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Abstract

In the absence of a perfect risk adjustment scheme, reimbursing health
insurers’ costs can reduce risk selection in community-rated health insur-
ance markets. In this paper, we develop a model in which insurers determine
the cost efficiency of health care and have incentives for risk selection. We
derive the optimal cost reimbursement function which balances the incen-
tives for cost efficiency and risk selection. For health cost data from a Swiss
health insurer, we find that an optimal cost reimbursement scheme should
reimburse costs only up to a limit.
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1 Introduction

Risk selection is a major concern in community-rated health insurance markets.

Insurers have an incentive to discriminate against high risks and to attract low

risks in such markets since they are not allowed to charge risk-based premiums.

To avoid risk selection, regulators frequently impose open enrollment, define stan-

dardized benefit packages and implement risk adjustment schemes. However,

these measures may not reduce incentives for risk selection sufficiently. In this

case, reimbursing health insurers’ costs can be useful. Here regulators face a

selection-efficiency trade-off (Newhouse (1996)): Lower incentives for risk selec-

tion will be accompanied by less cost efficiency.

Although the possible benefits of cost sharing are generally recognized, there has

been little theoretical work on the characteristics of an optimal cost reimburse-

ment function. Usually cost reimbursement is regarded as a “mandatory reinsur-

ance program with regulated reinsurance premiums” (van de Ven and Ellis (2000,

p. 818)). This analogy suggests that optimal cost reimbursement is similar to an

optimal insurance contract. Here Arrow (1974) and Raviv (1979) have shown that

full or partial coverage above a deductible is optimal. For optimal cost reimburse-

ment this implies that costs should only be reimbursed above a threshold. This

outlier risk sharing (van de Ven and Ellis (2000)) is used in practice. In Ger-

many, for example, 60% of individual health care costs which exceed e 20,450

are reimbursed.

In this paper, we regard cost reimbursement as an incentive problem and not as

an insurance problem. We assume that insurers influence the cost of health care

by organizing the delivery in a more efficient way or by negotiating lower prices

with providers. Incentives for risk selection arise because two risk types differ

in their expected health care costs. The regulator cannot observe the risk types.

We assume, however, that he knows how health care costs of each type are dis-

tributed. To determine the optimal cost reimbursement function, we minimize the

difference in expected costs between the risk types for a given increase in total

costs.

We find that the optimal cost reimbursement function balances two effects. First,

costs should be reimbursed where the cumulative cost reimbursement for high
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risk types compared to low risk types is comparatively large. Second, cost reim-

bursement should be avoided where there is a large concentration of individuals

and therefore a high efficiency cost. It is a priori unclear which form of cost re-

imbursement is optimal. The precise shape of the optimal cost reimbursement

function depends on how the health care costs for each type are distributed. For

health cost data from a Swiss health insurer, we find that costs should generally

be reimbursed only up to a limit. This is the opposite of outlier risk sharing and

shows that the theory of optimal insurance does not carry over to optimal cost

reimbursement to reduce risk selection.

The paper is structured as follows. In Section 2, we discuss incentives schemes

to reduce risk selection and place our analysis in the context of the literature.

Section 3 presents the model. The optimal cost reimbursement formula is derived

and discussed in Section 4. In Section 5, we calculate optimal cost reimbursement

formulas based on data from a Swiss health insurer. Section 6 summarizes the

results and concludes.

2 Incentive schemes to reduce risk selection

Most of the literature on incentives schemes to reduce risk selection in health

insurance markets has so far focused on risk adjustment. Numerous empirical

studies have examined the properties of possible risk adjusters (see van de Ven

and Ellis (2000) for a survey). In practice, risk adjustment cells are defined on

these adjusters. The transfer payment for an individual is then determined by the

average cost of all insured in the respective cell. This approach has been criti-

cized by Glazer and McGuire (2000, 2002) and Frank et al. (2000). They show

that equalizing observable differences in average costs is not optimal if observable

characteristics are only imperfect signals for an individual’s health status. A risk

adjustment scheme which takes this into account can be much more effective in

reducing risk selection. A further proposal has recently been advanced by Bar-

ros (2003). He shows that an ex-post funds can in principle avoid risk selection

without comprising on cost-efficiency.

However, it remains unclear whether risk adjustment schemes or ex-post funds

can sufficiently reduce risk selection. The main problem is the availability of data.
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Usually, only few characteristics such as age and gender can easily be obtained.

Further indicators, in particular diagnostic information, are only available at a con-

siderable cost. Even if risk adjustment schemes are considerably improved, risk

selection may still be highly profitable (Newhouse (1994)). The same problem

applies to ex-post funds. As Barros (2003, p. 437) points out it must be possible

to assign spending of insurers to specific diseases. Without detailed diagnostic

information, ex-post funds will therefore not be able to rule out risk selection. For

this reason, there is need for second-best solutions which balance the selection-

efficiency trade-off. Here cost reimbursing insurers’ costs can be useful.1

Several forms of cost reimbursement have been proposed in the literature (see

van de Ven and Ellis (2000)). On the one hand, there are cost reimbursement

schemes which apply to all individuals and are similar to reinsurance contracts.

