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ORIGINAL ARTICLE

UNIT ROOT TESTING WITH SLOWLY VARYING TRENDS

SVEN OTTO
University of Bonn, Institute for Finance and Statistics, Bonn, Germany

A unit root test is proposed for time series with a general nonlinear deterministic trend component. It is shown that asymptot-
ically the pooled OLS estimator of overlapping blocks filters out any trend component that satisfies some Lipschitz condition.
Under both fixed-b and small-b block asymptotics, the limiting distribution of the t-statistic for the unit root hypothesis is
derived. Nuisance parameter corrections provide heteroskedasticity-robust tests, and serial correlation is accounted for by
pre-whitening. A Monte Carlo study that considers slowly varying trends yields both good size and improved power results
for the proposed tests when compared to conventional unit root tests.
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1. INTRODUCTION

It is widely debated in the time series literature whether macroeconomic variables such as GDP, inflation, and
interest rates are I(1) or I(0) around a deterministic trend. Dickey–Fuller-type unit root tests often fail to reject the
null hypothesis for these time series. The trend component of a time series yt is typically treated as known up to
some parameter vector. The most commonly applied unit root tests, such as those developed by Dickey and Fuller
(1979), Said and Dickey (1984), Phillips (1987), Phillips and Perron (1988), and Elliott et al. (1996), impose either
a constant or a linear trend model. If, however, the deterministic trend component is nonlinear, highly persistent
trend-stationary processes can be hardly distinguishable from unit root processes (see, e.g., Bierens, 1997; Becker
et al., 2006).

It is not only a misspecified trend model that may lead to high power losses, as an overparameterized model can
also reduce the power of unit root tests. Therefore, many authors have suggested applying trend models that seem
more suitable for macro data. Broken trend models with one-time changes in mean or slope with known breakpoint
were first studied by Perron (1989) and Rappoport and Reichlin (1989). Christiano (1992) demonstrated that a
broken trend model with an unknown breakpoint is more adequate, and Zivot and Andrews (1992), as well as
Banerjee et al. (1992), proposed unit root tests for this framework. Structural changes in innovation variances were
studied by Hamori and Tokihisa (1997), Kim et al. (2002), and Cavaliere (2005), while Cavaliere et al. (2011)
considered unit root testing under broken trends together with non-stationary volatility. Leybourne et al. (1998),
Kapetanios et al. (2003), and Kílíç (2011) allowed for exponential smooth transitions from one trend regime to
another. Bierens (1997) approximated a nonlinear mean function with Chebyshev polynomials, and Enders and
Lee (2012) proposed a Fourier series approximation of the trend, which are approaches that can be used when the
exact form and date of structural changes are unknown. For a comprehensive review on the research on unit root
testing see Choi (2015).
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86 S. OTTO

Dickey–Fuller-type tests are based on the t-statistic of the first-order autoregressive parameter. In case of a
constant trend, the estimator is derived from a regression of Δyt on (yt−1 −y), where y is the sample mean. Schmidt
and Phillips (1992) estimated the constant by the initial observation, which results in a regression of Δyt on (yt−1 −
y1). Whereas a constant is often not a good global approximation, in a small block, a smoothly varying trend can
be approximated quite closely by a constant. To exploit this fact, we propose a block procedure to filter out the
unknown trend component. Blocking was also used in Rooch et al. (2019) to estimate the fractional integration
parameter in a similar situation. We divide the series into T −B overlapping blocks of length B. As the blocks can
be considered as units of a panel, we follow the panel unit root tests proposed by Breitung (2000) and Levin et al.
(2002) and consider a pooled regression of Δyj+t on (yj+t−1−yj) for 2 ≤ t ≤ T and 1 ≤ j ≤ T −B. The deterministic
function is approximated locally by a constant. One could also use higher order local approximations of the trend
function, but unreported simulations indicate that these approximations do not work well in samples of usual size.
For this reason, we focus on constant local approximations. Under a general class of piecewise continuous trend
functions, the resulting pooled estimator is consistent as B,T → ∞. The limiting null distribution of the t-statistic
is a functional of a Brownian motion under fixed-b asymptotics. Under small-b asymptotics, a normal distribution
is obtained.

The article is organized as follows: in Section 2 the autoregressive model with independent and heteroskedastic
errors is analyzed together with the asymptotic behavior of the pooled least squares estimator in the presence of
a general nonlinear trend component. For both fixed-b and small-b block asymptotics, the limiting distributions
are derived under both the unit root hypothesis and under local alternatives. In the presence of heteroskedastic
errors, nuisance parameters appear in the limiting distributions, and the estimation of these parameters is discussed.
Section 3 considers pseudo t-tests for the unit root hypothesis, and heteroskedasticity-robust test statistics are
provided. In Section 4, a pre-whitening procedure is proposed to account for short-run dynamics, while Section 5
reports on Monte Carlo simulations. The tests are found to have only minor size distortions in small samples and
are sized correctly in larger samples. It is shown that in the presence of slowly varying trends, pooled tests tend to
yield higher power than conventional unit root tests. Finally, Section 6 presents the conclusion.

While some proofs including those of the main theorems are presented in the Appendix, the more technical
proofs are available as Supporting information. In the following, W(r) denotes a standard Brownian motion and
‘⇒’ stands for weak convergence on the càdlàg space D[0, 1] together with a suitable norm. Θ(⋅) denotes the exact
order Landau symbol, that is, aT = Θ(bT ) if and only if aT = O(bT ) and bT = O(aT ), as T → ∞. Moreover, ⌊⋅⌋
is the integer part of its argument, and Δyt stands for the differenced series yt − yt−1. Finally,


−→ and

p
−→ denote

convergence in distribution and convergence in probability.

2. THE POOLED ESTIMATOR

We are interested in inference concerning the autoregressive parameter 𝜌 in the model

yt = dt + xt, xt = 𝜌xt−1 + ut, t = 1,… ,T , (1)

where 𝜌 is close or equal to one. The deterministic trend component dt is treated as non-stochastic and fixed in
repeated samples, where its functional form is non-parametric and unknown.

Assumption 1 (trend component). The trend component is given by dt = d(t∕T), where d(r) is a piecewise
Lipschitz continuous function.

Note that any continuously differentiable function is Lipschitz continuous. Lipschitz functions are locally close
to a constant value in the sense that there exists some C <∞ such that |d(r)−d(s)| ≤ C|r− s| for all r, s ∈ ℝ. The
piecewise Lipschitz condition allows for a partition with a finite number of intervals, such that d(r) is Lipschitz
continuous on each interval. This includes both smooth changes and abrupt breaks in the trend function. For the
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UNIT ROOT TESTING WITH SLOWLY VARYING TRENDS 87

initial value, it is assumed that E[x2
0] < ∞. We introduce the pooled estimator and the unit root test statistics under

the following assumptions on the error term:

Assumption 2 (heteroskedastic errors). The process {ut}t∈ℕ is independently distributed with E[ut] = 0, E[u2
t ] =

𝜎2
t and E[u4

t ] <∞, where 𝜎t = 𝜎(t∕T). The function 𝜎(r) is càdlàg, non-stochastic, strictly positive, and bounded.

The principal approach to dealing with a general, slowly varying trend is to approximate the unknown trend
locally by a constant. Let B be some blocklength that satisfies 2 ≤ B < T . We divide the time series into T − B
overlapping blocks of length B and then block-wise estimate 𝜌 via OLS under a constant trend specification. In
the fashion of Schmidt and Phillips (1992), as well as Breitung and Meyer (1994), the constant trend is estimated
by the first observation in each block, which corresponds to the maximum likelihood estimator under the unit root
hypothesis 𝜌 = 1. Thereafter, by pooling the T −B individual block regressions, we obtain the regression equation

Δyt+j = 𝜙(yt+j−1 − yj) + ut+j, t = 2,… ,B, j = 1,… ,T − B,

where 𝜙 = 𝜌 − 1. The pooled OLS estimator is formulated as

𝜙̂ = 𝜌̂ − 1 =
∑T−B

j=1

∑B
t=2 Δyt+j(yt+j−1 − yj)∑T−B

j=1

∑B
t=2(yt+j−1 − yj)2

.

In the following, we derive the asymptotic properties for the numerator and the denominator separately. The
numerator and denominator statistics are defined as

1,T = 1
B3∕2T1∕2

T−B∑
j=1

B∑
t=2

Δyt+j(yt+j−1 − yj), 2,T = 1
B2T

T−B∑
j=1

B∑
t=2

(yt+j−1 − yj)2,

such that
√

BT(𝜌̂ − 1) = 1,T∕2,T . Their counterparts without deterministics are given by

1,T = 1
B3∕2T1∕2

T−B∑
j=1

B∑
t=2

Δxt+j(xt+j−1 − xj), 2,T = 1
B2T

T−B∑
j=1

B∑
t=2

(xt+j−1 − xj)2.

In what follows, we show that, under the block procedure, the deterministic component can be ignored asymptot-
ically. All asymptotic results are jointly derived for B,T → ∞. While the statistics 1,T and 2,T are infeasible if
dt is unknown, they can be well approximated by 1,T and 2,T in the following sense:

Lemma 1. Let 𝜌 = 1 − c∕
√

BT with c ≥ 0, let dt satisfy Assumption 1, and let ut satisfy Assumption 2. Then,
as B,T → ∞, 1,T − 1,T = OP(B−1∕2), and 2,T − 2,T = OP(T−1∕2).

Accordingly, we obtain (1,T −1,T ,2,T −2,T )
p

−→ (0, 0) jointly, and the block procedure filters out the trend
component in the numerator and the denominator asymptotically. Hence, applying Slutsky’s theorem, we can write

√
BT(𝜌̂ − 1) =

1,T

2,T

=
1,T

2,T

+ oP(1).

This result is valid without any rate restrictions for B. To obtain the limiting distribution, we formulate some
properties for the numerator and denominator statistics.

J. Time Ser. Anal. 42: 85–106 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
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88 S. OTTO

Lemma 2. Let 𝜌 = 1 − c∕
√

BT with c ≥ 0, and let ut satisfy Assumption 2. Then, as B,T → ∞, the following
statements hold true:

(a) 1,T =
∑T

j=1 qj,T − c ⋅ T , where qj,T , j ≤ T , T ∈ ℕ is a martingale difference array with

qj,T = B−3∕2T−1∕2 ∑
t∈j

∑t−1
k=1 ujuj−k, j = {t ∈ ℕ ∶ 1 ≤ t ≤ B, j + B − T ≤ t ≤ j − 1}, and

T = 0.5 ∫ 1
0 𝜎

2(r) dr + OP (B1∕2T−1∕2).
(b) Var[1,T ] = Θ(1) and Var[2,T ] = Θ(BT−1).
(c) If c = 0 and 𝜎2

t = 𝜎2 for all t ∈ ℕ,

v2
T ∶=

𝜎2Var[1,T ]
E[2,T ]

= (T − B)(2B − 1) − 2(B − 2)
3B(T − B)

.

