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Can satellite-based weather index insurance
improve the hedging of yield risk of perennial

non-irrigated olive trees in Spain?*

Wienand Kölle , Andrea Martı́nez Salgueiro,
Matthias Buchholz and Oliver Musshoff†

Olive oil yields fluctuate strongly due to their dependence on sufficient precipitation.
An interesting option to hedge the yield risk in olive cultivation could be satellite-based
weather index insurance. Therefore, we implement index insurance as a hedging
alternative for non-irrigated olive groves using MODerate-resolution Imaging Spec-
troradiometer (MODIS) satellite data. For this purpose, we focus on the Spanish
region of Andalusia, given its importance in olive production at the international level.
We calculate three satellite indices: the Vegetation Condition Index (VCI), the
Temperature Condition Index (TCI) and the Vegetation Health Index (VHI).
Meteorological indices related to temperature and precipitation are used as bench-
marks. Firstly, we estimate the periods that have the greatest influence on the critical
vegetative phase of olives, which extends from March to September. Based on the
indices, insurance contracts are designed using a copula approach, which is then
employed to evaluate their hedging effectiveness. On average, the hedging effectiveness
of VCI-, VHI- and TCI-based weather index insurance contracts amounts to 38 per
cent, 38 per cent and 29 per cent, respectively. Moreover, VCI- and VHI-based weather
index insurance contracts outperform traditional weather index insurance contracts
based on precipitation (by 29 per cent) and temperature (by 16 per cent) indices.

Key words: copulas, olive trees, remotely sensed data, risk management, tail
dependence, weather index insurance.

1. Introduction

The effects of climate change such as droughts severely affect plantation crops
(Gunathilaka et al. 2018a). Numerous studies investigate the effect of climate
change on perennial crops such as fruit crops in the United States (Deschenes
and Kolstad 2011), viticulture in Germany (Ashenfelter and Storchmann
2010) and tea in China (Boehm et al. 2016) and Sri Lanka (Gunathilaka et al.
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2017). In perennial cropping systems production cannot be adapted to
climate change as easily as in systems with annual crops (Gunathilaka et al.
2018b). The high capital costs upfront, the frequent non-irrigated cultivation
and the long life span of plantation crops make it difficult to adapt to climate
change (Gunathilaka et al. 2018a).
Against this background, agricultural crop insurance offers the possibility

of a reduction in weather-related production risks. Indemnity-based insur-
ance is often used to insure against damage caused by frost, hail and drought,
for example. Accordingly, the indemnity payment is based on the respective
amount of damage and requires its determination, which results in relatively
high administrative costs (Collier et al. 2009). Further challenges of
indemnity-based insurance consist of problems such as moral hazard and
adverse selection (Goodwin 2001). In order to avoid such problems, weather
index insurance in agriculture is being increasingly investigated (Turvey 2001;
Leblois et al. 2014; Vedenov and Barnett 2004). In contrast to common
agricultural crop insurance, compensation payments of a weather index
insurance are based on the level of an objectively measurable index. As a
result, the indemnity payment can be derived directly from the level of the
index value, in that an indemnity payment is made if a certain threshold value
is undershot or exceeded (Skees et al. 1997). The choice of an objective index
highly correlated with crop yield is an essential prerequisite for effective
weather index insurance. Oftentimes, station-based weather data such as
accumulated temperature and precipitation are used as underlyings for
weather index insurance. As precipitation is spatially heterogeneous, the
effectiveness of insurance using station-based weather data is strongly
dependent on proximity to the reference weather station to reduce the basis
risk - meaning an insufficient correlation between index and crop yield
(Gommes and Göbel 2013). Thus, the effectiveness of station-based weather
index insurance is prone to geographical basis risk (Turvey 2001; Vedenov
and Barnett 2004). Due to their non-reliance on weather stations, remotely
sensed indices could be an effective way of reducing the basis risk of weather
index insurance (Makaudze and Miranda 2010). These indices are based on
data collected by remote sensing. With remote sensing, images are generated
by cameras on satellites or airplanes for the purpose of monitoring areas and
detecting changes in the earth’s surface. Since light is emitted or absorbed to
different degrees depending on the condition of the plant or soil, remotely
sensed images can be used to draw conclusions about the state of vegetation
(USGS 2020). As satellite indices in particular are provided almost in real
time and are available free of charge for every location worldwide (Quiring
and Ganesh 2010), satellite-based weather index insurance could be of
interest in countries where a dense network of weather stations is not
available. In this context, Ward et al. (2020) propose in their study on rice
smallholders in India the consideration of satellite indices for the purpose of
weather index insurance.
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Against the background of a challenging adaptation of plantation crops to
climate change, our study considers olive trees in Andalusia. Although olive
trees are well adapted to low precipitation in Andalusia, the variability of
olive yields has increased over the last 20 years (Quiroga and Iglesias 2009).
One possible risk management strategy is irrigation, which reduces yield
losses in olive cultivation (Lavee et al. 1990). According to Martı́nez and
Almonacid (2017), the area of irrigated olive groves in Andalusia will
continue to increase in the future as there are no attractive alternatives to
irrigation to ensure high olive yields. Therefore, without appropriate
alternatives, adequate management of the scarce resource water will become
more and more critical (Martı́nez and Almonacid 2017). Against this
background, Salazar et al. (2019) observe that for Chilean farms the risk
management tools of irrigation and insurance are used as substitutes, which
creates a negative relationship between irrigation use and participation in an
insurance program.
In order to avoid the problems associated with irrigation, the effect of

satellite-based weather index insurance on perennial crops in plantations like
olives, citrus, apples and grapevines has not yet been further investigated. For
perennial crops such as olive orchards, satellite images have so far only been
used to identify drought-induced vegetation stress (Shivers et al. 2019) and to
estimate the gross primary production (Brilli et al. 2013). So far, satellite-
based weather index insurance is offered only for grassland in Canada, Spain
and France (Vroege et al. 2019). To close this research gap, this paper will
examine satellite-based weather index insurance for non-irrigated olive trees
in Andalusia. Although the study is based on olive trees in this Spanish
region, the methodology and results could also be of interest for other
perennial plantation crops in other areas and countries. The objective of this
paper is twofold. First, we investigate in which phases of vegetation the
satellite-based vegetation health indices show the greatest relationship with
olive oil yields in Andalusia. Secondly, we investigate the potential of
satellite-based weather index insurance for hedging the yield risk of non-
irrigated olive trees. For this purpose, we also compare satellite-based and
meteorological-based weather index insurance contracts in order to be able to
make statements about the basis risk.
To the best of our knowledge, this is the first study to examine insurance in

