018).

To discuss the asymptotic properties of our approach, we require the following notation. We denote the

non-negative reals by ℝ≥0 and define ℝ+ ∶= ℝ≥0 ⧵ {0}. The symbol
ℙ
=⇒ denotes convergence in probability. The

process {W(s)}s∈[0,∞) will represent a standard p-dimensional Brownian motion with independent components.

For a vector v ∈ ℝd, we denote by |v| = (∑d
i=1 v2

i

)1∕2
its Euclidean norm. By ⌊x⌋ for x ∈ ℝ we denote the largest

integer smaller or equal to x. For the sake of a clear distinction we will employ supn
i=1 a(i) for discrete indexing

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 63–84 (2021)
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(with integer arguments) and sup0≤x≤1 a(x) for continuous indexing (with arguments taken from the interval [0, 1]
or another subset of ℝ).

Next, we define the influence function (assuming its existence) by

 (x,F, 𝜃) = lim
𝜀↘0

𝜃
(
(1 − 𝜀)F + 𝜀𝛿x

)
− 𝜃(F)

𝜀
, (2.6)

where 𝛿x(z) = I{x ≤ z} is the distribution function of the Dirac measure at the point x ∈ ℝd and the inequality
in the indicator is again understood component-wise. We will focus on functionals that allow for an asymptotic
linearization in terms of the influence function, that is

𝜃̂
j
i − 𝜃 = 𝜃(F̂j

i) − 𝜃(F) = 1
j − i + 1

j∑
t=i

 (Xt,F, 𝜃) + Ri,j (2.7)

with asymptotically negligible remainder terms Ri,j. Finally, for the sake of readability we introduce the following
abbreviation

 t =  (Xt,Ft, 𝜃),

where Ft is again the distribution function of Xt. Under the null hypothesis (1.1) we will impose the following
assumptions on the underlying time series.

Assumption 2.3 (Approximation) The time series {Xt}t∈ℤ is (strictly) stationary, such that Ft = F for all t ∈ ℤ.
Furthermore, for each m ∈ ℕ there exist two independent, p-dimensional standard Brownian motions Wm,1 and
Wm,2, such that for some positive constant 𝜉 < 1∕2 the following approximations hold

∞
sup
k=1

1
k𝜉
||||

m+k∑
t=m+1

 t −
√
ΣWm,1(k)

|||| = ℙ(1) (2.8)

and

1
m𝜉

||||
m∑

t=1

 t −
√
ΣWm,2(m)

|||| = ℙ(1) (2.9)

as m → ∞, where Σ =
∑

t∈ℤ Cov
( 0,  t

)
∈ ℝp×p denotes the LRV matrix of the process

{ t

}
t∈ℤ, which we

assume to exist and to be non-singular.

Assumption 2.4 (Weight function) The weight function w ∶ ℝ≥0 → ℝ≥0 is of the form

w(t) = w̃(t)I{tw ≤ t ≤ Tw} (2.10)

for tw ≥ 0 and Tw ∈ ℝ+ ∪ {∞}. Further w̃ ∶ ℝ≥0 → ℝ+ is a positive continuous function and in case of Tw = ∞
it satisfies additionally

(1) lim supt→∞ tw̃(t) < ∞,

(2) 1∕w̃ is uniformly continuous on ℝ≥0.

J. Time Ser. Anal. 42: 63–84 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
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68 J. GÖSMANN, T. KLEY, AND H. DETTE

Assumption 2.5 (Linearization) The remainder terms in the linearization (2.7) satisfy

k
max
i,j=1
i<j

(j − i + 1)√
k

|Ri,j| = o(1) (2.11)

as k → ∞ with probability one.

Remark 2.6 Let us give a brief explanation on the assumptions stated above.

(i) Assumption 2.3 is a uniform invariance principle and frequently used in the (sequential) change point lit-
erature (see eg, Aue et al., 2006 or Fremdt, 2015 among others). Following the lines of Aue et al. (2006)
Assumption 2.3 can be verified by employing the multivariate strong approximation results derived by Eber-
lein (1986). This is already spelled out for augmented GARCH-processes in Lemma A.1 of Aue et al. (2006)
for the one-dimensional case. Assumption 2.3 is stronger than a functional central limit theorem (FCLT),
which is usually sufficient to work in a closed-end setup (see eg, Wied and Galeano, 2013; Pape et al., 2016;
or Dette and Gösmann, 2019). Another possible starting point to cope with open-end scenarios is an FCLT
for any fixed time horizon together combined with Háyék-Réyni-Inequalities (see eg, Kirch and Weber, 2018
or Kirch and Stoehr, 2019). As this is less frequently used in the literature, we will remain with the other
approach.

(ii) Assumption 2.4 gives restrictions on the feasible set of weight functions, which are required for the existence
of a (weak) limit derived in Theorem 2.7. The cutoffs defined in (2.10) serve only for technical purposes. By
choosing tw > 0 a delay at monitoring start is introduced, which can avoid problems with false alarms due
to instability (see also Kirch and Weber, 2018). Selecting Tw < ∞ allows to additionally cover closed-end
scenarios by our theory, which we briefly discuss in Section C of the Supporting information (Gösmann
et al., 2020). Note that in case of tw = 0 and Tw = ∞ the cutoffs disappear, such that w and w̃ coincide.

(iii) It is worth mentioning that it is also possible to define the functions w, w̃ on the smaller domain ℝ+, while
additionally demanding that limt→0 t𝛾 w̃(t) = 0 for a constant 0 ≤ 𝛾 < 1∕2. In this case, the assumption for
the remainders in (2.11) has to be replaced by

k
max
i,j=1
i<j

(j − i + 1)
k1∕2−𝛾 |Ri,j| = o(1) a.s.,

which would have the upside to allow for an unbounded weighting at zero. However, for the sake of a
transparent presentation, we use Assumption 2.4 here, as this also simplifies the technical arguments in the
proofs later on.

(iv) Assumption 2.5 is crucial for the proof of our main theorem and directly implies

∞
sup
k=1

m+k
max
i,j=1
i<j

(j − i + 1)
(m + k)1∕2

|Ri,j| = ∞
sup

k=m+1

k
max
i,j=1
i<j

(j − i + 1)
k1∕2

|Ri,j| = o(1) a.s. as m → ∞.