The previous results suggest distinguishing between different rates for B, which leads to two fundamentally
different types of blocklength asymptotics. The fixed-b approach denotes the case where the relative blocklength
B∕T converges to some value b with 0 < b < 1, such that B and T grow at the same rate. In the small-b approach,
we consider a relative blocklength that converges to zero, while B,T → ∞.1 As the blocks are overlapping, the
error terms in the pooled regression equation are correlated, but, fortunately, the correlation structure is known by
construction. Together with the central limit theorem for martingale difference arrays, the following asymptotic
result can be established for the small-b case:

Theorem 1. Let 𝜌 = 1 − c∕
√

BT with c ≥ 0, let dt satisfy Assumption 1, and let ut satisfy Assumption 2. Let
B∕T → 0 as B,T → ∞. Then,

1,T


−→ 

(
− c

2 ∫
1

0
𝜎2(r) dr,

1
3 ∫

1

0
𝜎4(r) dr

)
, and 2,T

p
−→ 1

2 ∫
1

0
𝜎2(r) dr.

Since 2,T converges in probability to a constant, we have joint convergence of (1,T ,2,T ), and the pooled esti-
mator is asymptotically normally distributed under small-b asymptotics. Under the unit root hypothesis 𝜌 = 1, or,
equivalently, if c = 0, it follows that

√
BT(𝜌̂ − 1)


−→ 

(
0,

4
3

∫ 1
0 𝜎

4(r) dr

(∫ 1
0 𝜎

2(r) dr)2

)
.

The asymptotic variance of 𝜌̂ involves integrals of the second- and fourth-order powers of the function 𝜎(r),
where the factor ∫ 1

0 𝜎
4(r) dr∕(∫ 1

0 𝜎
2(r) dr)2 is equal to unity in case of homoskedasticity. This factor also appears

in the asymptotic variance matrix of the OLS estimator of the autoregressive coefficient under unconditional
heteroskedasticity (see Phillips and Xu, 2006).

Cavaliere (2005) showed that permanent changes in volatility induce a time-shift in the right-hand side process of
the functional central limit theorem. A variance-transformed Brownian process W𝜂(r) appears in the limiting distri-

butions of Dickey–Fuller-type unit root tests. Given the variance profile 𝜂, where 𝜂(s) = (∫ 1
0 𝜎

2(r) dr)−1 ∫ s

0 𝜎
2(r) dr,

the transformed process is defined as W𝜂(r) = W(𝜂(r)), where W(r) is a standard Brownian motion. When impos-
ing fixed-b asymptotics, the numerator and denominator statistics can be represented as a partial sum process of
the innovations, which leads to the following limiting result:

1 Note that the terminology ‘fixed-b and small-b asymptotics’ was also used in the context of long-run variance estimation. Whereas Kiefer
and Vogelsang (2005) used this wording for the asymptotics of the ratio of the truncation point to the sample size, we consider the ratio of the
blocklength to the sample size.

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 85–106 (2021)
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Theorem 2. Let 𝜌 = 1 − c∕
√

BT with c ≥ 0, let dt satisfy Assumption 1, and let ut satisfy Assumption 2. Let
0 < b < 1, and let B∕T → b as B,T → ∞. Then,(1,T

2,T

) 
−→

(
0.5b−3∕2 ∫ 1

0 𝜎
2(r) dr

( ∫ 1−b

0 (Jc,b,𝜂(b + r) − Jc,b,𝜂(r))2 − b(1 − b)
)

b−2 ∫ 1
0 𝜎

2(r) dr ∫ 1−b

0 ∫ b+r

r (Jc,b,𝜂(s) − Jc,b,𝜂(r))2 ds dr

)
,

where Jc,b,𝜂(r) = ∫ r

0 e−(r−s)c∕bdW𝜂(s).

The limiting distributions are represented as functionals of the process Jc,b,𝜂 , which is an Ornstein–Uhlenbeck
type process that is driven by a variance-transformed Wiener process. Consequently, the pooled estimator is asymp-
totically represented as a functional of a standard Brownian motion. If 𝜌 = 1, the continuous mapping theorem
and Theorem 2 imply that√

BT(𝜌̂ − 1)

−→

b1∕2 ∫ 1−b

0

(
W𝜂(b + r) − W𝜂(r)

)2
dr + b3∕2(1 − b)

2 ∫ 1−b

0 ∫ b+r

r

(
W𝜂(s) − W𝜂(r)

)2
ds dr

under fixed-b asymptotics. In comparison to the limiting distribution of the 𝜌-statistic in the Dickey–Fuller
framework, the functional includes an additional integral, which results from pooling the block regressions.

To estimate the unknown parameters in the limiting distributions, we consider the residuals ût = yt − 𝜌̂yt−1 for
t = 2,… ,T and their sample mean û = (T − 1)−1 ∑T

j=2 ûj. Let, for notational convenience, û1 = 0, and let

𝜎̂2 = 1
T − 2

T∑
j=2

(ûj − û)2, 𝜅̂2 =

∑T−B
j=1

∑B
t=1

(
ûj+1 − û

)2 (
ûj+t −

1

B

∑B
k=1 ûj+k

)2

∑T−B
j=1

∑B
t=1

(
ûj+t −

1

B

∑B
k=1 ûj+k

)2
,

𝜂̂(s) =

∑⌊sT⌋
j=2

(
ûj −

1⌊sT⌋−1

∑⌊sT⌋
k=2 ûk

)2
+ (sT − ⌊sT⌋)(û⌊sT⌋+1 −

1⌊sT⌋ ∑⌊sT⌋+1
k=2 ûk

)2

∑T
j=2(ûj − û)2

,

where s ∈ [0, 1]. We obtain the following consistency results:

Lemma 3. Let 𝜌 = 1 − c∕
√

BT with c ≥ 0, let dt satisfy Assumption 1, and let ut satisfy Assumption 2.

(a) 𝜎̂2
p

−→ ∫ 1
0 𝜎

2(r) dr, as B,T → ∞.

(b) sups∈[0,1] |𝜂̂(s) − 𝜂(s)| p
−→ 0, as B,T → ∞.

(c) 𝜅̂2
p

−→ ∫ 1
0 𝜎

4(r) dr∕ ∫ 1
0 𝜎

2(r) dr, as B,T → ∞ and B∕T → 0.

3. PSEUDO t-STATISTICS FOR UNIT ROOT TESTING

The principal concept of Dickey–Fuller-type unit root tests is to consider a pseudo t-test for the null hypoth-
esis H0 ∶ 𝜌 = 1. Following this approach in the pooled regression framework, the usual standard error is
given by s𝜌̂ = 𝜎̂(

∑T−B
j=1

∑B
t=2(yt+j−1 − yj)2)−1∕2 = 𝜎̂(2,TB2T)−1∕2 and the conventional t-statistic is represented as

(𝜌̂−1)∕s𝜌̂ =
√

B1,T∕
√
𝜎̂22,T , which diverges in probability under H0. Accordingly, we consider a scaled pseudo

t-statistic of the form

𝜏 = 𝜌̂ − 1

s𝜌̂
√

B
=

1,T

𝜎̂
√2,T

, (2)

which is OP(1), as B,T → ∞.

J. Time Ser. Anal. 42: 85–106 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
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90 S. OTTO

In what follows, pseudo t-tests are defined for both small-b and fixed-b block asymptotics. To get a
nuisance-parameter-free limiting distribution under small-b asymptotics, we replace 𝜎̂ by 𝜅̂ in (2). The small-b
pseudo t-statistic is given as

𝜏-SB =
1,T

𝜅̂vT

√2,T

=
∑T−B

j=1

∑B
t=2 Δyt+j(yt+j−1 − yj)

𝜅̂vT

√
B
∑T−B

j=1

∑B
t=2(yt+j−1 − yj)2

.

The factor vT is defined in Lemma 2. Since vT → 2∕3, this term provides a finite-sample correction and scales
the asymptotic variance of the t-statistic to unity. Under fixed-b asymptotics, a nuisance term appears in the Gaus-
sian process itself. By means of transforming the data with its inverse variance profile, Cavaliere and Taylor
(2007) showed that the time-transformation in the Gaussian limiting processes can be inverted. The variance pro-
file estimator 𝜂̂(s) is strictly increasing and admits the unique inverse function 𝜂̂−1(s). Accordingly, we consider
the time-transformed series ỹt = y⌊𝜂̂−1(t∕T)T⌋ for t = 1,… ,T . We replace the original series in the test statistic by ỹt

and define

̃1,T = 1
B3∕2T1∕2

T−B∑
j=1

B∑
t=2

Δỹt+j(ỹt+j−1 − ỹj), ̃2,T = 1
B2T

T−B∑
j=1

B∑
t=2

(ỹt+j−1 − ỹj)2,

which yields the fixed-b statistic

𝜏-FB =
̃1,T

𝜎̂

√
̃2,T

=
∑T−B

j=1

∑B
t=2 Δỹt+j(ỹt+j−1 − ỹj)

𝜎̂
√

B
∑T−B

j=1

∑B
t=2(ỹt+j−1 − ỹj)2

.

In practice, the time-transformed series ỹt can have duplicate entries in low volatility periods and therefore may
not include all information of the original series in high volatility periods. However, we do not need to discard any
observations when transforming the data. We may artificially extend the series. An auxiliary sample size T̃ ≥ T
can be chosen in such a way that 𝜂̂−1(t∕T̃) − 𝜂̂−1((t − 1)∕T̃) ≥ T̃−1 for all t = 1,… , T̃ . Then, the grid of width 1∕T̃
is dense enough such that ỹt = y⌊𝜂̂−1(t∕T̃)T̃⌋, t = 1,… , T̃ , includes all sample points of the original series, and the
fixed-b statistic may be applied to this auxiliary series. Note that the auxiliary time series is not necessary from a
theoretical point of view, but it leads to better test results in small samples.

Theorem 3. Let 𝜌 = 1 − c∕
√

BT with c ≥ 0, let dt satisfy Assumption 1, and let ut satisfy Assumption 2.

(a) Let B∕T → 0 as B,T → ∞. Then,

𝜏-SB

−→ 

(
−

c
√

3
2

∫ 1
0 𝜎

2(r) dr√
∫ 1

0 𝜎
4(r) dr

, 1

)
.

(b) Let 0 < b < 1, and let B∕T → b as B,T → ∞. Then,

𝜏-FB

−→

∫ 1−b

0

(
Jc,b(b + r) − Jc,b(r)

)2
dr − b(1 − b)

2
√

b ∫ 1−b

0 ∫ b+r

r

(
Jc,b(s) − Jc,b(r)

)2
ds dr

,

where Jc,b(r) = ∫ r

0 e−(r−s)c∕bdW(s) is a standard Ornstein–Uhlenbeck process.