olive cultivation, especially weather index insurance contracts. To answer the
research questions, the following remotely sensed vegetation health indices
from relatively high-resolution (250 × 250 m) MODIS satellite images are
calculated: the Vegetation Condition Index (VCI), the Temperature Condi-
tion Index (TCI) and the Vegetation Health Index (VHI). While the VCI
describes the current state of vegetation by representing the amount of green
biomass, the TCI represents the temperature conditions. In addition, the VHI
is a combined index composed of the VCI and the TCI. Other studies use
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satellite images with lower resolution for the design of satellite-based weather
index insurance with the VCI, TCI and VHI for non-perennial crops
(Bokusheva et al. 2016; Möllmann et al. 2019). Since several studies report on
the influence of extreme weather conditions on olive yields (Oteros et al. 2013;
Ozdemir 2016), we design weather index insurance contracts against extreme
weather events. For this purpose we use a copula approach for a proper and
robust estimation of yield dependence on extreme weather conditions. We
expect that the copula approach can better explain extreme yield losses, as
copulas can constitute tail dependence compared to the commonly used
correlation method, which assumes a linear relationship between index and
crop yield (Embrechts et al. 2002). The satellite-based weather index
insurance refers to the respective province level in Andalusia, since the olive
oil yields are not available at farm level but only at the aggregated province
level. However, a precise identification of olive fields and the use of relatively
high-resolution satellite data result in a very high proportion of cultivated
land per pixel of the satellite images. As a result, the satellite index values are
not distorted by other landscape elements such as mountains, lakes, forests,
etc., as in other studies with lower resolution.
The rest of the paper is structured as follows: a brief overview of challenges

in the context of weather index insurance is given in section two. Section three
describes the satellite indices, whereas section four deals with the copula
approach for the design of weather index insurance. Section five describes the
study area and data used. After the presentation of results and discussion in
sections six and seven, the paper ends with a conclusion in section eight.

2. Challenges of weather index insurance

Despite the advantages of weather index insurance over indemnity-based
insurance, weather index insurance as a financial risk management alternative
is still not very common in agriculture. In addition to the basis risk (Barnett
and Mahul 2007), the low demand for weather index insurance could also be
due to model prediction uncertainties (Bokusheva and Breustedt 2012).
In order to reduce the basis risk the use of satellite-based weather index

insurance appears to be promising. Previous studies have focused mainly on
the use of the Normalized Difference Vegetation Index (NDVI) for insurance
purposes. The NDVI reflects photosynthetic activity, vitality and density of
the plant vegetation. This index has often been suggested as an underlying for
forage insurance, given its ability to measure biomass (Chantarat et al. 2013;
Leblois et al. 2014; Miranda and Farrin 2012). In addition, Makaudze and
Miranda (2010) show that the NDVI-based weather index insurance for
maize and cotton yields can reduce basis risk compared to the commonly
used precipitation-based weather index insurance. According to Turvey and
Mclaurin (2012), the NDVI has some limitations as an underlying for weather
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index insurance, as the NDVI does not include any necessary site calibration
taking into account effects such as soil type, topography and nutrient uptake.
In order to account for differences between production sites, Kogan (1995)
developed the three satellite-based vegetation health indices VCI, TCI and
VHI. The vegetation health indices are mainly used in the agriculture sector
to predict yields and identify droughts (Kogan et al. 2003; Kogan et al. 2012;
Kogan 1998; Unganai and Kogan 1998). Bokusheva et al. (2016) use the VCI
and TCI as indices for weather index insurance and can confirm that VCI-
and TCI-based insurance contracts are suitable for insuring winter wheat
yield risk. In a German case study for winter wheat, Möllmann et al. (2019)
find that weather index insurance based on the VCI, TCI and VHI is superior
to weather index insurance based on meteorological indices in most cases.
However, model prediction uncertainties can also be a problem of weather

index insurance. The usual methods, which assume a linear relationship
between index and crop yield, have some limitations. The crop yield does not
react consistently to all possible realisations of a weather variable (Schlenker
and Roberts 2006). For example, plant reactions to increased precipitation
depend heavily on the water supply currently available. Thus, a proper
contract design is a key issue to exploit the potential of weather index
insurance (Kapphan et al. 2012). Against this background, Bokusheva et al.
(2016) and Möllmann et al. (2019) assumed that the dependence between crop
yield and a weather index chosen to reflect catastrophic weather events is
stronger and more stable under extreme observations. While Möllmann et al.
(2019) apply the Quantile Regression (QR) for this purpose, Bokusheva et al.
(2016) also use the copula approach. Consequently, a more precise
representation of the dependency structure between index and crop yield
leads to a better performance of index insurance. So farmers are confronted
with below-average situations in case of an insured event and it is therefore
relevant to include these events in insurance contracts (Conradt et al. 2015).
Therefore, we assume that the dependence between olive oil yields and
satellite indices chosen to reflect catastrophic weather events is stronger and
more stable under extreme observations. As a result, we obtain more robust
estimates of yield dependence on weather conditions, which considerably
reduces model prediction uncertainties (Bokusheva 2018).

3. Vegetation health indices

In the analysis, we calculate the three satellite indices VCI, TCI and VHI. For
the calculation of the VCI we use the Enhanced Vegetation Index (EVI)1.
Like the NDVI, the EVI is a satellite index representing the change in green
plant biomass during the vegetation period (Salem et al. 1995). The EVI
quantifies the total amount of green biomass in each pixel of a satellite image

1 We find higher correlations for the EVI with the olive oil yield than for the NDVI.
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during a given study period. Compared to NDVI, the EVI has a higher
sensitivity to regions with a high biomass. The EVI is calculated according to
the following formula:

EVI¼ 2:5
NIR�Red

NIRþ2:4Redþ1

� �
: (1)

The EVI has a stronger vegetation monitoring capability, because the canopy
background signals and the influences of the atmosphere are diminished by
the EVI calibration coefficients (Didan et al. 2015). The idea behind the index
is that in moisture-stressed, dry vegetation, a higher reflection at the Red
spectral band (Red) and a lower reflectance at near-infrared (NIR) spectral
bands is present compared to normal, non-moisture-stressed vegetation, so
that dryness is reflected in low EVI values (Spivak et al. 2008).
The VCI is calculated by normalising the EVI values using the perennial

absolute minimum and maximum values. The normalisation eliminates
effects of the natural site conditions (soil, topography, etc.) that affect the
EVI value to varying degrees. Thus, the same EVI values must be interpreted
differently depending on the ecological potential of the region. The absolute
maximum and minimum EVI values of each pixel include the extreme
weather conditions. Thus, those EVI values reflect the minimum or maximum
limitation of the yield capacity specified by the ecosystem as reference points.
Finally, the VCI indicates to what extent the respective weather conditions
exploit the ecological potential of the region (Kogan 1995). The VCI is
calculated by the minimum (EVImin) and maximum (EVImax) EVI values for
each pixel of the study period and for each satellite image with the temporal
resolution of r as follows:

