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Abstract

We provide new insights on the city size distribution of

countries around the world. Using more than 10,000 ci-

ties delineated via geospatial data and a globally con-

sistent city identification scheme, we investigate

distributional shapes in all countries. In terms of popu-

lation, we find that Zipf's law holds for many, but not all,

countries. Contrasting the distribution of population with

the distribution of economic activity, measured by

nighttime lights, across cities we shed light on the glob-

ally variant magnitude of agglomeration economies. De-

viations from Zipf's law are to a large extent driven by an

undue concentration in the largest cities. They benefit

from agglomeration effects which seem to work through

area rather than through density. Examining the cross‐
country heterogeneity in the city size distribution, our

model selection approach suggests that historical factors

play an important role, in line with the time of develop-

ment hypothesis.
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1 | INTRODUCTION

The rapid urbanization process around the world has brought renewed interest to the question of the size distribution

of cities. Many countries are urbanizing at relatively early stages of development (Glaeser, 2014; Jedwab & Vollrath,

2019), and the total urban population of the world is set to grow by 2.7 bn people from 2015 to 2050 (United

Nations, 2018). Whether this growth is distributed equally among cities of all sizes, or whether the largest metropolises

are further increasing their share, is an important question for policymakers. Bigger cities can reap agglomeration

benefits by pooling physical and human capital as well as by exploiting spillovers across and within industries, but they

also suffer from plights, such as congestion (Desmet & Rossi‐Hansberg, 2013; Rosenthal & Strange, 2004).

It has long been argued that Zipf's law should be an appropriate description of the size distribution of big cities

within a country, implying that a city's rank is approximately inversely proportional to its size (Zipf, 1949). There

are strong theoretical arguments for Zipf's law as well as empirical evidence with population data, in particular for

the United States (Gabaix, 1999; Rozenfeld, Rybski, Gabaix, & Makse, 2011). But cross‐country studies have so far

yielded mixed results (Rosen & Resnick, 1980; Soo, 2005). Unfortunately, they are often limited to countries with a

high statistical quality and miss out on large parts of the rapidly urbanizing developing world. Population data on a

country's cities ultimately rely on national statistical agencies. This implies not only large cross‐country variations

of data quality and availability across time, but also in terms of definitions of what constitutes a city. This is

exemplified by a look at the database https://www.citypopulation.de (Brinkhoff, 2017), a regularly updated com-

pilation of national census statistics which has been used by many cross‐country studies (e.g., Henderson &

Wang, 2007; Soo, 2005): The listed cities start at 50,000 inhabitants in the UK, 150,000 in Japan, and 15,000 in

Egypt. By contrast, the global threshold of 300,000 inhabitants imposed by the database of the UN World

Urbanization Prospects misses out on locally important cities in less populous countries. In fact, the World Bank

(2009) argues that a threshold of 50,000 people is reasonable for a sizable settlement in developed and developing

countries.

In this paper, we systematically examine the size distribution of cities with a truly global data set. We exploit

geospatial data as well as recent theoretical advances on the origin of the city size distribution. In particular, we use

a consistent city identification scheme across countries based on the European Commission's Global Human

Settlement Layers (GHSL) and include all cities with more than 50,000 inhabitants in every country of the globe. In

this way, we contour the issues of limited data availability and comparability plaguing earlier studies. Another

advantage of working with such geospatial data is that we can define cities based on their de facto geographical

extent rather than working with administrative city boundaries. This can capture the economic and social reality of

cities more appropriately. With our approach, we arrive at a data set of 13,844 cities in 194 countries and

territories.1 Aspiring to be the Zipf paper for the geospatial age, our paper focuses on the following three

investigations: (a) We analyze for each country whether Zipf's law holds in terms of population and examine

deviations. (b) In addition to population, our geospatial data allow us to measure city size by nighttime lights

proxying for economic activity. By comparing how the distribution of nighttime lights deviates from the distribution

of population, we shed light on agglomeration economies. To our knowledge, we are the first to investigate the size

distribution of economic activity in countries around the world in comparison to that of population. (c) We also

investigate the geographical, institutional, and historical determinants of the cross‐country variation we observe in

the city size distribution, and we look at changes over time.

More broadly, with our data analysis we extend the Zipf question into a general discussion of how to measure

cities' economic and social importance. Satellite data of nighttime lights have been shown to be an appropriate

proxy for local economic activity (Donaldson & Storeygard, 2016; Henderson, Storeygard, & Weil, 2012) and are

increasingly used for the study of cities in developing countries where up‐to‐date population data are lacking

1We will use the term city for all observations in our data set, while keeping in mind that there are some agglomerations that do not reflect one but

several cities in the administrative sense, such as the Pearl River Delta in China.
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(Bluhm & Krause, 2018; Fetzer, Henderson, Nigmatulina, & Shanghavi, 2016; Storeygard, 2016). But it is an open

question whether light per capita is the same for all cities in a country and how light output in cities responds to

changes in population. We address these points by comparing population and light across the whole city size

distribution. We examine the particular role played by primary cities, which have been linked to autocratic

structures (Ades & Glaeser, 1995), political centralization (Davis & Henderson, 2003), and low levels of develop-

ment in general (Henderson, 2003). If luminosity in the largest cities is more responsive to population changes, it

suggests that positive agglomeration effects are being reaped. But if primary cities are systematically brighter than

the rest and relatively inelastic to population changes, other factors might play a role, such as wasteful political

spending (Lipton, 1977).

Going further, our paper exploits the geospatial structure of the data and decomposes city size, in terms of both

light and population, into the product of area and density. While larger cities are typically both more extended and

denser than smaller ones, we examine which factor dominates. This carries some insights for the types of agglomeration

effects at play: Economies of scale and the wider market access of bigger cities (Fujita, Krugman, & Venables, 1999;

Krugman, 1991) mainly operate through a larger area, while more frequent human capital interactions, as highlighted by

Moretti (2004) and Bettencourt (2013), can be expected to work through a higher density.

The main results of our paper are the following: (a) For many countries, the city size distribution in terms of

population can be characterized by Zipf's law, given the appropriate threshold is applied. (b) The city size dis-

tribution of light is more unequal than that of population and Zipf's law in light can be rejected for most countries.

The distributional difference between light and population is particularly pronounced in African countries. (c)

Deviations from Zipf's law can mostly be explained by the top end of the distribution, with primary cities being

disproportionately populous and bright. In the biggest cities, economic activity is particularly concentrated and light

is less sensitive to population changes. (d) Decomposing city size into density and area, our results are mostly

driven by the area effect of the largest cities. This points towards a particular importance of agglomeration effects

of scale and market access. (e) The observed cross‐country variation in the city size distribution can mostly be

accounted for by historical factors, which lends weight to the time of development hypothesis by Henderson,

Squires, Storeygard, and Weil (2018). Overall, the city size distribution has exhibited little variation throughout the

last decades. Still, the higher growth rates in primary cities are noteworthy and might lead to a more unequal city

size distribution for several countries in the future.

