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ORIGINAL ARTICLE

ROBUST DISCRIMINATION BETWEEN LONG-RANGE DEPENDENCE
AND A CHANGE IN MEAN

CARINA GERSTENBERGERa

a Fakultät für Mathematik, Ruhr-Universität Bochum, Bochum, Germany

In this article we introduce a robust to outliers Wilcoxon change-point testing procedure, for distinguishing between short-range
dependent time series with a change in mean at unknown time and stationary long-range dependent time series. We establish
the asymptotic distribution of the test statistic under the null hypothesis for L1 near epoch dependent processes and show
its consistency under the alternative. The Wilcoxon-type testing procedure similarly as the CUSUM-type testing procedure
(of Berkes I., Horváth L., Kokoszka P. and Shao Q. 2006. Ann.Statist. 34:1140–1165), requires estimation of the location
of a possible change-point, and then using pre- and post-break subsamples to discriminate between short and long-range
dependence. A simulation study examines the empirical size and power of the Wilcoxon-type testing procedure in standard
cases and with disturbances by outliers. It shows that in standard cases the Wilcoxon-type testing procedure behaves equally
well as the CUSUM-type testing procedure but outperforms it in presence of outliers. We also apply both testing procedure to
hydrologic data.
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1. INTRODUCTION

Since the pioneering work of Hurst (1951), Mandelbrot and Van Ness (1968) and Mandelbrot and Wallis (1968),
the phenomenon of long-range dependence or Hust effect has been observed in many data sets, for example
in hydrology, geophysics and economics. A lively debate also rages over the observed Hurst effect is due to
long-range dependence or non-stationarity. Bhattacharya et al. (1983) showed that the Hurst effect detected by
R∕S statistics can be explained not only by long-range dependence, but by presence of a deterministic trend in
short-range dependent data. Giraitis et al. (2001) showed that some modified R∕S statistics reject the hypothesis of
short-range dependence for long-range dependence but also for short-range dependent data in presence of a trend
or change-points. The phenomenon of spurious long-range dependence has also been discussed in many other arti-
cles, see, for example, Granger and Hyung (2004), Diebold and Inoue (2001), Chang and Perron (2016), Iacone
et al. (2019). Also the problem of detecting change points if the data might be long-range dependent has been
widely discussed, see among others Lavielle and Moulines (2000), Iacone et al. (2013a), Iacone et al. (2013b),
McCloskey and Perron (2013) and Iacone et al. (2017).

A first attempt for distinguishing between long-range dependence and short-range dependence with a monotonic
trend was made by Künsch (1986), who showed that the periodogram in these two cases behaves differently.
Another test against spurious long-range dependence was given by Qu (2011). A test allowing to distinguish
between a stationary long-range dependent process and short-range dependent process with a change in mean was
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DISCRIMINATION BETWEEN LRD AND A CHANGE IN MEAN 35

introduced by Berkes et al. (2006) and is based on the CUSUM statistic

Cm,n(k) =
k∑

i=m

Xi −
k − m + 1

n

n∑
i=1

Xi, m ≤ k ≤ n. (1)

It is well known that the CUSUM statistic is sensitive to outliers since it sums up the observations. In this article
we introduce a new robust to outliers testing procedure, which is based on the Wilcoxon change-point test statistic

Wm,n(k) =
k∑

i=m

n∑
j=k+1

(1{Xi≤Xj} − 1∕2), m ≤ k ≤ n. (2)

Dehling et al. (2013b, 2015) used this test statistic for testing for changes in the mean of long-range dependent and
short-range dependent processes respectively. In both articles the simulation studies point out that the Wilcoxon
test statistic (2) is more robust to outliers than the CUSUM statistic (1). Recently, Gerstenberger (2018) showed
that Wilcoxon-type change-point location estimator for a change in mean of short-range dependent data based on
test statistic (2) is also robust against outliers.

The new Wilcoxon-type testing procedure suggested in this article is based on the idea of Berkes et al. (2006).
First, given a sample X1,… ,Xn, one estimates the location k̂ of a possible change in mean. Then the test statistic
is defined as the maximum of the Wilcoxon change-point statistic (2) applied to the subsamples X1,… ,Xk̂ and
Xk̂+1,… ,Xn.

1.1. Wilcoxon-type Testing Procedure

Assuming that sample X1,… ,Xn is given, we want to test the hypothesis
H0: Xi = Yi + 𝜇i, i = 1,… , n is generated by a stationary zero mean short-range dependent process (Yj) and has a
change in mean 𝜇1 = · · · = 𝜇k∗ ≠ 𝜇k∗+1 = · · · = 𝜇n at unknown time k∗,
against the alternative
H1: X1,… ,Xn is a sample from a stationary long-range dependent process.

Note that during the article stationary means strictly stationary.
To construct the test statistic, first, we estimate the location k∗ of a change-point by a Wilcoxon-type

change-point location estimator

k̂ = min
{

k ∶ max
1≤l<n

||W1,n(l)|| = ||W1,n(k)||}, (3)

which is defined as the smallest k for which |W1,n(k)| attains its maximum.
Next we divide the sample X1,… ,Xn into subsamples X1,… ,Xk̂ and Xk̂+1,… ,Xn, and set

T(X1,… ,Xn) = n−3∕2 max
1≤k≤n

||W1,n(k)||.
Then we compute T(X1,… ,Xk̂) and T(Xk̂+1,… ,Xn), and denote

Tn,1 ∶= T(X1,… ,Xk̂) = k̂−3∕2 max
1≤k≤k̂

||W1,k̂(k)||, (4)

Tn,2 ∶= T(Xk̂+1,… ,Xn) = (n − k̂)−3∕2 max
k̂<k≤n

||Wk̂+1,n(k)||. (5)

Finally, we define the test statistic

Mn = max{Tn,1,Tn,2}. (6)

J. Time Ser. Anal. 42: 34–62 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
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36 C. GERSTENBERGER

We show that T(X1,… ,Xn) allows to discriminate whether the sample has been generated by a short or long-range
dependent stationary process. Hence, if we split the sample at time k̂, which is close to the true change-point k∗,
since k̂∕k∗ →p 1 asymptotically we can assume that X1,… ,Xk̂ and Xk̂+1,… ,Xn are samples from a stationary
sequence with a constant mean. Subsequently, Mn can be used to test if the samples X1,… ,Xk̂ and Xk̂+1,… ,Xn

have been generated by a short-range or long-range dependent stationary process.
The outline of the article is as follows. Section 2 specifies assumptions allowing to establish asymptotic distribu-

tion of Mn under H0 and consistency under H1. Section 3 compares finite sample performance of the Wilcoxon-type
and the CUSUM-type testing procedure. An application to hydrologic data is given in Section 4. All proofs are
given in Section 5.

2. DEFINITIONS, ASSUMPTIONS AND MAIN RESULTS

We present main assumptions, definitions and main results.
Throughout the article, C denotes a generic non-negative constant, which may vary from time to time. The

notation an ∼ bn means that sequences an and bn of real numbers have property an∕bn → c, as n → ∞, where

c ≠ 0.
d
−→ and →p stand for convergence in distribution and probability respectively. By

d
= we denote equality in

distribution. ‖g‖∞ = supx |g(x)| denotes the supremum norm of a function g.

2.1. Null Hypothesis: Short-Range Dependence with a Change in Mean

Under the null hypothesis we assume the random variables X1,… ,Xn follow the change-point model

Xi =

{
Yi + 𝜇, 1 ≤ i ≤ k∗

Yi + 𝜇 + Δn, k∗ < i ≤ n,
(7)

where k∗ denotes the unknown location of the change-point in the mean, Δn denotes the unknown magnitude of
change (see Assumption 2) and (Yj) is a zero-mean strictly stationary short-range dependent process.

To cover a wide range of processes, we assume that the underlying process (Yj) can be written as Yj =
f (Zj,Zj−1,Zj−2,…), j ∈ ℤ, where f ∶ ℝℤ → ℝ is a measurable function, and (Zj) is an absolutely regular (weakly
dependent) process.

Definition 2.1. A stationary process (Zj) is called absolutely regular (or 𝛽-mixing) if

𝛽k = sup
n≥1

E sup
A∈n

−∞

|||P (
A|∞

n+k

)
− P (A)||| → 0, (8)

as k → ∞, where m
k is the 𝜎-field generated by random variables Zk,… ,Zm, k < m.

Absolute regularity or 𝛽-mixing implies the weaker property of 𝛼-mixing, see for example, Bradley (2007).
In addition, we will assume that (Yj) satisfies near epoch dependence condition, that is, Yj depends on the near

past of (Zj).

Definition 2.2. A stationary process (Yj) is L1 near epoch dependent (L1 NED) on some stationary process (Zj)
with approximation constants ak, k ≥ 0, if

E |Y1 − E(Y1|k
−k)| ≤ ak, k = 0, 1, 2,… (9)

where k
−k is the 𝜎-field generated by random variables Z−k,… ,Zk and ak → 0 as k → ∞.

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 34–62 (2021)
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DISCRIMINATION BETWEEN LRD AND A CHANGE IN MEAN 37

Notice that a linear process or AR process might not be absolutely regular, but it would be L1 near epoch
dependent; see Example 2.1 in Gerstenberger (2018) for linear processes and Hansen (1991) for GARCH(1,1)
processes. More examples of L1 NED processes can be found in Borovkova et al. (2001), who also discuss more
general Lr NED processes, r ≥ 1. The concept of L1 near epoch dependence only assumes existence of the first
moment E |Y1|. Therefore, we can allow heavy-tailed distributions.

We need further additional assumptions on the distribution function F of Y1, the mixing coefficients 𝛽k in (8)
and ak in (9).

Assumption 1. The process (Yj) in (7) is L1 NED on some absolutely regular process (Zj)with mixing coefficients
𝛽k and approximation constants ak such that

∞∑
k=1

k2(𝛽k +
√

ak) < ∞. (10)

Moreover, Y1 has a continuous distribution function F with bounded second derivative, and variables Y1−Yk, k ≥ 1
satisfy

P(x ≤ Y1 − Yk ≤ y) ≤ C|y − x|, (11)

for all x ≤ y, where C does not depend on k and x, y.

We suppose that both, the unknown change-point k∗ and the magnitude of change Δn in (7), depend on the
sample size n.

Assumption 2. (a) The change-point k∗ = [n𝜃], where 0 < 𝜃 < 1 is fixed, is proportional to the sample size n.
(b) The magnitude of change Δn in (7) depends on n, and is such that

Δn → 0, nΔ2
n → ∞, n → ∞.