VCIr¼ 100 � EVIr�EVImin

EVImax�EVImin
: (2)

The VCI is represented on a scale from 0 to 100 (Kogan 1995). Consequently,
higher VCI values indicate vital vegetation that is not characterised by
moisture stress. By contrast, dry years are characterised by a lower green
biomass and correspondingly lower VCI values, which are caused by thermal
vegetation stress due to drought. However, other factors, such as plant
diseases or insects, can also influence the amount of green biomass, but these
mainly occur as local effects, whereas drought tends to affect larger areas or
regions.
In addition, the TCI is also included in the study to identify vegetation

stress by taking temperature into account. The TCI determines the thermal
conditions of the land surface taking into account the plant coverage (Kogan
et al. 2012). The normalised TCI is calculated using Landsurface Temper-
atures (LST) values for each year and pixel of the satellite image with the
temporal resolution of r as follows:
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TCIr¼ 100 � LSTmax�LSTr

LSTmax�LSTmin
: (3)

LSTmin and LSTmax correspond to the minimum and maximum LST values
over several years (Unganai and Kogan 1998). The TCI values also range
from 0 to 100. In accordance with the VCI, low values indicate thermal
vegetation stress, whereas high values reflect favourable thermal vegetation
conditions.
Finally, the VHI is calculated from the VCI and the TCI (Bhuiyan et al.

2006). The VHIr is composed of the VCIr and TCIr with the temporal
resolution of r as follows:

VHIr¼ a �VCIrþ 1�að Þ �TCIr, (4)

a is often assumed to be 0.5, since the exact composition of the VHI from
moisture and temperature is not known (Kogan et al. 2016). In addition, we
test various a-values and determine the a-value with the highest correlation
between VHI and olive oil yield. Table S2 in the Appendix shows the
respective a-values of the provinces used to calculate the VHI.
The benchmark indices are calculated by summing the daily precipitation and
temperature values (Dalhaus and Finger 2016; Turvey 2001) in order to
obtain the same temporal resolution r as for the vegetation health indices.
The temperature sum (T) and precipitation sum (P) are calculated as follows:

Tt,c¼ ∑
x

r¼1

Tt,c
r , (5)

Pt,c¼ ∑
x

r¼1

Pt,c
r , (6)

where the corresponding year is represented by t, r indicates the temporal
resolution of the index accumulation period, c is an expression for the
respective province and x expresses the length of the index calculation period
(Jewson et al. 2005).
For the satellite indices (VCI, TCI, VHI), we use a slightly different approach
than for the meteorological indices. Since the satellite indices are given by
normalisation in the value range between 0 and 100, we use averages instead
of sums. Index SIt,c represents the average values of the satellite indices used
(Jewson et al. 2005):
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SIt,c¼ 1

x
∑
x

r¼1

SIt,cr , (7)

where SIt,cr denotes the respective satellite index for the temporal resolution r,
t corresponds to the year, c characterises the province under consideration
and x provides information on the length of the index calculation period.

4. Copula approach for the design of weather index insurance

In order to model a flexible dependence structure between crop yield and
indices, we use the copula approach for the design of weather index
insurance. For this purpose, we model the marginal distribution of the olive
oil yield as well as of the respective indices and we estimate the copula
parameters. With the resulting parameters of both the marginal distributions
and the copulas, we design the weather index contracts before determining
their hedging effectiveness.

4.1 Flexible dependence with copulas

The underlying idea beyond the concept of weather index insurance is the
payment of indemnity as soon as the weather index falls below/exceeds a
critical threshold. Numerous studies use linear regression for the design of a
weather index insurance in order to determine the relationship between the
crop yield and a weather index (Berg and Schmitz 2008; Breustedt et al. 2008;
Conradt et al. 2015). However, regression analyses contain some limited
assumptions. For example, assuming a linear dependence in the tails of a joint
distribution function of crop yield and weather index is not appropriate to
assess extreme weather influences on yield (McNeil et al. 2015). For this
reason, especially in the financial and insurance sectors, the copula method is
proposed for the representation of multivariate dependency structures.
Copulas are used to model the marginal behaviour of the random variables
separately and allow flexibility in the description and estimation of margins
(Reboredo 2011). Also in the area of agricultural economics, several studies
have already used the copula approach to design and rate weather index
insurance (Bokusheva 2011; Martı́nez Salgueiro 2019; Nguyen-Huy et al.
2018; Vedenov 2008; Woodard et al. 2011).
The copula method is based on Sklar’s theorem (Sklar 1959). Accordingly,

a copula C : 0,1½ �d! 0,1½ � exists if F1, . . .,Fd are the marginal distributions
from the joint distribution function F. This applies to all random variables d
from the vector x1, . . .,xd from R¼ �∞,∞½ � as shown below:
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F x1, . . .,xdð Þ¼C F1 x1ð Þ, . . .,Fd xdð Þð Þ: (8)

The idea behind the copula method is that through the marginal distributions
F1, . . .,Fd and the copula C information about the dependency structure can
be gained. This is done by combining the marginal distributions in a joint
distribution function (Embrechts et al. 2002).

4.2 Estimating of marginal distributions and copula parameter

In this study, we calculate the copula dependence parameter between the olive
oil yield and the respective indices for the most critical periods2 of the olive
trees’ vegetation cycle. The calculation of the copula parameters is done in
two steps. First, we calculate the parameters of the marginal distributions for
the olive oil yield and the different indices in each province by fitting different
parametric distributions. We consider the following distributions: Normal,
Log-normal, Logistic, Gamma and Weibull. The best fitting distributions for
the indices and the olive oil yield are determined by Kolmogorov–Smirnov
and Anderson–Darling tests. In the second step, we estimate the parameters
of the copula function using the Kendall’s tau estimation method (Genest
et al. 2011). We calculate the Clayton, Frank and survival Gumbel to model
dependence for the VCI, TCI, VHI and precipitation, given that the
correlation between the yield and these indices is positive. In the case of
temperature, we consider the 270 degree rotated Clayton, the Frank and the
90 degree rotated Gumbel, since the correlation of this variable to the yield is
negative. The Gaussian and Frank copula are characterised by an almost
identical dependence structure over the joint distribution function, which is
equally reinforced only in the extreme left and right tail, while the Clayton
and survival Gumbel copula have a strong dependence structure in the left
tail of the joint distribution function (Nelsen 2006). We apply the AIC
(Akaike information criterion) to find the most suitable copula to represent
the yield-index dependence structure. For a comparison, we also apply the
Gaussian copula, which assumes linear dependency.