The remainder of this paper is structured as follows: In Section 2 we link our paper to the literature on the size

distribution of cities and urban primacy. In Section 3, we describe our city identification scheme, the resulting data

set of city size in terms of light and population, as well as the econometric estimation approach. Section 4 contains

the empirical estimation results on Zipf's law and their implications, while Section 5 investigates the determinants

behind the cross‐country variation in the city size distribution and gives an outlook. Section 6 concludes. The

supporting information appendix contains the accompanying material, such as supplementary information on the

data set, a simulation exercise, detailed results for each country as well as numerous robustness checks.

2 | RELATED LITERATURE

As focal points of economic and social activity, cities and their size have attracted researchers' interest for a long

time. It was first suggested by Auerbach (1913) that the size distribution of cities in terms of population follows a

Pareto distribution

α= ⋅ −N A yy (1)

with Ny as the number of cities larger than population size y and shape parameter α . The special case of α = 1, and

constant A equal to the size of the largest city, is referred to as Zipf's law (Zipf, 1949).
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Various seminal papers have focused on the underlying theoretical processes. From the homogeneity of cities'

growth processes with the same rate and variance independent of their size—so‐called Gibrat's (1931) Law—one

can derive that the entire distribution of all cities and towns should be lognormal (Eeckhout, 2004). But augmenting

this homogeneous growth process with a lower bound of city size and some shocks yields a distribution that is

Pareto at the top (Gabaix, 1999). A Pareto distribution in city size also emerges from other theoretical con-

sideration, for example, the combination of cities' agglomeration and congestion effects (Rossi‐Hansberg &

Wright, 2007), the interplay between industry‐specific shocks and firms' location decisions (Duranton, 2007), or a

combination of sorting of individuals, productivity of firms as well as agglomeration effects (Behrens, Duranton, &

Robert‐Nicoud, 2014).2

Most of the empirical papers on the topic focus on the United States and provide supportive evidence of a Zipf

distribution for the biggest US cities (see, e.g., Fazio & Modica, 2015; Rozenfeld et al., 2011); for example, Gabaix

(2016) obtains an alpha coefficient estimate of 1.03. The implication of Zipf's law that a city's rank is approximately

inversely proportional to its size is neatly illustrated in the United States, where the biggest city (New York) has

twice the population of the second‐ranked city (Los Angeles) and three times the population of the third‐ranked
city (Chicago).3

This paper sets itself apart from these works by its global focus, investigating Zipf's law in countries around the

world. It follows earlier cross‐country studies which were limited in their data availability and comparability of city

definitions. For example, Rosen and Resnick (1980) use census data from 44 countries from the 1970s; Soo (2005)

works with the https://www.citypopulation.de data based on national statistical offices from 73 countries. But how

cities are defined in terms of minimum size and administrative borders varies considerably across countries. It is

therefore not clear to what extent the variability of alpha estimates across the sample—Rosen and Resnick's (1980)

Pareto alphas range from 0.809 (Morocco) to 1.963 (Australia)—is due to systematic deviations from Zipf's law or

how much may be due to measurement issues. With our globally consistent city identification scheme and our

threshold discussion of the Pareto tail, we provide a thorough treatment of these topics which was lacking until

now. Also, Brakman, Garretsen, Marrewijk, and van den Berg (1999) have already remarked that there is more

evidence in favor of Zipf's law when agglomerations rather than core cities are considered as these tend to extend

around the largest metropolises. With geospatial data, we are able to investigate this argument thoroughly. Al-

though geospatial data are now widely used in regional and development economics, there only seems to be one

other Zipf‐related paper which measures the urban extent based on geospatial data: Small, Elvidge, Balk, and

Montgomery (2011) look at the size distribution of the world's largest metropolises independent of countries.4

To our knowledge, our paper is also the first to look at the size distribution of cities in terms of economic

activity proxied for by light, in addition to population. With this, we add to the core discussion in urban economics

on how population and economic output are related (Ciccone & Hall, 1996; Glaeser & Gottlieb, 2009). Productivity

is known to rise with population density thanks to the presence of agglomeration effects, which would suggest that

output scales supralinearly with respect to city size (Bettencourt, 2013; Bettencourt & West, 2010; Lobo,

Bettencourt, Strumsky, & West, 2013). While we cannot measure agglomeration effects directly, our data set puts

us in a novel position to compare the size distributions of light and population. Nighttime lights have become

established as a proxy for local economic activity and are increasingly used in economic research (see, e.g.,

Henderson et al., 2018; Lessmann & Seidel, 2017); however, its precise scaling relation to population is

2There is also a strand of the literature which focuses on the size distribution of all urban settlements within a country, from small villages over towns to

the largest cities. Giesen, Zimmermann, and Suedekum (2010) show that Pareto tails at both ends combined with a lognormal body provide a good fit for

the entire settlement distribution.

3Note that even if Zipf's law holds exactly, this rank–size association remains an approximation. It is typically imprecise for the lower‐ranked cities and

provides a more adequate representation of the many higher‐ranked cities (Gabaix & Ioannides, 2004).

4Their supportive evidence of Zipf's law in a sample of the world's largest cities irrespective of countries is intriguing. Yet, for policymakers, the city size

distribution at the national level is arguably more relevant, and in the absence of a friction‐free movement of people and capital across borders, the

theoretical processes underlying city growth are more likely to hold at the national than at the global level (Cristelli, Batty, & Pietronero, 2012).
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underexplored. Nighttime lights capture consumption, investment, government spending, in particular in public

infrastructure (Elvidge, Hsu, Baugh, & Ghosh, 2014; Henderson et al., 2012), but the relation between light and

population may be different in cities of different size. For example, primary cities might own their outsized role to

both agglomeration effects (Moretti, 2004; Rosenthal & Strange, 2004) and disproportional public resources

(Ades & Glaeser, 1995). One reason why nighttime lights have so far not been widely used for the study of largest

cities is also the top‐coding problem: The classical Defense Meteorological Satellite Program's Operational Linescan

System (DMSP‐OLS) satellites fail to capture the brightness of big cities due to sensor saturation, thereby un-

derestimating their economic size. In addition to the original data, we therefore work with the top‐coding corrected

lights data by Bluhm and Krause (2018) to contour this problem and measure the city size distribution of lights in

an unbiased way. Under the assumption of supralinear scaling, our a priori hypothesis is that lights should be

distributed more unequally than population. We are going to investigate whether a Zipf distribution can therefore

be rejected in terms of lights.