An important step of our testing procedure is the estimation of the location k∗ of the change-point in mean.
Gerstenberger (2018) showed that under Assumptions 1 and 2 the Wilcoxon-type change-point location estimator
k̂ in (3) is consistent,

Δ2
n
||k̂ − k∗|| = OP(1), as n → ∞. (12)

2.2. Alternative: Long-Range Dependence

Under alternative H1, the sample X1,… ,Xn is generated by a stationary long-range dependent process:

Xi = G(𝜉i) + 𝜇, i = 1,… , n, (13)

where 𝜇 is the unknown mean and (𝜉j) is a stationary long memory Gaussian process with E(𝜉1) = 0, Var(𝜉1) = 1
and (non-summable) auto-covariances 𝛾k = Cov(𝜉1, 𝜉1+k) ∼ k2d−1c0, where c0 > 0 and d ∈ (0, 1∕2). Furthermore,
we assume that G ∶ ℝ → ℝ is a measurable, strictly monotone function such that E(G(𝜉1)) = 0.

2.3. Main Results

The following theorem derives the limit distribution of the test procedure under the null hypothesis H0. Below,
B(t) = W(t) − tW(1) denotes a standard Brownian bridge, where W(t) is a standard Brownian motion.

J. Time Ser. Anal. 42: 34–62 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12554 Journal of Time Series Analysis published by John Wiley & Sons Ltd.



38 C. GERSTENBERGER

Theorem 2.1. Let
(
Xj

)
follow the model in (7). Then, under Assumptions 1 and 2,

Mn = max{Tn,1,Tn,2}
d
−→ 𝜎 max

{
sup

0≤t≤1

||B(1) (t) ||, sup
0≤t≤1

||B(2) (t) ||} =∶ 𝜎Z (14)

where B(1) and B(2) are two independent Brownian bridges,

𝜎2 =
∞∑

k=−∞
Cov

(
F(Y0),F(Yk)

)
, (15)

and F denotes the distribution function of Y1.

Since the limit distribution of Mn depends on the long-run variance 𝜎2, to calculate the critical values for the
test, we need to estimate the long-run variance; see Section 3.

We will compare performance of our test with the CUSUM-type test by Berkes et al. (2006) defined as

M̃C,n = max{T̃C(X1,… ,Xk̃C
), T̃C(Xk̃C+1,… ,Xn)}, (16)

where

T̃C(X1,… ,Xn) = (ŝn

√
n)−1 max

1≤k≤n
||C1,n(k)||,

is based on the CUSUM statistic C1,n(k) in (1). k̃C = min
{

k ∶ max1≤l≤n
||C1,n(l)|| = ||C1,n(k)||} is a CUSUM-type

estimator of k∗ and ŝ2
n is a long-run variance estimator of 𝜎2

c =
∑∞

k=−∞ Cov
(
Y0,Yk

)
given in (21). Berkes et al.

(2006) showed that under their assumptions under the null hypothesis, M̃C,n

d
−→ Z.

The next theorem establishes consistency of the test Mn, that is, that the test will detect long-range dependence
with probability tending to 1.

Theorem 2.2. Let (Xj) be as in (13). Then, as n → ∞,

Mn →p ∞.

Under the alternative in (13) we do not consider the long memory Gaussian process itself, but a function of it.
This concept also allows non-Gaussianity. We restrict the result of Theorem 2.2 to strictly monotone functions
due to simplicity of the proof. However, the result can also be expanded to more general functions G(⋅). In this
case the dependence structure of (G(𝜉i)) is in general not clear. Proposition 1.2 of Rooch (2012) yields that under
slight assumptions if 𝛾k ∼ c0k2d−1, c0 > 0, d ∈ (0, 1∕2) then Cov(G(𝜉i),G(𝜉i+k)) ∼ (c0∕m!)k(2d−1)m, where m is the
Hermite rank of G (see Section 5.2 for more details about Hermite rank). Therefore, for −1 < (2d − 1)m < 0, the
process (G(𝜉i)) is still long-range dependent.

Proofs of Theorems 2.1 and 2.2 are given in Section 5.

3. SIMULATION STUDY

In this simulation study we compare the finite sample performance (size and power) of the Wilcoxon-type testing
procedure Mn in (6) with the CUSUM-type testing procedure M̃C,n of Berkes et al. (2006), given in (16).

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 34–62 (2021)
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3.1. Simulation Set Up

To calculate the empirical size we generate the sample of random variables X1,… ,Xn using the change-point model

Xi =

{
Yi + 𝜇, 1 ≤ i ≤ k∗

Yi + 𝜇 + Δ, k∗ < i ≤ n,
(17)

where Yi = 𝜌Yi−1 + 𝜖i is an AR(1) process with 𝜌 = 0.4. The innovations 𝜖i are generated from a standard normal
distribution and a Student’s t-distribution with 𝜈 = 1 degree of freedom. We set k∗ = [n𝜃], 𝜃 = 0.25, 0.5, 0.75 and
Δ = 0.5, 1, 2.

Note that t1-distributed innovations do not satisfy the L1 NED condition, since L1 NED requires the existence
of E |Y1|. However, t1-distributed innovations are included in the simulation study, since it proofs the functionality
of Wilcoxon-type testing procedure even in the case of extremely heavy tails.

To evaluate the empirical power of the test we generate a sample X1,… ,Xn of fractional Gaussian noise (fGn)

Xi = WH(i + 1) − WH(i), (18)

where WH(t), H = d+1∕2 ∈ (1∕2, 1) is a fractional Brownian motion, see for example, Mandelbrot and Van Ness
(1968). The sequence (Xj) is a long-range dependent process: Cov(X1,X1+k) ∼ k2d−1c0 with long-range dependence
parameter d ∈ (0, 1∕2). We consider d = 0.1, 0.2, 0.3, 0.4.

To analyse the robustness of Wilcoxon and CUSUM testing procedures to outliers, we replace observa-
tions X[0.2n],X[0.4n],X[0.6n],X[0.8n] in the sample (X1,… ,Xn) (under the null hypothesis or alternative) by outliers
50X[0.2n], 50X[0.4n], 50X[0.6n] and 50X[0.8n].

We consider sample sizes n = 200, 500, 1000, 2000, 5000. All simulation results are based on 10,000
replications.

3.2. Critical Values

To analyse the empirical size and power, we need to know the critical values for the tests Mn and M̃C,n.
By Theorem 2.1, under the null hypothesis,

Mn = max
{

Tn,1,Tn,2

} d
−→ 𝜎Z.

Hence, if 𝜎̂2(X1,… ,Xk) is a consistent estimator for the long-run variance 𝜎2 based on the sample X1,… ,Xk, then

M̂n = max
{ Tn,1

𝜎̂(X1,… ,Xk̂)
,

Tn,2

𝜎̂(Xk̂+1,… ,Xn)

} d
−→ Z.

The same asymptotics holds for the CUSUM test: M̃C,n

d
−→ Z, see Corollary 2.1 of Berkes et al. (2006). Thus, the

critical value c𝛼 for a given significance level 𝛼 is obtained by solving

P
(
Z > c𝛼

)
= 𝛼. (19)

Since B(1) and B(2) are independent Brownian bridges, (19) reduces to

P
(

sup
0≤t≤1

||B(1)(t)|| ≤ c𝛼
)
= (1 − 𝛼)1∕2, (20)

J. Time Ser. Anal. 42: 34–62 (2021) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
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40 C. GERSTENBERGER

where sup0≤t≤1
||B(1)(t)|| has the well-known Kolmogorov–Smirnov distribution, and its quantiles can be found in

statistical tables. For 𝛼 = 5% (20) implies c5% = 1.478.

3.3. Estimation of Long-run Variance

The selection of a long-run variance estimate 𝜎̂ in M̂n has a strong impact on the size and power properties of the
tests in finite samples.

To estimate the long-run variance 𝜎2
c =

∑∞
k=−∞ Cov

(
Y0,Yk

)
in M̃C,n in (16), Berkes et al. (2006) suggested to

use the Bartlett estimator

ŝ2
n =

1
n

n∑
i=1

(
Xi − X̄n

)2 + 2
q(n)∑
j=1

(
1 −

j

q + 1

)1
n

n−j∑
i=1

(
Xi − X̄n

) (
Xi+j − X̄n

)
, (21)

where X̄n = n−1 ∑n
i=1 Xi, with the bandwidth q (n) = C log10 (n). Table I reports the empirical size (for 𝜃 = 0.5,

Δ = 1) and power (for d = 0.4) in % at significance level 5% of M̃C,n test, with ŝ2
n as in (21) computed with

bandwidth 15 log10 (n). It shows that M̃C,n with Bartlett estimator ŝ2
n is too conservative and has low power against

the alternative, which has also been pointed out by Baek and Pipiras (2012) and Preuß et al. (2017).

Table I. Empirical size and power of M̃C,n test using the Bartlett estimator

n = 500 1000 2000 5000

Emp. size 0.05 0.87 2.48 3.79
Power 0.30 7.62 27.44 60.51

In our simulation study to improve the performance of M̃C,n test we proceed as follows. To estimate 𝜎2
C, instead

of ŝ2
n, we use the non-overlapping subsampling estimator of 𝜎2

C by Carlstein (1986), with block length ln,

𝜎̂2
C = 1[

n∕ln

] [n∕ln]∑
i=1

1
ln

( iln∑
j=(i−1)ln+1

Xj −
ln

n

n∑
j=1

Xj

)2

, (22)

which yields better size and power balance for M̃C,n, as seen from Tables II and IV. This estimator has also been
used by Dehling et al. (2015) for a CUSUM-type test for changes in the mean of a short-range dependent process.

In turn, for our test M̂n to estimate 𝜎 we shall use the Carlstein type estimator for long-run variance proposed
by Dehling et al. (2013a),

𝜎̂W = 1[
n∕ln

]√𝜋

2

[n∕ln]∑
i=1

1√
ln

||||
iln∑

j=(i−1)ln+1

Fn(Xj) −
ln

n

n∑
j=1

Fn(Xj)
||||, (23)

where Fn (x) = n−1 ∑n
i=1 1{Xi≤x}. Note that 𝜎̂W estimates 𝜎, not 𝜎2.

The Carlstein estimator 𝜎̂2
C as well as the estimator 𝜎̂W (23) are subsampling type estimators and require to choose

a suitable block length ln. The choice of ln is widely discussed in the literature. For AR(1)-processes Carlstein
(1986) suggests to use

ln = max
{⌈

n1∕3(2𝜌∕(1 − 𝜌2))2∕3
⌉
, 1
}
, (24)

where 𝜌 denotes the autocorrelation coefficient at lag 1. In our simulation study we use this block length with 𝜌

estimated by the sample autocorrelation coefficient 𝜌̂ since it yields good results for the empirical size and power.