4.3 Design of weather index insurance

For the design of the weather index insurance contracts, 1,000 simulated pairs
of olive oil yields and respective index values are generated. The simulation is

2 As in the study by Bokusheva et al. (2016), the critical phases of olive vegetation with the
greatest dependence between the respective index and the olive yields were measured by the
Spearman correlation coefficient.
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based on the distributions chosen to model the marginals and on the resulting
parameter of the most suitable copula.
In our study, we use the concept of the Marginal Expected Shortfall (MES)

to model weather index insurance contracts according to the approach
suggested by Mainik and Schaanning (2012). The MES specifies the Expected
Shortfall (ES) of the crop yield depending on a weather index, if the weather
index falls below or exceeds a certain threshold value. In our calculations, we
determine separate MES of the crop yield for each realisation of the index
value below the threshold value to set the insurance contract parameters in
the following. Consequently, in the case of a positive correlation between the
index and the yield, we focus on the expected shortfall value of the
conditional yield μ∗t,c when the weather index W falls below a certain level,
which is expressed in the following form:

μ∗t,c¼MESt,cYcjWt,c¼EðYcjWt,c≤qp Wcð ÞÞ, (9)

where E denotes the expected value, Y is the olive yield, t stands for the year,
c reflects the province, W is the index and can take the form of any of the
satellite- or meteorological-based indices considered and qp is the p-quantile,
with 0≤p≤1. Since we assume that the yield-index dependence structure is
higher when negative extreme events occur and the weather index insurance
only pays indemnities if an index falls below a certain value, we select p to be
0.3 (Bokusheva et al. 2016) when the correlation between yield and index is
positive. Accordingly, when the correlation between the index and the yield is
negative, we derive the expected shortfall value of the conditional yield μ∗t,c if
the index W exceeds a given threshold, which is expressed in the following
form:

μ∗t,c ¼MESt,cYcjWt,c¼E YcjWt,c≥q1�p Wcð Þ
� �

: (10)

The expression μ∗t,c is determined by modeling the distribution of the yield
conditional on the realisations of the considered indices. Following Jiang
(2012) and Eckernkemper (2018), in the case of a positive index-yield
correlation μ∗t,c is derived from the copula approach as follows:

μ∗t,c¼
1

p

Z1

0

qu Ycð Þ∂C u,p;θð Þ
∂u

du, (11)

where qu Ycð Þ is the quantile function, u stands for the marginal distribution of
the yield Y, p is the probability that corresponds to the p-quntile of the index
W with W≤qp Wð Þ and θ denotes the copula parameter.
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When the correlation between the index and the yield is negative, μ∗t,c is
redefined as:

μ∗t,c ¼
1

p

Z1

0

qu Ycð Þ 1�∂C u,1�p;θð Þ
∂u

� �
du: (12)

Following Bokusheva (2018), we calculate the indemnity payments and the
fair insurance premium3 with the previously computed μ∗t,c values. Concretely,
when the correlation between the index (VCI, TCI, VHI and precipitation)
and yield is positive the indemnity It,c is determined as follows:

It,c¼
K�μ∗t,c ifWt,c≤qp Wcð Þ

0 otherwise

� �
, (13)

where the strike yield K is the historical average yield.
As the correlation between yield and temperature is negative, the indemnity
for the temperature index is calculated as follows:

It,c ¼
K�μ∗t,c ifWt,c≥q1�p Wcð Þ

0 otherwise

� �
: (14)

The fair insurance premium Pc is directly calculated as the expected
indemnity value It,c from the number of observations N as follows:

Pc¼ 1

N
∑
N

t¼1

It,c: (15)

4.4 Hedging effectiveness

To assess the risk reducing potential of the insurance contracts, revenues are
compared with and without weather index insurance. For reasons of
simplification, indemnities and fair premiums are measured in units of
quantity (kg/ha) rather than monetary units. In order to convert into
monetary units, the units of quantity are simply multiplied by the price per
unit of quantity (Skees et al. 1997). Consequently, we compare the uninsured
and the resulting insured yield according to the following formula (Boku-
sheva 2018):

3 The fair insurance premium does not include any administrative costs.
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yinsuredt,c ¼ yt,cþ It,c�Pc, (16)

where yt,c is the uninsured yield, It,c indicates the indemnity payment and Pc

stands for the fair premium.
According to Vedenov and Barnett (2004), we determine the hedging
effectiveness of insurance contracts by comparing the semi-variance (SV) of
uninsured yields with the SV of insured yields. The downside risk measure
SVc is computed as follows:

SVc¼ 1

N
∑
N

t¼1

min yt,c�yc,0
� 	
 �2

, (17)

where yt,c is the insured or uninsured conditional yield at a given moment t
for the province c and yc is the uninsured average yield of the respective
province. N, which denotes the number of observations of the sample,
corresponds to the 1,000 simulated data points.

5. Study area and data

The study area of Andalusia generates 80 per cent of the Spanish olive
production and 30 per cent of the world’s olive production. Olive trees,
especially those used for oil production, are the most important crop, since
they occupy over 1.5 million hectares, about half of Andalusia’s total
agricultural area (UNESCO 2019). The study area comprises 5 of the 8
provinces of Andalusia, which is located in southern Spain. We select the
provinces of Cordoba, Granada, Jaen, Malaga and Sevilla for our study as
the area cultivated with olive trees is larger than 100,000 hectares in each of
the 5 provinces. Figure 1 reveals the locations of the non-irrigated olive fields
for each province.
The study region is characterised by heterogeneous areas with different