By investigating Zipf's law in each country and its patterns of deviations and determinants in different world

regions, our work is also related to continent‐specific studies of cities. In particular Africa with its rapidly increasing

urbanization rates, high primacy ratios, and often insufficient urban infrastructure is the topic of numerous papers

(such as Barrios, Bertinelli, & Strobl, 2006; Castells‐Quintana, 2017; Christiaensen & Todo, 2014; Jedwab &

Vollrath, 2019). It has been argued that the optimal city size distribution might depend on a country's level of

development: Urban concentration is thought to be helpful for poor countries with weak physical and human

capital resources as well as high transport costs, while a more balanced city size distribution should be beneficial

for more advanced economies (Henderson, 2003; Krugman, 1991). Our worldwide data set allows us to investigate

to what extent deviations from Zipf's law follow this argument, as well as to give an outlook of the future city size

distribution and its consequences.

3 | DATA AND METHODOLOGY

3.1 | City identification and city size measurement

The key contribution of this paper is to conduct a global cross‐country study of the size distribution of cities using a

consistent city identification scheme.5 We employ the European Commission's GHSL to identify urban settlements

hosting more than 50,000 residents in 2015.6 The lower bound of 50,000 inhabitants has been found to be

reasonable for agglomeration effects to take place in countries around the world (World Bank, 2009). To determine

the de facto spatial extent of a city, the GHSL data combine Landsat satellite imagery on built‐up area with census

information (Pesaresi & Freire, 2016). Unlike other possible identification methods derived from the nighttime

lights data itself (Small et al., 2011), this method does not suffer from overglow and identification problems at the

bottom of the distribution. The global data grid is of a 1‐km resolution. Figure 1a illustrates for the case of Paris

that the identified urban boundaries (in blue) match the economic and social reality of a city much better than

administrative borders (in red). Technical details on the city identification scheme, including the treatment of

border cities and a robustness check with shape files from other years, are given in Supporting Information

Appendix A. In this way, we identify 13,844 cities in 194 countries and territories. Note that this baseline data set

still contains a number of small entities, such as Gibraltar, Réunion or St. Vincent, and the Grenadines, which are

5For the reasons outlined above, we use a geospatial data set of cities based on a comparable definition for our cross‐country analysis. But as a direct

comparison with the existing literature, we repeat our analysis with the https://www.citypopulation.de data (Brinkhoff, 2017), which relies on definitions

from national statistical agencies. This data set differs from ours in the number of cities included, the available years, and the urban extents of the cities

(administrative borders rather than geodata‐based extent). The results are discussed in Supporting Information Appendix E.

6Since their introduction a few years ago the GHSL strongly gained in popularity and are now widely used in the literature (Stokes & Seto, 2019; Weiss

et al., 2018).
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either not independent countries or too small for a sensible estimation for the size distribution of cities. We later on

restrict our sample for individual regressions.

For all the identified cities, we use two measures of size, namely, georeferenced population and the sum of

lights within their urban extents.

We take the population data from the same data source as the city shapes, the GHSL. They combine Landsat

information on built‐up area with NASA's Socioeconomic Data and Applications Center's fourth version of the Gridded

Population of the World (GPW) to derive a population grid at the same resolution as the city shapes. Hence, we obtain

population data for each of our identified cities as a panel for the years 1975, 1990, 2000, and 2015.

In contrast to this, our nighttime light data form a yearly panel from 1992 to 2013. We use the “stable night

light images” collected by the DMSP‐OLS operated by the National Oceanic Administration Agency (NOAA). The

satellites monitor light emissions between 8.30 and 10.00 p.m. local time on a daily basis, and the published pictures

are yearly averages of light emissions on cloud‐free days. Corrected for glare, auroral lights, forest fire, and gas

flares, the resulting lights are assumed to be exclusively man‐made. Light emissions at the pixel level are measured

by a Digital Number (DN) ranging from 0 (dark) to 63 (fully illuminated). This “stable lights” data set has been used

extensively in applications in development and regional economics, see Donaldson and Storeygard (2016) for an

overview. However, Bluhm and Krause (2018) point out that the “stable lights” suffer from top‐coding. Due to

sensor saturation, the satellite cannot capture the full brightness of the biggest cities in which many pixels reach

the end of the scale at 63 DN. As big cities form the focus of our analysis, we use the top‐coding corrected

nighttime lights provided by Bluhm and Krause (2018) as an additional data source. For both the “stable” and

corrected lights separately, we add up the DN's for all the pixels within the city boundaries to obtain the total

luminosity of the city, which is a standard procedure in the nighttime light literature (Henderson et al., 2012).

Table 1 gives an overview of our data set in the year 2000 by presenting summary statistics for all the cities of the

world (13,844) as well as those in some selected countries. While the median city has a population of 85,530 inhabitants,

the world's largest city has more than 32m inhabitants (the Pearl River Delta agglomeration in China covering inter alia

Shenzhen and Guangzhou). Comparing, for example, the 323 cities in the US and 514 in Bangladesh, we see that the

median cities in both countries are of similar size in terms of population but not in terms of sum of lights

F IGURE 1 Measuring big cities. (a) Urban extent of Paris and (b) lognormal body of cities with Pareto tail.
Note: (a) shows the administrative boundaries of Paris as well as the boundaries identified by GHSL. Lit areas (stable

lights) are shown in the background. (b) is a stylized city size distribution in line with the literature, showing a
lognormal body of towns and smaller cities and a Pareto tail of big cities. [Color figure can be viewed at
wileyonlinelibrary.com]
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(7,295 DN vs. 34 DN). This underlines the importance of analyzing the city size distribution in each country separately and

thus accounting for different development levels and country‐specific heterogeneity. The table also shows that the

differences between the “stable” and the top‐coding corrected lights are larger in richer countries—and, for all countries,

they are larger in the biggest cities than at the median. Note that our definition of cities based on the actual urban extent

leads to some agglomerations topping the list of the largest cities: The Ruhrgebiet (Essen, Duisburg, etc.) is the most

populous “city” in Germany rather than Berlin, Germany's largest city measured by administrative boundaries. The case of

the Pearl River Delta in China is similar. By contrast, for the United States (New York), Nigeria (Lagos), and Bangladesh

(Dhaka), the name of the most populous city coincides when using the GHSL's urban extent or administrative data.