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 34–62 (2021)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12554



DISCRIMINATION BETWEEN LRD AND A CHANGE IN MEAN 41
F
re
q
u
e
n
c
y

0.0 0.1 0.2 0.3 0.4

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

sample autocorrelation

F
re
q
u
e
n
c
y

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

0
5
0
0

1
0
0
0

1
5
0
0

MG-estimator

(a) (b)

Figure 1. Histogram of 𝜌̂(1) and 𝜌̂Q(1) based on 10,000 replications. Xi is generated by an AR(1) process with outliers,
𝜖i ∼ N(0, 1), 𝜌 = 0.4 and n = 500

In the presence of outliers, we need to robustify further the choice of the block length. Since the sample auto-
correlation is highly sensitive to outliers, we use in (24) a robust estimator of 𝜌 proposed by Ma and Genton
(2000),

𝜌̂Q =
Q2

n−1(u + v) − Q2
n−1(u − v)

Q2
n−1(u + v) + Q2

n−1(u − v)
,

where Qn(x) = 2.21914{|Xi − Xj|; i < j}(k), x = (X1,… ,Xn), which is the k =
(n

2

)
∕4th order statistic of the

(n

2

)
interpoint distances, is a robust scale estimator introduced by Rousseeuw and Croux (1993), u = (X1,… ,Xn−1)
and v = (X2,… ,Xn). Figure 1 contains the histogram of estimates 𝜌̂ and 𝜌̂Q based on 10,000 replications of sample
X1,… ,X500 with outliers, generated by an AR(1) model with 𝜌 = 0.4 and i.i.d. standard normal innovations. For
a further discussion on robust estimation of autocorrelation function see Dürre et al. (2015).

3.4. Simulation Results

Table II reports the empirical size at the 5% significance level based on 10,000 replications of M̃C,n and M̂n tests,
for the model (17) without outliers. The empirical size of M̂n and M̃C,n slightly exceed the 5% level for large sample
size n for 𝜃 = 0.5 and Δ = 0.5, 1, 2. The size of the tests is more distorted if the change-point is located close to
the beginning or end of the sample, that is, for 𝜃 = 0.25, 0.75. We also consider the situation of no change, that is,
Δ = 0, for which the empirical size of both testing procedures is close to the nominal size. Empirical sizes of M̂n

and M̃C,n are comparable in the absence of outliers.
Note that in Table II both tests do not tend to 5% as it is expected. This is due to a very slow convergence to

the limit process. In simulation studies with really large sample size n > 10,000 the empirical size of both tests is
tending to 5%. Since M̃C,n and M̂n are both suffering from this slow convergence, they are still comparable to each
other.

Table III reports the empirical size of M̂n and M̃C,n in presence of outliers and t1-distributed innovations. While
test M̂n is robust to the outliers and just slightly affected by the heavy-tailed innovations, the test M̃C,n becomes
much too conservative.

Tables IV and V report the empirical power of test M̃C,n and M̂n, for Xi in (18) without outliers and with outliers
respectively. Table IV shows that the power of both tests increases with increasing sample size and dependence
parameter d (except power of M̂n for n = 200, d = 0.4). It shows that in absence of outliers M̂n and M̃C,n have
similar power properties.
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Table II. Empirical size of M̃C,n and M̂n tests at the 5% significance level, 10,000 replications. Xi follows the model (17) without
outliers and 𝜖i ∼ N(0, 1)

𝜃 = 0.25 0.5 0.75 0.5

M̃C,n M̂n M̃C,n M̂n M̃C,n M̂n M̃C,n M̂n

n = Δ = 1 Δ = 0
200 3.79 3.52 3.90 3.41 4.46 3.92 3.48 2.78
500 8.35 7.71 5.12 4.28 8.47 8.10 4.36 3.89
1000 9.83 9.44 5.11 4.68 10.10 9.49 4.61 4.11
2000 9.45 9.37 5.96 5.23 9.87 9.76 5.10 4.64
5000 8.28 7.77 6.26 5.59 8.51 8.01 5.18 4.91
n = Δ = 2 Δ = 0.5
200 5.08 4.68 4.18 3.69 5.85 5.12 3.63 3.03
500 7.32 8.03 5.49 4.67 7.07 7.43 4.54 4.10
1000 7.67 8.05 5.38 4.79 7.15 7.38 4.82 4.46
2000 7.11 7.16 6.03 5.31 6.88 7.15 5.57 4.90
5000 6.30 6.12 6.15 5.58 6.45 6.29 6.01 5.46

Table III. Empirical size of M̃C,n and M̂n tests at the 5% significance level, 10,000 replications. Xi follows the model (17) with
𝜖i ∼ N(0, 1) without and with outliers, and 𝜖i ∼ t1. We consider Δ = 1 and 𝜃 = 0.5

𝜖i ∼ N(0, 1) 𝜖i ∼ t1 𝜖i ∼ N(0, 1) with outliers

M̃C,n M̂n M̃C,n M̂n M̃C,n M̂n

n =
1000 5.11 4.68 0.83 2.92 0.56 4.82
2000 5.96 5.23 1.22 3.74 1.17 5.56
5000 6.26 5.59 1.03 4.57 2.28 5.41

Table IV. Empirical power of M̃C,n and M̂n tests at the 5% significance level, 10,000 replications. Xi follows the model (18)
without outliers

d = 0.1 0.2 0.3 0.4

M̃C,n M̂n M̃C,n M̂n M̃C,n M̂n M̃C,n M̂n

n =
200 7.68 5.90 12.28 9.99 14.11 11.50 12.53 9.35
500 14.12 11.53 25.31 22.84 31.52 28.33 32.03 28.42
1000 20.22 16.95 35.37 32.64 46.41 43.11 50.22 46.06
2000 26.67 23.90 49.17 45.95 61.92 58.68 67.50 63.52
5000 35.05 32.68 64.44 61.27 79.67 77.48 85.12 82.63

Table V shows that the empirical size of M̂n is practically not affected by the outliers, whereas M̃C,n suffers a
loss of power.

Let us have a closer look on what happens in the case of outliers. There are different steps in the testing pro-
cedures that might be affected by outliers: the estimation of the time of change, the estimation of the long-run
variance and the test statistic itself. The impact of outliers on a CUSUM and Wilcoxon based change-point estima-
tor has already been discussed in Gerstenberger (2018). It is shown that the Wilcoxon-type estimator is nearly not
affected by outliers whereas the CUSUM-type estimator has trouble in detecting the correct time of change. There-
fore, if this would be the only problem in the CUSUM-type testing procedure, we should expect M̃C,n to reject the
hypothesis more often due to splitting the data at the spuriously estimated change-point. However as we have seen
in Table III this is not the case. Let us now have a closer look at the CUSUM statistic C1,n(k) and the Wilcoxon
statistic W1,n(k). We generated a series of random variables Y1,… ,Yn, n = 1000 following the AR(1) process
given in (17), but without a change in mean. In Figure 2 the solid line shows in (a) n−1∕2|C1,n(k)|, k = 1,… , 1000
and in (b) n−3∕2|W1,n(k)|, k = 1,… , 1000, both applied to Y1,… ,Y1000. Then we disturbed the same variables
Y1,… ,Yn with outliers as described above. The dashed lines in both figures show the results for n−1∕2|C1,n(k)| and
n−3∕2|W1,n(k)| applied to the variables including outliers. We see again that the Wilcoxon statistic is not affected
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(a) (b)

Figure 2. Values of n−1∕2|C1,n(k)| and n−3∕2|W1,n(k)| for k = 1,… , 1000. Yi = 𝜌Yi−1 + 𝜖i is an AR(1) process with 𝜌 = 0.4 and
standard normal innovations 𝜖i. For the dashed lines (Y) is disturbed by outliers

(a) (b)

Figure 3. Values of (𝜎̂Cn1∕2)−1|C1,n(k)| and (𝜎̂W n3∕2)−1|W1,n(k)| for k = 1,… , 1000. Yi = 𝜌Yi−1 + 𝜖i is an AR(1) process with
𝜌 = 0.4 and standard normal innovations 𝜖i. For the dashed lines (Y) is disturbed by outliers

by the outliers. However as expected, the CUSUM statistic has larger values in the outlier scenario and therefore it
has a larger maximum. However again, this should lead to a more often rejection of the hypothesis. So why do the
simulation results show more conservatism for the CUSUM-type testing procedure in the outlier scenario? This
is due to the long-run variance estimation. If we have a look at the value for the estimator given in (22) applied
to the example we see that the value for the data with outliers (𝜎̂2

C = 4.63) is much higher than the value for data
without outliers (𝜎̂2

C = 2.04). This reduces the values for the CUSUM-testing procedure for outlier scenario, since
we divide by the estimate of the long-run variance, see Figure 3(a). This leads to reduction of size and a loss in
power. For the Wilcoxon-type testing procedure we can observe that the value of 𝜎̂W given in (23) is in both cases
nearly the same (𝜎̂W = 0.38 with outliers and 𝜎̂W = 0.41 without), see Figure 3(b).

In general, we conclude that Wilcoxon test M̂n allows discrimination between long-range dependence and
short-range dependence with a change in mean that is robust to outliers. In absence of outliers it performs equally
well as CUSUM test M̃C,n, but outperforms it in presence of outliers.

4. DATA EXAMPLE

In the following data example we consider a hydrologic time series. In particular, we consider the mean daily
discharges (MQ) of the river Elbe in Dresden, Germany. The data cover the time from 01.01.1844 to 31.12.1849
(n = 2191) and are shown in Figure 4(a). It is well known that daily MQ are strongly correlated, see Figure 5
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Table V. Empirical power of M̃C,n and M̂n tests at the 5% significance level, 10,000 replications. Xi follows the model (18) with
outliers

d = 0.1 0.2 0.3 0.4

M̃C,n M̂n M̃C,n M̂n M̃C,n M̂n M̃C,n M̂n

n =
200 1.63 6.06 2.53 10.06 2.65 11.88 3.62 9.69
500 2.76 11.71 5.02 22.95 7.26 28.60 8.69 28.37
1000 4.10 17.13 10.40 32.60 16.91 43.11 21.96 46.18
2000 8.46 23.88 23.07 45.90 37.05 58.71 47.00 63.68
5000 18.76 32.66 46.78 61.55 68.99 77.54 78.65 82.68

(a) (b)

Figure 4. Mean daily discharge (MQ) of the river Elbe in Dresden, Germany, from 1844 to 1849 (a). In (b) we see the
corresponding pointwise values for the CUSUM and Wilcoxon type testing procedure

for the sample autocorrelation function. Hence, testing for dependency should result in long-range dependence.
In the year 1845 there was a big flood in Dresden, which appears in Figure 4(a) as an outlier. The time series also
contains some smaller outliers after 1845.