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 85–106 (2021)
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Table I. Asymptotic critical values for the fixed-b test

B∕T

𝛼 −0.1 −0.2 −0.3 −0.4 −0.5 −0.6 −0.7 −0.8 −0.9

0.2 −0.788 −0.812 −0.815 −0.799 −0.761 −0.701 −0.623 −0.520 −0.377
0.1 −1.126 −1.128 −1.104 −1.055 −0.987 −0.903 −0.798 −0.664 −0.486
0.05 −1.403 −1.375 −1.327 −1.257 −1.169 −1.067 −0.939 −0.781 −0.573
0.04 −1.486 −1.446 −1.391 −1.318 −1.222 −1.113 −0.978 −0.814 −0.600
0.03 −1.582 −1.534 −1.471 −1.394 −1.291 −1.169 −1.025 −0.855 −0.630
0.02 −1.709 −1.650 −1.579 −1.489 −1.374 −1.246 −1.094 −0.909 −0.669
0.01 −1.904 −1.830 −1.745 −1.639 −1.511 −1.361 −1.191 −0.995 −0.729
0.001 −2.431 −2.320 −2.203 −2.042 −1.882 −1.692 −1.480 −1.226 −0.905

Note: The sample paths of the standard Brownian motions contained in the asymptotic null distribution of 𝜏-FB are simulated by a discretized
version of W(r) on a grid of 50,000 equidistant points. The empirical quantiles are obtained from 100,000 Monte Carlo repetitions.

The unit root hypothesis is rejected in favor of stationarity if the test statistic is smaller than the 𝛼-quantile of
the limiting distribution for the case c = 0, where 𝛼 is the significance level. For 𝜏-SB we can rely on standard
normal quantiles as critical values. The limiting distribution of 𝜏-FB is non-standard. Note that Jc(r) = W(r) if
c = 0. Table I presents simulated left-tailed quantiles of the null distribution for various relative blocklengths B∕T
and significance levels.

From the point of view of a practitioner, the 𝜏-SB test has a number of advantages: the distribution is standard
normal; thus, there is no need to resort to new tables, and p-values are easy to implement. In fact, the simulations in
Section 5 indicate that the standard normal approximation is quite accurate in small samples if B = Θ(T𝛾 ), where
0.5 ≤ 𝛾 ≤ 0.8. Furthermore, the unit root test is robust to heteroskedasticity without using any data modification
method such as those in Cavaliere and Taylor (2007) and Beare (2018) or wild bootstrap implementations (see
Cavaliere and Taylor, 2008a).

4. TESTING UNDER SHORT-RUN DYNAMICS

A more realistic scenario for macroeconomic variables is that error terms are serially correlated. We impose
Assumption 3 on the error process:

Assumption 3 (serially correlated errors). The process {ut}t∈ℤ possesses the moving average representation
ut = 𝜓(L)𝜖t =

∑∞
i=0 𝜓i𝜖t−i with

∑∞
i=0 |𝜓i| < ∞, where L is the usual lag operator. Moreover, all solutions z of the

equation 𝜓(z) = 0 satisfy |z| > 1. The process {𝜖t}t∈ℤ is independently distributed with E[𝜖t] = 0, E[𝜖2
t ] = 𝜎2

t and
E[𝜖4

t ] < ∞, where 𝜎t = 𝜎(t∕T). The function 𝜎(r) is càdlàg, non-stochastic, strictly positive, and bounded.

Assumption 3 implies that the moving average representation of ut is invertible, and we may write 𝜃(L)ut =
ut−

∑∞
i=1 𝜃iut−i = 𝜖t, where 𝜃(z) = 1−

∑∞
i=1 𝜃iz

i, and
∑∞

i=1 |𝜃i| <∞. To correct for the effect of short-run dynamics,
we follow Breitung and Das (2005), among others, and consider the pre-whitened series x∗t = 𝜃(L)xt. By (1), it
follows that

x∗t = 𝜃(L)𝜌xt−1 + 𝜃(L)ut = 𝜌x∗t−1 + 𝜖t,

where 𝜖t satisfies the same conditions as ut under Assumption 2. Consequently, if the unit root statistics are defined
in terms of

∗
1,T = 1

B3∕2T1∕2

T−B∑
j=1

B∑
t=2

Δx∗t+j(x
∗
t+j−1 − x∗j ), ∗

2,T = 1
B2T

T−B∑
j=1

B∑
t=2

(x∗t+j−1 − x∗j )
2

instead of 1,T and 2,T , their limiting distributions coincide with those presented in the previous sections.

J. Time Ser. Anal. 42: 85–106 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12557 Journal of Time Series Analysis published by John Wiley & Sons Ltd.



92 S. OTTO

Since the autoregressive parameters of the error process are unknown, they need to be estimated. In the fashion
of Said and Dickey (1984) and Chang and Park (2002), we fix some lag order pT and consider the AR(pT ) error
representation ut =

∑pT

i=1 𝜃iut−i + 𝜖pT ,t
with 𝜖pT ,t

=
∑∞

i=pT+1 𝜃iut−i + 𝜖t. Then,

Δxt = 𝜙xt−1 +
pT∑
i=1

𝜃iut−i + 𝜖pT ,T
, (3)

which is equal to
∑pT

i=1 𝜃iΔxt−i + 𝜖pT ,T
under the unit root hypothesis. The lag order pT is allowed to grow with the

sample size T . In what follows, we show that the differenced deterministic terms are asymptotically negligible, as
pT → ∞ with pT = o(B1∕2), and we may replace Δxt−i by Δyt−i for all i ≥ 0 in the augmented regression equation.
Let (𝜑̂, 𝜃̂1,… , 𝜃̂pT

)′ be the least squares coefficient vector from the regression of Δyt on yt−1,Δyt−1,… ,Δyt−pT
, for

t = pT + 1.… ,T .

Lemma 4. Let 𝜌 = 1 − c∕
√

BT with c ≥ 0, let dt satisfy Assumption 1, and let ut satisfy Assumption 3. Then,∑pT

i=1(𝜃̂i − 𝜃i) = OP(pTB−1∕2), as pT ,B,T → ∞.

The estimated pre-whitened series is defined as ŷ∗t = yt −
∑pT

i=1 𝜃̂iyt−i, and the corresponding numerator and
denominator statistics are given by

̂∗
1,T = 1

B3∕2T1∕2

T−B∑
j=1

B∑
t=2

Δŷ∗t+j(ŷ
∗
t+j−1 − ŷ∗j ), ̂∗

2,T = 1
B2T

T−B∑
j=1

B∑
t=2

(ŷ∗t+j−1 − ŷ∗j )
2.

Lemma 5. Let 𝜌 = 1 − c∕
√

BT with c ≥ 0, let dt satisfy Assumption 1, and let ut satisfy Assumption 3. Then,
̂∗

1,T − ∗
1,T = OP(pTB−1∕2), and ̂∗

2,T − ∗
2,T = OP(pTT−1∕2), as pT ,B,T → ∞.

As a direct consequence, (̂∗
1,T −∗

1,T , ̂∗
2,T −∗

2,T )
p

−→ (0, 0) if pT = o(B1∕2). Let 𝜌̂∗ be given by
√

BT(𝜌̂∗ −1) =
̂∗

1,T∕̂∗
2,T and let the pre-whitened residuals be defined as û∗

t = ŷ∗t − 𝜌̂
∗ŷ∗t−1, for t = pT + 1,… ,T . For notational

convenience, let û∗
1 = … = û∗

pT
= 0. The pre-whitened counterparts of the estimators from Lemma 3 are defined as

𝜎̂∗2 = 1
T − 2

T∑
j=2

(û∗
j − û∗)2, 𝜅̂∗2 =

∑T−B
j=1

∑B
t=1

(
û∗

j+1 − û∗
)2 (

û∗
j+t −

1

B

∑B
k=1 û∗

j+k

)2

∑T−B
j=1

∑B
t=1

(
û∗

j+t −
1

B

∑B
k=1 û∗

j+k

)2
,

𝜂̂∗(s) =

∑⌊sT⌋
j=2

(
û∗

j −
1⌊sT⌋−1

∑⌊sT⌋
k=2 û∗

k

)2
+ (sT − ⌊sT⌋)(û∗⌊sT⌋+1

− 1⌊sT⌋ ∑⌊sT⌋+1
k=2 û∗

k

)2

∑T
j=2(û

∗
j − û∗)2

.

Analogously, we consider the time-transformed pre-whitened series ỹ∗t = ŷ∗⌊𝜂̂∗−1(t∕T)T⌋ for all t = 1,… ,T , where

𝜂̂∗−1(s) is the unique inverse of 𝜂̂∗(s), and we define

̃∗
1,T = 1

B3∕2T1∕2

T−B∑
j=1

B∑
t=2

Δỹ∗t+j(ỹ
∗
t+j−1 − ỹ∗j ), ̃∗

2,T = 1
B2T

T−B∑
j=1

B∑
t=2

(ỹ∗t+j−1 − ỹ∗j )
2.

For any lag order pT ≥ 0, the pre-whitened versions of the test statistics are given by

𝜏-SBpT
=

̂∗
1,T

𝜅̂∗vT

√
̂∗

2,T

, 𝜏-FBpT
=

̂∗
1,T

𝜎̂∗
√

̂∗
2,T

.

Note that 𝜏-SB0 = 𝜏-SB and 𝜏-FB0 = 𝜏-FB. To summarize, we obtain the following limiting distributions:
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Table II. Trend functions

Type of the trend Functional form

1 Sharp break d(r) = 𝜆 ⋅ 1{r≤2∕3}
2 u-shaped break d(r) = 𝜆 ⋅ 1{r≤1∕4} + 𝜆 ⋅ 1{r>3∕4}

3 Continuous break d(r) = 𝜆 ⋅ (4r ⋅ 1{r>2∕3} − 8∕3)
4 u-shaped break in intercept d(r) = 𝜆 ⋅ (r1{r≤1∕4} + (r − 1)1{1∕4<r≤3∕4} + r1{t>3∕4})
5 LSTAR break d(r) = 𝜆 ⋅ (1 + exp(20(r − 0.75)))−1

6 Offsetting LSTAR break d(r) = 𝜆∕(1 + exp(20(r − 0.2))) − 0.5𝜆∕(1 + exp(20(r − 0.75)))
7 Triangular break d(r) = 𝜆 ⋅ (2r1{r≤1∕2} + 2(1 − r)1{r>1∕2})
8 Fourier break d(r) = 𝜆 ⋅ 0.5 cos(2𝜋r)

Note: The functional form of the trend functions for the simulations are presented. The parameter 𝜆 determines the size of the trend.

Theorem 4. Let 𝜌 = 1 − c∕
√

BT , let dt satisfy Assumption 1, and let ut satisfy Assumption 3. Furthermore, let
pT = o(B1∕2).