3.2 | Estimation approach

To test for Zipf's law, we have to limit the analysis to those 103 countries from our data set with a sufficient

number of cities, set to 10 here.7 We follow the literature in assuming that the size distribution within each

country consists of a lognormal body of towns and smaller cities on the one hand and the Pareto tail of big

cities on the other hand (Figure 1b). Yet, it is an open question where the threshold is located. While our data

set only contains cities with at least 50,000 inhabitants, a Chinese city of that size might still belong to the

lognormal part of its country's distribution. Ioannides and Skouras (2013) argue that in the United States the

switch between the two portions of the distribution occurs between 30,000 and 60,000 inhabitants, but a

cross‐country discussion of this issue is missing so far. In Supporting Information Appendix B, we conduct a

Monte Carlo simulation which shows the potential distortion of the coefficient estimate when the Pareto

estimation is carried out using too low a threshold. We also implement a numeric identification algorithm to

identify the threshold between the lognormal body and Pareto tail for each country. We find that across our

data set, setting a country's median city size as the threshold solves the tradeoff between ensuring a pure

Pareto tail with a rather high threshold and keeping as many observations as possible with a rather low

threshold. We therefore follow a twofold strategy in our empirical estimation: In each country, we use (a) all

cities in our data set and (b) only those cities above the median.8

TABLE 1 Summary statistics of the data set in the year 2000

USA DEU CHN NGA BGD World

Number of cities 323 86 2,266 428 514 13,844

Median city size

Population 100,909 105,124 99,455 72,434 98,226 85,530

Stable light 7,295 4,153 474 53 34 284

Corrected light 16,485 4,833 474 53 34 284

Maximum city size

Population 14,853,624 7,477,014 32,343,639 7,789,496 15,452,476 32,343,639

Stable light 474,339 299,255 502,338 43,631 58,281 502,338

Corrected light 1,983,732 379,765 845,757 45,687 62,815 1,983,732

Note: The sums of light within the city boundary are measured in DN.

7In Supporting Information Appendix B, we motivate why we set a minimum requirement in the quantity of given cities, showing that Pareto tails cannot

be established empirically for tiny countries' fewer cities.

8We also test other thresholds. In Supporting Information Appendix B we discuss a linear combination of a cutoff that is first horizontal and then

increasing in the number of cities per country, analogous to the literature on international poverty lines (see, e.g., Ravallion & Chen, 2011).
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For our actual estimation, we use log–rank regressions, as is usually done in the literature. If city size y is

Pareto distributed with shape parameter α above the threshold yc as determined above, we have α α( ) ≈ −y Ny yrank c ,

or, in logarithms, α α( ) − ≈ −y N y ylog rank log log logc . OLS estimation of this equation underestimates the true

coefficients and standard errors in small samples due to the ranking procedure (Gabaix & Ioannides, 2004).

However, subtraction of one half from the rank has been shown to improve the estimation of the Pareto alpha

(Gabaix & Ibragimov, 2011) so that we will estimate the following log–rank regression by OLS:

α ϵ⎛
⎝

( ) − ⎞
⎠
− ( ) = − ⋅ ( ) +y N ylog rank

1

2
log cons. log (2)

with the corrected OLS standard errors given as α∕ ⋅ ˆN2 by Gabaix and Ibragimov (2011).9

4 | RESULTS ON ZIPF'S LAW AROUND THE WORLD

4.1 | Results in terms of population and light

Running (2) individually for all countries with at least 10 cities, and measuring city size by population and light, we

determine whether or not Zipf's law holds.10

Figure 2 shows the densities of the obtained Pareto alpha coefficients in the year 2000. The main insight is that

Zipf's law is an appropriate characterization of the city size distribution for many countries in terms of population

but not in terms of economic activity as proxied for by light.

The green curve of the population alpha coefficients is centered around 1, and for 77% of countries the coefficients

lie within 95% confidence bands around α = 1.11 When using the full distribution of cities above 50,000 inhabitants in

each country (Figure 2a), the alpha density is slightly more left‐skewed than when only including cities above the median

(Figure 2b). As the former potentially features observations from the lognormal body, inequality in the distribution is

slightly overstated. Nevertheless, the mode at α = 1 is a robust characteristic. Our result that an approximately equal

share of countries has coefficient estimates slightly smaller and larger than 1 differs from the previous literature, which

typically finds a dominating share of countries with larger Pareto alphas (Rosen & Resnick, 1980; Soo, 2005). Apart from

the larger number of countries in our data set and the consistent city identification scheme, this may be due to the

different urban extents we measure. Administrative boundaries fail to capture the economic and social extent of larger

cities and suggest a more egalitarian city size distribution than in our results.

When comparing our results from the different samples, we note that hypotheses of alphas equal to or smaller

than 1 are more difficult to reject in short than they are in long city size distributions. The restriction to above‐
median cities overcomes the bias at the cost of a larger variance. The resulting bigger confidence intervals

therefore include a larger set of values apart from α = 1, for example, α = 0.8.12

Turning towards light, Figure 2 clearly shows that the Pareto alphas are more unequally distributed than they

are for population. This confirms our prior hypothesis. The distributions of the light Pareto alphas are centered

around coefficient estimates smaller than 1. Only 52% of “stable light” alpha estimates, and 39% of “corrected light”

estimates, lie within a 95% confidence interval around α = 1. In line with our expectations, top‐coding corrected

lights are even more inegalitarian than the “stable lights” as they capture the full brightness of the largest cities.

9An alternative to OLS is the Hill (1975) estimator, which is the maximum likelihood estimator if the data are Pareto distributed but which is less robust to

deviations. In Supporting Information Appendix D we repeat our analysis with the Hill estimator as a robustness check for our results. They are very

similar for most countries; for example, the correlation between the OLS and Hill alpha estimates is 0.813 for “stable lights” in the above‐median sample.

10An alternative to our countrywise approach would be to merge the city size distributions of strongly interacting countries (Brakman, Garretsen, & van

Marrewijk, 2019).

11In Supporting Information Appendix C we list Pareto alpha coefficients for all countries with their standard errors.

12Point estimates and standard errors are listed in Supporting Information Appendix C.
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This is particularly evident when only cities above the median are considered, of which large metropolises com-

mand a larger share (Figure 2b).13

There is, however, evidence that the size distribution of cities in terms of light follows a Pareto distribution; it is

just not the special Zipf case of α = 1 for many countries. Figure 3 uses the example of the two otherwise very

different countries of Germany and South Africa, which both display remarkably linear Zipf plots in terms of

population, “stable” and corrected light. It is the slopes of the OLS best‐fit lines that differ and deviate slightly more

strongly from the green Zipf line (α = 1) for light than for population.

Exploiting the global nature of our data set, we assemble the population and “stable light” alpha coefficients for

available countries in the scatter plot in Figure 4. Two lines representing Zipf's law dissect the plot into four

quadrants. The clustering of countries in the lower left and upper right quadrants shows that those whose city size

distribution is slightly more (less) egalitarian in terms of population is also more (less) egalitarian in terms of light.

Yet, the sizable number of countries in the upper‐left quadrant of more equality in the population size distribution

and more inequality in light suggests a more nuanced relation. Clearly, population increases do not always translate

one to one into increases in economic activity as proxied for by light, but the effects may differ across the city size

distribution, as we will examine in the following.

Furthermore, we note patterns of cross‐country heterogeneity in the estimated coefficients: Table 2 shows

that on average, population and light are distributed more equally in Europe than in Africa, Asia, and the Americas.

In terms of population, this confirms the cross‐country pattern observed by Soo (2005). Going beyond that, our

results show that (a) this holds for light as well, even as light is more unequally distributed than population, (b)

working with the full distribution of cities rather than those above the median yields coefficients of a larger

magnitude but with similar cross‐continent patterns, and (c) the distributional differences between light and

population are not as pronounced in Europe as on other continents. Across African countries, the mean alpha

estimate is 0.746 for the above‐median corrected light distribution and 0.609 for the full distribution, indicating

strong deviations from Zipf's law.