These include outlier risk sharing and proportional risk sharing which reimburses

a fixed percentage of all costs. On the other hand, forms of cost reimbursement

have been put forward which are limited to a specific group.2 Van de Ven and

van Vliet (1992) propose risk sharing for high risks which allows an insurer to

designate a specified percentage of his insured for which all health care costs will

be reimbursed. Risk sharing for high costs is considered by van Barneveld et al.

(2001). Under this scheme, all health care costs of a predetermined number of

individuals with the highest costs are paid by the regulator.

In empirical studies, van Barneveld et al. (1998, 2001) compare these selective

forms of cost reimbursement to outlier risk sharing and proportional risk sharing.

They find that risk sharing for high risks as well as risk sharing for high costs is

superior in reducing incentives for risk selection to outlier risk sharing and propor-

tional risk sharing. These forms of risk sharing are more effective in reimbursing

only the costs of high risk types without sharing the costs of low risk types.

In our analysis we start from the assumption that the cost reimbursement scheme

applies to all individuals. As opposed to the existing literature, we do not base

our cost reimbursement function on reinsurance principles. Instead we formulate

a model and derive the optimal cost reimbursement function. Our result can be

1In a recent paper, Marchand et al. (2003) show that prior expenditure can also be a useful risk
adjuster to reduce risk selection.

2A further possibility is to make cost reimbursement dependent on a medical condition; see
van de Ven and Ellis (2000, p. 822).
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compared directly to other formulas which apply to all individuals, in particular

to outlier risk sharing. We cannot say whether our approach is superior to the

selective forms of cost reimbursement. In future studies of different cost reim-

bursement approaches it would be interesting to compare risk sharing for high

risks or high costs to our optimal cost reimbursement approach.

3 The model

We analyze a health insurance market in which the regulator wants to make medi-

cal services available to all individuals at a price independent of their risk type. He

imposes community rating, i.e. requires insurers to quote a uniform premium for

all their insured. Furthermore, insurers must offer a standardized health insurance

package. Regulation also includes open enrollment, i.e. insurers must accept all

individuals applying for insurance.

Health insurers organize the delivery of medical services. By choosing higher

effort e, health insurers can organize the delivery in a more efficient way or nego-

tiate lower prices with providers.3 Choosing a higher effort will therefore decrease

costs to treat an illness but also the utility of an insurer. For the disutility of effort

v(e) we assume v′(e) > 0 and v′′(e) ≥ 0. Costs to treat a patient depend on the

effort level e and on the severity m of the patient’s illness where 0 ≤ m ≤ M. We

assume

C(e,m) = c(e)m, c(e) > 0, c′(e) < 0, c′′(e) > 0, (1)

i.e. costs are proportional to m and organizational effort is subject to decreasing

returns to effort. This cost function particularly fits a situation in which insurers

negotiate a baseline reimbursement factor with providers.4 The effort level chosen

by an insurer when there is no cost reimbursement is labeled ê. We normalize

c(ê) = 1 so that C = m in the absence of cost reimbursement.

An individual can be a high risk h or a low risk l. Expected costs of the high

risk type are larger than expected costs of the low risk type. The proportion of

3See Marchand et al. (2003) for a similar approach.
4The method we present in the following can also be applied to other cost functions. In footnote

13, we point out the implications for the optimal cost reimbursement formula.
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l-types is θ. For each risk type i = l,h, severity m is distributed according to the

distribution function Fi(m). Since a substantial fraction of insured usually does

not use any health services during a certain period we allow for Fi(0) > 0. We

assume the distribution function to be continuously differentiable for all m ≥ 0

and label the respective density function fi(m).5 For m > 0 we have

Fi(m) = Fi(0)+
m∫

0

fi(s)ds.

Expected costs of each risk type correspond to

Ei[C(e,m)] =
M∫

0

c(e)m fi(m) dm (2)

with Eh[C(e,m)] > El[C(e,m)].

We assume that the regulator cannot identify the risk type and therefore is not

able to implement a perfect risk adjustment scheme. Neither can he observe e

nor m. However, he knows the distribution functions Fi(m) for each risk type.

For example, he may infer the distribution functions from a representative sample

with information about the risk type.6 His objective is to find a balance between

incentives for risk selection and efficiency by sharing costs with insurers. For an

individual with cost C(e,m) he reimburses r(C(e,m)). With respect to r(C), we

impose two restrictions:

1. r′(C) ≤ 1 – no incentives for cost-inflation

This restriction guarantees that the insurer cannot increase his profits by

inflating costs.