Note that in the location model 𝜃(F) = 𝔼F[X] we have Ri,j = 0 and (2.11) obviously holds. In general
however, Assumption 2.5 is highly non-trivial and crucially depends on the structure of the functional 𝜃 and
the time series {Xt}t∈ℤ. For a comprehensive discussion the reader is referred to Dette and Gösmann (2019),
where the estimate (2.11) has been verified for convergence in probability for different functionals including
quantiles and variance.

The following result is the main theorem of this section.

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 63–84 (2021)
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Theorem 2.7 Assume that the null hypothesis (1.1) and Assumptions 2.3–2.5 hold. If further Σ̂m is a consistent
and non-singular estimator of the LRV matrix Σ, it holds that

∞
sup
k=1

w(k∕m)Êm(k)

=⇒ sup

0≤t<∞
max
0≤s≤t

(t + 1)w(t)|||W( s
s + 1

)
− W

( t
t + 1

)|||, (2.12)

as m → ∞, where W is a p-dimensional Brownian motion with independent components and | ⋅ | denotes the
Euclidean norm.

For the sake of completeness, the reader should note that due to Assumption 2.4 the asymptotic behavior of the
weight function guarantees that the random variable on the right-hand side of (2.12) is finite (with probability one).
In light of Theorem 2.7 one can choose a constant c(𝛼), such that

ℙ
(

sup
0≤t<∞

max
0≤s≤t

(t + 1)w(t)|||W( s
s + 1

)
− W

( t
t + 1

)||| > c(𝛼)
)

≤ 𝛼. (2.13)

Note that for Theorem 2.7 we only require that Σ̂m is a consistent estimator for the LRV as m → ∞. Under both,
H0 and H1, such an estimator should be computed from the initial stable set, which prevents the estimate from
being corrupted by possible changes/breaks (see also the discussion in Section 4). In practice, the actual choice of
LRV-estimator depends on the concrete application and is crucial for the performance of the procedure. A more
extensive discussion on LRV-estimation (not only for change point problems) can be found in Andrews (1991) or
Shao and Zhang (2010).

Corollary 2.8 then states that our approach leads to a level 𝛼 detection scheme.

Corollary 2.8 Grant the assumptions of Theorem 2.7 and further let c(𝛼) satisfy inequality (2.13), then

lim sup
m→∞

ℙ
(

∞
sup
k=1

w(k∕m)Êm(k) > c(𝛼)
)

≤ 𝛼.

The limit distribution obtained in Theorem 2.7 strongly depends on the considered weight function. A special
family of functions that has received considerable attention (see Horváth et al. (2004), Fremdt, 2015; Kirch and
Weber, 2018 among many others) is given by

w𝛾 (t) = (1 + t)−1 max
{( t

1 + t

)𝛾

, 𝜀

}−1
with 0 ≤ 𝛾 < 1∕2, (2.14)

where the cutoff 𝜀 > 0 can be chosen arbitrary small in applications and only serves to reduce the assumptions and
technical arguments in the proof (see also Wied and Galeano, 2013). With these functions the limit distribution
in (2.12) can be simplified to an expression that is more easily tractable via simulations. Straightforward calcula-
tions yield that Assumption 2.4 is satisfied by the function w𝛾 and the limit distribution in Theorem 2.7 simplifies
as follows.

Corollary 2.9 For a p-dimensional Brownian motion W with independent components it holds that

sup
0≤t<∞

max
0≤s≤t

(t + 1)w𝛾 (t)
|||W( s

s + 1

)
− W

( t
t + 1

)|||

= sup

0≤t<1
max
0≤s≤t

1
max{t𝛾 , 𝜀}

|||W(t) − W(s)||| ∶= L1,𝛾 .
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Remark 2.10 The cumulative distribution function of the random variable on the right-hand side in Corollary 2.9
is hard to derive in general. However in the case of 𝛾 = 0 and dimension p = 1, an explicit formula can be obtained.
Therefor note that (if we ignore the cutoff constant 𝜀) the following identity holds with probability one

sup
0≤t<1

max
0≤s≤t

|||W(t) − W(s)||| = max
0≤t≤1

W(t) − min
0≤t≤1

W(t),

where the distribution on the right-hand side is known as the Range of a Brownian motion (see for instance Feller,
1951). Its distribution function can be found in Borodin and Salminen (1996, p. 146) and is given by

FL1,𝛾=0(x) = 1 + 8
∞∑

k=1

(−1)k ⋅ k ⋅
(
1 − Φ(kx)

)
, (2.15)

where Φ denotes the c.d.f. of a standard Gaussian random variable. A corresponding result holds for the limit
distribution in a closed-end scenario, see Section C of the Supporting information (Gösmann et al., 2020), where
an additional parameter in the distribution function is associated with the monitoring length.

For the investigation of the consistency of the monitoring scheme (2.2) we require the following assumption.

Assumption 2.11 Under the alternative H1 defined in (1.2) let

𝜃(1)m ∶= 𝜃(F1) = 𝜃(F2) = · · · = 𝜃(Fm+k∗m−1) ≠ 𝜃(2)m ∶= 𝜃(Fm+k∗m
) = 𝜃(Fm+k∗m+1) = · · · ,

where the position of the change within the monitoring data k∗m ∈ ℕ may depend on m. For the size of change
suppose that √

m|||𝜃(1)m − 𝜃(2)m
||| =⇒m→∞

∞.

Further assume that the process { t}t∈ℤ and the remainders defined in Assumption 2.5 are of the following order
before the change

1√
m + k∗m

||||
m+k∗m−1∑

t=1

 t

|||| = ℙ(1) and
√

m + k∗m|R1,m+k∗m−1| = ℙ(1). (2.16)

For the period following the change, assume that there exists a constant ca > 0 and distinct two cases:

(1) If k∗m∕m = (1), suppose that

1√
m

||||
m+k∗m+⌊cam⌋∑

t=m+k∗m

 t

|||| = ℙ(1) and
√

m|||Rm+k∗m ,m+k∗m+⌊cam⌋||| = ℙ(1) (2.17)

and for the cutoff constants in (2.10), assume that tw < k∗m∕m + ca ≤ Tw.
(2) If k∗m∕m → ∞, suppose that

1√
k∗m

||||
m+k∗m+⌊cak∗m⌋∑

t=m+k∗m

 t

|||| = ℙ(1) and
√

k∗m
|||Rm+k∗m ,m+k∗m+⌊cak∗m⌋||| = ℙ(1). (2.18)
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Assume additionally that the weight function satisfies Tw = ∞ and

lim inf
t→∞

tw̃(t) > 0. (2.19)

Remark 2.12 The assumptions stated above are substantially weaker than those used to investigate the asymptotic
properties of sup∞

k=1 w( k

m
)Êm(k) under the null hypothesis. Basically, we only assume reasonable behavior of the

time series before and after the change point and can drop the uniform approximation in Assumption 2.3 and the
uniform negligibility of the remainders in Assumption 2.5. It is easy to see, that the conditions on the sequence
 t are already satisfied if both, its phases before and after the change fulfill a central limit theorem. Finally, it
is worth mentioning that the assumptions for the change position k∗m and size |𝜃(1)m − 𝜃(2)m | are very flexible as we
allow both quantities to depend on m, where the latter can also tend to zero (sufficiently slow as m → ∞).