production and structural attributes due to prevailing differences in terms of
topography, soil and climate (see Figure S2 in the Appendix). The area
around the Guadalquivir Valley in southern and central Sevilla and central
Cordoba is a dry farming region with the main cultivation of wheat and soy
on large farms, but olive growing is also gaining in importance. The region of
southern Cordoba and central Jaen is characterised by its specialisation in
olive growing, with the main area located in the province of Jaen. The olive
cultivation ranges from high-yield lands with irrigation and intensive use of
inputs to low-yield marginal lands with water shortages, poor soil quality and
steep slopes. The mountain range of the Betic Cordilleras, which extends
mainly over Granada and southern Jaen, has a heterogeneous structure with
strong temperature fluctuations due to varying elevations and areas with low
precipitation. The soils are affected by erosion and are rather unfavourable
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for agriculture. In the climatically milder areas between the mountains there
are mainly low-yield cereal growing areas and dry farming areas with olive
trees (Massot 2016).
In general, the Mediterranean climate in Andalusia, to which the olive trees

are well adapted, is influenced by the Azores High and is therefore
characterised by hot temperatures during dry summers. The average
maximum temperature in July is 36.2 degrees Celsius, while it drops to only
14.8 degrees Celsius during the wintertime. Precipitation in Andalusia occurs
mainly between November and April. On the coast, it is particularly rainy in
November and December. The summer months are generally dry. Further-
more, the average amount of precipitation decreases continuously towards
the east coast due to the decreasing influence of the Atlantic Ocean (Climate-
Data 2019). The annual olive growing cycle can be characterised by the four
phenological phases: inflorescence development, flowering, fruit growth and
oil accumulation (see Figure S1 in the Appendix). While inflorescence
development and flowering take place mainly in March, April and May, fruit
growth is most strongly influenced in the period from May to October. The
main oil accumulation phase ranges between the months of August and
November. Between November and March, the olives are harvested,
depending on the location, the weather and the variety of olives (Alarcon

Figure 1 Fields with non-irrigated olive trees in 5 provinces of Andalusia. Source: Own
presentation according to Land Monitoring Service (2012).
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2014). Although the phenological growth stages within each culture are the
same, the time of occurrence of the respective stages depends on the olive
variety, the location and the year (Sanz-Cortes et al. 2002).
The meteorological temperature and precipitation data are provided by the

Spanish Meteorological Agency (AEMET) and by the Institute for Research
and Education for Agriculture and Fisheries (IFAPA) of Junta de Andalucı́a.
The weather stations are distributed over the respective provinces (see
Figure 1). While in Malaga the available meteorological data are measured at
9 weather stations for the years from 2000 to 2015, in Sevilla we take the data
from 19 weather stations. The aggregated weather station data used for each
province are calculated from the average of the individual weather station
values. The satellite data are recorded by a MODerate-resolution Imaging
Spectroradiometer (MODIS) installed on the Terra satellite. The MODIS
instruments measure 36 spectral bands between 0.405 and 14.385 µm in three
different spatial resolutions (250 m, 500 m and 1,000 m) (MODIS 2019). For
the calculation of the VCI, the MODIS product MOD13Q1 is selected, which
provides EVI images with a spatial resolution of 250 × 250 m in a temporal
sequence of 16 days. All images are adjusted for cloud contamination. Thus,
only pixel values with a high pixel accuracy are included in the calculations.
The LST for the TCI are obtained from the observation product MOD11A2.
Day temperatures, recorded around 12 pm, are chosen for our analyses,
because yield losses are more often a result of high daytime temperatures than
nighttime temperatures (Gibson and Mullen 1996). The temporal resolution
of the LST product amounts to 8 days while the spatial resolution is
1,000 × 1,000 m. The LST images are also adjusted for cloud contamination.
Furthermore, the pixels with an LST error of more than 4 Kelvin are
removed. To obtain the 16-day resolution of the EVI values, we aggregate the
LST values using the average of two 8 day LST images. Thus, in our
investigations the satellite indices (formula 2, 3 and 4) and the precipitation
and temperature indices (formula 5 and 6) have a temporal resolution r of
16 days.
Figure 2 shows the 16-day values of the VCI, TCI and VHI for the

province of Cordoba. The satellite indices reach their annual peaks on
average over the years 2000 to 2015 on day 1 for the TCI and VHI or on day
81 in the case of the VCI, whereas the annual lows are reached in midsummer
on day 193 for the TCI, on day 209 for the VHI or on day 225 for the VCI. It
can be seen that the TCI varies much more strongly than the VCI over the
course of the year. In addition, TCI values start to rise earlier and faster than
VCI values.
To identify the fields cultivated with olive trees, we apply the 2012

CORINE Land Cover layer, which identified the olive trees by using dual
date images from the satellites Resourcesat-1 and RapidEye, achieving a
thematic accuracy of over 85 per cent (Land Monitoring Service 2012). Since
we are using weather index insurance to investigate alternative options for
risk management, we only include non-irrigated olive tree fields in the
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calculations, so that we distinguish between irrigated and non-irrigated fields.
For this purpose we use the VCI for a high accuracy in the determination of
the non-irrigated fields, because the pixel resolution of the TCI is lower. For
the classification, we use single-date images (Ozdogan et al. 2010). Thus, the
observation date, on which the difference in the VCI values between irrigated
and non-irrigated olive areas is greatest, must be determined (Chance et al.
2017). Depending on the year, the VCI values show their annual minimum
values in the months of July and August (see Figure 2), as this is the period
with the lowest precipitation and highest temperatures (Climate-Data 2019).
Therefore, we assume that irrigation has the strongest effect on the VCI
values in this period. We chose the satellite image of day 225 from the year
2012 for the distinction, because at that time the lowest precipitation of the
entire investigation period was recorded. We set a separate threshold for each
province, which is contained in the data set and indicates the percentage of
non-irrigated olive groves in each province. Then we determine which VCI
value corresponds to the threshold quantile of the entire value range of the
VCI, so that all pixels with lower VCI values than the threshold are classified
as non-irrigated fields4. On average, 30 percent of the fields in Andalusia are
irrigated, so that depending on the province, about 70 percent of the VCI
pixel values are classified as non-irrigated fields (Massot 2016).
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Figure 2 Sixteen-day values of the VCI, TCI and VHI on average over the years 2000 to 2015
for the province of Cordoba.

4 To verify our results, we have repeated the calculations using the TCI. We find that non-
irrigated areas have a higher surface temperature than the irrigated ones due to the lack of
evaporation cooling (Wu and De Pauw 2011). We also calculated the correlations between the
precipitation and temperature values and the VCI values for the identified non-irrigated and
irrigated olive areas. The results show that the correlations between precipitation or
temperature values and the VCI values of the non-irrigated olive areas are greater than the
correlations with the VCI values of the irrigated olive areas (see Table S3 in the appendix).
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The yield data are provided by the Spanish Ministry of Agriculture,
Fisheries and Food (Ministerio de Agricultura, Pesca y Alimentación),
whereby the data set contains the average olive oil yields of all irrigated olive
trees as well as the average olive oil yields of all non-irrigated olive trees in
Cordoba, Granada, Jaen, Malaga and Sevilla. Figure 3 shows the olive yields
of the five provinces from year 2000 to year 2015. It can be observed that the
olive oil yields vary relatively strongly in the observation period.
In accordance with the yield data, the satellite and meteorological indices

are also calculated for the years 2000 to 2015. In Table S1 in the Appendix,
summary statistics of olive oil yields, satellite indices as well as precipitation
and temperature distributions are included.