We calculated the CUSUM testing procedure M̃C,n and the Wilcoxon testing procedure M̂n for each time point
k = 1,… , 2191. That means we divide the sample at the estimated time of change k̂ and consider (𝜎̂Ck̂1∕2)−1|C1,k̂(k)|
for k = 1,… , k̂ and (𝜎̂C(n− k̂)1∕2)−1|Ck̂+1,n(k)| for k = k̂+1,… , n for the CUSUM test and (𝜎̂Wk̂3∕2)−1|W1,k̂(k)| and
(𝜎̂W(n − k̂)3∕2)−1|Wk̂+1,n(k)| respectively, for the Wilcoxon test. The results are shown in Figure 4(b). The vertical
line in the plot refers to the critical value c5% = 1.478.

Although the data seem to be long-range dependent both testing procedures have a maximum value less than
the critical value, where the CUSUM test has a much smaller value M̃C,n = 0.89 than the Wilcoxon test M̂n = 1.30.
This seems to be in line with the conclusion of the simulation section that the CUSUM test loses power due to the
affect of outliers on the long-run variance estimation. Even though the Wilcoxon test would also not reject, the
value is close to the critical value.

5. PROOFS

This section contains the proofs of Theorem 2.1, Theorem 2.2 and auxiliary lemmas.

5.1. Proof of Theorem 2.1

Suppose that X1,… ,Xn follow the model in (7) and Assumptions 1 and 2 are satisfied. Throughout the proofs
without loss of generality, we assume 𝜇 = 0 and Δn > 0.

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 42: 34–62 (2021)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12554



DISCRIMINATION BETWEEN LRD AND A CHANGE IN MEAN 45

Figure 5. Sample autocorrelation function of the daily MQ of the river Elbe in Dresden [Color figure can be viewed at
wileyonlinelibrary.com]

Before we can state the proof of Theorem 2.1, we need to consider Lemma 5.1 and Lemma 5.2, which proofs
can be found in Sections 5.1.2 and 5.1.3 respectively.

Lemma 5.1. Let X1,… ,Xn follow the model in (7), and Assumptions 1 and 2 be satisfied. Let k̂ be defined as in
(3). Then,

n−3∕2 max
1≤k≤k̂

||W1,k̂(k)|| = n−3∕2 max
1≤k≤k̂

|| k∑
i=1

k̂∑
j=k+1

(1{Yi≤Yj} − 1∕2)|| + oP (1)

n−3∕2 max
k̂<k≤n

||Wk̂+1,n(k)|| = n−3∕2 max
k̂<k≤n

|| k∑
i=k̂+1

n∑
j=k+1

(1{Yi≤Yj} − 1∕2)|| + oP (1) .

Lemma 5.2. Let
(
Yj

)
satisfy Assumption 1 and let Assumption 2 hold. Then,(

T(Y1,… ,Yk̂),T(Yk̂+1,… ,Yn)
) d
−→

(
𝜎 sup

0≤t≤1

||B(1) (t) ||, 𝜎 sup
0≤t≤1

||B(2) (t) ||), (25)

where B(1) and B(2) are independent Brownian bridges, and 𝜎 is given in (15).

Proof of Theorem 2.1. We divide the proof into two steps, as in the proof of Theorem 2.1 in Berkes et al. (2006).
First, in Lemma 5.1 we show that with k̂ as in (3),

Tn(X1,… ,Xk̂) = Tn(Y1,… ,Yk̂) + oP(1)

and

Tn(Xk̂+1,… ,Xn) = Tn(Yk̂+1,… ,Yn) + oP(1).

Subsequently, in Lemma 5.2 we prove that(
Tn(Y1,… ,Yk̂),Tn(Yk̂+1,… ,Yn)

) d
−→ 𝜎(Z(1),Z(2)),
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where Z(i) = sup0≤t≤1 |B(i)(t)|, i = 1, 2. Then, the claim (14) of Theorem 2.1 follows by the continuous mapping
theorem.

5.1.1. Auxiliary Results
We state auxiliary results needed to prove Lemmas 5.1 and 5.2 in Sections 5.1.2 and 5.1.3 respectively.

Concept of 1-Continuity
Before we state the auxiliary results, we recall the concept of 1-continuity, which was introduced by Borovkova
et al. (2001).

To study the asymptotic behaviour of the Wilcoxon test

W1,n(k) =
k∑

i=1

n∑
j=k+1

(1{Xi≤Xj} − 1∕2)

we need to show that the function h(x, y) = 1{x≤y} is 1-continuous. Then the variables (h(Yi,Yj)) retain some
characteristics of the variables (Yi,Yj).

Definition 5.1. (Borovkova et al. (2001))
We say that the kernel h (x, y) is 1-continuous with respect to a distribution of a stationary process (Yj) if there

exists a function 𝜙(𝜖), 𝜖 ≥ 0 such that 𝜙 (𝜖) → 0, 𝜖 → 0, and for all 𝜖 > 0 and k ≥ 1

E
(|||h (Y1,Yk

)
− h

(
Y ′

1,Yk

)||| 1{|Y1−Y ′
1|≤𝜖}) ≤ 𝜙 (𝜖) , (26)

E
(|||h (Yk,Y1

)
− h

(
Yk,Y

′
1

)||| 1{|Y1−Y ′
1|≤𝜖}) ≤ 𝜙 (𝜖) ,

and

E
(|||h (Y1,Y

′
2

)
− h

(
Y ′

1,Y
′
2

)||| 1{|Y1−Y ′
1|≤𝜖}) ≤ 𝜙 (𝜖) , (27)

E
(|||h (Y ′

2,Y1

)
− h

(
Y ′

2,Y
′
1

)||| 1{|Y1−Y ′
1|≤𝜖}) ≤ 𝜙 (𝜖) ,

where Y ′
2 is an independent copy of Y1 and Y ′

1 is any random variable that has the same distribution as Y1.

For a univariate function g(x), the 1-continuity property is defined as follows.

Definition 5.2. The function g (x) is 1-continuous with respect to a distribution of a stationary process (Yj) if
there exists a function 𝜙(𝜖), 𝜖 ≥ 0 such that 𝜙 (𝜖) → 0, 𝜖 → 0, and for all 𝜖 > 0

E
(|||g (Y1

)
− g

(
Y ′

1

)||| 1{|Y1−Y ′
1|≤𝜖}) ≤ 𝜙 (𝜖) , (28)

where Y ′
1 is any random variable that has the same distribution as Y1.

Note that the term W1,n(k) can be written as a second order U-statistic

Ua,b (k) =
k∑

i=a

b∑
j=k+1

(
h
(
Yi,Yj

)
− Θ

)
, a ≤ k < b,
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with kernel function h (x, y) = 1{x≤y} and constant Θ = E h(Y ′
1,Y

′
2) = 1∕2, where Y ′

1 and Y ′
2 are independent copies

of Y1.
By applying Hoeffding’s decomposition of U-statistics (Hoeffding (1948)) to Ua,b(k), the kernel function h can

be written as the sum

h (x, y) = Θ + h1 (x) + h2 (y) + g (x, y) , (29)

where h1 (x) = E h
(
x,Y ′

2

)
− Θ = 1∕2 − F (x) ,

h2 (y) = E h
(
Y ′

1, y
)
− Θ = F (y) − 1∕2, g (x, y) = h (x, y) − h1 (x) − h2 (y) − Θ.

The following remark states that the bounded functions h(x, y) = 1{x≤y}, h1(x), h2(x) and g(x, y) are 1-continuous
functions.

Remark 5.1. Let (Yj) be a stationary process, Y1 has continuous distribution function F with bounded second
derivative and the variables Y1 − Yk, k ≥ 1 satisfy (11).

(i) The function h(x, y) = 1{x≤y} is 1-continuous function (i.e. satisfies (26) and (27)) with respect to the distri-
bution of (Yj) with function 𝜙(𝜖) = C𝜖, for some C > 0, see for example, Corollary 4.1 of Gerstenberger
(2018).

(ii) Lemma 2.15 of Borovkova et al. (2001) yields that if a general function h(x, y) satisfies (26) and (27) with
some function 𝜙(𝜖) then E h(x,Y ′

2), where Y ′
2 is an independent copy of Y1, satisfies the condition in (28) with

the same function 𝜙(𝜖). Hence, h1(x) = E h
(
x,Y ′

2

)
− 1∕2 and h2(y) = E h

(
Y ′

2, y
)
− 1∕2 are 1-continuous.

(iii) The function g(x, y) = h(x, y) − h1(x) − h2(x) − 1∕2 is 1-continuous (satisfies (26) and (27)), since h and h1

satisfy (26), (27) and (28) with 𝜙(𝜖) = C𝜖, for some C > 0. In particular,

E
(|g(Y1,Yk) − g(Y ′

1,Yk)|1{|Y1−Y ′
1|≤𝜖})

≤ E
(|h(Y1,Yk) − h(Y ′

1,Yk)|1{|Y1−Y ′
1|≤𝜖}) + E

(|h1(Y1) − h1(Y ′
1)|1{|Y1−Y ′

1|≤𝜖})
≤ 2𝜙(𝜖)

and similarly, E
(|g(Yk,Y1) − g(Yk,Y

′
1)|1{|Y1−Y ′

1|≤𝜖}) ≤ 2𝜙(𝜖).

Auxiliary Results
The following lemma derives the functional central limit theorem for partial sum processes of (h1(Yj)).

Lemma 5.3. Suppose that the assumptions of Lemma 5.2 hold. Then,

(
1

n1∕2

[nt]∑
i=1

h1

(
Yi

))
0≤t≤1

d
−→ (𝜎W (t))0≤t≤1 ,

where W (t) is a Brownian motion and 𝜎 is given in (15).

Proof. Wooldridge and White (1988) in Corollary 3.2 established a functional central limit theorem for partial sum
process

∑k
i=1 Ỹi, k ≥ 1, for a process (Ỹj) which is L2 NED on a strongly mixing process (Z̃j). Therefore, Lemma

5.3 is proved, by showing that (h1(Yj)) is L2 NED on a strongly mixing process.
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By Proposition 2.11 of Borovkova et al. (2001), if (Yj) is L1 NED on a stationary absolutely regular process
(Zj) with approximation constants ak and g(x) is 1-continuous with function 𝜙, then (g(Yj)) is also L1 NED on

(Zj) with approximation constants a′
k = 𝜙

(√
2ak

)
+ 2

√
2ak||g||∞. By Remark 5.1 ii), h1(x) = 1∕2 − F(x) is

1-continuous function with 𝜙(𝜖) = C𝜖. Thus, the processes (h1(Yj)) is L1 NED processes with approximation

constants a′
k = C

√
ak ≥ 𝜙

(√
2ak

)
+ 2

√
2ak||h1||∞.