For early changes, that is k∗m∕m = (1), it is obvious that the change has to occur before monitoring is stopped,
where the inequality k∗m∕m ≤ Tw − ca ensures that there is enough data, such that it can actually be detected. On
the other hand, the motivation for the inequality tw < k∗m∕m + ca is slightly more technical. Roughly spoken, it
guarantees, that the time frame m+ k∗m,… ,m+ k∗m + cam, which follows the change, is not completely covered by
the weight function’s cutoff at monitoring start. For exactly this time frame we know by assertion (2.17), that the
time series still behaves reasonable.

For late changes, that is k∗m∕m → ∞, it is by Assumption 2.11 not allowed to use a cutoff (Tw < ∞) in the weight
function. Here we rely on the extra assumption in (2.19), which defines a lower bound for the growth rate of the
weight function. Heuristically, this is necessary as it guarantees, that a sufficient amount of weight is assigned even
to late time points. The reader should note that this assumption is obviously fulfilled by the standard weighting
defined in (2.14).

The next theorem yields consistency under the alternative hypothesis.

Theorem 2.13 Assume that the alternative hypothesis (1.2) and Assumptions 2.4 and 2.11 hold. If further Σ̂m is
non-singular and weakly convergent to a non-singular, deterministic matrix, it holds that

∞
sup
k=1

w(k∕m)Êm(k)
ℙ
=⇒ ∞.

Consequently, limm→∞ ℙ
(

sup∞
k=1 w(k∕m)Êm(k) > c

)
= 1 holds for any constant c ∈ ℝ.

3. SOME SPECIFIC CHANGE POINT PROBLEMS

We briefly illustrate how the theory developed in Section 2 can be employed to construct monitoring schemes for
a specific parameter of the distribution function. For the sake of brevity we restrict ourselves to the mean and the
parameters in a linear model. Other examples such as the variance or quantiles can be found in Dette and Gösmann
(2019).

3.1. Changes in the Mean

The sequential detection of changes in the mean

𝜇(F) = 𝔼F[X] = ∫
ℝd

xdF(x)
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has been extensively discussed in the literature (see Aue and Horváth, 2004; Fremdt, 2014; or Hoga, 2017 among
many others).

Is it easy to verify (and well known), that the influence function for the mean is given by

 (x,F, 𝜇) = x − 𝔼F[X],

and Assumption 2.5 and the corresponding parts of Assumption 2.11 are obviously satisfied in this case since
we have Ri,j = 0 for all i, j. For the remaining assumptions in Section 2 it now suffices that the centered time
series

{
Xt −𝔼[Xt]

}
t∈ℤ fulfills Assumption 2.3, which also implies the remaining part of Assumption 2.11 (see also

the discussion in Remark 2.6). In this situation both, Theorems 2.7 and 2.13 are valid provided that the chosen
weighting fulfills Assumption 2.4.

3.2. Changes in Linear Models

Consider the time-dependent linear model

Yt = P⊤

t 𝛽t + 𝜀t, (3.1)

where the random variables {Pt}t∈ℕ are theℝp-valued predictors, 𝛽t ∈ ℝp is a p-dimensional parameter and {𝜀t}t∈ℕ
is a centered random sequence independent of {Pt}t∈ℕ. The identification of changes in the vector of parameters in
the linear model represents the prototype problem in sequential change point detection as it has been extensively
studied in the literature (see Chu et al., 1996; Horváth et al., 2004; Aue et al., 2009b; Fremdt, 2015 among many
others).

This situation is covered by the general theory developed in Section 2. To be precise let

Xt = (P⊤

t ,Yt)⊤ ∈ ℝd, d = p + 1 and t = 1, 2,… (3.2)

be the joint vectors of predictor and response with (joint) distribution function Ft, such that the marginal
distributions of Yt and Pt are given by

Ft,Y = Ft(∞,… ,∞, ⋅) and Ft,P = Ft(⋅,… , ⋅,∞),

respectively, where we will assume that the predictor sequence is strictly stationary, that is Ft,P = FP. In a first step
we will consider the case, where the moment matrix

M ∶= 𝔼[P1P⊤

1 ] = ∫ℝd

𝜌 ⋅ 𝜌⊤dFP(𝜌)

is known (we will discuss later on why this assumption is nonrestrictive) and nonsingular. In this setup, the
parameter 𝛽t can be represented as a functional of the distribution function Ft, that is

𝛽t = 𝛽(Ft) ∶= M−1 ⋅ ∫ℝd

𝜌 ⋅ ydFt(y, 𝜌) = M−1 ⋅ 𝔼
[
PtYt

]
,

which leads to the estimators

𝛽
j
i = 𝛽(F̂j

i) =
M−1

j − i + 1

j∑
t=i

PtYt (3.3)
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from the sample (Pi,Yi),… , (Pj,Yj). To compute the influence function, let (𝜌, y) ∈ ℝp ×ℝ, then

(
(𝜌, y),Ft, 𝛽

)
= lim

𝜂↘0

𝛽
(
(1 − 𝜂)Ft + 𝜂𝛿(𝜌,y)

)
− 𝛽(Ft)

𝜂

= lim
𝜂↘0

M−1

[
(1 − 𝜂)𝔼[PtYt] + 𝜂𝜌y

𝜂

]
−

𝛽t

𝜂
= M−1

(
𝜌y − 𝔼[PtYt]

)
,

which is the influence function (for 𝛽) in the linear model stated above (see eg, Hampel et al., 1986 for a compre-
hensive discussion on influence functions). In the following, we will use the notation  t = (