(a) Let B∕T → 0 as B,T → ∞. Then, 𝜅̂∗2
p

−→ ∫ 1
0 𝜎

4(r) dr∕ ∫ 1
0 𝜎

2(r) dr, and

𝜏-SBpT


−→ 

(
−

c
√

3
2

∫ 1
0 𝜎

2(r) dr√
∫ 1

0 𝜎
4(r) dr

, 1

)
.

(b) Let 0 < b < 1, and let B∕T → b as B,T → ∞. Then, supr∈[0,1] |𝜂̂(s) − 𝜂(s)| p
−→ 0, 𝜎̂∗2

p
−→ ∫ 1

0 𝜎
2(r) dr, and

𝜏-FBpT


−→

∫ 1−b

0

(
Jc,b(b + r) − Jc,b(r)

)2
dr − b(1 − b)

2
√

b ∫ 1−b

0 ∫ b+r

r

(
Jc,b(s) − Jc,b(r)

)2
ds dr

,

where Jc,b(r) = ∫ r

0 e−(r−s)c∕bdW(s).

The lag order pT is typically unknown in practice and can be chosen using conventional lag order selection meth-
ods, such as the Bayesian information criterion (BIC) or by the general-to-specific methodology in the fashion
of Ng and Perron (1995). The maximum lag order pmax can be chosen for instance by the rule of thumb pro-
vided by Schwert (1989). For the special case of a single break in the deterministic component, Demetrescu and
Hassler (2016) showed that if pT is determined by a usual information criterion the correct lag length is selected
asymptotically.

5. SIMULATIONS

The finite sample performance of the unit root tests is evaluated by means of Monte Carlo simulations. The analysis
includes different specifications for both the deterministic part dt and the stochastic part xt.

While the zero-trend dt = 0 is the main benchmark, we consider several other trends including sharp breaks and
smooth changes of different shapes. The trend specifications are presented in Table II and Figure 1. The parameter
𝜆 determines the size of the break. Similar trend functions are also considered in Jones and Enders (2014) to
evaluate the performance of the unit root test by Enders and Lee (2012).

The stochastic part xt is simulated both under the null hypothesis 𝜌 = 1 and the alternative hypothesis 𝜌 = 0.9.
For the errors ut, we consider an independent process as well as the AR(1) process ut = 0.5ut−1 + 𝜖t with standard
normal innovations. Furthermore, results with heteroskedastic innovations using the variance function 𝜎2(r) =
1 + 𝜆 ⋅ 1{r≤2∕3} are presented.

J. Time Ser. Anal. 42: 85–106 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12557 Journal of Time Series Analysis published by John Wiley & Sons Ltd.



94 S. OTTO

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

sharp break

r

d(
r)

0.0 0.2 0.4 0.6 0.8 1.0
0

1
2

3

u−shaped break

r

d(
r)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

continuous break

r

d(
r)

0.0 0.2 0.4 0.6 0.8 1.0

−3
−1

1
2

3

u−shaped break in intercept

r

d(
r)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

LSTAR break

r

d(
r)

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

offsetting LSTAR breaks

r

d(
r)

0.0 0.2 0.4 0.6 0.8 1.0
0

1
2

3

triangular break

r

d(
r)

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

Fourier break

r

d(
r)

Figure 1. Plots of the trend functions. Note: The plots of the of the trend functions from Table II are presented. The trend size
is 𝜆 = 3
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Figure 2. Effect of the initial condition on the finite-sample power. Note: Size-adjusted power results for different tests are
presented. The initial condition is simulated from a normal distribution with mean zero and different values for 𝜎2

0 = Var[x0],
where 𝜎0 is shown on the x-axis. The simulation results are reported for a nominal size level of 5%, for 100,000 replications

with T = 100, 𝜌 = 0.9, the zero trend specification dt = 0, and independent standard normal innovations ut

The small-b tests are implemented using blocklengths of the form B = T𝛾 with parameters 𝛾 ∈
{0.5, 0.6, 0.7, 0.8}. For the fixed-b versions, we consider B = b ⋅ T with relative blocklengths b ∈ {0.2, 0.4, 0.6}.
For all tests, the lag augmentation order pT is either fixed or flexibly determined by the BIC with a maximum lag
order of pmax = 5. All empirical size levels are presented for a significance level of 5%, and the models are simu-
lated with 100,000 repetitions for sample sizes of T = 100 and T = 300. As noted by Müller and Elliott (2003),
the power of a unit root test depends on the initial condition, and the initial value is simulated as x0 ∼  (0, 𝜎2

0 )
for 𝜎2

0 ∈ {0, 5, 10}.
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Table III. Size and power results under the zero-trend specification

Initial value x0 = 0 x0 ∼  (0, 5) x0 ∼  (0, 10)
Sample size T = 100 T = 300 T = 100 T = 300 T = 100 T = 300

𝜌 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9

i.i.d. errors – no lag augmentation (p = 0)
𝜏-SB, B = T0.5 0.063 0.346 0.057 0.870 0.064 0.329 0.057 0.864 0.064 0.315 0.057 0.859
𝜏-SB, B = T0.6 0.064 0.407 0.059 0.963 0.064 0.388 0.059 0.961 0.064 0.371 0.059 0.959
𝜏-SB, B = T0.7 0.062 0.459 0.058 0.992 0.061 0.434 0.059 0.991 0.061 0.413 0.059 0.990
𝜏-SB, B = T0.8 0.049 0.428 0.048 0.996 0.049 0.400 0.049 0.995 0.049 0.375 0.049 0.995
𝜏-FB, B = 0.2T 0.042 0.306 0.046 0.973 0.041 0.287 0.046 0.972 0.041 0.270 0.046 0.970
𝜏-FB, B = 0.4T 0.047 0.374 0.047 0.989 0.046 0.346 0.048 0.988 0.047 0.323 0.048 0.987
𝜏-FB, B = 0.6T 0.047 0.386 0.046 0.989 0.047 0.350 0.046 0.988 0.047 0.320 0.046 0.986
ADF 0.054 0.329 0.052 0.996 0.054 0.348 0.050 0.996 0.054 0.367 0.050 0.996
DF-GLS 0.078 0.792 0.058 1.000 0.077 0.617 0.058 0.947 0.077 0.516 0.058 0.858
DF-GLS-trend 0.069 0.371 0.053 0.994 0.069 0.324 0.052 0.955 0.069 0.292 0.052 0.894
EL 0.061 0.140 0.054 0.775 0.061 0.134 0.053 0.755 0.061 0.130 0.053 0.732

AR(1) errors – fixed lag augmentation (p = 1)
𝜏-SB1, B = T0.5 0.012 0.125 0.021 0.679 0.012 0.124 0.022 0.675 0.012 0.121 0.022 0.674
𝜏-SB1, B = T0.6 0.025 0.222 0.038 0.877 0.025 0.220 0.038 0.876 0.025 0.216 0.038 0.875
𝜏-SB1, B = T0.7 0.038 0.305 0.046 0.958 0.037 0.301 0.046 0.957 0.037 0.297 0.046 0.957
𝜏-SB1, B = T0.8 0.034 0.290 0.042 0.972 0.033 0.286 0.042 0.972 0.033 0.281 0.042 0.972
𝜏-FB1, B = 0.2T) 0.025 0.189 0.040 0.922 0.025 0.187 0.040 0.922 0.025 0.184 0.040 0.922
𝜏-FB1, B = 0.4T 0.037 0.270 0.044 0.960 0.037 0.268 0.045 0.961 0.037 0.263 0.045 0.960
𝜏-FB1, B = 0.6T 0.039 0.281 0.044 0.962 0.038 0.276 0.044 0.962 0.037 0.272 0.044 0.961
ADF 0.056 0.263 0.051 0.970 0.056 0.267 0.051 0.971 0.056 0.271 0.051 0.972
DF-GLS 0.077 0.722 0.058 1.000 0.077 0.656 0.058 0.993 0.077 0.602 0.058 0.973
DF-GLS-trend 0.071 0.309 0.052 0.970 0.071 0.297 0.052 0.956 0.071 0.285 0.052 0.937
EL 0.067 0.125 0.056 0.636 0.068 0.125 0.056 0.628 0.068 0.123 0.056 0.620

AR(1) errors – flexible lag augmentation (p determined by BIC)
𝜏-SBp, B = T0.5 0.006 0.093 0.016 0.680 0.006 0.093 0.016 0.676 0.006 0.091 0.016 0.674
𝜏-SBp, B = T0.6 0.018 0.200 0.033 0.873 0.018 0.198 0.034 0.872 0.018 0.195 0.034 0.871
𝜏-SBp, B = T0.7 0.032 0.296 0.044 0.952 0.032 0.293 0.044 0.953 0.031 0.289 0.044 0.952
𝜏-SBp, B = T0.8 0.032 0.287 0.042 0.968 0.030 0.284 0.041 0.968 0.030 0.280 0.041 0.968
𝜏-FBp, B = 0.2T 0.020 0.171 0.038 0.916 0.020 0.170 0.038 0.917 0.020 0.168 0.038 0.916
𝜏-FBp, B = 0.4T 0.033 0.254 0.043 0.956 0.033 0.254 0.044 0.956 0.033 0.250 0.044 0.956
𝜏-FBp, B = 0.6T 0.035 0.263 0.044 0.957 0.034 0.261 0.043 0.957 0.033 0.258 0.043 0.956
ADF 0.058 0.269 0.051 0.969 0.059 0.272 0.052 0.970 0.059 0.276 0.052 0.971
DF-GLS 0.085 0.703 0.060 0.999 0.084 0.637 0.059 0.991 0.084 0.584 0.059 0.967
DF-GLS-trend 0.082 0.317 0.054 0.960 0.081 0.302 0.055 0.943 0.081 0.289 0.055 0.921
EL 0.106 0.175 0.066 0.637 0.106 0.173 0.064 0.628 0.106 0.171 0.064 0.621

Note: Simulation results are reported for 100,000 replications. The zero-trend dt = 0 is considered for all t = 1,… ,T . The AR(1) process
is given by ut = 0.5ut−1 + 𝜖t. All innovations are simulated independently as standard normal random variables. For the small-b and fixed-b
tests, the lag order p refers to the pre-whitening scheme, and, for the conventional tests, p represents the augmentation order. The rejection
frequencies are based on the asymptotic critical values for a significance level of 5%.