2. r′(C) ≥ 0 – no incentives for cost-deflation

If r(C) is non-decreasing in C, then hiding costs cannot lead to higher profits

for the insurer.
5To be more precise, we assume the distribution function Fi(m) to be continuously differen-

tiable for all m > 0 and lim
m→0+

F ′
i (m) to exist; accordingly by fi(0) we mean lim

m→0+
fi(m).

6See section 5 for an illustration of this procedure.
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We also assume that the cost reimbursement scheme has a balanced budget, i.e.

r(C(e,0))[θFl(0)+(1−θ)Fh(0)]

+
M∫

0

r(C(e,m))[θ fl(m)+(1−θ) fh(m)]dm = 0.
(3)

This means that the cost reimbursement scheme is self-financing, which implies

that r(C(e,0)) must be negative if costs are reimbursed.7

Health insurers know to which group a particular insured belongs. Because health

insurance premiums are community-rated, health insurers try to risk select if the

average costs of the two groups differ. They can do so by imposing barriers for

high risk individuals and by trying to attract low risk individuals. For example,

they may process applications of high risks only slowly. Low risks, on the other

hand, may be captured by selective advertisement.8 Taking into account cost re-

imbursement by the regulator, the difference in expected costs (DEC) between the

two risk types

DEC = Eh[C(e,m)− r(C(e,m))]−El[C(e,m)− r(C(e,m))]

= −r(C(e,0))Fh(0)+
M∫

0

[C(e,m)− r(C(e,m))] fh(m) dm (4)

−
(
− r(C(e,0))Fl(0)+

M∫
0

[C(e,m)− r(C(e,m))] fl(m) dm
)

captures the extra profit for an insurer when he insurers a low risk type instead

of a high risk type. We assume that the incentives to risk select are higher for an

insurer, the larger this difference.

7In practice, cost reimbursement schemes are frequently financed by a uniform flat rate and
define a nonnegative cost reimbursement function. In such a framework, −r(C(e,0)) corresponds
to the uniform flat rate and r(C(e,m))− r(C(e,0)) equals the cost reimbursement.

8We therefore focus on what Glazer and McGuire (2002, p. 154) have termed the access prob-
lem and do not analyze the incentives of health insurers to distort the mix of the quality of health
care.
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Risk selection is a zero sum game between insurers in which every insurer spends

resources to attract a favorable selection of individuals. We do not explicitly

model this contest and focus on a symmetric equilibrium in which each insurer

ends up with a representative share of the two risk groups.9 We assume that risk

selection leads to a loss of resources which is increasing in the difference in ex-

pected costs between the two risk types.

With the design of the cost reimbursement function r(C(e,m)), the regulator can

influence the difference in expected costs and therefore the loss of resources due

to risk selection. However, cost reimbursement will also reduce effort from the

first-best level ê to ẽ and therefore lead to higher average costs

AC(ẽ) > AC(ê) (5)

⇔ θEl [C (ẽ,m)]+(1−θ)Eh [C (ẽ,m)] > θEl [C (ê,m)]+(1−θ)Eh [C (ê,m)]

The problem of the regulator is to choose the cost reimbursement function r(C)
such that the difference in expected costs is reduced without increasing average

costs too much.

The sequence of events is as follows:

1. The regulator announces the reimbursement function r(C).

2. Insurers expend resources to risk select.

3. Individuals choose insurers, each insurer ends up with a representative share

of the two risk groups.

4. Insurers select organizational effort e.

5. The severity m and costs C(m,e) are determined.

6. The regulator reimburses r(C(m,e)).

9A symmetric equilibrium is often assumed in the literature on risk selection (see Glazer and
McGuire (2002) and Marchand et al. (2003)). Nevertheless, asymmetric equilibria cannot a priori
be ruled out. In this case, our results may need to be modified. An exploration of asymmetric
equilibria is, however, beyond the scope of our paper and must be addressed in future work.
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Our approach to determine the optimal function r(C) is as follows. We assume

that the regulator is willing to tolerate an increase in average costs by a factor

x̃ > 1. This assumption defines a level of organizational effort ẽ at stage 4. We

solve problem (P1)

min
r(C)

DEC subject to AC(ẽ) = x̃AC(ê)

balanced budget condition (3) (P1)

0 ≤ r′(C) ≤ 1

This yields the optimal cost reimbursement function r(C) which minimizes the

difference in expected costs for insurers and therefore incentives to risk select at

stage 2.

The advantage of this approach is twofold. First, we avoid assumptions about

the size of loss of resources due to risk selection. In addition, we do not need

to specify the trade-off the regulator is willing to make between reducing risk

selection and preserving incentives for cost efficiency in detail. To characterize

the main properties of the optimal cost reimbursement function, we only need

to assume that the regulator finds it optimal to implement a cost reimbursement

scheme.
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4 The optimal cost reimbursement formula

To solve problem (P1) we proceed in four steps:

1. We define the effort level ẽ which is associated with a given increase in

average costs by a factor x̃ > 1.