Xt,Ft, 𝛽
)

again.
Note that

 t = M−1
(
PtYt − 𝔼[PtYt]

)
= M−1PtYt − 𝛽t, (3.4)

which directly gives𝔼[ t] = 0. Assuming additionally stationarity of {𝜀t}t∈N , it follows that the random sequence
{Xt}t∈ℕ is stationary under the null hypothesis. In this case, the linearization defined in (2.7) simplifies to

𝛽
j
i − 𝛽1 = 𝛽(F̂j

i) − 𝛽1 =
M−1

j − i + 1

j∑
t=i

PtYt − 𝛽1 =
1

j − i + 1

j∑
t=i

(
M−1PtYt − 𝛽t

)
= 1

j − i + 1

j∑
t=i

 t. (3.5)

Consequently, the remainders in (2.7) vanish and Assumption 2.5 is obviously satisfied. Next, note that the LRV
matrix is given by

Σ =
∑
t∈ℤ

Cov
( 0,  t

)
= M−1ΓM−1 (3.6)

with Γ =
∑

t∈ℤ Cov
(
Y0P0, YtPt

)
, which can be estimated by Σ̂m = M−1Γ̂M−1 where Γ̂ is an estimator for Γ.

Observing (3.5) it is now easy to see that in the resulting statistic Êm the matrix M cancels out, that is

Êm(k) = m−1∕2 k−1
max

j=0
(k − j)‖‖‖𝛽m+j

1 − 𝛽m+k
m+j+1

‖‖‖Σ̂−1
m

= m−1∕2 k−1
max

j=0
(k − j)‖‖‖ 1

m + j

m+j∑
t=1

YtPt −
1

k − j

m+k∑
t=m+j+1

YtPt
‖‖‖Γ̂−1

(3.7)

and for this reason it does not depend on the matrix M. We therefore obtain the following result, which describes
the asymptotic properties of the monitoring scheme based on the statistic Êm for a change in the parameter in the
linear regression model (3.1). The proof is a direct consequence of Theorems 2.7 and 2.13.

Corollary 3.1 Assume that the predictor sequence {Pt}t∈ℕ and the centered sequence {𝜀t}t∈ℕ are strictly stationary
and the second moment matrix M = 𝔼[P1P⊤

1 ] is non-singular. Further suppose that the sequences {Pt}t∈ℕ and
{𝜀t}t∈ℕ are independent and let the weight function under consideration fulfill Assumption 2.4.

(i) Under the null hypothesis H0 of no change, it follows that the sequence { t}t∈ℕ defined in (3.4) is strictly
stationary. Assume further that this sequence admits the approximation in Assumption 2.3 and that Γ̂m is a
non-singular, consistent estimator of the non-singular LRV matrix Γ defined in (3.6). Then monitoring based
on the statistic Ê in (3.7) is an asymptotic level 𝛼 procedure.
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(ii) Under the alternative hypothesis H1 suppose that the remaining parts of Assumption 2.11 are fulfilled. If further
Γ̂ is non-singular and weakly convergent to a non-singular, deterministic matrix, the monitoring based on the
statistic Ê in (3.7) is consistent.

Remark 3.2 If one replaces (the unknown) moment matrix M on the right-hand side of (3.3) by an appropriate
estimate, that is

̂̂
𝛽

j
i =

(
M̂j

i

)−1

j − i + 1

j∑
t=i

PtYt with M̂j
i =

1
j − i + 1

j∑
t=i

PtP
⊤

t ,

one obtains a modified statistic given by

̂̂Em(k) = m−1∕2 k−1
max

j=0
(k − j)‖‖‖ ̂̂

𝛽m+k
m+j+1 −

̂̂
𝛽

m+j
1

‖‖‖ ̂̂Σ−1
m

= m−1∕2 k−1
max

j=0

‖‖‖(M̂m+k
m+j+1

)−1
m+k∑

t=m+j+1

Pt

(
Yt − P⊤

t
̂̂
𝛽

m+j
1

)‖‖‖ ̂̂Σ−1
m

, (3.8)

where ̂̂Σm denotes an appropriate LRV estimator. Note that in this situation the dependence of the unknown moment
matrix M (or its estimators) cannot cancel out as observed in (3.7). The modified statistic can be reasonable to
employ if – for example – possible changes in the distribution of Pt have to be taken into account. However as (3.8)

illustrates the modified statistic ̂̂E can equivalently be written as weighted residual-based approach. This kind of
phenomena is already known in the literature, as Hušková and Koubková (2005) describe this for a similar statistic
in linear models.

4. FINITE SAMPLE PROPERTIES

We investigate the finite sample properties of our monitoring procedure and demonstrate its superiority with respect
to the available methodology. We choose the following two statistics as our benchmark

Q̂m(k) ∶=
k

m1∕2

‖‖‖𝜃̂m
1 − 𝜃̂m+k

m
‖‖‖Σ̂−1

m

,

P̂m(k) ∶=
k−1

max
j=0

k − j

m1∕2

‖‖‖𝜃̂m
1 − 𝜃̂m+k

m+j+1
‖‖‖Σ̂−1

. (4.1)

The procedure based on Q̂ was originally proposed by Horváth et al. (2004) for detecting changes in the parameters
of linear models and since then reconsidered for example by Aue et al. (2012), Wied and Galeano (2013), and
Pape et al. (2016) for the detection of changes in the CAPM-model, correlation and variances respectively. A
statistic of the type P̂ was recently proposed by Fremdt (2015) and has been already reconsidered by Kirch and
Weber (2018). In the simulation study we will restrict ourselves to the commonly used class of weight functions
w𝛾 defined in (2.14), where we set the involved, technical constant 𝜀 = 10−10 when computing the statistics. Under
the assumptions made in Section 2, it can be shown by similar arguments as given in Section A of the Supporting
information (Gösmann et al., 2020) that

∞
sup
k=1

w𝛾

( k
m

)
Q̂m(k)


=⇒ sup

0≤t<1

|W(t)|
max{t𝛾 , 𝜀}

=∶ L2,𝛾 (4.2)
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Table I. (1-𝛼)-quantiles of the distributions L1,𝛾 , L2,𝛾 , and L3,𝛾 for different choices of 𝛾 and different dimensions of the parameter.
The cutoff constant was set to 𝜀 = 0. The results for L2,𝛾 and L3,𝛾 for p = 1 are taken from Horváth et al. (2004) and Fremdt

(2015) respectively. The quantiles for L1,0 for p = 1 were computed with respect to formula (2.15).