To demonstrate the advantage of the fixed-b and small-b unit root tests, their finite sample results are compared to
those obtained by conventional unit root tests. As the main benchmark, we consider the augmented Dickey–Fuller
test by Said and Dickey (1984) with constant trend specification (ADF henceforth), which is the t-test for the
hypothesis 𝜙 = 0 in the regression Δyt = 𝜙yt−1 + 𝛽0 +

∑pT

i=1 𝜉iΔyt−i + et.
Elliott et al. (1996) proposed a feasible point-optimal test with local-to-unity GLS demeaning in the ADF

regression. Let the deterministic trend function be given by the vector zt, and let 𝛼∗ = 1 − c∕T , where c ∈ ℝ.
Furthermore, let yc,t = yt −𝛼∗yt−1 and Zc,t = zt −𝛼∗zt−1 for t ≥ 2, and let yc,1 = y1 and Zc,1 = z1. The Dickey–Fuller
GLS test is then the t-test for the hypothesis 𝜙 = 0 in the regression Δyd

t = 𝜙yd
t−1 +

∑pT

i=1 𝜉iΔyd
t−i + et, where

yd
t = yt −𝛽′zt and where 𝛽 is the OLS estimator from a regression of yc,t on Zc,t. For the constant trend specification

(DF-GLS henceforth), we set zt = 1 and c = 7, and, for the linear trend specification (DF-GLS-trend henceforth),
zt = (1, t)′ and c = 13.5 are considered. Note that the point-optimal test with GLS demeaning is asymptotically
equivalent with the Dickey–Fuller test for dt = 0 computed using the series with initial value subtraction (see
Elliott et al., 1996)

J. Time Ser. Anal. 42: 85–106 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
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Table IV. Size and power results under different trends and i.i.d. errors (1/2)

Sample size T = 100 T = 300

𝜌 𝜌 = 1 𝜌 = 0.9 𝜌 = 1 𝜌 = 0.9

𝜆 3 6 9 3 6 9 3 6 9 3 6 9

Sharp break
𝜏-SB, B = T0.5 0.064 0.064 0.063 0.281 0.194 0.129 0.057 0.058 0.058 0.837 0.752 0.623
𝜏-SB, B = T0.6 0.065 0.067 0.068 0.318 0.198 0.114 0.059 0.061 0.062 0.941 0.861 0.705
𝜏-SB, B = T0.7 0.063 0.068 0.072 0.322 0.155 0.069 0.059 0.060 0.063 0.976 0.885 0.638
𝜏-SB, B = T0.8 0.069 0.117 0.153 0.319 0.189 0.108 0.051 0.056 0.063 0.966 0.709 0.241
𝜏-FB, B = 0.2T 0.041 0.043 0.041 0.218 0.129 0.058 0.046 0.044 0.043 0.936 0.758 0.474
𝜏-FB, B = 0.4T 0.044 0.027 0.011 0.220 0.060 0.009 0.048 0.043 0.033 0.940 0.654 0.237
𝜏-FB, B = 0.6T 0.042 0.022 0.006 0.225 0.055 0.004 0.046 0.040 0.027 0.936 0.639 0.205
ADF 0.050 0.038 0.023 0.169 0.021 0.001 0.049 0.045 0.038 0.898 0.247 0.004
DF-GLS 0.078 0.075 0.065 0.402 0.105 0.011 0.059 0.059 0.059 0.885 0.599 0.142
DF-GLS-trend 0.069 0.067 0.055 0.270 0.164 0.074 0.052 0.052 0.051 0.911 0.729 0.415
EL 0.060 0.056 0.044 0.124 0.096 0.062 0.053 0.052 0.051 0.703 0.565 0.383

u-shaped break
𝜏-SB, B = T0.5 0.065 0.067 0.064 0.247 0.143 0.089 0.057 0.057 0.058 0.810 0.650 0.452
𝜏-SB, B = T0.6 0.066 0.070 0.070 0.271 0.135 0.072 0.059 0.060 0.062 0.918 0.740 0.464
𝜏-SB, B = T0.7 0.079 0.105 0.109 0.290 0.136 0.069 0.059 0.062 0.066 0.954 0.691 0.280
𝜏-SB, B = T0.8 0.055 0.067 0.069 0.253 0.093 0.034 0.053 0.064 0.079 0.937 0.520 0.116
𝜏-FB, B = 0.2T 0.040 0.031 0.025 0.170 0.059 0.018 0.045 0.041 0.036 0.885 0.477 0.149
𝜏-FB, B = 0.4T 0.045 0.037 0.030 0.196 0.047 0.010 0.048 0.046 0.042 0.878 0.364 0.049
𝜏-FB, B = 0.6T 0.043 0.044 0.057 0.183 0.044 0.013 0.046 0.042 0.038 0.852 0.256 0.024
ADF 0.046 0.027 0.011 0.181 0.030 0.002 0.048 0.041 0.030 0.915 0.329 0.018
DF-GLS 0.077 0.068 0.049 0.435 0.163 0.037 0.059 0.059 0.056 0.885 0.634 0.230
DF-GLS-trend 0.063 0.040 0.017 0.148 0.016 0.000 0.051 0.046 0.036 0.743 0.126 0.001
EL 0.066 0.065 0.054 0.132 0.112 0.080 0.055 0.057 0.057 0.702 0.568 0.405

Continuous break
𝜏-SB, B = T0.5 0.055 0.036 0.017 0.266 0.128 0.029 0.055 0.048 0.038 0.852 0.808 0.719
𝜏-SB, B = T0.6 0.055 0.035 0.016 0.300 0.123 0.019 0.056 0.048 0.038 0.950 0.911 0.789
𝜏-SB, B = T0.7 0.051 0.032 0.014 0.314 0.100 0.011 0.055 0.047 0.036 0.983 0.928 0.680
𝜏-SB, B = T0.8 0.042 0.028 0.014 0.287 0.091 0.010 0.046 0.039 0.030 0.983 0.873 0.449
𝜏-FB, B = 0.2T 0.036 0.023 0.011 0.214 0.080 0.012 0.044 0.037 0.029 0.953 0.846 0.525
𝜏-FB, B = 0.4T 0.040 0.027 0.014 0.261 0.097 0.014 0.046 0.040 0.031 0.972 0.855 0.472
𝜏-FB, B = 0.6T 0.041 0.028 0.015 0.269 0.105 0.016 0.044 0.039 0.032 0.970 0.845 0.461
ADF 0.045 0.027 0.010 0.151 0.011 0.000 0.048 0.040 0.029 0.895 0.235 0.003
DF-GLS 0.064 0.039 0.015 0.351 0.045 0.001 0.056 0.046 0.035 0.885 0.541 0.060
DF-GLS-trend 0.061 0.041 0.021 0.230 0.076 0.011 0.050 0.044 0.035 0.891 0.607 0.192
EL 0.059 0.054 0.047 0.129 0.116 0.097 0.053 0.051 0.048 0.744 0.710 0.652

u-shaped break in intercept
𝜏-SB, B = T0.5 0.064 0.061 0.056 0.236 0.123 0.068 0.056 0.056 0.055 0.807 0.636 0.424
𝜏-SB, B = T0.6 0.065 0.064 0.058 0.254 0.109 0.049 0.059 0.059 0.058 0.915 0.718 0.414
𝜏-SB, B = T0.7 0.077 0.092 0.089 0.262 0.099 0.039 0.058 0.059 0.060 0.950 0.640 0.202
𝜏-SB, B = T0.8 0.053 0.062 0.058 0.230 0.066 0.017 0.052 0.062 0.073 0.929 0.444 0.063
𝜏-FB, B = 0.2T 0.038 0.029 0.025 0.160 0.055 0.028 0.044 0.039 0.032 0.877 0.435 0.128
𝜏-FB, B = 0.4T 0.044 0.038 0.039 0.198 0.073 0.046 0.048 0.045 0.043 0.877 0.408 0.115
𝜏-FB, B = 0.6T 0.042 0.047 0.086 0.201 0.113 0.134 0.045 0.040 0.038 0.881 0.426 0.164
ADF 0.043 0.022 0.007 0.112 0.004 0.000 0.047 0.037 0.025 0.784 0.051 0.000
DF-GLS 0.073 0.060 0.037 0.353 0.066 0.004 0.058 0.055 0.049 0.907 0.578 0.069
DF-GLS-trend 0.063 0.040 0.017 0.148 0.016 0.000 0.051 0.046 0.036 0.743 0.126 0.001
EL 0.066 0.065 0.054 0.132 0.112 0.080 0.055 0.057 0.057 0.702 0.568 0.405

Note: Simulation results are reported for 100,000 replications. The errors ut are simulated independently as standard normal random variables.
The series are not pre-whitened (p = 0). The rejection frequencies are based on the asymptotic critical values for a significance level of 5%.

An approach that does not assume a precise model for the trend component is that developed by Enders and
Lee (2012) (EL henceforth). A flexible Fourier form is used to approximate smooth breaks in the trend function.
Structural changes can be captured by the low frequency components of a series. In its simplest form, Enders and
Lee (2012) considered the parametric trend model d(r) = 𝛼0 + 𝛾r + 𝛼1 sin(2𝜋r) + 𝛽1 cos(2𝜋r). More frequencies
could be included, but doing so could lead to an over-fitting problem. The test works as follows: first, the auxiliary
regression Δyt = 𝛿0 + 𝛿1Δ sin(2𝜋t∕T) + 𝛿2Δ cos(2𝜋t∕T) + vt is considered with OLS estimates 𝛿0, 𝛿1, and 𝛿2. Let
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Table V. Size and power results under different trends and i.i.d. errors (2/2)

Sample size T = 100 T = 300

𝜌 𝜌 = 1 𝜌 = 0.9 𝜌 = 1 𝜌 = 0.9

𝜆 3 6 9 3 6 9 3 6 9 3 6 9

LSTAR break
𝜏-SB, B = T0.5 0.057 0.042 0.024 0.282 0.170 0.062 0.055 0.051 0.044 0.856 0.827 0.769
𝜏-SB, B = T0.6 0.057 0.040 0.022 0.318 0.161 0.041 0.057 0.051 0.043 0.954 0.927 0.853
𝜏-SB, B = T0.7 0.054 0.037 0.019 0.327 0.118 0.017 0.056 0.049 0.040 0.985 0.945 0.771
𝜏-SB, B = T0.8 0.044 0.031 0.017 0.287 0.092 0.011 0.047 0.042 0.035 0.983 0.870 0.449
𝜏-FB, B = 0.2T 0.038 0.026 0.014 0.222 0.093 0.019 0.044 0.039 0.032 0.956 0.868 0.599
𝜏-FB, B = 0.4T 0.042 0.030 0.018 0.258 0.098 0.016 0.047 0.042 0.035 0.967 0.821 0.411
𝜏-FB, B = 0.6T 0.042 0.032 0.019 0.262 0.103 0.019 0.045 0.041 0.033 0.964 0.799 0.377
ADF 0.049 0.034 0.019 0.189 0.028 0.001 0.049 0.044 0.036 0.932 0.402 0.019
DF-GLS 0.070 0.051 0.029 0.415 0.101 0.006 0.056 0.051 0.043 0.899 0.671 0.197
DF-GLS-trend 0.063 0.050 0.033 0.265 0.142 0.048 0.051 0.046 0.041 0.916 0.758 0.449
EL 0.059 0.053 0.046 0.129 0.115 0.094 0.053 0.051 0.048 0.741 0.704 0.644