Observe that the variables 𝜂k ∶= h1(Y1) − E(h1(Y1)|k
−k) satisfy the L1 NED condition (9) with a′

k. To show L2

NED for (h1(Yj)) note that by definition of h1, E h1(Y1) = 0 and |h1(Y1)| ≤ C < ∞. Thus,

E 𝜂2
k ≤ E

(|𝜂k| ⋅ (|h1(Y1)| + |E(h1(Y1)|k
−k)|)) ≤ C E |𝜂k| ≤ Ca′

k.

The last inequality holds, because by L1 NED of (h1(Yj)), E |h1(Y1) − E(h1(Y1)|k
−k)| ≤ a′

k. Therefore, the process

(h1(Yj)) is also L2 NED on (Zj) with approximation constant a′
k = Ca1∕2

k . Moreover, absolute regularity of (Zj)
implies the process (Zj) is also strong mixing. Assumption (10) yields a′

k = O(k−1∕2) and 𝛽k = O(k−2). Thus,
(h1(Yj)) satisfies the conditions of Corollary 3.2 of Wooldridge and White (1988) which proves the lemma.

Next we show that the contribution of g(x, y) of the Hoeffding decomposition (29) is negligible.

Lemma 5.4. Suppose that the assumptions of Lemma 5.2 hold. Then,

n−3∕2 max
1≤k≤n

max
1≤l≤n

||| k∑
i=1

l∑
j=1

g(Yi,Yj)
||| = oP(1). (30)

Proof. We first prove for 1 ≤ q ≤ p ≤ n, 1 ≤ h ≤ l ≤ n,

E
(|||n−3∕2

p∑
i=q+1

l∑
j=h+1

g(Yi,Yj)
|||2) ≤ C

n3
(p − q)(l − h). (31)

Proof of (31) Lemma 1 of Dehling et al. (2015) showed if f is a 1-continuous bounded degenerate kernel function
and 𝜙f (𝜖) satisfies

∞∑
k=1

k(𝛽(k) +
√

ak + 𝜙f (ak)) < ∞, (32)

then

E
( k∑

i=1

n∑
j=k+1

f (Yi,Yj)
)2 ≤ Ck(n − k), 1 ≤ k ≤ n, (33)

where the constant C depends on the left-hand side of (32). The proof of Lemma 1 in Dehling et al. (2015)
shows that (33) can be extended to (31). Hence, to complete the proof, we need to verify that g(x, y) satisfies the
assumptions of Lemma 1 of Dehling et al. (2015).

By the Hoeffding decomposition (29), g(x, y) = h(x, y) + F(x) − F(y) − 1∕2. Note that EF(Y1) = 1∕2, thus
E g(x,Y1) = E g(Y1, y) = 0, that is, g(x, y) is a degenerate kernel. Furthermore, g(x, y) is bounded, since h(x, y) =
1{x≤y} and F(x) are bounded. By Remark 5.1 iii) g(x, y) is 1-continuous with 𝜙(𝜖) = C𝜖, the latter satisfies (32)
because of condition (10). This completes the proof of (31).
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Proof of (30) To prove the lemma, we use Theorem 10.2 of Billingsley (1999), which states that if the increments
of partial sums Si =

∑i
j=1 𝜁i of random variables 𝜁i, i = 1, 2,… are bounded in probability, in particular if there

exist 𝛼 > 1, 𝛽 > 0 and non-negative numbers un,1,… , un,n such that

P
( |||Sj − Si

||| ≥ 𝜖
) ≤ 1

𝜖𝛽

( j∑
l=i+1

un,l

)𝛼

,

for 𝜖 > 0, 0 ≤ i ≤ j ≤ n, then for all 𝜖 > 0, n ≥ 2,

P
(

max
1≤k≤n

||Sk
|| ≥ 𝜖

)
≤ K

𝜖𝛽

( n∑
l=1

un,l

)𝛼

,

where K > 0 depends only on 𝛼 and 𝛽.
Denote

Gn(l) = n−3∕2 max
1≤k≤n

||| k∑
i=1

l∑
j=1

g(Yi,Yj)
|||,

with Gn(0) = 0 and define random variables 𝜁i = Gn(i) − Gn(i − 1), where 𝜁0 = 0. Note that Si =
∑i

j=1 𝜁i = Gn(i)
and by using the reverse triangle inequality, for 1 ≤ h ≤ l ≤ n,

P
(||Sl − Sh

|| ≥ 𝜖
) ≤ P

(
n−3∕2 max

1≤k≤n

||| k∑
i=1

l∑
j=1

g(Yi,Yj) −
k∑

i=1

h∑
j=1

g(Yi,Yj)
||| ≥ 𝜖

)
= P

(
n−3∕2 max

1≤k≤n

||| k∑
i=1

l∑
j=h+1

g(Yi,Yj)
||| ≥ 𝜖

)
.

Let us now define

S̃k =
k∑

i=1

(
n−3∕2

l∑
j=h+1

g(Yi,Yj)
)
,

and note that S̃k depends on h and l. Furthermore, note that for 1 ≤ q ≤ p ≤ n,

||S̃p − S̃q
|| = n−3∕2||| p∑

i=q+1

l∑
j=h+1

g(Yi,Yj)
|||.

By Markov inequality and (31),

P
(||S̃p − S̃q

|| ≥ 𝜖

) ≤ 1
𝜖2

E
(||S̃p − S̃q

||2) ≤ 1
𝜖2

C
n3

(p − q)(l − h) ≤ 1
𝜖2

( p∑
t=q+1

un,t

)4∕3
,

where un,t =
C3∕4

n9∕4
(l−h). Hence, S̃i satisfies assumption of Theorem 10.2 of Billingsley (1999) with 𝛽 = 2, 𝛼 = 4∕3.

Thus, for any fixed 𝜖 > 0,

P
(

max
1≤k≤n

||S̃k
|| ≥ 𝜖

) ≤ K
𝜖2

( n∑
t=1

C3∕4

n9∕4
(l − h)

)4∕3

≤ 1
𝜖2

(
(l − h)C3∕4

n5∕4

)4∕3
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and moreover

P
(||Sl − Sh

|| ≥ 𝜖
) ≤ P

(
max
1≤k≤n

||S̃k
|| ≥ 𝜖

) ≤ 1
𝜖2

( l∑
t=h+1

un,t

)4∕3

,

where un,t =
C3∕4

n5∕4
. Therefore, Si satisfies assumption of Theorem 10.2 of Billingsley (1999) with 𝛽 = 2, 𝛼 = 4∕3.

Finally, for any fixed 𝜖 > 0, as n → ∞,

P
(

n−3∕2 max
1≤l≤n

max
1≤k≤n

||| k∑
i=1

l∑
j=1

g(Yi,Yj)
||| ≥ 𝜖

)
= P

(
max
1≤l≤n

||Sl
|| ≥ 𝜖

) ≤ K
𝜖2

( n∑
t=1

C3∕4

n5∕4

)4∕3

≤ K
𝜖2

1
n1∕3

→ 0,

which proves the lemma.

In the following we state auxiliary results to deal with the terms

Ũ1,k̂(k∗) ∶=
k∗∑

i=1

k̂∑
j=k∗+1

1{Yj<Yi≤Yj+Δn}, k̂ ≥ k∗ = [n𝜃],

and

Ũk̂+1,n(k∗) ∶=
k∗∑

i=k̂+1

n∑
j=k∗+1

1{Yj<Yi≤Yj+Δn}, k̂ < k∗

appearing in the proof of Lemma 5.1.
Note that the terms Ũ1,k̂(k∗) and Ũk̂+1,n(k∗) can be written as a second order U-statistic

Ũa,b (k) =
k∑

i=a

b∑
j=k+1

hn

(
Yi,Yj

)
, a ≤ k < b,

with kernel function hn (x, y) = 1{y<x≤y+Δn}.
Applying Hoeffding’s decomposition of U-statistics to Ũa,b(k), decomposes the kernel function hn into the sum

hn (x, y) = ΘΔn
+ h1,n (x) + h2,n (y) + gn (x, y) , (34)

with ΘΔn
= E

(
1{Y ′

2<Y ′
1≤Y ′

2+Δn}
)
,

h1,n (x) = E hn

(
x,Y ′

2

)
− ΘΔn

= F (x) − F
(
x − Δn

)
− ΘΔn

,

h2,n (y) = E hn

(
Y ′

1, y
)
− ΘΔn

= F
(
y + Δn

)
− F (y) − ΘΔn

,

gn (x, y) = hn (x, y) − h1,n (x) − h2,n (y) − ΘΔn
,

where Y ′
1 and Y ′

2 are independent copies of Y1.
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Lemma 5.5. Suppose that the assumptions of Lemma 5.1 hold. Then,

n−3∕2|||Ũ1,k̂(k∗) − k∗(k̂ − k∗)ΘΔn

||| = oP (1) (35)

and

n−3∕2|||Ũk̂+1,n(k∗) − (k∗ − k̂)(n − k∗)ΘΔn

||| = oP (1) , (36)

where Y ′
1 and Y ′

2 are independent copies of Y1 .

Proof. Let us start with the proof of (35). The Hoeffding decomposition (34) yields

Ũ1,k̂(k∗) − k∗(k̂ − k∗)ΘΔn
=

k∗∑
i=1

k̂∑
j=k∗+1

(h1,n

(
Yi

)
+ h2,n

(
Yj

)
+ gn

(
Yi,Yj

)
)

= (k̂ − k∗)
k∗∑

i=1

h1,n

(
Yi

)
+ k∗

k̂∑
j=k∗+1

h2,n

(
Yj

)
+

k∗∑
i=1

k̂∑
j=k∗+1

gn

(
Yi,Yj

)
.