F IGURE 2 Density plots of countries' estimated Pareto alphas in the year 2000. (a) Full distribution of cities
(b) cities above median. Note: The estimated Pareto alphas of all countries with more than 10 cities. Figure 2a
estimates (2) for the whole distribution of countries and Figure 2b uses only cities above the median. Light is based
on satellite F15. [Color figure can be viewed at wileyonlinelibrary.com]

13The rightward shift in all three distributions when the sample is restricted from the full sample to above‐median cities is in line with the threshold

discussion in Section B.1. The inclusion of the lognormal body induces a downward bias in the OLS Pareto alpha estimates.
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F IGURE 3 Zipf plots for Germany and South Africa (above‐median setting, year 2000, satellite F15).

(a) Stable light, Germany; (b) stable light, South Africa; (c) corrected light, Germany; (d) corrected light,
South Africa; (e) population, Germany; and (f) population, South Africa [Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 4 Scatter plot of population and stable light Pareto alpha coefficients (above‐median setting, year
2000, satellite F15, correlation: 0.06, omits outliers: Kazakhstan, Romania, and Ethiopia) [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 2 Summary statistics for Pareto alphas (year 2000)

Africa Americas Asia Europe World

Stable light

Full dist.

Mean 0.626 0.706 0.643 0.955 0.709

(SD) (0.126) (0.153) (0.125) (0.130) (0.178)

N 29 17 32 17 99

Above median

Mean 0.776 0.964 0.886 1.145 0.904

(SD) (0.156) (0.118) (0.161) (0.129) (0.204)

N 22 12 26 9 72

Corrected light

Full dist.

Mean 0.609 0.624 0.607 0.829 0.654

(SD) (0.102) (0.096) (0.104) (0.106) (0.135)

N 29 17 32 17 99

Above median

Mean 0.746 0.810 0.816 0.979 0.817

(SD) (0.113) (0.082) (0.128) (0.133) (0.152)

N 22 12 26 9 72

(Continues)
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4.2 | Explaining patterns along the city size distribution in population and light

Let us now examine which part of the distribution is driving the deviations from Zipf's law. We compute primary

shares as the proportion of the distribution's total population or light that is accounted for by the largest city.

Figure 5 shows that higher primary shares are strongly correlated with smaller Pareto alphas, both in terms of

population and light.14 The best‐fit line for light is flatter, so that a smaller Pareto alpha is associated with an even

larger primacy share for light. We see that, overall, countries with a more unequal city size distribution exhibit an

undue concentration of population and economic activity in primary cities.

How does this concentration in primary cities relate to light being less equally distributed than population? Emitted

light per capita is, obviously, not constant throughout the distribution. And the link between population and light, that is,

economic activity, varies with city size. We therefore run regressions of the logarithm of total light emissions in city i in

country j and year t on the logarithm of population, including country‐ and year‐fixed effects, δj and γt:

β β δ γ ε( ) = + ( ) + + +log Light log Population .ijt ijt j t ijt0 1 (3)

According to the estimates displayed in the first two columns of Table 3 a 1% larger population is associated

with a significantly more than a 1% higher light output.15 This significance is unrelated to the displayed asterisks

referring to β =H : 00 , but can easily be derived from the given coefficients and standard errors. The stronger

impact on corrected lights arises from the fact that the total luminosity of larger cities is more severely

underestimated by top‐coding than it is the case for smaller cities. To see whether the elasticity is different for

primary cities compared with the rest of the distribution we addPrimacyijt , a dummy that equals one for the largest

city in terms of population in a country in a certain year, and its interaction with ( )log Populationijt to the model. We

can see that primary cities are ceteris paribus on average brighter than other cities, irrespective of population, but

their light emissions respond less strongly to population level variation.16 That the coefficient estimate for

population is larger than one can be understood by nighttime lights as a combination of population and activity per

TABLE 2 (Continued)

Africa Americas Asia Europe World

Population

Full dist.

Mean 0.811 0.891 0.875 0.989 0.868

(SD) (0.263) (0.117) (0.271) (0.085) (0.244)

N 31 17 32 17 103

Above median

Mean 1.195 0.955 1.152 1.094 1.137

(SD) (0.294) (0.098) (0.331) (0.130) (0.308)

N 25 13 27 9 78

Note: The table presents the summary statistics of OLS alpha estimates by continent. Luminosity in the year 2000 is here

defined as the average of the two DN values obtained from the two satellites that were active in that year (F14 and F15).

Asia includes Oceania.

14The correlation coefficients are −0.55 in Figure 5a and −0.60 in Figure 5b.

15As robustness checks we repeat the estimation in a Seemingly Unrelated Regression Equations (SURE) framework, which leads to virtually identical results.

Regressions with modifications along the fixed effects dimensions suggest that both, inter‐temporal and cross‐sectional variation, drive the results. Replacing log

(light) with log(light per capita) intuitively only decreases the β1 coefficient estimate by 1 and alters the adjusted R2, keeping all else equal.

16When clustering standard errors at the city rather than country level, the coefficient of the interaction term coefficient is strongly significant for both

light measures. Given that Primacy rarely moves between cities over time, city fixed effects render the coefficient estimate insignificant.
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F IGURE 5 Primary share and estimated Pareto alpha in the year 2000. (a) Population and (b) stable light. Note:

The scatter plots show the relation for the estimated Pareto alphas (above‐median setting, all countries with more
than 10 cities) with the primary share, defined as the share of the distribution's population or total luminosity that
is due to the largest city. The stable light alphas are based on the satellite F15. [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 Light–population elasticities

Dependent variable: log(Light)

Stable Corrected Stable Corrected Stable Corrected

(1) (2) (3) (4) (5) (6)

log(Pop.) 1.098*** 1.171*** 1.094*** 1.160*** 1.080*** 1.127***

(0.045) (0.050) (0.050) (0.056) (0.068) (0.076)

Primacy 2.419*** 1.874**

(0.927) (0.943)

log(Pop.) × Primacy −0.155** −0.106

(0.068) (0.072)

TopTen 0.865 −0.122

(0.926) (1.014)

log(Pop.) × TopTen −0.048 0.036

(0.079) (0.087)

Constant −8.273*** −9.120*** −8.239*** −9.016*** −8.139*** −8.718***

(0.600) (0.662) (0.659) (0.728) (0.839) (0.931)

Country F.E. Yes Yes Yes Yes Yes Yes

Year F.E. Yes Yes Yes Yes Yes Yes

N 254,689 254,689 254,689 254,689 254,689 254,689

Adj. R2 0.730 0.755 0.730 0.755 0.731 0.756

Note: Standard errors clustered at the country level in parentheses, * <p 0.1, ** <p 0.05, and *** <p 0.01. Primacy is a

dummy that equals one for the largest city in terms of population in the respective year and country. TopTen is a dummy

that equals one for the 10 largest cities in terms of population in the respective year and country.
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capita, which might be expected to scale superlinearly with city size, in the terms of Bettencourt (2013). But the

particular results for primary cities require an additional interpretation. We argue that they are in line with theories

and empirical evidence by, inter alia, Ades and Glaeser (1995), Henderson and Wang (2007), and Gollin,

Kirchberger, and Lagakos (2017). These authors find that disproportionately many resources are pooled into

primary cities, and that primary cities play an outsized political, social, and economic role. Potentially because they

are already bright due to their special status, their emitted luminosity responds less strongly to population growth

than that of smaller cities. Regressions depicted in the last two columns of Table 3 show that this effect is indeed

specific to primary cities and not just a big city effect: Replacing the Primacyijt dummy with TopTenijt , which equals

one for the 10 most populated cities per country and year, yields insignificant results for the dummy and the

interaction term.