L1,𝛾 L2,𝛾 L3,𝛾

p 𝛾 \𝛼 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

1
0 3.0233 2.4977 2.2412 2.7912 2.2365 1.9497 2.8262 2.2599 1.9914

0.25 3.1050 2.5975 2.3542 2.9445 2.3860 2.1060 2.9638 2.4296 2.1758
0.45 3.4269 2.9701 2.7398 3.3015 2.7992 2.5437 3.3817 2.9241 2.7002

2
0 3.4022 2.8943 2.6562 3.2272 2.6794 2.4008 3.2461 2.6957 2.4266

0.25 3.5279 3.0948 2.7781 3.3322 2.7981 2.5481 3.3630 2.8433 2.5911
0.45 3.8502 3.3912 3.1509 3.7010 3.2046 2.9543 3.7467 3.2966 3.0620

and

∞
sup
k=1

w𝛾

( k
m

)
P̂m(k)


=⇒ sup

0≤t<1
max
0≤s≤t

1
max{t𝛾 , 𝜀}

|||W(t) − 1 − t
1 − s

W(s)||| =∶ L3,𝛾 , (4.3)

where W denotes a p-dimensional Brownian motion. For detailed proofs (under slightly different assumptions) of
(4.2) and (4.3), the reader is relegated to Horváth et al. (2004) and Fremdt (2015), where procedures of these types
are considered in the special case of a linear model.

Recall the notation of L1,𝛾 introduced in Corollary 2.9. By (4.2), (4.3), and Corollary 2.8 the necessary critical
values for the procedures Ê, Q̂, and P̂ combined with weighting w𝛾 are given as the (1 − 𝛼)-quantiles of the
distributions L1,𝛾 , L2,𝛾 , and L3,𝛾 respectively and can easily be obtained by Monte Carlo simulations. The quantiles
are listed in Table I for dimensions p = 1 and p = 2 and have been calculated by 10,000 runs simulating the
corresponding distributions where the underlying Brownian motions have been approximated on a grid of 5000
points. In Sections 4.1 and 4.2, we will examine the finite sample properties of the three statistics for the detection
of changes in the mean and in the regression coefficients of a linear model respectively. All subsequent results
presented in these sections are based on 1000 independent simulation runs and a fixed test level of 𝛼 = 0.05.

4.1. Changes in the Mean

We will compare the finite sample properties of the procedures based on the statistics Ê, P̂, and Q̂ for changes in
the mean as outlined in Section 3.1. Here we test the null hypothesis of no change which is given by

H0 ∶ 𝜇1 = · · · = 𝜇m = 𝜇m+1 = 𝜇m+2 = · · · , (4.4)

while the alternative, that the parameter 𝜇t changes beyond the initial data set, is defined as

H1 ∶ ∃k⋆ ∈ ℕ ∶ 𝜇1 = · · · = 𝜇m+k⋆−1 ≠ 𝜇m+k⋆ = 𝜇m+k⋆+1 = · · · . (4.5)

We will consider four different data generating models, one white noise process and three autoregressive processes
with different levels of temporal dependence controlled by the AR-parameter. To be precise we consider the models

(M1) Xt = 𝜀t,
(M2) Xt = 0.1Xt−1 + 𝜀t,
(M3) Xt = 0.5Xt−1 + 𝜀t,
(M4) Xt = 0.7Xt−1 + 𝜀t,

where {𝜀t} is an i.i.d. sequence of standard Gaussian random variables. For the AR(1)-processes defined in mod-
els (M2)-(M4), we create a burn-in sample of 100 observations in the first place. To simulate the alternative
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Table II. Type I error for the open-end procedures based on Ê, Q̂, and P̂ at 5% nominal size. The size of the known stable data
was set to m = 50 (upper part), m = 100 (lower part)

(M1) (M2)

m 𝛾 Ê Q̂ P̂ Ê Q̂ P̂

50
0 4.8% 5.3% 5.3% 8.4% 8.8% 9.0%

0.25 5.0% 5.0% 5.3% 8.9% 8.4% 8.3%
0.45 4.5% 4.4% 3.9% 7.5% 7.4% 6.4%

100
0 4.1% 4.4% 4.6% 6.8% 6.3% 6.6%

0.25 5.0% 5.4% 5.6% 7.3% 6.7% 6.9%
0.45 6.0% 6.2% 5.2% 7.0% 6.4% 6.0%

Table III. Type I error for the open-end procedures based on Ê, Q̂, and P̂ at 5% nominal size. The size of the known stable
data was set to m = 100 (upper part), m = 200 (middle part) and m = 400 (lower part). In brackets we report the result of

simulations, in which the long-run variance estimator has been replaced by the true long-run variance

(M3) (M4)

m 𝛾 Ê Q̂ P̂ Ê Q̂ P̂

100
0 12.1% (3.2) 11.4% (4.5) 11.8% (4.4) 16.3% (2.9) 15.0% (4.1) 15.9% (4.0)

0.25 13.7% (3.2) 11.8% (3.8) 12.5% (3.8) 18.1% (3.1) 16.3% (3.5) 17.3% (3.5)
0.45 13.2% (2.6) 12.2% (2.8) 11.6% (2.3) 16.6% (2.1) 14.3% (2.3) 13.9% (1.8)

200
0 7.6% (3.0) 8.1% (4.0) 8.4% (4.1) 9.4% (2.6) 10.5% (3.5) 10.6% (3.5)

0.25 8.4% (3.5) 7.6% (4.0) 8.3% (4.1) 11.4% (3.0) 11.4% (3.8) 11.6% (3.8)
0.45 8.7% (3.2) 8.1% (3.2) 7.4% (2.8) 11.3% (2.6) 10.6% (2.7) 10.2% (2.4)

400
0 5.0% (2.8) 6.0% (3.5) 6.2% (3.4) 7.3% (2.6) 7.8% (3.6) 8.2% (3.4)