2. We determine the incentive constraint which guarantees that insurers choose

effort level ẽ.

3. We reformulate problem (P1) as the optimal control problem (P2) with costs

C as the integration variable.

4. We solve the optimal control problem and characterize the optimal cost re-

imbursement function r(C).

Step 1: Our assumption is that the regulator is willing to tolerate an increase in

average cost by a factor x̃ compared to a situation of no cost reimbursement. The

corresponding effort level ẽ is defined by the condition

AC(ẽ) = x̃AC(ê) (6)

⇔ θEl [c(ẽ)m]+ (1−θ)Eh [c(ẽ)m] = x̃
(

θEl [c(ê)m]+ (1−θ)Eh [c(ê)m]
)

where ê is the effort level in absence of cost reimbursement. Since we normalize

c(e) such that c(ê) = 1 in a situation without cost reimbursement, condition (6)

simplifies to c(ẽ) = x̃ which implies

ẽ = c−1(x̃). (7)

Step 2: When insurers select effort e at stage 4 and face a cost reimbursement

function r(C), their optimization problem is to minimize total costs

min
e

θEl [c(e)m− r(c(e)m)]+(1−θ)Eh [c(e)m− r(c(e)m)]+ v(e).

9



The first-order condition is

−θEl
[
c′(e)m− r′(c(e)m)c′(e)m

]
−(1−θ)Eh

[
c′(e)m− r′(c(e)m)c′(e)m

]− v′(e) = 0

which corresponds to

−
M∫

0

[
c′(e)m− r′(c(e)m)c′(e)m

][
θ fl(m)+(1−θ) fh(m)

]
dm− v′(e) = 0. (8)

Rearranging terms yields

M∫
0

r′(c(e)m)mg(m) dm = k(e) with k(e) ≡
M∫

0

mg(m) dm+
v′(e)
c′(e)

(9)

where g(m) ≡ θ fl(m)+(1−θ) fh(m) is the average density function. A sufficient

condition for the corresponding effort level to yield a global profit-maximum is

that the cost reimbursement function r(C) is concave.10 From condition (9), it

follows that the cost reimbursement function must satisfy

M∫
0

r′(c(ẽ)m)mg(m) dm = k(ẽ) (10)

if insurers are to choose effort level ẽ. Condition (10) therefore defines the incen-

tive constraint which guarantees that average costs increase by the factor x̃.

Step 3: To derive the optimal cost reimbursement function r(C) it is convenient

to express our problem with C as the integration variable. We therefore transform

the distribution functions Fi(m) and the density functions fi(m) into functions of

C. From C = c(ẽ)m it follows that m =C/c(ẽ). The distribution functions in terms

of C are therefore given by F̃i(C) = Fi(C/c(ẽ)). Differentiating with respect to C

yields the corresponding density functions f̃i(C) = fi(C/c(ẽ))/c(ẽ). The support

of C is given by [0,c(ẽ)M] = [0,C̄].

10If r(C) is a concave function, then the left hand side of (9) is non-decreasing in e. Since
the function k(e) is a strictly decreasing function of e, the first-order condition must therefore
characterize a global optimum. If r(C) is not concave, then it needs to be checked whether equation
(9) guarantees an optimum.
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Using this transformation in the definition of the difference in expected costs

(equation (4)), we obtain

DEC = −r(0)F̃h(0)+
C̄∫

0

[C− r(C)] f̃h(C) dC

−
(
− r(0)F̃l(0)+

C̄∫
0

[C− r(C)] f̃l(C) dC
)
. (11)

Noting that

C∫
0

C[ f̃h(C)− f̃l(C)]dC is a constant, the regulator’s problem (P1)

therefore is equivalent to problem (P2)11

min
r(C)

r(0)[F̃l(0)− F̃h(0)]+
C∫

0

r(C)[ f̃l(C)− f̃h(C)]dC

subject to

C∫
0

r′(C)Cg̃(C)dC = c(ẽ)k(ẽ) (P2)

r(0)G̃(0)+
C∫

0

r(C)g̃(C)dC = 0

0 ≤ r′(C) ≤ 1

r(0),r(C) free

where g̃(C) = θ f̃l(C)+(1−θ) f̃h(C) and G̃(C) = θF̃l(C)+(1−θ)F̃h(C). The first

constraint is the transformed incentive constraint (10) which ensures that average

costs increase only by the factor x̃. The second constraint corresponds to the zero-

budget constraint (3). The third constraint ensures that there are neither incentives

for cost-inflation nor cost-deflation. Finally, the last constraint expresses that there

are no restrictions with respect to the endpoints of r(C).