Offsetting LSTAR break
𝜏-SB, B = T0.5 0.056 0.038 0.019 0.276 0.152 0.048 0.056 0.049 0.041 0.854 0.819 0.746
𝜏-SB, B = T0.6 0.055 0.036 0.017 0.307 0.142 0.032 0.057 0.049 0.039 0.952 0.916 0.813
𝜏-SB, B = T0.7 0.052 0.033 0.015 0.320 0.115 0.016 0.056 0.048 0.037 0.983 0.925 0.671
𝜏-SB, B = T0.8 0.042 0.027 0.013 0.281 0.088 0.011 0.047 0.040 0.031 0.978 0.809 0.326
𝜏-FB, B = 0.2T 0.036 0.023 0.011 0.212 0.081 0.014 0.043 0.038 0.029 0.950 0.823 0.471
𝜏-FB, B = 0.4T 0.040 0.026 0.012 0.240 0.077 0.010 0.046 0.039 0.031 0.949 0.691 0.225
𝜏-FB, B = 0.6T 0.039 0.025 0.012 0.229 0.062 0.006 0.045 0.039 0.030 0.930 0.573 0.115
ADF 0.052 0.048 0.048 0.269 0.135 0.059 0.050 0.047 0.045 0.981 0.837 0.452
DF-GLS 0.069 0.045 0.023 0.435 0.136 0.015 0.055 0.048 0.039 0.845 0.511 0.142
DF-GLS-trend 0.060 0.038 0.018 0.211 0.054 0.005 0.049 0.042 0.033 0.854 0.458 0.074
EL 0.060 0.055 0.049 0.131 0.121 0.106 0.053 0.052 0.049 0.747 0.723 0.684

Triangular break
𝜏-SB, B = T0.5 0.055 0.040 0.023 0.282 0.168 0.060 0.055 0.050 0.042 0.855 0.824 0.761
𝜏-SB, B = T0.6 0.056 0.039 0.021 0.318 0.164 0.045 0.057 0.050 0.041 0.954 0.924 0.847
𝜏-SB, B = T0.7 0.054 0.036 0.019 0.335 0.142 0.029 0.056 0.050 0.040 0.985 0.947 0.769
𝜏-SB, B = T0.8 0.042 0.028 0.015 0.290 0.105 0.017 0.046 0.041 0.034 0.977 0.826 0.388
𝜏-FB, B = 0.2T 0.037 0.026 0.014 0.224 0.100 0.024 0.044 0.039 0.031 0.955 0.864 0.579
𝜏-FB, B = 0.4T 0.041 0.028 0.014 0.258 0.098 0.018 0.047 0.041 0.032 0.949 0.715 0.273
𝜏-FB, B = 0.6T 0.041 0.028 0.016 0.262 0.105 0.021 0.045 0.040 0.032 0.957 0.758 0.333
ADF 0.052 0.047 0.042 0.256 0.105 0.027 0.051 0.048 0.045 0.975 0.782 0.331
DF-GLS 0.067 0.045 0.023 0.459 0.175 0.027 0.056 0.049 0.039 0.891 0.682 0.314
DF-GLS-trend 0.059 0.038 0.018 0.202 0.048 0.004 0.050 0.042 0.033 0.841 0.409 0.052
EL 0.060 0.058 0.054 0.133 0.127 0.118 0.053 0.052 0.051 0.752 0.742 0.726

Fourier break
𝜏-SB, B = T0.5 0.054 0.034 0.015 0.261 0.119 0.025 0.055 0.048 0.038 0.852 0.809 0.718
𝜏-SB, B = T0.6 0.054 0.033 0.014 0.287 0.103 0.013 0.056 0.048 0.037 0.951 0.905 0.762
𝜏-SB, B = T0.7 0.050 0.028 0.011 0.289 0.074 0.006 0.055 0.045 0.034 0.981 0.893 0.496
𝜏-SB, B = T0.8 0.040 0.022 0.009 0.247 0.051 0.003 0.046 0.038 0.028 0.963 0.644 0.113
𝜏-FB, B = 0.2T 0.035 0.020 0.008 0.195 0.056 0.006 0.043 0.036 0.027 0.944 0.756 0.292
𝜏-FB, B = 0.4T 0.038 0.021 0.009 0.218 0.053 0.004 0.045 0.037 0.027 0.923 0.526 0.079
𝜏-FB, B = 0.6T 0.038 0.022 0.009 0.223 0.055 0.004 0.044 0.037 0.027 0.930 0.557 0.095
ADF 0.048 0.037 0.026 0.217 0.054 0.007 0.049 0.044 0.036 0.959 0.594 0.102
DF-GLS 0.066 0.037 0.015 0.427 0.115 0.009 0.055 0.046 0.035 0.885 0.633 0.205
DF-GLS-trend 0.057 0.031 0.011 0.172 0.023 0.001 0.048 0.039 0.028 0.808 0.267 0.010
EL 0.061 0.061 0.061 0.134 0.134 0.134 0.053 0.053 0.053 0.755 0.755 0.755

Note: Simulation results are reported for 100,000 replications. The errors ut are simulated independently as standard normal random variables.
The series are not pre-whitened (p = 0). The rejection frequencies are based on the asymptotic critical values for a significance level of 5%.

D̃t = 𝛿0t + 𝛿1 sin(2𝜋t∕T) + 𝛿2 cos(2𝜋t∕T), which yields the detrended series S̃t = yt − D̃t − (y1 − D̃1). Finally,
the test statistic is given by the t-statistic for the null hypothesis 𝜙 = 0 in the regression Δyt = 𝜙S̃t−1 + 𝛽0 +
𝛽1Δ sin(2𝜋t∕T) + 𝛽2Δ cos(2𝜋t∕T) +

∑pT

i=1 𝜉iΔS̃t−i + et.
Harvey and Leybourne (2005, 2006) showed that, if x0 ∼  (0, 𝜎2

𝛼
∕(1−𝜌2)) for 𝜌 = 1−c∕T with c > 0 and some

𝜎𝛼 > 0, the limiting distributions of the ADF and the DF-GLS test depend on the additional nuisance parameter
𝜎𝛼 . The DF-GLS test is optimal for the zero initial condition x0 = 0, but its power decreases monotonically in 𝜎𝛼 ,
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Table VI. Size and power results under different trends and AR(1) errors

Sample size T = 100 T = 300

𝜌 𝜌 = 1 𝜌 = 0.9 𝜌 = 1 𝜌 = 0.9

𝜆 3 6 9 3 6 9 3 6 9 3 6 9

Sharp break
𝜏-SBp, B = T0.5 0.006 0.007 0.009 0.069 0.042 0.032 0.015 0.014 0.012 0.607 0.477 0.362
𝜏-SBp, B = T0.6 0.019 0.022 0.028 0.160 0.111 0.087 0.033 0.032 0.030 0.837 0.754 0.650
𝜏-SBp, B = T0.7 0.034 0.043 0.060 0.250 0.187 0.147 0.044 0.044 0.046 0.934 0.877 0.781
𝜏-SBp, B = T0.8 0.051 0.108 0.172 0.307 0.325 0.309 0.043 0.047 0.057 0.946 0.860 0.712
𝜏-FBp, B = 0.2T 0.023 0.045 0.069 0.149 0.167 0.156 0.038 0.043 0.058 0.882 0.790 0.692
𝜏-FBp, B = 0.4T 0.029 0.024 0.019 0.187 0.092 0.039 0.042 0.037 0.033 0.920 0.779 0.555
𝜏-FBp, B = 0.6T 0.029 0.016 0.008 0.192 0.072 0.016 0.041 0.033 0.024 0.918 0.767 0.501

u-shaped break
𝜏-SBp, B = T0.5 0.007 0.011 0.019 0.079 0.066 0.060 0.015 0.014 0.013 0.610 0.471 0.346
𝜏-SBp, B = T0.6 0.020 0.032 0.047 0.175 0.148 0.129 0.032 0.032 0.035 0.833 0.726 0.592
𝜏-SBp, B = T0.7 0.051 0.097 0.140 0.305 0.293 0.253 0.045 0.049 0.058 0.926 0.831 0.680
𝜏-SBp, B = T0.8 0.034 0.053 0.080 0.254 0.213 0.174 0.044 0.055 0.072 0.935 0.816 0.623
𝜏-FBp, B = 0.2T 0.024 0.044 0.056 0.149 0.145 0.117 0.037 0.042 0.054 0.862 0.694 0.515
𝜏-FBp, B = 0.4T 0.034 0.048 0.061 0.211 0.150 0.103 0.043 0.045 0.053 0.902 0.701 0.435
𝜏-FBp, B = 0.6T 0.037 0.060 0.089 0.218 0.164 0.127 0.043 0.048 0.060 0.896 0.662 0.380

Continuous break
𝜏-SBp, B = T0.5 0.006 0.005 0.004 0.079 0.049 0.022 0.016 0.015 0.015 0.654 0.594 0.511
𝜏-SBp, B = T0.6 0.018 0.016 0.013 0.173 0.115 0.060 0.033 0.032 0.030 0.859 0.818 0.746
𝜏-SBp, B = T0.7 0.030 0.027 0.023 0.256 0.173 0.087 0.044 0.043 0.040 0.943 0.906 0.826
𝜏-SBp, B = T0.8 0.029 0.027 0.023 0.250 0.172 0.092 0.041 0.039 0.037 0.956 0.908 0.792
𝜏-FBp, B = 0.2T 0.019 0.017 0.015 0.151 0.107 0.060 0.037 0.036 0.034 0.902 0.851 0.751
𝜏-FBp, B = 0.4T 0.032 0.029 0.025 0.230 0.168 0.100 0.043 0.041 0.040 0.943 0.897 0.796
𝜏-FBp, B = 0.6T 0.033 0.031 0.027 0.237 0.177 0.108 0.043 0.041 0.039 0.943 0.898 0.792

LSTAR break
𝜏-SBp, B = T0.5 0.005 0.004 0.003 0.063 0.025 0.010 0.016 0.015 0.014 0.613 0.505 0.424
𝜏-SBp, B = T0.6 0.017 0.014 0.010 0.149 0.078 0.035 0.033 0.033 0.030 0.842 0.779 0.706
𝜏-SBp, B = T0.7 0.030 0.025 0.019 0.231 0.126 0.055 0.043 0.042 0.039 0.937 0.890 0.809
𝜏-SBp, B = T0.8 0.028 0.024 0.018 0.222 0.120 0.053 0.041 0.039 0.037 0.951 0.887 0.746
𝜏-FBp, B = 0.2T 0.018 0.015 0.011 0.133 0.074 0.037 0.037 0.036 0.034 0.894 0.829 0.723
𝜏-FBp, B = 0.4T 0.031 0.027 0.021 0.204 0.123 0.063 0.044 0.042 0.040 0.936 0.866 0.729
𝜏-FBp, B = 0.6T 0.032 0.028 0.023 0.215 0.134 0.071 0.042 0.041 0.039 0.934 0.858 0.717