Therefore,

n−3∕2|||Ũ1,k̂(k∗) − k∗(k̂ − k∗)ΘΔn

|||
≤ n−3∕2|||(k̂ − k∗)

k∗∑
i=1

h1,n

(
Yi

)
+ k∗

k̂∑
j=k∗+1

h2,n

(
Yj

) ||| + n−3∕2||| k∗∑
i=1

k̂∑
j=k∗+1

gn

(
Yi,Yj

) |||.
Note that the indicator function hn(x, y) = 1{y<x≤y+Δn} is bounded.
The distribution function F of Y1 has bounded second derivative. Hence, as n → ∞,

ΘΔn
= E 1{Y ′

2<Y ′
1≤Y ′

2+Δn} = P
(
Y ′

2 < Y ′
1 ≤ Y ′

2 + Δn

)
= ∫ℝ

(
F
(
y + Δn

)
− F(y)

)
dF(y) = Δn

(
∫ℝ

f 2 (y) dy + o(1)
)

∼ CΔn. (37)

Thus,

|h1,n(x)| ≤ |F(x) − F(x − Δn) − ΘΔn
| ≤ CΔn + ΘΔn

≤ CΔn, (38)|h2,n(x)| ≤ |F(x + Δn) − F(x) − ΘΔn
| ≤ CΔn + ΘΔn

≤ CΔn,

where C > 0 is a constant. Hence, gn (x, y) = hn (x, y)−h1,n (x)−h2,n (y)−ΘΔn
is bounded. Since E h1,n(Y1) = 0 and

E h2,n(Y1) = 0, gn(x, y) is a degenerate kernel, that is, E gn(x,Y1) = E gn(Y1, y) = 0. hn(x, y) satisfies (26) and (27)
with 𝜙hn

(𝜖) = C𝜖, see for example, Corollary 4.1 of Gerstenberger (2018), where constant C does not depend on n.
Then, with similar argument as in Remark 5.1, h1,n and h2,n are 1-continuous and therefore, gn(x, y) is 1-continuous
with function 𝜙gn

(𝜖) = C𝜖 satisfying (32). Hence, gn(x, y) satisfies the conditions on g(x, y) in Lemma 5.4, which
yields

n−3∕2||| k∗∑
i=1

k̂∑
j=k∗+1

gn

(
Yi,Yj

) ||| ≤ 2 max
1≤k≤n

max
1≤l≤n

n−3∕2||| k∑
i=1

l∑
j=1

gn

(
Yi,Yj

) ||| = oP(1).
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Thus, it remains to show n−3∕2||(k̂ − k∗)
∑k∗

i=1 h1,n

(
Yi

)
+ k∗

∑k̂
j=k∗+1 h2,n

(
Yj

) || = oP(1).
By (38), we receive the following inequality

n−3∕2|||(k̂ − k∗)
k∗∑

i=1

h1,n

(
Yi

)
+ k∗

k̂∑
j=k∗+1

h2,n

(
Yj

) |||
≤ n−3∕2C(k̂ − k∗)k∗Δn = C

k∗

n

Δ2
n|k̂ − k∗|
n1∕2Δn

= oP(1),

where we used the consistency of k̂ in (12), Δ2
n|k̂ − k∗| = OP(1), and Assumption 2, k∗∕n ∼ 𝜃 and nΔ2

n → ∞ as
n → ∞. This completes the proof of (35).

The proof of (36) follows using similar argument.

5.1.2. Proof of Lemma 5.1
Before proceeding to Lemma 5.1, similarly to the notation Wm,n(k) in (2), we define

Um,n(k) =
k∑

i=m

n∑
j=k+1

(1{Yi≤Yj} − 1∕2), m ≤ k ≤ n. (39)

Note that Wm,n(k) depends on (Xm,… ,Xn), where Um,n(k) depends on (Ym,… ,Yn).

Lemma 5.1. Let X1,… ,Xn follow the model in (7), and Assumptions 1 and 2 be satisfied. Let k̂ be defined as in
(3). Then,

n−3∕2 max
1≤k≤k̂

||W1,k̂(k)|| = n−3∕2 max
1≤k≤k̂

||U1,k̂(k)|| + oP (1) (40)

n−3∕2 max
k̂<k≤n

||Wk̂+1,n(k)|| = n−3∕2 max
k̂<k≤n

||Uk̂+1,n(k)|| + oP (1) . (41)

Proof. We have to distinguish between two cases, k̂ ≤ k∗ and k̂ > k∗, where k∗ = [n𝜃].
If k̂ ≤ k∗, then by (7), Xi = Yi, i = 1,… , k̂, and hence, W1,k̂(k) = U1,k̂(k), k = 1,… , k̂. In turn, Xi = Yi

for i = k̂ + 1,… , k∗, and Xi = Yi + Δn for i = k∗ + 1,… , n. Since 1{Yi+Δn≤Yj+Δn} = 1{Yi≤Yj}, Wk̂+1,n(k) can be
decomposed into two terms,

Wk̂+1,n(k) =
⎧⎪⎨⎪⎩

Uk̂+1,n(k) +
∑k

i=k̂+1

∑n
j=k∗+1 1{Yj<Yi≤Yj+Δn}, k̂ < k ≤ k∗

Uk̂+1,n(k) +
∑k∗

i=k̂+1

∑n
j=k+1 1{Yj<Yi≤Yj+Δn}, k∗ < k ≤ n.

If k̂ > k∗, similar argument yields, Wk̂+1,n(k) = Uk̂+1,n(k), for k = k̂ + 1,… , n and

W1,k̂(k) =
⎧⎪⎨⎪⎩

U1,k̂(k) +
∑k

i=1

∑k̂
j=k∗+1 1{Yj<Yi≤Yj+Δn}, 1 ≤ k ≤ k∗

U1,k̂(k) +
∑k∗

i=1

∑k̂
j=k+1 1{Yj<Yi≤Yj+Δn}, k∗ < k ≤ k̂.

(42)

Proof of (40). For k̂ ≤ k∗, equation (40) holds trivially, since W1,k̂(k) = U1,k̂(k), k = 1,… , k̂.
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For k̂ > k∗, equation (42) yields,

|||W1,k̂(k) − U1,k̂(k)
||| ≤ k∗∑

i=1

k̂∑
j=k∗+1

1{Yj<Yi≤Yj+Δn} =∶ I1,k̂(k∗),

for all 1 ≤ k ≤ k̂. Hence, using the reverse triangle inequality,

|||n−3∕2 max
1≤k≤k̂

||W1,k̂(k)|| − n−3∕2 max
1≤k≤k̂

||U1,k̂(k)||||| ≤ n−3∕2I1,k̂(k∗).

Thus, property (40) holds if n−3∕2I1,k̂(k∗) = oP(1).
By Lemma 5.5, n−3∕2I1,k̂(k∗) = n−3∕2k∗(k̂ − k∗)ΘΔn

+ oP(1), where ΘΔn
= E

(
1{Y ′

2<Y ′
1≤Y ′

2+Δn}
)

and Y ′
1 and Y ′

2 are
independent copies of Y1. The distribution function F of Y1 has bounded second derivative. Hence, as n → ∞, by
(37),

ΘΔn
= Δn

(
∫ℝ

f 2 (y) dy + o(1)
)
.

Furthermore, by (12), Δ2
n|k̂−k∗| = OP(1) and by Assumption 2, k∗∕n ∼ 𝜃 and nΔ2

n → ∞, as n → ∞. This yields

n−3∕2k∗|k̂ − k∗|ΘΔn
≤ C

Δ2
n
||k̂ − k∗||

n1∕2Δn

= oP(1).

This completes the proof of (40). The proof of (41) follows using similar argument.

5.1.3. Proof of Lemma 5.2
We will now state the proof of Lemma 5.2.

Proof. To prove Lemma 5.2 we will use the idea of the proof of Theorem 3 of Dehling et al. (2015).
Recall that T(Y1,… ,Yk̂) = k̂−3∕2 max1≤k≤k̂ |U1,k̂(k)| and similarly T(Yk̂+1,… ,Yn) = (n −

k̂)−3∕2 maxk̂<k≤n |Uk̂+1,n(k)|. Note that the terms U1,k̂(k) and Uk̂+1,n(k) defined in (39) can be written as a second
order U-statistic

Ua,b (k) =
k∑

i=a

b∑
j=k+1

(
h
(
Yi,Yj

)
− Θ

)
, a ≤ k < b,

with kernel function h (x, y) = 1{x≤y} and constant Θ = E h(Y ′
1,Y

′
2) = 1∕2, where Y ′

1 and Y ′
2 are independent copies

of Y1. Furthermore, we can apply the Hoeffding’s decomposition given in (29).
Therefore,

Ua,b(k) =
k∑

i=a

b∑
j=k+1

(
h1

(
Yi

)
+ h2

(
Yj

)
+ g

(
Yi,Yj

))
=∶ sa,b(k) + va,b(k),

where

sa,b(k) = (b − k)
k∑

i=a

h1

(
Yi

)
+ (k − a + 1)

b∑
j=k+1

h2

(
Yj

)
, va,b(k) =

k∑
i=a

b∑
j=k+1

g
(
Yi,Yj

)
.
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Note that

va,b(k) =
k∑

i=1

b∑
j=1

g
(
Yi,Yj

)
−

k∑
i=1

k∑
j=1

g
(
Yi,Yj

)
−

a−1∑
i=1

b∑
j=1

g
(
Yi,Yj

)
+

a−1∑
i=1

k∑
j=1

g
(
Yi,Yj

)
.

Thus, Lemma 5.4 yields

n−3∕2 max
a≤k≤b

||va,b(k)|| ≤ 4n−3∕2 max
1≤k≤n

max
1≤l≤n

||| k∑
i=1

l∑
j=1

g
(
Yi,Yj

) ||| = oP(1).

Furthermore, by the triangle inequality,

max
a≤k≤b

||Ua,b(k)|| = max
a≤k≤b

||sa,b(k)|| + max
a≤k≤b

||va,b(k)|| = max
a≤k≤b

||sa,b(k)|| + oP(n3∕2).

Consistency of k̂ in (12), Δ2
n|k̂ − k∗| = OP(1), and Assumption 2, nΔ2

n → ∞, as n → ∞, yield

||| k̂
n
− 𝜃

||| = oP(1). (43)

It remains to show that

k̂−3∕2 max
1≤k≤k̂

||s1,k̂(k)|| d
−→ 𝜎 sup

0≤t≤1

||B(1) (t) ||,
(n − k̂)−3∕2 max

k̂<k≤n

||sk̂+1,n(k)|| d
−→ 𝜎 sup

0≤t≤1

||B(2) (t) ||,
where B(1) and B(2) are independent Brownian bridges. By Slutsky’s Lemma this implies (25). Note that h1(x) =
−h2(x). Hence,

s1,k̂(k) = (k̂ − k)
k∑

i=1

h1(Yi) + k
k̂∑

j=k+1

h2(Yj)

= k̂n1∕2
{ 1

n1∕2

k∑
i=1

h1

(
Yi

)
− k

k̂

1
n1∕2

k̂∑
i=1

h1

(
Yi

)}
=∶ k̂n1∕2Γ(1)

k

and

sk̂+1,n(k) = (n − k)
k∑

i=k̂+1

h1(Yi) + (k − k̂)
n∑

j=k+1

h1(Yj)

= (n − k̂)n1∕2
{ 1

n1∕2

k∑
i=k̂+1

h1

(
Yi

)
− k − k̂

n − k̂

1
n1∕2

n∑
i=k̂+1

h1

(
Yi

)}
= (n − k̂)n1∕2

{ 1
n1∕2

( k∑
i=1

h1

(
Yi

)
−

k̂∑
i=1

h1

(
Yi

) )
− k − k̂

n − k̂

1
n1∕2

( n∑
i=1

h1

(
Yi

)
−

k̂∑
i=1

h1

(
Yi

) )}
=∶ (n − k̂)n1∕2Γ(2)

k .
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Lemma 5.3 implies weak convergence on D[0, 1] of the partial sum process,(
1

n1∕2

[nt]∑
i=1

h1

(
Yi

))
0≤t≤1

d
−→ (𝜎W (t))0≤t≤1 ,

where W (t) is a Brownian motion and 𝜎 as in (15). By the Skorohod-Dudley-Wichura representation (see e.g.
Shorack and Wellner (2009), Theorem 4 on p. 47) there exists a series of Brownian motions Wn (t), t ∈ [0, 1], such
that

sup
0≤t≤1

|||n−1∕2
[nt]∑
i=1

h1

(
Yi

)
− 𝜎Wn (t)

||| = oP (1) .