That primary cities in countries around the world behave so differently from their second‐ and third‐largest
peers is worth a closer look. With their outsized position, they benefit from agglomeration effects particularly

strongly: They are home to many firms and skilled workers, are often the center of political power, and offer a

vibrant social and cultural life. This adds to their productivity, which, in turn makes the city more attractive to

newcomers, further propelling its role. The literature on agglomeration effects and positive externalities splits

these factors into a scaling and a density effect: More extended cities offer larger markets with more opportunities

for both firms and workers (Fujita et al., 1999; Krugman, 1991) thanks to their pure size, while denser cities

facilitate the interactions of individuals (Bettencourt, 2013) and make them benefit from human capital ex-

ternalities (Diamond, 2016; Moretti, 2004).

While our global data set does not lend itself to a micro‐analysis of wages, firms, and human capital ex-

ternalities, we can shed some light on the aggregate level and conduct a decomposition of city size. Let us keep in

mind that city size—be it in terms of population or light—of city i at time t is the product of area and density.

= ⋅Size Area Density .it it it (4)

This means that primary cities can be bigger than secondary cities for two reasons: either they extend to a larger

area or they have a higher density of population. Obviously, we often have a combination of both contributors, but

they are not equally important. We divide city size, area, and density for the primary and secondary city of each

country and summarize the mean values across measures and continents in Table 4.17

Several observations can be made: (a) Across the world, a country's primary city is on average 4.3 times as

populous and 4.6–5.5 times as bright as the city at rank two. These are sizable proportions, given that the Zipf's law

predicts a factor of two, albeit with large confidence bands (Gabaix & Ioannides, 2004). We conclude that primary

cities are disproportionately large, underlining their special role (Ades & Glaeser, 1995; Fetzer et al., 2016; Stor-

eygard, 2016). (b) In Africa, primary cities are more than 4 times as populous and about 7–8 times as bright as

secondary cities, a higher factor than on any other continent. This goes in line with the well‐known high primacy

share in Africa (Henderson & Wang, 2007; Junius, 1999). Europe, by contrast, has the lowest proportions between

primary and secondary cities and they are of a similar magnitude for population and light. (c) The size differences

between primary and secondary cities can mostly be attributed to differences in area rather than density. Across all

continents it holds that the largest cities are only slightly denser—in terms of both light and population—but much

more extended than secondary cities. Hence, area appears to be driving inequality at the top of the city size

distribution, which generalizes the observations by Rozenfeld et al. (2011) for the United States and the United

Kingdom to a worldwide setting.

17These results are for the latest available years, 2013 for light and 2015 for population. They include the countries with 10 or more cities for which we

calculate the Pareto alphas. Pooling the data across all available years as well as including countries with fewer than 10 cities does not qualitatively

change the results, see Supporting Information Appendix F.
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One way to interpret our finding is that agglomeration effects in the largest cities work through scaling rather than

through density, which holds lessons for policymakers. A more extended city brings economies of scale and larger

product and labor markets, and it can also ease congestion away from packed areas (Rosenthal & Strange, 2004). By

contrast, a higher density is associated with more frequent interactions of its inhabitants, with pooled resources and

larger productivity (Ciccone & Hall, 1996; Kerr & Kominers, 2015). In the model of Bettencourt (2013), the cost of

human interactions increases with the traverse dimension, which is the area of the city. In this context, innercity

infrastructure plays a key role. Our results show an outsized concentration of economic activity in the largest cities. But

the agglomeration benefits will be limited if cities are so extended and fragmented that they fail to connect their

inhabitants. For example, the typically insufficient public infrastructure in many African cities, as inter alia remarked by

Castells‐Quintana (2017), Lall, Henderson, and Venables (2017), and Bluhm and Krause (2018), can be an obstacle on

the way of channeling their outsized primary cities into hubs of productivity.

5 | DETERMINANTS OF THE CITY SIZE DISTRIBUTION AND
TIME VARIATION

5.1 | Determinants of cross‐country variation

What are the underlying factors that engender such a city size distribution that is more unequal in some countries

than in others? Earlier papers have linked the city size distribution to various institutional and geographic factors,

TABLE 4 Comparing primary and secondary cities (countries with 10 or more cities), years 2013/15

World Africa Americas Asia Europe

Population

Size 4.322 4.661 5.011 4.192 2.871

(4.032) (2.924) (3.545) (5.456) (2.216)

Density 1.324 1.118 1.459 1.547 1.082

(0.905) (0.691) (0.544) (1.255) (0.377)

Area 4.241 5.651 3.849 3.559 2.854

(4.021) (4.764) (3.078) (3.944) (1.914)

Stable light

Size 4.666 6.819 4.095 3.555 2.704

(4.561) (6.195) (3.201) (3.066) (1.665)

Density 1.255 1.333 1.099 1.335 1.021

(0.590) (0.478) (0.261) (0.833) (0.121)

Area 3.792 4.930 3.604 3.181 2.674

(3.119) (3.707) (2.387) (2.994) (1.604)

Corrected light

Size 5.507 7.904 5.462 4.240 2.642

(5.453) (6.819) (4.677) (4.363) (1.574)

Density 1.530 1.522 1.472 1.703 1.141

(0.941) (0.526) (0.791) (1.298) (0.789)

Area 3.865 4.950 3.642 3.314 2.768

(3.163) (3.691) (2.465) (3.139) (1.641)

Note: The values are computed as ∑ ∑ ∑
= = =

, ,
N i

N
N i

N
N i

N1
1

PrimaryCitySize

SecondaryCitySize

1
1

PrimaryCityDensity

SecondaryCityDensity

1
1

PrimaryCityArea

SecondaryCityArea
i

i

i

i

i

i
with country i and N

as the total number of countries on the respective continent. The respective standard deviations are denoted in

parentheses. Asia includes Oceania.
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such as total area and population (Rosen & Resnick, 1980), trade openness (Moomaw & Shatter, 1996), infra-

structure (Junius, 1999), autocracy (Ades & Glaeser, 1995), governmental decentralization (Henderson &

Wang, 2007), fiscal expenditure (Davis & Henderson, 2003), and ethnic fractionalization (Mutlu, 1989).