6. Results

6.1 Decisive vegetation stages

The first step of our empirical investigation requires assessing the relationship
between the indices and the olive oil yields and determining the vegetation
periods with the strongest relationship. Table 1 reveals the dependency
parameters of the considered copulas.
For the different provinces and indices, we find different periods that have

the strongest relationship with the olive oil yields. It can be observed that the
differences between the provinces are greater than between the indices, so that
similar periods are found for the indices in the provinces. For Cordoba and
Sevilla, the strongest relationship for the VCI with the olive oil yield exists in
August (day 225). While we also identified August (day 241) for the TCI in
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Figure 3 Olive oil yield data from 5 provinces in Andalusia from 2000 to 2015.
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Cordoba, the months of August and September (day 241-273) are the relevant
months for the TCI in Sevilla. In the case of the VHI, the highest relationship
with the olive oil yield exists in Sevilla in August (day 241). In the months of
August and September (see Figure S1 in the Appendix), the fruits are still
growing and olive oil is assimilated. In Cordoba the strongest relationship
with the olive oil yield seems to be for the VHI during the period 113-129. In
this vegetation phase the olive trees are in bloom. In contrast, in Granada,
Jaen and Malaga, the greatest relationship between satellite indices and olive
yield already exists in March (day 65 to 81 in the year). In March, the
inflorescence development of the olive trees takes place (see Figure S1 in the
Appendix). For precipitation and temperature, the periods with the highest
dependence differ more between provinces. Nevertheless, the meteorological
indices cover similar periods from day 81 to day 241 for the respective indices.
In Cordoba and Sevilla, precipitation and temperature also seem to have the

Table 1 Copula dependency parameters between olive oil yield and the respective index of
the individual provinces

Province Days of the year Gaussian Clayton† Frank Survival Gumbel‡

VCI
Cordoba 225 0.67 1.75 5.16 1.88
Granada 81 0.59 1.33 4.16 1.67
Jaen 65–81 0.67 1.75 5.16 1.88
Malaga 65–81 0.66 1.71 5.06 1.85
Sevilla 225 0.69 1.87 5.44 1.94

TCI
Cordoba 241 0.43 0.79 2.73 1.40
Granada 81 0.63 1.53 4.64 1.76
Jaen 81 0.69 1.87 5.44 1.94
Malaga 65–81 0.35 0.58 2.12 1.29
Sevilla 241–273 0.52 1.08 3.51 1.54

VHI
Cordoba 113–129 0.63 1.53 4.64 1.76
Granada 81 0.76 2.44 6.73 2.22
Jaen 81 0.71 2.00 5.74 2.00
Malaga 65–81 0.64 1.59 4.79 1.80
Sevilla 241 0.67 1.75 5.16 1.88

Precipitation
Cordoba 161–241 0.59 1.33 4.16 1.67
Granada 81–97 0.50 1.00 3.31 1.50
Jaen 65–225 0.54 1.16 3.72 1.58
Malaga 145–161 0.27 0.43 1.62 1.21
Sevilla 193–209 0.59 1.35 4.21 1.68

Temperature
Cordoba 209 −0.28 −0.45 −1.70 −1.22
Granada 129 −0.41 −0.73 −2.55 −1.36
Jaen 129–145 −0.36 −0.61 −2.20 −1.30
Malaga 81 −0.27 −0.43 −1.62 −1.21
Sevilla 161–177 −0.45 −0.86 −2.92 −1.43

Note: †Rotated 270 degrees Clayton for temperature.
‡Rotated 90 degrees Gumbel for temperature.
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strongest relationship with olive oil yield several weeks later than in Granada,
Jaen and Malaga. For example, the temperature in Granada and Jaen has the
greatest influence on the olive yield in May, which corresponds to olive
flowering time (see Figure S1 in the Appendix), while in Cordoba (day 209)
and Sevilla (day 161–177) this was the case for the phase of fruit development.
Besides the vegetation periods, Table 1 also shows that there is a strong

relationship in the joint distributions of the considered indices and the olive
oil yields. The Gaussian parameters5 for the VCI reach values between 0.59
and 0.69, for the TCI between 0.35 and 0.69 and for the VHI between 0.63
and 0.76, depending on the province. In contrast, the parameters for
precipitation range from 0.27 to 0.59 and for temperature from −0.27 to
−0.45. Thus, on average, the relationship between the satellite indices and
olive oil yields is greater than between the meteorological indices and olive oil
yields. While the dependence strength varies least between provinces in the
case of the VCI, the TCI has the greatest differences between provinces.
Table 1 shows a similar dependence structure between the indices and the
olive oil yield across all copula kinds despite different value ranges6. Stronger
dependencies are represented by higher values of copula dependency
parameters.

6.2 Hedging effectiveness

Using the AIC criterion, we select the best fitting copula for each distribution
function of the respective index parameter and olive oil yield. The results
show that survival Gumbel copula is best suited for all indices to determine
the dependency structure between the respective index and olive oil yield.
Furthermore, we determine the hedging effectiveness for the Gaussian copula
to show the differences between a linear dependency structure and a strong
tail dependency.
For the purposes of illustration, Figure 4 shows the copula density of the

Gaussian and survival Gumbel copula for the 1,000 simulated values and a
calculated Kendall´s tau of 0.47 between the VCI und the olive oil yield in
Cordoba. The represented copula density is determined by the marginal
distributions of the VCI and the olive oil yield. Compared to the Gaussian
copula, the survival Gumbel copula has a stronger dependence in the left tail
of the joint distribution. As weather index insurance is more likely to cover
extreme weather events, the possibility to map an increased dependence in the
left tail of the joint distribution is of particular interest.
Table 2 shows the hedging effectiveness of the weather index insurance

contracts based on the different indices for each province. The results show

5 The Gaussian copula is very similar to the Spearman correlation, since the Gaussian is a
copula with linear dependencies.