Set

Γ(1)
W,k = Wn

( k
n

)
− k

k̂
Wn

( k̂
n

)
, Γ(2)

W,k =
(

Wn

( k
n

)
− Wn

( k̂
n

))
− k − k̂

n − k̂

(
Wn(1) − Wn

( k̂
n

))
,

and note that Γ(1)
W,k and Γ(2)

W,k are independent, since the increments of Brownian motions are independent.
Thus,

max
1≤k≤k̂

||Γ(1)
k − 𝜎Γ(1)

W,k
|| = oP(1), max

k̂<k≤n

||Γ(2)
k − 𝜎Γ(2)

W,k
|| = oP(1).

By (43) and by the a.s. equicontinuity of the Brownian motion process {Wn} and using the continuous mapping
theorem, ||Wn

(
k̂∕n

)
− Wn (𝜃) || = oP (1). Hence,

max
1≤k≤k̂

||Γ(1)
W,k

|| = sup
0≤t≤𝜃

|||Wn (t) −
t
𝜃

Wn (𝜃)
||| + oP (1)

and

max
k̂<k≤n

||Γ(2)
W,k

|| = sup
𝜃<t≤1

|||(Wn (t) − Wn (𝜃)
)
− t − 𝜃

1 − 𝜃

(
Wn (1) − Wn (𝜃)

)||| + oP (1)

d
= sup

𝜃<t≤1

|||Wn (t − 𝜃) − t − 𝜃

1 − 𝜃
Wn (1 − 𝜃) |||,

since Brownian motions have stationary increments and Wn(0) = 0. Finally,

(k̂∕n)−1∕2 max
1≤k≤k̂

||Γ(1)
k
|| = 𝜎

𝜃1∕2
sup

0≤t≤𝜃
|||Wn (t) −

t
𝜃

Wn (𝜃)
||| + oP (1)

d
= 𝜎 sup

0≤t≤1

||B(1) (t) ||,
since Brownian motions are scale invariant, that is, 𝜃−1∕2Wn(t)

d
= Wn(t∕𝜃), and

((n − k̂)∕n)−1∕2 max
k̂<k≤n

||Γ(2)
k
|| d
= 𝜎

(1 − 𝜃)1∕2
sup
𝜃<t≤1

|||Wn (t − 𝜃) − t − 𝜃

1 − 𝜃
Wn (1 − 𝜃) |||

d
= 𝜎

(1 − 𝜃)1∕2
sup

0<t≤1−𝜃

|||Wn (t) −
t

1 − 𝜃
Wn (1 − 𝜃) ||| d

= 𝜎 sup
0≤t≤1

||B(2) (t) ||.
The increments of Brownian motions are independent, thus B(1) and B(2) are independent. This proves the lemma.
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5.2. Proof of Theorem 2.2

Under the alternative we consider observations X1,… ,Xn with Xi = G(𝜉i) + 𝜇, i = 1,… , n. Note that the indi-
cator function 1{x≤y} is invariant under strictly increasing functions, that is, 1{G(𝜉i)≤G(𝜉j)} = 1{𝜉i≤𝜉j}, if G is strictly
increasing. For G being a strictly decreasing function, observe that 1{G(𝜉i)≤G(𝜉j)} = 1 − 1{𝜉i≤𝜉j}. Therefore, for G
being strictly monotone,

||| k∑
i=1

n∑
j=k+1

(1{Xi≤Xj} − 1∕2)||| = ||| k∑
i=1

n∑
j=k+1

(1{𝜉i≤𝜉j} − 1∕2)|||.
Thus, to prove Theorem 2.2 it is sufficient to consider Tn,1 and Tn,2 in (4), (5) applied to the stationary Gaussian
process (𝜉j), that is, Tn,1(𝜉1,… , 𝜉k̂) and Tn,2(𝜉k̂+1,… , 𝜉n), instead of Tn,1(X1,… ,Xk̂) and Tn,2(Xk̂+1,… ,Xn).

Before we prove that the test Mn tends to infinity in probability under the alternative, we will consider the limit
distribution of Tn,1(𝜉1,… , 𝜉k̂) and Tn,2(𝜉k̂+1,… , 𝜉n) in Lemma 5.7, using a different normalization nd+3∕2cd, where
c2

d = c0

d(2d+1)
, c0 > 0. Note that in the following we always assume d ∈ (0, 1∕2). By (WH(t))0≤t≤1 we denote a

fractional Brownian motion process with Hurst parameter H = d+1∕2, that is a mean zero Gaussian process with
auto-covariances Cov(WH(t),WH(s)) = (t2H + s2H − |t − s|2H)∕2.

Lemma 5.6. Assume that the assumptions of Theorem 2.2 hold. Then, for 0 ≤ s ≤ t ≤ 1,

1
nd+3∕2cd

[ns]∑
i=1

n∑
j=[nt]+1

(1{𝜉i≤𝜉j} − 1∕2)
d
−→ 1

2
√
𝜋

(
s(WH(1) − WH(t)) − (1 − t)WH(s)

)
,

where WH , H = d + 1∕2 is a standard fractional Brownian motion, c2
d = c0

d(2d+1)
, c0 > 0 and d ∈ (0, 1∕2).

In the proof of Lemma 5.6 we apply the empirical process non-central limit theorem of Dehling and Taqqu
(1989), which uses the Hermite expansion of 1{G(𝜉)≤x} −F(x). Before proceeding to the proof, we will have a brief
look at this concept.

Hermite expansion: Since function g(𝜉) = 1{G(𝜉)≤x} − F(x) is a measurable function with E g(𝜉) = 0 and
E g2(𝜉) < ∞, 𝜉 ∼ N(0, 1), that is, g ∈ L2(ℝ,N), we could represent g by its Hermite expansion

g(𝜉) =
∞∑

k=1

Jk(x)
k!

Hk(𝜉),

where the equality means convergence in the L2 sense. The kth order Hermite polynomial is given by

Hk(𝜉) = (−1)ke𝜉
2∕2 dk

d𝜉k
e−𝜉

2∕2,

and the coefficients are given by Jk(x) = E(1{G(𝜉)≤x}Hk(𝜉)), with J1(x) = E(𝜉11{𝜉1≤x}) = −𝜑(x), where 𝜑(x) denotes
the standard normal density function. The Hermite rank is defined as m = min{k ≥ 0 ∶ Jk ≠ 0}, the smallest k
for which the term in the Hermite expansion is not zero. Since J1(x) ≠ 0 for some x ∈ ℝ, we have Hermite rank
m = 1.

Hermite process: The limit process Zm(t) in Theorem 1.1 of Dehling and Taqqu (1989) is called mth order
Hermite process and is defined, for example, in Taqqu (1978). If m = 1, Z1(t) is the standard Gaussian fractional
Brownian motion.
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Proof of Lemma 5.6. Dehling et al. (2013b) have shown in their Theorem 1 that

(
1

nd+3∕2cd

[ns]∑
i=1

n∑
j=[ns]+1

(1{Xi≤Xj} − 1∕2)
)

0≤s≤1

d
−→

(
1

m!
(Zm(s) − sZm(1))∫ℝ

Jm(x)dF(x)
)

0≤s≤1

for Xi = G(𝜉i), where G ∶ ℝ → ℝ is a measurable function (that might not be strictly monotone), F is the
continuous distribution of Xi, m is the Hermite rank of the class functions 1{G(𝜉i)≤x} − F(x), and Jm(x), Hm and
(Zm(s))s∈[0,1] are given above.

Following the proof of Theorem 1 of Dehling et al. (2013b) we will show

(
1

nd+3∕2cd

[ns]∑
i=1

n∑
j=[nt]+1

(1{Xi≤Xj} − 1∕2)
)

0≤s≤t≤1

d
−→

(
1

m!
(
(1 − t)Zm(s) − s(Zm(1) − Zm(t)

)
∫ℝ

Jm(x)dF(x)
)

0≤s≤t≤1

. (44)

Since F is a continuous distribution function, ∫ℝ F(x)dF(x) = 1∕2. Denote Fk(x) =
1

k

∑k
i=1 1{Xi≤x} and Fk+1,n(x) =

1

n−k

∑n
i=k+1 1{Xi≤x}. Then,

[ns]∑
i=1

n∑
j=[nt]+1

(1{Xi≤Xj} − 1∕2) = [ns](n − [nt])
(
∫ℝ

(
F[ns](x) − F(x)

)
dF[nt]+1,n(x)

)
+ [ns](n − [nt])

(
∫ℝ

F(x)d
(
F[nt]+1,n − F

)
(x)

)
.

Integration by parts yields,

∫ℝ
F(x)d

(
F[nt]+1,n − F

)
(x) = −∫ℝ

(
F[nt]+1,n − F

)
(x)dF(x).

Hence,

[ns]∑
i=1

n∑
j=[nt]+1

(1{Xi≤Xj} − 1∕2) = [ns](n − [nt])∫ℝ
(F[ns](x) − F(x))dF[nt]+1,n(x)

−[ns](n − [nt])∫ℝ
(F[nt]+1,n(x) − F(x))dF(x).

With the same argument as used in Dehling et al. (2013b), we show that(
[ns](n − [nt])

nd+3∕2cd ∫ℝ
(F[ns](x) − F(x))dF[nt]+1,n(x)

)
0≤s≤t≤1

d
−→

(
(1 − t)

m! ∫ℝ
Jm(x)Zm(s)dF(x)

)
0≤s≤t≤1

,
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and (
[ns](n − [nt])

nd+3∕2cd ∫ℝ
(F[nt]+1,n(x) − F(x))dF(x)

)
0≤s≤t≤1

d
−→

(
s

m! ∫ℝ
Jm(x)(Zm(1) − Zm(t))dF(x)

)
0≤s≤t≤1

.