While all of these factors have been shown to play a role, we are here going to test them in connection with an

overarching theory on the evolution of the spatial distribution of economic activity put forward by Henderson et al.

(2018). Their key concept is the time of development. According to this argument, the larger spatial equality in

economic activity in early developed countries can be traced back to cities' formation in agricultural regions at

times when transport costs were still high. This is also in line with Motamed, Florax, and Masters (2014) who use

historic population data to show that places with good agricultural quality urbanized earlier. As agglomeration

patterns exhibit strong persistence, these structures are still visible today. By contrast, in countries which devel-

oped later, when transport costs were already low, fewer and larger cities were built, often in strategically im-

portant coastal locations. While Henderson et al. (2018) provide evidence for this theory in terms of the spatial

variation of nighttime lights across the total area of countries, our data set puts us in a position to test it using

countries' actual city size distribution. As variables proxying for early and late development, we use education,

urbanization, and GDP per capita of countries in 1950, just as Henderson et al. (2018).

Table 5 shows the result of the panel regression with year‐fixed effects of

β β β β γ ε= + + + + +ineqcitysize educ1950 urban1950 gdp1950 ,it i i i t it0 1 2 3 (5)

where inequality in the city size distribution of country i at time t is expressed either by the Pareto alpha estimate

(based on the above‐median distribution) or the primary share.18 According to Table 5 countries which were highly

urbanized in 1950, that is, early developed, tend to exhibit greater Pareto alpha coefficients in their city size

TABLE 5 Time of development as determinants of the city size distribution

Stable lights Corrected lights Population

Alpha Pr. Sh. Alpha Pr. Sh. Alpha Pr. Sh.

Education in 1950 −0.010 0.009 −0.005 0.002 −0.012 −0.001

(0.025) (0.013) (0.018) (0.013) (0.021) (0.011)

Urbanization in 1950 0.006*** −0.003* 0.004*** −0.001 −0.004* 0.003**

(0.002) (0.001) (0.001) (0.001) (0.002) (0.001)

GDP p.c. in 1950 −0.008 −0.025** −0.015 −0.031** 0.013 −0.029***

(0.020) (0.012) (0.014) (0.012) (0.016) (0.009)

Constant 0.758*** 0.543*** 0.740*** 0.567*** 1.149*** 0.341***

(0.032) (0.035) (0.024) (0.034) (0.048) (0.029)

Year‐fixed effects Yes Yes Yes Yes Yes Yes

N 1,358 1,742 1,358 1,742 255 324

Adj. R2 0.217 0.198 0.100 0.150 0.142 0.047

Note: Clustered standard errors in parentheses, * <p 0.1, ** <p 0.05, and *** <p 0.01. Education, average years of

schooling; urbanization, percent urbanized; GDP p.c., 1,000 dollars (in 2005 PPP); alpha, OLS alpha estimate; Pr. Sh.,

primary share.

18Running a cross‐sectional regression yields almost the same estimates. To increase the sample size we use the panel regression (5) and cluster standard

errors at the country level, while taking into account year‐fixed effects.
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distributions nowadays, both in terms of light and population. The negative coefficient estimate of early

development on primary cities' relative size supports that notion.

We now investigate the connection between this time of development theory of the city size distribution and

other variables, including, but not limiting ourselves to, those that have been used in previous studies. We look at a

total of 36 possible explanatory variables ranging from population structure (such as total population, fertility, and

migration) over physical geography (such as terrain ruggedness, coastal border, and continent), institutions (such as

time of independence, political rights, and fiscal centralization), economic structure (such as agricultural share,

energy use, and patent applications), and international connectedness (such as exports and interstate war).19

Due to the collinearity of this huge number of possible determinants, we employ a model selection approach:

We regress the country's Pareto alpha coefficient on up to 7 out of the 36 determinants Xit at a time, including

year‐fixed effects:

α β β δ ε∑ˆ = + + + ∈ { … }
=

X Iwith 1, , 7 .it
i

I

i it t it0
1

(6)

This amounts to 10,739,175 regressions to compare, out of which we select the best ones based on akaike

information criterion and bayesian information criterion. Table 6 shows the coefficient estimates of the determi-

nants included in the selected models to explain the size distribution of “stable” light, corrected light, and popu-

lation. Even using such a purely algorithmic approach, we see the importance of historic variables, such as the year

of independence as well as population in 1400, which are clearly in line with the time of development framework by

Henderson et al. (2018). The continent dummies also play a large role in all three selected models, capturing in

particular a more egalitarian city size distribution in (early developed) Europe. Also, current urbanization rates

predict a higher Pareto alpha. The effect of trade‐related variables on city size is ambiguous, in line with the

literature (Duranton, 2008; Fujita & Mori, 1996). However, the association of coastal proximity with a more

unequal city size distribution can be seen in light of the recent works by Bonfatti and Poelhekke (2017) and Jedwab

and Moradi (2016), who argue that outward‐oriented colonial infrastructure in many developing countries still has

an effect on their distribution of economic activity. Taken together, our results suggest to a much stronger extent

than previous Zipf‐related studies that historical determinants can explain a lot of the cross‐country variation of

the city size distribution.

5.2 | Changes over time and outlook

What do these results mean in a dynamic perspective? If the city size distribution in terms of light and population

can be explained to a large degree by historical factors, it will only change very slowly. It has been shown for

particular countries, such as the United States (Black & Henderson, 2003; Gonzàlez‐Val, 2010), France

(Duranton, 2007), and Japan (Eaton & Eckstein, 1997), that the city size distribution has been rather persistent

across decades despite structural economic change and city growth. Here we exploit the panel structure of our

global data set to verify this hypothesis for countries around the world: Figure 6 shows that across the available

years for population (1975–2015) and light (1992–2013), the alpha coefficients and their cross‐country distribu-

tions exhibit little variation. In terms of population, the range of Pareto alpha coefficients around 1 seems to have

narrowed so that some countries are getting a bit closer to Zipf's law from either side. In terms of corrected light,

19A complete list of the 36 variables including their sources is contained in Supporting Information Appendix G. We do not use transportation variables,

such as the road and rail network, which we consider endogenous to the city size distribution even though they have been used in some other studies,

such as Rosen and Resnick (1980). For a discussion of the link between communication technology, another potentially endogenous variable, and the size

distribution of cities, we refer to Ioannides, Overman, Rossi‐Hansberg, and Schmidheiny (2008).
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TABLE 6 Coefficient estimates of selected models

Stable light alpha Corrected light alpha Population alpha

Coastal proximity −0.002*** −0.001***

(0.000) (0.000)

Independence before 1914 0.049*** 0.070***

(0.010) (0.011)

Between 1946 and 1989 0.060*** 0.047***

(0.009) (0.009)