6 The different copula have the following value ranges: Gaussian copula [−1, 1], Clayton
copula [ − 1, ∞) \{ 0}, Frank copula [ − ∞, ∞) \{ 0}, Gumbel copula [ 1, ∞).
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that the hedging effectiveness of the insurance contracts is positive.
Furthermore, the results confirm that the survival Gumbel copula has, in
most cases, a higher hedging effectiveness for the indices than the Gaussian
copula due to its stronger dependence in the left tail of the joint distribution
function.
The hedging effectiveness varies considerably among indices and provinces.

Using the survival Gumbel copula, VCI- and VHI-based insurance contracts
have the highest average hedging effectiveness with 38 per cent respectively.
The average hedging effectiveness for the survival Gumbel copula of the TCI-
based insurance contracts amounts to 29 per cent. VCI-, TCI- and VHI-based
insurance contracts show a considerably higher hedging effectiveness than
temperature-based insurance contracts (16 per cent). Compared to precipi-
tation-based insurance contracts (29 per cent), VCI- and VHI-based
insurance contracts have a higher hedging effectiveness. Since a higher

Figure 4 Comparison of the Gaussian and survival Gumbel copula density resulting from
1,000 simulated values and Kendall’s tau of 0.47 between the VCI and the olive oil yield in
Cordoba.

Table 2 Relative hedging effectiveness of the meteorological- and satellite-based weather
index insurance contracts

Parameter Copula Cordoba Granada Jaen Malaga Sevilla Average

VCI Gaussian 0.29 0.20 0.28 0.30 0.35 0.29
Gumbel† 0.42 0.31 0.42 0.34 0.43 0.38

TCI Gaussian 0.16 0.29 0.28 0.09 0.16 0.20
Gumbel† 0.25 0.36 0.47 0.08 0.29 0.29

VHI Gaussian 0.30 0.39 0.35 0.28 0.29 0.32
Gumbel† 0.25 0.52 0.44 0.26 0.43 0.38

Precipitation Gaussian 0.20 0.15 0.23 0.05 0.21 0.17
Gumbel† 0.35 0.28 0.31 0.09 0.41 0.29

Temperature Gaussian 0.06 0.15 0.11 0.09 0.09 0.10
Gumbel‡ 0.12 0.16 0.14 0.15 0.22 0.16

Note: †Survival Gumbel.
‡Rotated 90 degrees Gumbel.
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hedging effectiveness corresponds to a lower basis risk, our results show that
satellite-based weather index insurance contracts have a lower basis risk than
weather station-based weather index insurance contracts for the insurance of
olive yields.

7. Discussion

Although olive trees are well adapted to low precipitation, olive yields in
Andalusia are highly dependent on this meteorological variable. Our study
shows a strong relationship between olive oil yields and the satellite indices.
The results suggest that satellite-based weather index insurance contracts in
particular appear to be suitable to hedge the risk of olive oil yields.
Consequently, the hedging effectiveness of meteorological-based insurance
contracts can be exceeded by using satellite indices.
However, there are differences between the individual provinces in stages of

vegetation which are most closely linked to the olive oil yield and in the
hedging effectiveness of the individual index-based insurance contracts. The
differences may be due to the geographical situation of the provinces under
consideration. Andalusia has varied climatic conditions due to its wide
geographical area and the surface characteristics with large differences in
altitude. Thus, moist Atlantic air penetrates through the Guadalquivir valley,
which runs through Sevilla and Cordoba. Due to the low altitude (see
Figure S2 in the Appendix), a subcontinental Mediterranean climate with hot
summers prevails here (Massot 2016). In contrast, the provinces of Granada,
Jaen and Malaga are characterised by a mountainous landscape with high
altitudes. The precipitation density in Andalusia decreases from west to east
(see Table S1 in the Appendix). Furthermore, the climate becomes more
continental with rising mean altitude and increasing distance to the coast,
whereby the temperature differences become larger (Massot 2016).
The geographical location and varying topography lead to different

weather conditions in each of the provinces. The correlation between EVI and
LST values can be used to validate the suitability of vegetation health indices.
If there is a negative correlation, moisture would act as a limiting factor for
plant growth. In contrast, if there is a positive correlation between EVI and
LST values, temperature as a form of energy would become the limiting
factor which is typical in higher elevations (Karnieli et al. 2010). The
following correlations between EVI and LST values exist in our study area:
−0.66 (Cordoba), −0.37 (Granada), −0.62 (Jaen), −0.70 (Malaga) and −0.78
(Sevilla). The correlations are negative in all provinces, which indicate that
moisture is the most relevant limiting factor for the vegetation. The provinces
of Granada and Jaen have higher hedging effectiveness than Cordoba,
Malaga and Sevilla in the case of TCI-based insurance contracts. However,
the correlations between EVI and LST values show the lowest negative
correlations in Granada (−0.37) and Jaen (−0.62), indicating that water is a
less limiting factor than in the other provinces. On the contrary, the
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temperature is determined by the altitude (see Figure S2 in the Appendix) and
the higher temperature fluctuations here are due to the increase in the average
altitude in these provinces (Massot 2016). For VCI-based insurance
contracts, the province of Granada has the lowest hedging effectiveness with
31 per cent. The landscape in Granada is very mountainous and has high
altitudes (see Figure S2 in the Appendix), which reduces the vegetation.
Furthermore, the VCI is strongly correlated with the amount of precipitation
(Rojas et al. 2011). In Granada, precipitation does not limit yields as much as
in the other provinces, as the correlation between EVI and LST values is not
quite as strong at −0.37. Consequently, it can be stated that in higher
altitudes TCI-based insurance contracts are superior to VCI-based insurance
contracts. The VHI values were determined using the a-values best suited to
each province. In provinces with a higher altitude such as Granada and Jaen,
the percentage share of the TCI in the VHI is greater (see Table S2 in the
Appendix). VHI-based insurance contracts have a high hedging effectiveness
in provinces with higher altitudes, which are also affected by greater
temperature fluctuations due to their eastern location in Andalusia (Massot
2016). In Granada and Jaen, VHI-based insurance contracts have a hedging
effectiveness of 52 per cent and 44 per cent, respectively. Thus, VHI-based
insurance contracts also have considerably higher hedging effectiveness than
precipitation- and temperature-based insurance contracts in such provinces.
Nevertheless, the hedging effectiveness of satellite-based insurance con-