We do this by applying the Skorohod–Dudley–Wichura representation which yields almost sure convergence, that
is

[ns](n − [nt])
nd+3∕2cd ∫ℝ

(F[ns](x) − F(x))dF[nt]+1,n(x) −
(1 − t)

m! ∫ℝ
Jm(x)Zm(s)dF(x) → 0 (45)

[ns](n − [nt])
nd+3∕2cd ∫ℝ

(F[nt]+1,n(x) − F(x))dF(x) − s
m! ∫ℝ

Jm(x)(Zm(1) − Zm(t))dF(x) → 0, (46)

almost surely, uniformly in 0 < s ≤ t < 1.
Let us start with (45). We can write

[ns](n − [nt])
nd+3∕2cd ∫ℝ

(F[ns](x) − F(x))dF[nt]+1,n(x) −
(1 − t)

m! ∫ℝ
Jm(x)Zm(s)dF(x)

= (n − [nt])
n ∫ℝ

[ns]
nd+1∕2cd

(F[ns](x) − F(x))dF[nt]+1,n(x) − (1 − t)∫ℝ
Jm(x)

Zm(s)
m!

dF(x)

= (n − [nt])
n ∫ℝ

( [ns]
nd+1∕2cd

(F[ns](x) − F(x)) − Jm(x)
Zm(s)

m!

)
dF[nt]+1,n(x)

+ (n − [nt])
n ∫ℝ

Jm(x)
Zm(s)

m!
d
(
F[nt]+1,n − F

)
(x)

+
( (n − [nt])

n
− (1 − t)

)
∫ℝ

Jm(x)
Zm(s)

m!
dF(x). (47)

The empirical process non-central limit theorem of Dehling and Taqqu (1989) yields(
d−1

n [ns]
(
F[ns](x) − F(x)

))
x∈[−∞,∞],s∈[0,1]

d
−→

(
J(x)Z(s)

)
x∈[−∞,∞],s∈[0,1]

,

where J(x) = Jm(x), Z(x) = Zm(x)∕m! and d2
n ∼ n2d+1c2

d.
Dehling et al. (2013b) argue that applying the Skorohod–Dudley–Wichura representation yields almost sure

convergence, that is

sup
s,x

||d−1
n [ns]

(
F[ns](x) − F(x)

)
− J(x)Z(x)|| → 0 a.s. (48)

Thus, the first term on the right-hand side of (47) converges to 0 almost surely, uniformly in 0 < s ≤ t < 1.
Furthermore, we note that

(n − [nt])
n ∫ℝ

J(x)Z(s)d
(
F[nt]+1,n − F

)
(x)

= Z(s)
[ (n − [nt])

n ∫ℝ
J(x)dF[nt]+1,n(x) −

(n − [nt])
n ∫ℝ

J(x)dF(x)
]
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= Z(s)
[1

n

n∑
i=[nt]+1

J(Xi) −
(n − [nt])

n
E(J(Xi))

]
= Z(s)1

n

n∑
i=1

(
J(Xi) − E(J(Xi))

)
− Z(s)1

n

[nt]∑
i=1

(
J(Xi) − E(J(Xi))

)
.

Note that (J(Xi)) is ergodic since the process (Xi) is ergodic and J is a measurable function. By the ergodic theorem,
1

n

∑n
i=1

(
J(Xi) − E(J(Xi))

)
→ 0 almost surely. This implies that

∑n
i=1

(
J(Xi) − E(J(Xi))

)
= o(n) and hence

max
0≤k≤n

||| k∑
i=1

(
J(Xi) − E(J(Xi))

)||| = o(n)

almost surely as n → ∞. Thus, 1

n

∑[nt]
i=1

(
J(Xi) − E(J(Xi))

)
→ 0 almost surely for all 0 ≤ t ≤ 1. Therefore, the

second term on the right-hand side of (47) converges to 0 almost surely, uniformly in 0 < s ≤ t < 1.
Also the third term on the right-hand side of (47) converges to 0, since, as n → ∞,

(
(n− [nt])∕n− (1− t)

)
→ 0,

and ∫ℝ Jm(x)
Zm(s)

m!
dF(x) is bounded. This finishes the proof of (45).

Note that

F[nt]+1,n(x) =
n

n − [nt]
Fn(x) −

[nt]
n − [nt]

F[nt](x),

and hence,

(n − [nt])
(
F[nt]+1,n(x) − F(x)

)
= n

(
Fn(x) − F(x)

)
− [nt]

(
F[nt](x) − F(x)

)
.

Then the proof of (46) follows using again (48). Thus, (44) is shown.
Note that this result holds for Xi = G(𝜉i), but in our lemma we consider Xi = 𝜉i, where (𝜉j) is a stationary

mean zero Gaussian process with auto-covariances 𝛾k ∼ k2d−1c0, d ∈ (0, 1∕2). In this case, J1(x) = −𝜑(x), where
𝜑(x) denotes the standard normal density function and ∫ℝ J1(x)dF(x) = − 1

2
√
𝜋

, since F is the normal distribution

function. Furthermore, J1(x) ≠ 0 for all x and hence, we have Hermite rank m = 1. Therefore, (Z1(s)) denotes the
standard fractional Brownian motion process (WH(s)). Thus, the limit in (44) equals

1

2
√
𝜋

(
s(WH(1) − WH(t)) − (1 − t)WH(s)

)
,

which proves the lemma.

Lemma 5.7. Assume that the assumptions of Theorem 2.2 hold. Then,

[
1

nd+3∕2cd

max
1≤k≤k̂

||| k∑
i=1

k̂∑
j=k+1

(1{𝜉i≤𝜉j} − 1∕2)|||, 1
nd+3∕2cd

max
k̂<k≤n

||| k∑
i=k̂+1

n∑
j=k+1

(1{𝜉i≤𝜉j} − 1∕2)|||
]

d
−→

[
𝜁

2
√
𝜋

sup
0≤t≤𝜁

||WH(t) −
t
𝜁

WH(𝜁 )||, 1 − 𝜁

2
√
𝜋

sup
𝜁≤t≤1

||WH(t) − WH(𝜁 ) −
t − 𝜁

1 − 𝜁
(WH(1) − WH(𝜁 ))||],

where c2
d = c0

d(2d+1)
, c0 > 0, d ∈ (0, 1∕2), WH is a standard fractional Brownian motion, H = d + 1∕2 and

𝜁 = inf
{

t ≥ 0 ∶ sup
0≤s≤1

|WH(s) − sWH(1)| = |WH(t) − tWH(1)|}. (49)
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Proof. Denote for 0 ≤ s ≤ t ≤ 1

Ũn(s, t) =
1

nd+3∕2cd

[ns]∑
i=1

n∑
j=[nt]+1

(1{𝜉i≤𝜉j} − 1∕2),

W̃H(s, t) = − 1

2
√
𝜋

(
(1 − t)WH(s) − s(WH(1) − WH(t))

)
and note that by Lemma 5.6, (Ũn(s, t))s,t

d
−→ (W̃H(s, t))s,t. Furthermore, we denote

Ũn,1(t) =
1

nd+3∕2cd

max
1≤k≤nt

||| k∑
i=1

nt∑
j=k+1

(1{𝜉i≤𝜉j} − 1∕2)|||,
Ũn,2(t) =

1
nd+3∕2cd

max
nt<k≤n

||| k∑
i=nt+1

n∑
j=k+1

(1{𝜉i≤𝜉j} − 1∕2)|||,
W̃H,1(t) =

t

2
√
𝜋

sup
0≤s≤t

||WH(s) −
s
t
WH(t)||,

W̃H,2(t) =
1 − t

2
√
𝜋

sup
t≤s≤1

||(WH(s) − WH(t)) −
1 − s
1 − t

(WH(1) − WH(t))||.
Since

k∑
i=1

nt∑
j=k+1

(1{𝜉i≤𝜉j} − 1∕2) =
k∑

i=1

n∑
j=k+1

(1{𝜉i≤𝜉j} − 1∕2) −
k∑

i=1

n∑
j=nt+1

(1{𝜉i≤𝜉j} − 1∕2),

we can write Ũn,1(t) = sup0≤s≤t |Ũn(s, s)−Ũn(s, t)| and with a similar argument Ũn,2(t) = supt≤s≤1 |Ũn(s, s)−Ũn(t, s)|.
Note that W̃H,1(t) = sup0≤s≤t |W̃H(s, s) − W̃H(s, t)| and W̃H,2(t) = supt≤s≤1 |W̃H(s, s) − W̃H(t, s)|. Thus, the same
continuous mapping transforms Ũn(s, t) into the vector (k̂∕n, Ũn,1(t), Ũn,2(t)) and W̃H(s, t) into (𝜁, W̃H,1(t), W̃H,2(t)),
where 𝜁 is given in (49). Hence, by the continuous mapping theorem and Lemma 5.6(

k̂∕n, Ũn,1(t), Ũn,2(t)
) d
−→

(
𝜁, W̃H,1(t), W̃H,2(t)

)
.

Applying the mapping (z, x(t), y(t)) → (x(z), y(z)) to both vectors finishes the proof.

Proof of Theorem 2.2. By Lemma 5.7,

Tn,1 = k̂−3∕2 max
1≤k≤k̂

|||||
k∑

i=1

k̂∑
j=k+1

(1{𝜉i≤𝜉j} − 1∕2)
|||||

=
nd+3∕2cd

k̂3∕2

1
nd+3∕2cd

max
1≤k≤k̂

|||||
k∑

i=1

k̂∑
j=k+1

(1{𝜉i≤𝜉j} − 1∕2)
||||| = nd+3∕2cd

k̂3∕2
OP(1).

Similar argument yields Tn,2 = nd+3∕2cd

(n−k̂)3∕2
OP(1). Thus, to prove Theorem 2.2 it remains to show nd+3∕2cd

k̂3∕2
→p ∞

and nd+3∕2cd

(n−k̂)3∕2
→p ∞. The proof of Lemma 5.7 yields k̂∕n

d
−→ 𝜁 , where 𝜁 is given in (49), and hence, (k̂∕n)3∕2 and
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((n− k̂)∕n)3∕2 are asymptotically bounded away from zero. Since d > 0, nd → ∞ as n → ∞. Thus, Tn,1 →p ∞ and
Tn,2 →p ∞. This finishes the proof of Theorem 2.2.
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