11We assume that the difference in expected costs remains positive. If in the optimum this
difference were negative, then cost reimbursement would clearly be too high and a lower value of
x̃ should be chosen.
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Step 4: Problem (P2) is an isoperimetric dynamic optimization problem due to

the equality integral constraints.12 It is not possible to set up the Hamiltonian and

to apply the maximum principle since we allow for Fi(0) > 0. In the Appendix,

we therefore formulate the Lagrangian function for the full problem. There, we

derive the following result

Proposition 1: The slope of the optimal cost reimbursement function

is characterized by

(1− F̃h(C))− (1− F̃l(C))−|η̄|Cg̃(C)

⎧⎪⎨
⎪⎩

> 0 ⇒ r′(C) = 1

= 0 ⇒ 0 ≤ r′(C) ≤ 1

< 0 ⇒ r′(C) = 0

(12)

where η̄ < 0 is the constant Lagrange-multiplier associated with the

incentive constraint (10). Condition (12) and the zero-budget con-

straint

r(0)G̃(0)+
C∫

0

r(C)g̃(C)dC = 0

determine r(0).

To interpret this result, first note that the optimal cost reimbursement formula

r(C) has a slope of either zero or one unless by chance we have (1− F̃h(C))−
(1− F̃l(C)) = η̄Cg̃(C). Furthermore, condition (12) can be decomposed into two

terms with a natural interpretation:

12See Chiang (1992, p. 280) and Kamien and Schwartz (1991, p. 228).
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1. The anti-selection term (1− F̃h(C))− (1− F̃l(C))

A large difference (1− F̃h(C))− (1− F̃l(C)) tends to favor cost reimburse-

ment. To explain this effect, it is important to note that r′(C) = 1 increases

cost reimbursement for all individuals with costs above C. This follows

from the restriction r′(.) ≥ 0. Since 1− F̃i(C) denotes the share of i-types

with costs higher than C, (1− F̃h(C)) > (1− F̃l(C)) implies that there are

relatively more h-types with costs above C than l-types. Increasing cost

reimbursement at C therefore reimburses costs more for h-types than for

l-types. This implies that the difference in expected costs must fall.

2. The cost efficiency term |η̄|Cg̃(C)

A large value of |η̄|Cg̃(C) calls for no cost reimbursement. This is because

Cg̃(C) corresponds to the share of total costs at C.13 If this share is large,

then cost reimbursement at C tends to have a large negative impact on the

incentives for efficiency and therefore calls for no cost reimbursement. This

effect is increasing in |η̄|, the Lagrange-multiplier which captures the im-

portance of incentives for cost efficiency. A lower x̃, i.e. higher incentives

for cost efficiency increases |η̄|. For a given value of the anti-selection term,

a larger value of |η̄| therefore implies less cost sharing.

The optimal cost reimbursement function therefore considers for every cost level

C whether the reduction in incentives for risk-selection outweighs the efficiency

costs of cost reimbursement. The restriction that costs are only allowed to increase

by a certain percentage is reflected in the Lagrange-multiplier η̄ which defines the

importance of cost-efficiency.

An example

A simple example is useful to illustrate our result. Suppose that there are two

groups of equal size (θ = 0.5) and that 0 ≤ m ≤ 1. For the distribution functions

we assume fl(m) = 9m2 − 10m+ 3 and fh(m) = 1 with Fl(0) = 0 and Fh(0) = 0

(see Figure 1). Note that l-types are more likely to have low as well as high illness

severities. This is not implausible. Think of l-types as healthy individuals who are

13For other cost functions than C(e,m) = c(e)m this part of the cost efficiency term is different.
For example, if C(e,m) = c(e)+m, then the cost efficiency term is |η̄|g̃(C).
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(ê)]−
E

l [C
(ê)]
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depending on C. The functions intersect at C = 0.2696. Where the anti-selection

term is larger than the cost efficiency term, marginal cost reimbursement equals

one, where it is below there is no marginal cost reimbursement. Thus, we obtain

r′(C) =

{
1 for C ≤ 0.2696

0 for C > 0.2696
.

The balanced-budget condition requires r(0) = −0.2033. This yields the optimal

cost reimbursement function

r(C) =

{
−0.2033+C for C ≤ 0.2696

0.0663 for C > 0.2696

which is shown in Figure 2(b). It is worth noting that for high cost levels,

(1− F̃h(C))− (1− F̃l(C)) is negative since l-types are more likely to have high

illness severities. Thus, in this range there are relatively more l-types with costs

above C than h-types. If costs where reimbursed at these costs levels, the differ-

ence in expected costs would therefore be increased.

Expected costs with optimal cost reimbursement are 0.4933 and 0.4488. The

resulting difference in expected costs is 0.0445. Compared to the status quo of

0.0833, the difference in expected costs by is therefore reduced by 46.61%.