After 1989 0.233*** 0.203***

(0.012) (0.011)

Continent dummy Americas −0.031*** −0.019* 0.038

(0.010) (0.010) (0.025)

Asia 0.051*** 0.084*** 0.121***

(0.009) (0.008) (0.027)

Europe 0.166*** 0.223*** 0.272***

(0.013) (0.011) (0.033)

Oceania −0.395*** −0.187*** −0.062

(0.021) (0.020) (0.058)

Trade −0.229*** −0.032*** 0.047

(0.029) (0.008) (0.031)

Urbanization 0.004*** 0.002***

(0.000) (0.000)

Fertility −0.048***

(0.002)

Exports 0.004***

(0.001)

Agriculture −0.001

(0.000)

Population in 1,400 0.012*** 0.043***

(0.002) (0.005)

Interstate war 0.042

(0.059)

Patent applications −0.001

(0.001)

GDP p.c. −0.021***

(0.007)

Ethnic fractionalization 0.255***

(0.038)

Constant 0.894*** 0.655*** 0.742***

(0.024) (0.023) (0.035)

Satellite‐year F.E. Yes Yes

Year F.E. Yes

N 2,225 2,165 123

Adj. R2 0.705 0.482 0.713

Note: Standard errors in parentheses, * <p 0.1, ** <p 0.05, and *** <p 0.01. The base categories for the two categorial

variables are non‐colonies and Africa respectively. The category “independence between 1914 and 1945” drops out due to

the lack of observations. Scaling of some variables differs from original sources: trade is here measured in permyriad of

GDP, population in 1400 in 10,000,000 people, patent applications in 10,000 and GDP p.c. in 10,000 USD.
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the cross‐country distribution of Pareto alphas remains centered around a value of 0.8 for the entire period.

Tracing the coefficients for each individual country over time shows similarly little movement, underlining the

strong persistence in the city size distribution for most countries.

How can we then expect the future size distribution to look like? Extrapolating the results from our analysis

over time would suggest that most countries will remain close to Zipf's law in population and keep their more

unequal distribution in terms of light. However, it is conceivable that the growth rates of the biggest cities might

add a twist here. In the long run, cities of different size have to grow at the same average rate for the distribution to

remain stable, according to Gibrat's Law. Figure 7 compares the population growth rates of primary and secondary

(2nd to 10th largest) cities in each country from 2000 to 2015. In the scatter plot of growth rates (Figure 7a), we

see a stronger tendency of countries to be distributed above the main diagonal than below it. Hence, in more

countries, primary cities have outgrown secondary cities, pointing to a relative consolidation rather than a catch‐up.
This holds for countries with both egalitarian and inegalitarian city size distributions, as the different colors of the

dots show.20 Figure 7b compares the cross‐country growth rate distributions: The growth rate distribution of

primary cities is located a bit to the right of that of secondary cities and has its mode at a slightly higher level; the

Kolmogorov–Smirnoff test rejects equality of the distributions at the 10% level.

Although this evidence is rather tentative, it fits in with other recent results from the literature about higher

population growth rates of primary cities. Bluhm and Krause (2018) find that in sub‐Saharan Africa, primary cities

are growing significantly faster than secondary cities in terms of light once the top‐coding correction is applied to

the data. United Nations (2018) forecast that in 2030, there will be 43 megacities with more than 10m inhabitants,

most of them in developing countries. Given our result from Section 4 that large primary shares drive inequality of

the total size distribution of cities, if concentration is indeed increasing, it might have wide‐ranging effects. In terms

of Zipf's law, we can expect existing deviations not only to persist, but they might become larger rather than

smaller, if the largest cities draw away from the rest. For policymakers, managing the growth of such evolving

megacities is vital, in particular in developing countries. There is a debate whether overall poverty is lower in larger

F IGURE 6 Stability of estimated Pareto alpha coefficients over time. (a) Population and (b) corrected lights.
Note: The estimated Pareto alphas of all countries with more than 10 cities, based on the above‐median

distribution, are shown in the boxplots. The boxes indicate the 25–75% percentiles with the median in between.
The range of the plots go up the adjacent values, omitting outliers. In years where more than one satellite per year
is available for the lights data, values are averaged. [Color figure can be viewed at wileyonlinelibrary.com]

20Correlation coefficients: 0.48 (blue dots) and 0.38 (green dots).
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or smaller cities (Christiaensen & Todo, 2014; Ferre, Ferreira, & Lanjouw, 2012). But growing primary cities will

struggle to reap the benefits of agglomeration if (a) living conditions remain bad (Castells‐Quintana, 2017;

Glaeser, 2014) and (b) they are disconnected neighborhoods with poor infrastructure (Bluhm & Krause, 2018; Lall

et al., 2017).

6 | CONCLUDING REMARKS

We revisit the discussion about Zipf's law in a cross‐country setting by exploiting recent geospatial data. We use a

consistent city identification scheme, provide a rigorous treatment of the threshold issue, and compare the city size

distribution in each country based on both population and light proxying for economic activity. Our data set

contains more than 10,000 cities in countries around the world.

The main insight from our analysis is that Zipf's law is an adequate characterization for the size distribution of

cities for many, but not for all, countries. Economic activity, however, is typically distributed more unequally, so that

Zipf's law does not hold for most countries in terms of light, in line with the existence of economic agglomeration

effects. Such deviations can be explained to a large extent by an undue concentration of resources in the largest

cities. We also note that the size effect is mainly driven by area rather than density, underlining the importance of

economies of scale and market access.

To explain the cross‐country heterogeneity in the size distribution of cities, we make use of recent time of

development theories. Factors related to economic history turn out to be robust explanatory factors in our

model selection procedure. Despite this persistence of the city size distribution, recent growth rates of the

largest cities lead us to suggest that we might see a further move away from rather than towards Zipf's law in

several countries.

There are two main avenues for further research to build upon the results of our paper. On the one hand, there

is the question of which distribution of city size is optimal for a given country. Despite the theoretical arguments

behind Zipf's law, country‐specific factors, such as the current development level, might make a different dis-

tribution more appropriate (Henderson, 2003). In particular, it has been argued that a stronger concentration of

resources at earlier stages of development might be beneficial, while later on a more balanced size distribution

should emerge (Davis & Henderson, 2003; Hansen, 1990; Junius, 1999). It would be insightful to revisit this

normative debate based on the new results.

F IGURE 7 Population growth rates of primary and secondary cities (2000–2015). (a) Growth rates by Pareto

alpha and (b) growth rate densities [Color figure can be viewed at wileyonlinelibrary.com]
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Moreover, further research might focus on the connection between the city size distribution, regional in-

equality, and household‐level income inequality. Which role large cities play in the evolution of income inequality is

a highly relevant question (Diamond, 2016). Despite recent results on the nonlinear relation between the city size

distribution and income inequality (Castells‐Quintana, 2018), this issue is only starting to be explored.
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