0.25 6.2% (3.5) 6.2% (4.0) 6.3% (4.1) 8.2% (3.1) 8.1% (3.8) 8.7% (3.6)
0.45 6.9% (3.1) 6.2% (3.3) 5.7% (2.9) 7.8% (2.9) 7.9% (2.9) 7.0% (2.6)

hypotheses, changes in the mean are added to the data, that is

X(𝛿)
t =

{
Xt if t < m + k∗,

Xt + 𝛿 if t ≥ m + k∗,

where 𝛿 = 𝔼[Xm+k∗ ] − 𝔼[Xm+k∗−1] denotes the desired change amount. For the necessary long run variance esti-
mation we employ the well-known quadratic spectral estimator (Andrews, 1991) with its implementation in the
R-package ‘sandwich’ (Zeileis, 2004). To take into account the possible appearance of changes, only the initial
stable segment X1,… ,Xm is used for this estimate. This restriction is standard in the literature (see eg, Horváth
et al., 2004; Wied and Galeano, 2013; or Dette and Gösmann, 2019 among many others), and we will briefly
discuss ideas to improve this in our outlook in Section 6. The bandwidth involved in the estimator is chosen as
log10(m) for models (M1) and (M2). To take into account the stronger temporal dependence we take a bandwidth
of log10(m4) for the models (M3) and (M4).

In Tables II and III we display the type I error for the four time series models (M1)–(M4) and different
choices of 𝛾 in the weight functions. The principal observation for Table II is, that all three statistical pro-
cedures offer a reasonable approximation of the desired nominal level of 𝛼 = 0.05 for the models (M1)
and (M2). The results for the weak dependent model (M2) are slightly worse than those for the white noise
model (M1).

In Table III it can be seen that the nominal approximation is quite imprecise for the stronger dependent models
(M3) and (M4) especially for an initial sample size of m = 100. This effect seems to be primary caused by a less
precise estimation of the LRV and the approximation improves with larger initial sample size m, such that the type
I error is considerably closer to 5% for m = 400. To support this conjecture, we also report the type I error for
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Figure 1. Power of the monitoring procedures for a change in the mean based on the statistics Ê (solid line), Q̂ (dashed line)
and P̂ (dotted line) with 𝛾 = 0 and m = 100 at 5% nominal size.

simulations, in which we used the true LRV instead of an estimate, in Table III. This demonstrates a much more
sound approximation of the desired test level of 5% for m = 100 and m = 200.

To discuss the performance under the alternative we illustrate the power of the procedures for increasing values
of the change and different change positions for models (M1) and (M2) with m = 100 in Figure 1 and for models
(M3) and (M4) with m = 200 in Figure 2. As the results are very similar we only report the choice 𝛾 = 0 here and
provide results for 𝛾 = 0.45 in the Supporting information. The basic tendency observable in Figures 1 and 2 is
concordant: While the procedures behave similar for a change close to the initial data set (first row), the method
based on Ê is clearly superior to the others the more the distance to the initial set grows. The advantage in power
is not visible for changes occurring close to the initial training set, where the other procedures perform slightly
better.

To give an example, consider the right plot of the first row in Figure 1. Here the test based on the statistic Ê
already has a power of 62.8% for a change of 𝛿 = 0.3, whereas the tests based on the statistics P̂ and Q̂ have
power of 43.7% and 42.4% respectively. The superior performance of Ê can most likely be explained by the more
accurate estimate of the pre-change parameter by 𝜃̂

m+j
1 , while the other statistics only involve the estimator 𝜃̂m

1 (see
formulae (2.2) and (4.1)).

For the sake of an appropriate understanding of our findings, the reader should be aware of the fact, that –
although we consider open-end procedures here – simulations have to be stopped eventually. Here we chose this
stopping point as 1000 (m = 50), 3000 (m = 100, m = 200), or 4000 (m = 400) observations and it is expectable
that the testing power of all procedures increases with a later stopping point. Therefore the observed superiority
of Ê refers to the type II error until the specified stopping point. The theory developed in Section 2 also cov-
ers the case with a preselected end of the monitoring period. While the statistic for monitoring is the same, the
quantile is chosen differently leading to a detector that has higher power if the change is included in the moni-
toring window and no power if the true change occurs after monitoring ends. We discuss this in the Supporting
information.
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Figure 2. Power of the monitoring procedures for a change in the mean based on the statistics Ê (solid line), Q̂ (dashed line)
and P̂ (dotted line) with 𝛾 = 0 and m = 200 at 5% nominal size.

4.2. Changes in Linear Models

We present some simulation results for the detection of changes in the linear model (3.1). We aim to detect changes
in the unknown parameter vector 𝛽t ∈ ℝp by testing the null hypothesis

H0 ∶ 𝛽1 = · · · = 𝛽m = 𝛽m+1 = 𝛽m+2 = · · · , (4.6)

against the alternative that the parameter 𝛽t changes beyond the initial data set, that is

H1 ∶ ∃k⋆ ∈ ℕ ∶ 𝛽1 = · · · = 𝛽m+k⋆−1 ≠ 𝛽m+k⋆ = 𝛽m+k⋆+1 = · · · . (4.7)

To be precise, we consider the model (3.1) with p = 2 and the following choice of predictors

(LM1) Pt = (1,
√

0.5Zt)⊤,
(LM2) Pt = (1, 1 + Gt)⊤ with Gt = 𝜎̄tZt and 𝜎̄2

t = 0.5 + 0.2Zt−1 + 0.3𝜎̄2
t−1,

where Zt denotes an i.i.d. sequence of  (0, 1) random variables in both models. The parameter vector is fixed at
𝛽t = (1, 1) under the null hypothesis and to examine the alternative hypothesis, changes are added to its second
component, that is

𝛽𝛿

t =

{
(1, 1)⊤ if t < m + k∗,

(1, 1 + 𝛿)⊤ if t ≥ m + k∗.

For both scenarios we simulated the residuals 𝜀t in model (3.1) as i.i.d.  (0, 0.5) sequences. Note that the
GARCH(1,1) model (LM2) has been already considered by Fremdt (2015). As pointed out in Section 3.2 the

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 63–84 (2021)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12555



NEW APPROACH FOR OPEN-END CHANGE POINT MONITORING 79

Table IV. Type I error for the open-end procedures based on Ê, Q̂, and P̂ at 5% nominal size. The size of the known stable data
was set to m = 100

(LM1) (LM2)

𝛾 Ê Q̂ P̂ Ê Q̂ P̂

0 6.4% 6.5% 6.7% 7.2% 6.7% 7.2%
0.25 7.6% 8.8% 9.1% 8.5% 9.6% 9.5%
0.45 12.0% 12.2% 12.1% 12.6% 12.2% 12.6%

asymptotic variance that needs to be estimated within our procedures is given by

Γ =
∑
t∈ℤ

Cov
(
P0Y0, PtYt

)
. (4.8)

We estimate this quantity based on the stable segment of observations (Y1,P1),… , (Ym,Pm) using the well-known
quadratic spectral estimator (Andrews, 1991) with its implementation in the R-package ‘sandwich’ (Zeileis, 2004).