Fourier break
𝜏-SBp, B = T0.5 0.005 0.005 0.003 0.081 0.055 0.029 0.016 0.015 0.015 0.658 0.608 0.533
𝜏-SBp, B = T0.6 0.017 0.014 0.011 0.176 0.122 0.067 0.033 0.032 0.030 0.860 0.821 0.750
𝜏-SBp, B = T0.7 0.030 0.025 0.019 0.257 0.175 0.090 0.044 0.042 0.039 0.941 0.897 0.796
𝜏-SBp, B = T0.8 0.029 0.024 0.018 0.247 0.162 0.079 0.041 0.039 0.036 0.946 0.853 0.648
𝜏-FBp, B = 0.2T 0.019 0.016 0.012 0.150 0.105 0.058 0.037 0.036 0.033 0.898 0.832 0.693
𝜏-FBp, B = 0.4T 0.031 0.026 0.021 0.224 0.153 0.082 0.043 0.041 0.038 0.925 0.811 0.593
𝜏-FBp, B = 0.6T 0.032 0.028 0.021 0.231 0.158 0.086 0.043 0.041 0.038 0.930 0.828 0.621

Note: Simulation results are reported for 100,000 replications. The errors ut are simulated from ut = 0.5ut−1 + 𝜖t with independent standard
normal innovations, and the series are pre-whitened with a lag order p that is determined from the BIC. The rejection frequencies are based on
the asymptotic critical values for a significance level of 5%.

while the power of the ADF test increases. Figure 2 indicates that the pooled tests are less sensitive to this effect
across different values of 𝜎𝛼 . Furthermore, there is no test that outperforms the other tests uniformly across 𝜎𝛼 for
this situation in terms of size-adjusted power.

Tables III–VII present size and actual power results under different model specifications. For smaller sample
sizes, the pooled tests have small size distortions, which become larger as the break gets larger. However, for
larger sample sizes, the size distortions decline. Overall, the size levels are similar to those obtained from using
the conventional unit root tests.
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Table VII. Size and power results of robust tests under breaks in trend and variance

Sample size T = 100 T = 300

𝜌 𝜌 = 1 𝜌 = 0.9 𝜌 = 1 𝜌 = 0.9

𝜆 2 3 4 2 3 4 2 3 4 2 3 4

Sharp break in variance
𝜏-SB, B = T0.5 0.067 0.069 0.069 0.344 0.337 0.329 0.057 0.056 0.056 0.847 0.806 0.767
𝜏-SB, B = T0.6 0.071 0.075 0.077 0.420 0.421 0.416 0.062 0.061 0.061 0.954 0.933 0.909
𝜏-SB, B = T0.7 0.081 0.095 0.107 0.526 0.565 0.585 0.068 0.072 0.074 0.992 0.987 0.981
𝜏-SB, B = T0.8 0.085 0.124 0.162 0.569 0.683 0.756 0.082 0.116 0.147 0.999 1.000 1.000
𝜏-FB, B = 0.2T 0.040 0.039 0.040 0.283 0.261 0.238 0.045 0.044 0.042 0.947 0.882 0.812
𝜏-FB, B = 0.4T 0.043 0.042 0.041 0.346 0.308 0.276 0.047 0.046 0.045 0.982 0.935 0.876
𝜏-FB, B = 0.6T 0.042 0.040 0.042 0.349 0.327 0.307 0.045 0.045 0.045 0.989 0.974 0.947

Sharp break in trend and variance
𝜏-SB, B = T0.5 0.066 0.068 0.070 0.324 0.305 0.283 0.057 0.056 0.056 0.836 0.786 0.737
𝜏-SB, B = T0.6 0.071 0.074 0.076 0.391 0.370 0.344 0.062 0.061 0.061 0.946 0.916 0.881
𝜏-SB, B = T0.7 0.080 0.091 0.099 0.474 0.470 0.444 0.067 0.071 0.073 0.988 0.976 0.959
𝜏-SB, B = T0.8 0.095 0.145 0.194 0.526 0.595 0.627 0.081 0.111 0.136 0.997 0.996 0.993
𝜏-FB, B = 0.2T 0.040 0.039 0.038 0.260 0.228 0.197 0.046 0.044 0.043 0.935 0.854 0.765
𝜏-FB, B = 0.4T 0.044 0.042 0.043 0.295 0.240 0.200 0.047 0.046 0.046 0.960 0.872 0.772
𝜏-FB, B = 0.6T 0.042 0.043 0.047 0.292 0.240 0.205 0.046 0.045 0.046 0.954 0.866 0.766

Note: Simulation results are reported for 100,000 replications. The errors ut are simulated independently as standard normal random variables,
and the series are not pre-whitened (p = 0). The sharp break specification is defined by a break in the variance at 2∕3 of the sample. The
rejection frequencies are based on the asymptotic critical values for a significance level of 5%.

The power of the pooled tests depends on the blocklength. In case of no break, a larger blocklength implies higher

power results, which is in line with the theoretical findings that those tests have power in a 1∕
√

BT neighborhood
of the unit root hypothesis. For blocklengths of B = T0.8 in the small-b case and B = 0.6T in the fixed-b case, the
power results are similar to those from the ADF test and the Dickey–Fuller GLS test, where the ordering depends
on the initial condition (cf. Figure 2). Hence, none of the tests dominates the pooled tests uniformly across these
small-sample specifications (although, asymptotically, those tests have power in a 1∕T neighborhood of the unit
root hypothesis). Furthermore, smaller blocklengths, such as T0.6 in the small-b context and 0.2T in the fixed-b
context, still yield reasonably high power. In particular, the EL test performs much worse in all cases. The size
and power results obtained under the AR(1) error specification with both fixed and flexible lag augmentation for
the pre-whitening scheme are similar to those produced by i.i.d. errors.

As the tests are designed to yield higher power in the presence of slowly varying trends and breaks, we compare
the size-adjusted powers of the tests under the trend specifications presented in Table II and Figure 1. For large
break sizes 𝜆, it is shown that the smaller the blocklength, the greater the power results. In most cases, the pooled
tests have greater power than the ADF, the DF-GLS, the DF-GLS-trend, and the EL test. Furthermore, the power
results of the pooled tests are quite uniform across different trend specifications when compared to those of the
conventional tests.

Table VI shows that the pooled tests have reasonable size and power properties under the presence of AR(1)
errors and different trend specifications. Furthermore, from Table VII, we can conclude that the tests are sized
correctly and have good power properties in the presence of a break in the variance and in the trend function.

The blocklength B is a tuning parameter that needs to be chosen carefully, and any optimality result would
depend on the actual trend model. In practice, however, the trend model is unknown, which makes it hard to
derive an optimal blocklength. Although theoretical recommendations cannot be formulated based on the current
analysis, the small-b tests with B = T0.7 and the fixed-b tests with T = 0.2B yield very promising results for all
trend functions studied in this article and are therefore recommended as the default settings.

6. CONCLUSION

We have presented two variants of a unit root test under an unknown trend specification that are robust under both
heteroskedasticity and autocorrelation. When applied to finite samples, the tests show good size properties. The

J. Time Ser. Anal. 42: 85–106 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12557 Journal of Time Series Analysis published by John Wiley & Sons Ltd.



100 S. OTTO

fixed-b pooled test statistic converges to a functional of a Brownian motion under the unit root hypothesis, while
the small-b variant shows a standard normal distribution in the limit. Autocorrelation-robust versions of the tests
were introduced using a pre-whitening scheme. Monte Carlo simulations indicate that, while under the zero-trend
specification, the fixed-b and small-b tests perform similar to the conventional tests in terms of size and power,
under sharp breaks as well as smooth changes in the trend, their power is much higher. Furthermore, the powers
of the tests are less sensitive to the initial value when compared to the augmented Dickey–Fuller test and the
Dickey–Fuller GLS test.
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APPENDIX A. PROOFS

A.1. Auxiliary Results

Lemma A.1. Let 𝜌 = 1 − c∕
√

BT with c ≥ 0, let dt satisfy Assumption 1, and let ut satisfy Assumption 2.
Furthermore, let 1 ≤ s ≤ B. Then,

(a)
∑B

r=1
||∑T−B

j=1 Δdr+jΔds+j
|| = O(1).

(b)
∑B

r=1
||∑T−B

j=1 Δdr+jΔxs+j
|| = OP(T1∕2).

The proof is available in the supporting information in the online version of this article.
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A.2. Proof of Lemma 1

First, we reformulate the numerator and denominator statistics. Note that

Δyt+j(yt+j−1 − yj) − Δxt+j(xt+j−1 − xj) = Δdt+j(dt+j−1 − dj) + Δdt+j(xt+j−1 − xj) + Δxt+j(dt+j−1 − dj),

and
(yt+j−1 − yj)2 − (xt+j−1 − xj)2 = (dt+j−1 − dj)2 + 2(xt+j−1 − xj)(dt+j−1 − dj).

We decompose 1,T − 1,T = S1 + S2 + S3 and 2,T − 2,T = S4 + S5, where

S1 =
∑T−B

j=1

∑B
t=2 Δdt+j(dt+j−1 − dj)

B3∕2T1∕2
, S2 =

∑T−B
j=1

∑B
t=2 Δdt+j(xt+j−1 − xj)

B3∕2T1∕2
,

S3 =
∑T−B

j=1

∑B
t=2 Δxt+j(dt+j−1 − dj)

B3∕2T1∕2
, S4 =

∑T−B
j=1

∑B
t=2(dt+j−1 − dj)2

B2T
,

S5 =
∑T−B

j=1

∑B
t=2 2(xt+j−1 − xj)(dt+j−1 − dj)

B2T
.

Lemma A.1 yields S1 + S2 + S3 = OP(B−1∕2), and S4 + S5 = OP(T−1∕2), and the assertion follows by Slutsky’s
theorem.

A.3. Proof of Lemma 2

The proof is available in the supporting information in the online version of this article.

A.4. Proof of Theorem 1

From Lemma 2(a), it follows that E[q2
j,T ] = O(T−1) for any j ≤ T , which implies that Var[

∑T
j=1 qj,T ] =∑T−B

j=B+1 E[q2
j,T ]+o(1). The identity

∑n
t=2

∑t−1
k=1 ak =

∑n−1
k=1(n−k)ak holds true for any sequence (at)t∈ℕ, which follows

by induction on n. Then, for B + 1 ≤ j ≤ T − B,

B3∕2T1∕2qj,T =
B∑

t=2

t−1∑
k=1

ujuj−k =
B∑

k=1

(B − k)uj−k =
B−1∑
k=1

kujuj−B+k,

which yields

Var
[ T∑

j=1

qj,T

]
=

∑T−B
j=B+1

∑B−1
k=1 k2E[u2

j ]E[u
2
j−B+k]

B3T
+ o(1)

= ∫
T−B

T

B
T

∫
1

0
s2𝜎2(r)𝜎2( j−⌊(1−s)B⌋

T
) ds dr + o(1) = ∫

1

0 ∫
1

0
s2𝜎4(r) ds dr + o(1)

= 1
3 ∫

1

0
𝜎4(r) dr + o(1).