It is interesting to compare our result with the difference in expected costs under

outlier risk sharing. We assume that 60% of all costs above a certain threshold

are reimbursed. For a 5% increase in average cost, this threshold equals 0.9953.

Since cost reimbursement has to be financed by insurers we also have a uniform

rate for each insured. In this example this turns out to be −0.001223. Therefore

the cost reimbursement function with outlier risk sharing is

r(C) =

{
−0.001223 for C < 0.9953

−0.001223+0.6(C−0.9953) for C ≥ 0.9953
.

Expected costs are 0.5254 and 0.4371 and the difference in expected costs is

0.0883. Compared to status quo of 0.0833, the difference in expected costs there-

fore increases by 5.88%. Thus, outlier risk sharing is counter-productive in our

example because it leads to efficiency losses and increases the incentives for risk
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selection. Two factors are responsible for this effect:

(i) In the absence of cost reimbursement, a 5% increase in total costs also in-

creases the difference in expected costs by 5%.

(ii) Outlier risk sharing reimburses costs at high cost levels where (1− F̃h(C))−
(1− F̃l(C)) is negative. In this range, there are relatively more l-types, so

reimbursing costs in this range mainly reimburses costs of l-types. This

explains why outlier risk sharing increases the difference in expected costs

by further 0.88%.

Our example shows that outlier risk sharing does not need to be optimal. Instead

the optimal formula may be characterized by cost reimbursement up to a limit.

In addition, the example demonstrates that outlier risk sharing may actually be

counterproductive. In the next section, we show that these results can also arise if

we apply our formula to actual health cost data.

5 An empirical illustration

In this section we show how our method can be applied in practice. We base

our empirical analysis on administrative data provided by a Swiss health insurer.

The data set includes information on individual costs, hospitalization, number

of months insured, death and extent of coinsurance for the years 1997 to 1999

with 475,506 observations. We used the observations of 104,420 adult individuals

being insured in the years 1998 and 1999. Their average health care expenditure

was 3,250 Swiss Franks (CHF) in 1999.

We created a variable indicating to which of the 30 age-gender-cells of the Swiss

risk adjustment scheme each insured belongs. Information on each group is given

in Table 1 (see page 24). Since we do not have information about insurer’s risk-

selection activities and costs, we need to postulate hypotheses about how insurers

risk select and how they can influence costs. Our results should therefore be re-

garded as an illustration of how our method can be applied in practice if this

information is available rather than an actual policy recommendation.
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Our risk selection hypothesis is that health insurers can observe whether an indi-

vidual was treated in a hospital in 1998. The group h is therefore given by those

treated in a hospital in 1998. The l-types are the remaining individuals. We as-

sume that the regulator is not able to obtain information on hospitalization.14 To

illustrate possible shapes of the optimal cost reimbursement function, we apply

our method to each age-gender-cell of the Swiss risk adjustment scheme.

We proceed in two steps:

1. As in our example we assume v(e) = e and c(e) = β/e where the constant β
is chosen such that c(ê) = 1. The costs from our data set correspond to the

costs if insurers choose this effort level since there is no cost reimbursement

in Switzerland. Thus, we obtain Cact. = c(ê)m = m and use actual costs

Cact. to estimate the distribution functions Fi(m) for each group.15

2. Second, we derive the distribution functions for an increase in costs by a

factor of x̃ and apply our method as in the example.

We estimate the distribution function of actual costs Cact. in 1999 for the two

groups nonparametrically by a kernel density estimation.16

14In practice, regulators should be able to obtain this information. However, so far it is not used
in the Swiss risk adjustment scheme. We make this assumption mainly because hospital stays are
included in our data set and we can therefore use this information to illustrate our method. Nev-
ertheless, our results may be interesting for a regulator who does not want to use information on
hospital stays in a risk adjustment scheme to avoid that insurers encourage excessive hospitaliza-
tion.

15For a real world application, our data set would need to be adjusted if it is not representative.
16Since there was a considerable share of observations with zero costs, we set Fi(0) equal to this

share and determined only Fi(Cact.) with Cact. > 0 with the kernel density estimator. When we
chose a constant bandwidth for the kernel, we found that fi(Cact.) = 0 for a number of intervals
for Cact. > 10,000 CHF. This artificially improved our results because r′(C) = 1 does not reduce
incentives for efficiency at all whenever fi(C) = 0 for both groups. Therefore we transformed
the data using a concave function. With the function ln(Cact.) we did not get any intervals with
fi(Cact.) = 0. From the estimated distribution function F̂i(ln(Cact.)) we derive the distribution
function Fi(Cact.) and the density function fi(Cact.). We also performed kernel estimation with
variable bandwidths as proposed by Silverman (1986). Because we considered the differences in
the bandwidth too large (the largest bandwidth was about 10,000 times as large as the smallest
one) and for reasons given by Terrell and Scott (1992) we did not use this procedure.
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Applying our method, we find that the optimal cost reimbursement function takes

one of three types displayed in Figure 3:17

1. The first type has marginal cost reimbursement equal to one starting at C = 0

up to a threshold which is between 8,000 and 18,000 CHF, with an interval

of zero marginal cost sharing of about 2,000 to 5,000 CHF. There is no

additional cost reimbursement above this threshold. An example is shown in

Figure 3(a). We obtain r(0) = 1,810 CHF, i.e. each insurer must contribute

1,810 CHF per person insured to finance the cost reimbursement scheme.