The problem of detecting changes in the parameter of the linear model has also been addressed using partial
sums of the residuals 𝜀̂t = Yt − P⊤

t 𝛽I in statistics similar to (4.1), where 𝛽I is an initial estimate of 𝛽 computed
from the initial stable segment. We refer for instance to Chu et al. (1996), Horváth et al. (2004), who – among
many others – use statistics similar to Q̂, or Fremdt (2015), who uses a statistic similar to P̂. Our approach directly
compares estimators for the vector 𝛽t, which are derived using the general methodology introduced in Sections 2
and 3. The resulting statistics are obtained replacing 𝜃̂ by 𝛽 in (4.1). As pointed out in Remark 3.2, there is a
strong connection between methods comparing direct estimates and methods based on weighted residuals, which
was already described by Hušková and Koubková (2005). These authors, in particular, demonstrate that these
approaches exhibit power against alternatives, that the plain residual-based statistics fail to distinguish from the
null hypothesis. We also refer to Leisch et al. (2000), Hušková and Koubková (2005), and Hušková et al. (2007)
for a comparison of (plain) residual-based methods with methods using the estimators directly.

In Table IV we display the approximation of the nominal level for the three statistics with different values of
the parameter 𝛾 in the weight function, where monitoring was stopped after 1500 observations. We observe an
acceptable approximation of the nominal level 5% in the case 𝛾 = 0, while the rejection probabilities for 𝛾 = 0.25
or 𝛾 = 0.45 slightly exceed the desired level of 5%. The fact that larger values of 𝛾 ∈ [0, 1∕2) can lead to a worse
approximation of the desired type I error has also been observed by other authors (see eg, Wied and Galeano,
2013) and can be explained by a more sensitive weight function at the monitoring start if 𝛾 is chosen close to 1∕2.
Overall, the approximation is slightly better for the independent case in model (LM1).

In Figure 3 we compare the power with respect to the change amount for different change positions, where we
restrict ourselves to the case 𝛾 = 0 for the sake of brevity. The results are very similar to those provided for the
mean functional in Section 4.1. Again the monitoring scheme based on Ê outperforms the procedures based on
Q̂ and P̂, and the superiority is larger for a later change. We omit a detailed discussion and summarize that the
empirical findings have indicated superiority (w.r.t. testing power) of the monitoring scheme based on the statistic
Ê.

5. TWO APPLICATIONS

We apply our methodology alongside two competitors to monitor for changes in linear models. We discuss two
examples, related to the United Kingdom European Union membership referendum 2016. We consider the linear
model

Yt = 𝛽1P1,t + 𝛽2P2,t + 𝜀t, (5.1)

J. Time Ser. Anal. 42: 63–84 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
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Figure 3. Power of the monitoring procedures for a change in the regression parameters for the open-end procedures based on
the statistics Ê (solid line), Q̂ (dashed line) and P̂ (dotted line) with 𝛾 = 0 and m = 100 at 5% nominal size.

where Yt is a real-valued response and (P1,t,P2,t) is a two-dimensional predictor, which is a special case of the
linear model considered in Section 3.2.

Recall that our approach requires a stable segment of m observations in which no changes have yet happened.
We choose a stable segment of size m = 20 for our analysis of the data and monitor with the three detectors Ê, P̂,
and Q̂ defined in (2.2) and (4.1) respectively. More precisely, the detectors are updated for every incoming observa-
tion, namely (Yt,P1,t,P2,t), and a decision is made, by comparing the detectors with the corresponding thresholds,
whether to reject the null hypothesis and stop the procedure or to continue monitoring with the subsequent
observation. Monitoring then continues until a change has been detected by each of the three approaches.

For the next monitoring phase another m observations from the time where the last of the three detectors has
rejected are used as the next stable segment. Monitoring ends once the end of the available data is reached.

In the remaining part of this section, we present the outcomes of the previously described statistical analysis
for two data sets related to the United Kingdom (UK) European Union (EU) membership referendum, which took
place on 23 June 2016. For our analysis we chose the significance levels to be 𝛼 = 0.05 and the weight function
w0, as defined in (2.14). All data used was obtained from https://www.ariva.de on 26 March 2020.

As our first example, we consider the relation of the UK’s currency, Pound Sterling (GBP), to the Eurozone’s
currency, the Euro (EUR), and Switzerland’s currency, the Swiss franc (CHF). More precisely, we consider daily
log returns of the exchange rate of GBP to the United States dollar (USD) as a response Yt of a linear model as
described in (5.1). As predictors we now consider the log returns of EUR to USD (P1,t) and CHF to USD (P2,t).
A graphical representation of the exchange rates and associated log returns for the period from January 2016 to
December 2019 can be seen in Figure 4. The outcomes of the previously described analysis are presented visually
in the graphs. The first 20 observation (4 Jan 2016 to 29 Jan 2016, note that we only considered trading days
FXCM) were used as the stable segment for monitoring. The monitoring starts on 1 Feb 2016 and went on with
all three detectors until 17 Mar 2016 when P̂ and Q̂ reject, but Ê does not yet reject. Monitoring continues with Ê
only until 29 Mar 2019 when the first phase of monitoring ends as all three monitoring procedures have rejected
the null hypothesis. The monitoring procedure is then restarted with the 20 observations from the time of rejection
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Figure 4. Results of the analysis detailed in Section 5 applied to log returns of three foreign exchange rates. Response:
GBP/USD (top), predictors: EUR/USD (middle), and CHF/USD (bottom). Parameters used were m ∶= 20, 𝛼 = 0.05 and
𝛾 = 0. Shaded areas indicate observations that were used as the stable segment (light gray) or monitored for changes with Ê
(dark gray). Vertical blue lines indicate times the sequential procedure Ê rejected. The times the sequential procedures Ê/P̂/Q̂
stopped were: 29 Mar 2016/17 Mar 2016/17 Mar 2016 and 23 Jun 2016/23 Jun 2016/24 Jun 2016. [Color figure can be viewed

at wileyonlinelibrary.com]

(29 Mar 2016 to 25 Apr 2016) as the stable segment and monitoring continues from 26 Apr 2016 until 23 Jun
2016 (day of the UK EU referendum), when Ê and P̂ reject. After these rejections, monitoring continues for one
more day, until 24 Jun 2016, when also Q̂ rejects. Finally, the monitoring procedure is restarted with the next 20
observations (24 Jun 2016 to 21 Jul 2016) and monitoring continues until 31 Dec 2019 without rejections by any
of the three detectors. In this example, we see that the three detectors behave quite similar, as each of them rejects
twice around the time of the UK EU referendum and no further changes afterwards.