Moreover, we have max1≤j≤T E[q2
j,T ] = o(1), and Jensen’s and Markov’s inequalities yield max1≤j≤T |qj,T | = oP(1).

Since {qj,T} is a martingale difference array, we can apply the central limit theorem from Theorem 24.3 in Davidson

(1994), which implies that
∑T

j=1 qj,T∕
√

Var[
∑T

j=1 qj,T ]

−→  (0, 1), as T → ∞. Furthermore, from Lemma 2,
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E[1,T ] = −c∕2 ∫ 1
0 𝜎

2(r) dr + o(1), and the first statement follows from Lemma 1. For the second statement, note
that,

E[2,T ] =
1

B2T

T−B∑
j=1

B∑
t=2

E

[( t−1∑
k=1

Δxj+k

)2
]
= 1

B2T

T−B∑
j=1

B∑
t=2

E

[( t−1∑
k=1

uj+k + 𝜙xj+k−1

)2
]

= 1
B2T

T−B∑
j=1

B∑
t=2

E

[( t−1∑
k=1

uj+k

)2
]
+ o(1) = 1

B2T

T−B∑
j=1

B∑
t=2

t−1∑
k=1

𝜎2
j+k + o(1)

= 1
B2T

T−B∑
j=1

B−1∑
k=1

(B − k)𝜎2( j+k

T
) + o(1) = ∫

T−B
T

0 ∫
1

0
(1 − s)𝜎2(r + s B

T
) ds dr + o(1)

= ∫
1

0 ∫
1

0
(1 − s)𝜎2(r) ds dr + o(1) = 1

2 ∫
1

0
𝜎2(r) dr + o(1).

Furthermore, from Lemma 2, Var[2,T ] = o(1), and the assertion follows by Chebyshev’s inequality together with
Lemma 1.

A.5. Proof of Theorem 2

Let XT (r) = T−1∕2 ∑⌊rT⌋
k=1 uk and YT (r) = T−1∕2x⌊rT⌋ for r ≥ 0. From Lemmas 1 and 2 in Cavaliere (2005), it

follows that XT ⇒ 𝜎W𝜂 , where 𝜎2 = ∫ 1
0 𝜎

2(r) dr denotes the average variance. For notational convenience, we set

u0 = x0. Note that a Taylor expansion around 0 yields e−x = 1 − x + o(x), which implies that 𝜌 = 1 − c∕
√

BT =
exp(−c∕

√
BT) + o(1∕

√
BT). Then, with the continuous mapping theorem, we obtain

1

𝜎
√

T
x⌊rT⌋ =

⌊rT⌋∑
k=0

𝜌⌊rT⌋−k uk

𝜎
√

T
=

⌊rT⌋∑
k=0

e−(⌊rT⌋−k)c∕
√

BT uk

𝜎
√

T
+ oP(1)

= ∫
r

0
e−(r−s)c∕bdXT (s) + oP(1) ⇒ ∫

r

0
e−(r−s)c∕bdW𝜂(s) = Jc,b,𝜂(r), (A1)

which yields YT ⇒ 𝜎Jc,b,𝜂 . We rewrite

Δxt+jxt+j−1 =
Δxt+j(xt+j−1 + xt+j − Δxt+j)

2

=
(xt+j − xt+j−1)(xt+j + xt+j−1) − (Δxt+j)2

2
=

x2
t+j − x2

t+j−1 − (Δxt+j)2

2

such that

B∑
t=2

Δxt+j(xt+j−1 − xj) =
B∑

t=1

x2
t+j − x2

t+j−1 − (Δxt+j)2

2
− Δxt+jxj

= 1
2
(x2

j+B − x2
j ) − (xj+Bxj − x2

j ) −
1
2

B∑
t=1

(Δxt+j)2 =
(xj+B − xj)2

2
− 1

2

B∑
t=1

(Δxt+j)2.
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Then, with Lemma 1,

1,T = 1,T + oP(1) =
∑T−B

j=1 (xB+j − xj)2 −
∑T−B

j=1

∑B
t=1(Δxt+j)2

2B3∕2T1∕2

=
∫ 1−b

0 (YT (b + r) − YT (r))2 dr − 1

T2

∑T−B
j=1

∑B
t=1(Δxt+j)2

2b3∕2
+ oP(1).

From Δxt = ut, it follows that

E

[
1

T2

T−B∑
j=1

B∑
t=1

(Δxt+j)2
]
= 1

T2

T−B∑
j=1

B∑
t=1

E[u2
t+j] = b(1 − b)∫

1

0
𝜎2(r) dr + o(1),

which implies that

1,T =
∫ 1−b

0 (YT (b + r) − YT (r))2 dr − b(1 − b) ∫ 1
0 𝜎

2(r) dr

2b3∕2
+ oP(1). (A2)

Furthermore, Lemma 1 yields

2,T = 2,T + oP(1) =
1
b2 ∫

1−b

0 ∫
b+r

r

(YT (s) − YT (r))2 ds dr + oP(1). (A3)

The assertion follows from (A1), together with the continuous mapping theorem.

A.6. Proof of Lemma 3

Since (1 − 𝜌̂) = OP(B−1∕2T−1∕2) and xt = OP(T1∕2), the residuals satisfy

ût = yt − 𝜌̂yt−1 = Δyt + (1 − 𝜌̂)yt−1

= Δdt + ut + (𝜌 − 1)xt−1 + (1 − 𝜌̂)yt−1 = ut + OP(B−1∕2)

and û = OP(T−1∕2). Then, for any s ∈ [0, 1],

1
T

⌊sT⌋∑
j=1

(ûj − û)2 = 1
T

⌊sT⌋∑
j=1

u2
j + OP(B−1∕2) = ∫

s

0
𝜎2(r) dr + oP(1), (A4)

and (a) follows with s = 1. Furthermore, by Slutsky’s theorem, 𝜂̂(s) = 𝜂(s)+oP(1) holds pointwise for all s ∈ [0, 1].
Then, (b) follows by Dini’s theorem since both 𝜂̂(s) and 𝜂(s) are continuous, monotone, and bounded. For (c),

note that

1
T − B

T−B∑
j=1

(
ûj+t −

1
B

B∑
k=1

ûj+k

)2
= 1

T − B

T−B∑
j=1

u2
j+t + OP(B−1∕2), (A5)

for any t = 1,… ,B. Equations (A4) and (A5) yield

1
(T − B)B

T−B∑
j=1

B∑
t=1

(
ûj+t −

1
B

B∑
k=1

ûj+k

)2
= ∫

1

0
𝜎2(r) dr + oP(1),
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1
(T − B)B

T−B∑
j=1

B∑
t=1

(ûj+1 − û)2
(

ûj+t −
1
B

B∑
k=1

ûj+k

)2
= ∫

1

0
𝜎4(r) dr + oP(1),

as B,T → ∞ and B∕T → 0, and the result follows by Slutsky’s theorem.

A.7. Proof of Theorem 3

Note that vT →
√

2∕3, and 𝜅̂vT

√2,T

p
−→

√
∫ 1

0 𝜎
4(r) dr∕3, which follows from Theorem 1 and Lemma 3. Then,

(a) follows together with Slutsky’s theorem. For (b), let x̃⌊rT⌋ = x⌊𝜂̂−1(r)T⌋ and ũ⌊rT⌋ = u⌊𝜂̂−1(r)T⌋. Furthermore, let

X̃T (r) = T−1∕2 ∑⌊rT⌋
k=1 ũk and ỸT (r) = T−1∕2x̃⌊rT⌋. Theorem 1 in Cavaliere and Taylor (2008b) states that X̃T ⇒ 𝜎W,

where 𝜎2 = ∫ 1
0 𝜎

2(r) dr, and, analogously to (A1), it follows that ỸT ⇒ Jc,b. Following (A2) and (A3), we obtain

𝜏-FB =
(∫ 1−b

0 (Ỹ(b + r) − Ỹ(r))2 dr − b(1 − b)𝜎2)∕(2b3∕2)√
𝜎 ∫ 1−b

0 ∫ b+r

r (Ỹ(s) − Ỹ(r))2 ds dr∕b2

+ oP(1),

and the assertion follows with the continuous mapping theorem and Slutsky’s theorem.

A.8. Proof of Lemma 4

The proof is available in the supporting information in the online version of this article.

A.9. Proof of Lemma 5

The proof is available in the supporting information in the online version of this article.

A.10. Proof of Theorem 4

Let, for notational convenience, 𝜃0 = 𝜃̂0 = −1, and let 𝜃̂(z) = 1 −
∑pT

i=1 𝜃̂iz
i, which yields ŷ∗t = 𝜃̂(L)yt. Let

d̂∗
t = 𝜃̂(L)dt and x̂∗t = 𝜃̂(L)xt. Analogously to the proof of Lemma 3, we have

û∗
t = ŷ∗t − 𝜌̂

∗ŷt−1 = Δŷ∗t + (1 − 𝜌̂∗)ŷ∗t−1 = Δx̂∗t + O(B−1∕2) = 𝜖t + oP(1).

The consistencies of 𝜎̂∗2, 𝜅̂∗2, and 𝜂̂∗(s) follow from the fact that

1
T

⌊sT⌋∑
j=1

(û∗
j − û∗)2 = 1

T

⌊sT⌋∑
j=1

𝜖2
j + oP(1) = ∫

s

0
𝜎2(r) dr + oP(1), s ∈ [0, 1],

and

1
T − B

T−B∑
j=1

(
û∗

j+t −
1
B

B∑
k=1

û∗
j+k

)2
= 1

T − B

T−B∑
j=1

𝜖2
j+t + oP(1),

1
(T − B)B

T−B∑
j=1

B∑
t=1

(
û∗

j+t −
1
B

B∑
k=1

û∗
j+k

)2
= ∫

1

0
𝜎2(r) dr + oP(1),
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1
(T − B)B

T−B∑
j=1

B∑
t=1

(û∗
j+1 − û∗)2

(
û∗

j+t −
1
B

B∑
k=1

û∗
j+k

)2
= ∫

1

0
𝜎4(r) dr + oP(1),

where the last two equations hold true as B∕T → 0, analogously to Lemma 3.
Finally, since the pre-whitened numerator and denominator statistics (∗

1,T ,∗
2,T ) under Assumption 3 have

the same properties as (1,T ,2,T ) under Assumption 2, the assertion follows with Lemma 5 and the proof of
Theorem 3.
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