2. The second type has no marginal cost reimbursement for cost below a thresh-

old of about 20,000 and above a threshhold of about 40,000 CHF. Between

20,000 and 40,000 CHF there is marginal cost reimbursement equal to one.

Above this threshold, there is no more cost reimbursement. Figure 3(b)

shows a graph of this type. In this example, r(0) = 246 CHF.

3. The third type looks like the second but the threshold above which there is

no additional cost reimbursement is much higher, mostly between 100,000

and 150,000 CHF, and with sometimes one or two intervals with no cost

reimbursement. An example is shown in Figure 3(c) where r(0) = 331

CHF.

For the 30 age-gender cells, 12 of the optimal cost reimbursement functions were

of type one, 10 of type two and 8 of type three. Table 1 and Figures 4 to 6 give

an overview of our results and compare them to an outlier risk sharing scheme

which reimburses 60% of costs above a threshold. In Table 1, we show which

type arises for each age-gender cell if we allow average cost to increase by 5 %.

In addition, we show the percentage reduction in the difference of average costs

for both optimal cost reimbursement and outlier risk sharing.

Figure 4 illustrates the effectiveness of the optimal cost reimbursement formula

for a 1 to 10% increase in total cost. On average, the difference in expected costs

can be decreased by 13.18 % if we allow costs to increase by 5% and by 23.12%

for a 10% increase in costs. The maximum decrease is 30.73% and 67.87% re-

spectively.

17The health insurers’ second-order conditions were satisfied for all cost reimbursement func-
tion.
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risk sharing. In these cases, we find that cost reimbursement of type one is optimal

where the threshold above which there is no additional cost reimbursement is low.

The optimal cost reimbursement formula is therefore just the opposite of outlier

risk sharing.

6 Conclusion

In this paper, we derived the optimal cost reimbursement function based on a

model in which insurers influence the cost of health care with their organizational

activities. We found that the optimal cost reimbursement function balances selec-

tion and efficiency effects which are determined by the distribution of health care

costs for each risk type.

When we applied our method to Swiss health cost data, we observed that costs

should generally be reimbursed only up to a limit. This is opposed to outlier risk

sharing which is advocated in the literature and used in Germany. Our optimal cost

reimbursement formula was also much more effective than outlier risk sharing.

For a five percent increase in costs, we found that the mean decrease in the average

cost difference between the two groups is almost three times larger if optimal cost

reimbursement is used instead of outlier risk sharing. This shows that applying

principles of reinsurance may not be appropriate if the objective is to reduce risk

selection.

To derive our optimal cost reimbursement function, we made a number of specific

assumptions. For example, our analysis was based on two risk types. It would

be interesting to extend the analysis to multiple risk types. Also other functional

forms of the cost function could be considered. Furthermore, we focused on or-

ganizational effort of insurers which affects the cost of all patients. Future work

could examine the implications of patient-specific effort.

On the empirical side, our method could be applied to further data sets and dif-

ferent risk-selection variables. Furthermore, our approach can be compared to

selective forms of cost reimbursement such as risk sharing for high risks or high

costs to our optimal cost reimbursement approach. In the study by van Barneveld

et al. (2001), these proposals were superior to outlier risk sharing. It is interesting

to see whether this result also applies to our formula.
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Appendix

Since we allow for Fi(0) > 0 it is not possible to set up the Hamiltonian and apply the
maximum principle to solve our isoperimetric dynamic optimization problem with free
starting and end points. In the following, we therefore solve the complete problem. To
save on notation, we define H̃(m) = F̃h(m)− F̃l(m) and h̃(m) = f̃h(m)− f̃l(m). Then
problem (P2) is equivalent to the maximization problem

max
r(.)

r(0)H̃(0)+
C∫

0

r(C)h̃(C) dC (A.1)

s.t.

r(0)G̃(0)+
C∫

0

r(C)g̃(C) dC = 0 (A.2)

C∫
0

r′(C)Cg̃(C) dC = k(ẽ)c(ẽ) (A.3)

0 ≤ r′(C) ≤ 1 (A.4)

r(0), r(C) free (A.5)

Now replace constraint (A.2) by

K(C) =
C∫

0

r(s)g̃(s) ds with K′(C) = r(C)g̃(C),K(0) = 0 and K(C) = −r(0)G̃(0).