As our second example, we consider the relation of the UK’s market to that of the United States (US) and the
EU. More precisely, we consider daily log returns of the FTSE 100, a share index of the 100 companies listed on
the London Stock Exchange with the highest market capitalization, as a response Yt of the linear model described
in (5.1). As predictors we consider the log returns of two similarly constructed indices that are related to the US
and EU markets, namely the S&P 500 (P1,t) and the EuroStoxx 50 (P2,t). A graphical representation of the prices
and log returns for the period from January 2016 to December 2019 can be seen in Figure 5. The outcomes of the
previously described analysis are presented visually in the graphs. The first 20 observations (6 Jan 2016 to 1 Feb
2016) were used as the stable segment for the first phase of monitoring. The monitoring starts on 2 Feb 2016 and
on with all three detectors until 6 Feb 2017 when Ê rejects, but P̂ and Q̂ do not yet reject. Monitoring continues
with only P̂ and Q̂ until 16 Mar 2017 when the first phase of monitoring ends with P̂ and Q̂ also rejecting. In
Figure 5, the time that was only monitored by P̂ and Q̂ is not shaded in gray, because Ê has already rejected.
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Figure 5. Results of the analysis detailed in Section 5 applied to log returns of three market indices. Response: FTSE 100 (top),
predictors: S&P 500 (middle) and EuroStoxx 50 (bottom). Parameters used were m ∶= 30, 𝛼 = 0.05 and 𝛾 = 0. Shaded areas
indicate observations that were used as the stable segment (light gray) or monitored for changes with Ê (dark gray). Vertical
blue lines indicate times the sequential procedure Ê rejected. The times the sequential procedures Ê/P̂/Q̂ stopped were: 06 Feb
2016/16 Mar 2016/16 Mar 2016, 24 Apr 2017/18 Apr 2017/24 Apr 2017, 04 Dec 2018/14 Aug 2019/14 Aug 2019, and 11 Oct

2019/11 Oct 2019/did not stop. [Color figure can be viewed at wileyonlinelibrary.com]

For the second phase of monitoring the procedures are then restarted with the 20 observations from the time of
rejection (16 Mar 2016 to 7 Apr 2016) as the stable segment and monitoring continues from 10 Apr 2016 until 18
Apr 2017 when P̂ rejects. Monitoring continues with only Ê and Q̂ until 24 Apr 2017 when the second phase of
monitoring ends with P̂ and Q̂ both also rejecting.

For the third phase of monitoring the procedures are then restarted again with the 20 observations from the time
of rejection (24 Apr 2017 to 18 May 2017) as the stable segment and monitoring continues from 19 May 2017
until 4 Dec 2018 when Ê rejects. Monitoring continues with P̂ and Q̂ only until 14 Aug 2019 when the third phase
of monitoring ends with P̂ and Q̂ both also rejecting.

For the fourth and final phase of monitoring the procedures are then restarted again with the 20 observations
from the time of rejection (14 Aug 2019 to 6 Sep 2019) as the stable segment and monitoring continues from 9 Sep
2019 until 11 Oct 2019 when Ê and P̂ both reject. Monitoring continues with Q̂ only until 31 Dec 2019, the end
of the available data, without a rejection of Q̂. In this example, we see that Ê, as expected from the simulations,
is capable of detecting changes earlier after a longer period of monitoring. Only in the second period, where the
rejection happens early, this is not the case.
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6. CONCLUSION AND OUTLOOK

In this article we developed a new monitoring scheme for change point detection in a parameter of multivariate
time series which is applicable in an open-end scenario. Compared to the commonly used methods we replace the
estimator of the parameter from the initial sample X1,… ,Xm by an estimator from the sample X1,… ,Xm+j. We then
compare this estimator with the estimator from the sample Xm+j+1,… ,Xm+k for every j = 0,… , k − 1, For the new
statistic the asymptotic distribution under the null hypothesis and the consistency of a corresponding test, which
controls the type I error, are established. By considering a common class of weight functions w𝛾 defined in (2.14)
the limit reduces to an elementary distribution, for which quantiles can be obtained by straightforward Monte
Carlo simulations. Finally, we demonstrate by a comprehensive simulation study that the new monitoring scheme
is superior (in terms of testing power) to a benchmark consisting of common methods proposed in the literature.
The new statistic can also be used in closed-end scenarios, for which the same superiority in power is observed.

For a future research project it is of interest to replace Assumption 2.3 by an FCLT for any fixed time horizon
and Háyék-Réyni-inequalities, as done for instance in Kirch and Weber (2018) and Kirch and Stoehr (2019). Since
these conditions are slightly weaker, it would be a benefit to establish the results at hand under those conditions.

Another issue – particularly with regard to our simulation study in Section 4 – is that the test level approximation
depends sensitively on the efficient estimation of the LRV. The standard approach in our field, which we also
followed, is to employ only the initial set for this estimate. As the performance of this is poor for stronger dependent
models, it is logical to take a permanently updated estimate into consideration, which fits to the basic message of
this work to enhance initial estimates during monitoring. Moreover, one could tackle this problem developing a
concept of self-normalization (see Shao and Zhang, 2010), which is applicable in an open-end scenario. However,
as the discussion of both ideas is technically involved, it is beyond the scope of this article and left as a promising
subject for future research.

Finally, it is a logical next step to also characterize the asymptotic distribution for the stopping times based on
the statistic Ê defined in (2.2). Corresponding results are already known for the methods based on Q̂ and P̂, see
Aue and Horváth (2004) and Fremdt (2014) respectively.
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