tracts also depends on the proportion of cultivated land per pixel of the
satellite images. Therefore, it must be mentioned that the exact location of the
olive groves is unknown. The identification of the olive fields has an accuracy
of approximately 85 per cent (Land Monitoring Service 2012). However,
utilising satellite data with a higher spatial resolution (e.g. Copernicus
satellites such as Sentinel 2) could improve the accuracy of olive field
identification. In addition, the use of satellite data with a higher spatial
resolution would lead to further reduction of basis risk of spatial resolution,
as defined by Möllmann et al. (2019), which could further increase the
hedging effectiveness of satellite-based insurance contracts.
In the case of precipitation- and temperature-based insurance contracts, no

major differences in the hedging effectiveness can be observed between the
provinces. Only in Malaga does the hedging effectiveness of precipitation-
based insurance contracts (with 9 per cent) differ strongly from the other
provinces. However, the coverage with weather stations used for the
calculation of the meteorological indices is very low in Malaga, so there
are sometimes large distances between the olive grove fields and the weather
stations (see Figure 1). Thus, the advantages of satellite indices over weather
station data are particularly pronounced in regions of the earth with a sparse
network of weather stations.
This study makes an initial proposal to hedge the high yield risk of

perennial plantation crops such as olive trees through satellite-based weather
index insurance. The study shows that satellite-based index insurance
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outperform meteorological-based index insurance and thus satellite-based
index insurance can be an effective alternative for risk management. In
Andalusia, about 70 per cent of the olive groves are not irrigated, so the
majority of the olive trees are exposed to drought. Against this background,
this study shows that satellite-based weather index insurance contracts could
offer the possibility for olive farmers to hedge the yield variability of non-
irrigated olive groves by means of indemnity payments. The focus and results
of our study are interesting not only to olive farmers but also for
policymakers. In the future, alternatives to the irrigation of olive groves in
Andalusia will be necessary, as the availability of water becomes more and
more problematic and expensive due to the intensified cultivation of irrigated
olive groves. Therefore, the political agenda for the budgetary allocations in
Spain focuses on strengthening efficient and sustainable production, main-
taining natural resources and limiting their exploitation (Martı́nez and
Almonacid 2017). However, Quiroga and Iglesias (2009) point out that the
promotion of insurance in the context of the Common Agricultural Policy
(CAP) requires better tools for quantification of climate-crop interactions. In
our study, insurance contracts calculated with the survival Gumbel copula
show higher hedging effectiveness compared to the Gaussian copula. As we
design the insurance contracts for the lower range of the underlying
vegetation health indices, it can be concluded that the relationship between
the indices and the olive oil yield is characterised by tail dependence.
Consequently, there is a particularly strong relationship between negative
weather conditions and the olive oil yield, since the survival Gumbel copula,
in contrast to the Gaussian copula, has a stronger dependence structure in the
left tail of the joint distribution function. Thus, this study is also relevant for
potential providers of weather index insurance.
Consequently, satellite-based index insurance designed against extreme

weather events could encourage farmers to abandon unsustainable practices,
as index insurance can also cover yield losses in extreme weather situations
where technological options can only counteract weather-related yield losses
to a limited extent (Bokusheva 2018).

8. Conclusion

Weather index insurance could help to hedge against extremeheat anddrought.
However, classic weather index insurance have so far hardly been applied in the
insurance sector, as the common meteorological indices rarely reflect yield due
to a high basis risk (Smith and Watts 2012). Since satellite indices are not
dependent on proximity to aweather station and are available free of charge for
any region worldwide, they could help to reduce the basis risk.
In this paper, we design weather index insurance contracts based on satellite

indices for all non-irrigated olive fields located in 5 provinces of Andalusia and
investigate whether it is possible to hedge yield risks from olive oil cultivation
with these index insurancecontracts. Inaddition to thesatellite indicesVCI,TCI

© 2020 The Authors. The Australian Journal of Agricultural and Resource Economics published by JohnWiley & Sons Australia, Ltd
on behalf of Australasian Agricultural and Resource Economics Society Inc

Satellite-based index insurance for olive trees 87



andVHI,wealsoconsiderprecipitationandtemperature indicesasbenchmarks.
We use relatively high-resolution MODIS satellite data and average olive oil
yieldsatprovincial level.Furthermore,weapplyacopulaapproachtodetermine
tail dependence between the olive oil yield and the indices.
Our results show that the relationship between the olive oil yields and the

indices considered is most pronounced for the phases of inflorescence
development, flowering, fruit growth and oil accumulation. Using the
survival Gumbel copula, the VCI- and VHI-based insurance contracts have
an average hedging effectiveness of 38 per cent and greatly outperform
temperature- and precipitation-based insurance contracts (16 per cent or 29
per cent). Moreover, with an average hedging effectiveness of 29 per cent
TCI-based insurance contracts greatly outperform temperature-based insur-
ance contracts. However, there are differences between the respective
provinces. While VCI-based insurance contracts tend to have a strong
hedging effectiveness for provinces in lower altitudes, TCI- and VHI-based
insurance contracts appear to be more suitable for provinces in mountainous
altitudes. Since higher hedging effectiveness is attributable to a lower basis
risk, we can conclude that satellite-based insurance contracts have a lower
basis risk than the meteorological-based insurance contracts.
These findings suggest that satellite-based weather index insurance can be a

risk management alternative to hedge the risk to olive oil yields. However, in
addition to regional characteristics, the effect of satellite-based weather index
insurance contracts depends strongly on the quality of satellite and yield data.
In addition to the use of satellite imagery with a higher spatial resolution,
future studies could determine the critical index calculation periods of olive
cultivation based on satellite data to take into account the annual variations
in the beginning and end of vegetation periods. For future research, less
aggregated data should serve as a basis for olive oil yields. The hedging
effectiveness of the satellite indices will presumably still improve, since there is
a natural compensation of risk within the provinces. Since the results do not
allow any conclusions to be drawn about the willingness to pay (WTP) of
farmers for such insurances, subsequent studies using farm-level yields should
also look into other economic issues such as the WTP of farmers for such
insurances at cost-covering insurance premiums for potential providers of
weather index insurance.
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Supporting Information

Additional Supporting Information may be found in the online version of this
article:

Table S1 Summary statistics of the 16-day indices (satellite indices in
percent, precipitation sum index in mm and temperature sum index in °C) for
the entire investigation period from 2000 to 2015 and olive oil yields in kg/ha.
Table S2 Spearman correlation coefficients between the VHI values

calculated with different a-values and the olive oil yield for the studied
provinces.
Table S3 Spearman correlation coefficients between the precipitation/

temperature values and the VCI values for the non-irrigated/irrigated olive
areas for the whole investigation period and the studied provinces.
Figure S1 Main phenological stages of olive tree vegetation.
Figure S2 Digital elevation model of the 5 investigated provinces of

Andalusia.
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