Furthermore set r′(C) = u(C) and replace (A.3) by

L(C) =
C∫

0

u(s)sg̃(s) ds with L′(C) = u(C)Cg̃(C), L(0) = 0 and L(C) = c(ẽ)k(ẽ).

Therefore the problem is

max
r(.)

r(0)H̃(0)+
C∫

0

r(C)h̃(C) dC (A.6)

subject to

K′(C) = r(C)g̃(C), K(0) = 0, K(C) = −r(0)G̃(0)

L′(C) = u(C)Cg̃(C), L(0) = 0, L(C) = k(ẽ)c(ẽ)

r(0),r(C) free
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We can now set up the Lagrangian

L = r(0)H̃(0)+
C∫

0

{
r(C)h̃(C)+λ(C)[u(C)− r′(C)] (A.7)

+µ(C)[r(C)g̃(C)−K′(C)]+η(C)[r′(C)Cg̃(C)−L′(C)]
}

dC

+γ1K(0)+ γ2[r(0)G̃(0)+K(C)]+ γ3L(0)+ γ4[k(ẽ)c(ẽ)−L(C)].

Note that η(C) is the Lagrange multiplier associated with the incentive constraint (A.3).
Integrating λ(C)r′(C), µ(C)K′(C) and η(C)L′(C) by parts we obtain

L = r(0)H̃(0)+
C∫

0

{
r(C)h̃(C)+λ(C)u(C)+λ′(C)r(C) (A.8)

+µ(C)r(C)g̃(C)+µ′(C)K(C)+η(C)r′(C)Cg̃(C)+η′(C)L(C)
}

dC

−[λ(C)r(C)−λ(0)r(0)]

−[µ(C)K(C)−µ(0)K(0)]− [η(C)L(C)−η(0)L(0)]

+γ1K(0)+ γ2[r(0)G̃(0)+K(C)]+ γ3L(0)+ γ4[k(ẽ)c(ẽ)−L(C)].

The first differential is

∆L =
C∫

0

{
[h̃(C)+λ′(C)+µ(C)g̃(C)]∆r(C)+ [λ(C)+η(C)Cg̃(C)]∆u(C)

+µ′(C)∆K(C)+η′(C)∆L(C)
}

dC (A.9)

+[H̃(0)+λ(0)+ γ2G̃(0)]∆r(0)−λ(C)∆r(C)+ [−µ(C)+ γ2]∆K(C)
+K(0)∆γ1 +[r(0)G̃(0)+K(C)]∆γ2 +L(0)∆γ3 +[k(ẽ)c(ẽ)−L(C)]∆γ4.

This yields the following conditions for optimality

h̃(C)+λ′(C)+µ(C)g̃(C) = 0 (A.10)

λ(C)+η(C)Cg̃(C)

⎧⎪⎨
⎪⎩

> 0 ⇒ u(C) = 1

= 0 ⇒ 0 ≤ u(C) ≤ 1

< 0 ⇒ u(C) = 0

(A.11)

µ′(C) = 0 which implies µ(C) = µ̄ (A.12)

η′(C) = 0 which implies η(C) = η̄ (A.13)

λ(0) = −H̃(0)− γ2G̃(0) (A.14)

λ(C) = 0 (A.15)
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γ2 = µ(C) which implies γ2 = µ̄. (A.16)

K(0) = 0 (A.17)

r(0)G̃(0)+K(C) = 0 (A.18)

L(0) = 0 (A.19)

L(C) = k(ẽ)c(ẽ). (A.20)

Integrating (A.10) yields

λ(C) = λ(0)+
C∫

0

λ′(s) ds

= −H̃(0)− µ̄G̃(0)+
C∫

0

−h̃(s)− µ̄g̃(s) ds

= −H̃(C)− µ̄G̃(C). (A.21)

With

0 = λ(C) = −H̃(C)− µ̄G̃(C) = 0

we get µ̄ = 0 which simplifies (A.21) to

λ(C) = −H̃(C).

Inserting into (A.11) we obtain

−H̃(C)+η(C)Cg̃(C)

⎧⎪⎨
⎪⎩

> 0 ⇒ u(C) = r′(C) = 1

= 0 ⇒ 0 ≤ u(C) = r′(C) ≤ 1

< 0 ⇒ u(C) = r′(C) = 0

. (A.22)

which is equivalent to condition (12). Now η̄ needs to be chosen such that (A.20) is
satisfied. This guarantees

C∫
0

r′(C)Cg̃(C) dC = k(ẽ)c(ẽ).

Finally r(0) is set such that (A.18) is satisfied which implies

r(0)G̃(0)+
C∫

0

r(C)g̃(C) dC = 0. (A.23)
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