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Abstract
We consider the problem of hedging a contingent claim

with a “semistatic” strategy composed of a dynamic posi-

tion in one asset and static (buy-and-hold) positions in other

assets. We give general representations of the optimal strat-

egy and the hedging error under the criterion of variance

optimality and provide tractable formulas using Fourier

integration in case of the Heston model. We also consider

the problem of optimally selecting a sparse semistatic hedg-

ing strategy, i.e., a strategy that only uses a small sub-

set of available hedging assets and discuss parallels to the

variable-selection problem in linear regression. The meth-

ods developed are illustrated in an extended numerical

example where we compute a sparse semistatic hedge for

a variance swap using European options as static hedging

assets.

1 INTRODUCTION

Semistatic hedging strategies are strategies that are composed of a dynamic (i.e., continuously rebal-

anced) position in one asset and of static (i.e., buy-and-hold) positions in other assets. Such hedging

strategies have appeared in mathematical finance in several different contexts: the hedging of Barrier

options (cf. Carr, 2011), model-free hedging approaches based on martingale optimal transport (cf. Bei-

glböck, Henry-Labordère, & Penkner, 2013), and—most relevant in our context—the semistatic repli-

cation of variance swaps by Neuberger’s formula (cf. Neuberger, 1994). Compared with fully dynamic

strategies, semistatic strategies have the advantage that no rebalancing costs or liquidity risks are asso-

ciated with the static part of the strategy and hence even assets with limited liquidity can be used as

static hedging assets.
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Remarkably, for certain hedging problems, semistatic strategies allow for perfect replication even

in incomplete markets—at least theoretically. Again, the most prominent example is the replication

formula for a variance swap, given by Neuberger (1994) and Carr and Madan (2001) and discussed

in more detail in Section 2.4: In any continuous martingale model, a variance swap can be replicated

by dynamic hedging in the underlying and a static portfolio of European put- and call-options. This

very replication formula is at the heart of the computation of the volatility index VIX, whose value

is determined from a discretization of Neuberger’s replicating option portfolio (cf. Chicago Board

Options Exchange (2019)).

However, Neuberger’s result relies on certain idealizations: Most importantly, the static part of the

strategy consists of infinitesimally small positions in an infinite number of puts and calls with strikes

ranging from zero to infinity. Any practical implementation of this strategy therefore has to decide

on a certain quantization of the theoretical strategy, i.e., how to assign noninfinitesimal weights to

the actually tradable put- and call-options. Rather than doing this in an ad hoc manner, our goal is

to determine how to optimally implement a semistatic hedging strategy when a finite number 𝑛 of

hedging assets is available. Our optimality criterion is the well-known variance-optimality criterion

introduced by Schweizer (1984) and Föllmer and Sondermann (1986), i.e., we minimize the variance

of the residual hedging error under the risk-neutral measure. As we show in Section 2, this criterion

is perfectly compatible with semistatic hedging: The semistatic hedging problem separates into an

inner problem, which is equivalent to the variance-optimal hedging problem with a single asset (as

considered in Föllmer & Sondermann, 1986; Schweizer, 1984) and an outer problem, which is an 𝑛-

dimensional quadratic optimization problem, cf. Theorem 2.3.

After having analyzed the general structure of the variance-optimal semistatic hedging problem, we

turn to another question in Section 3: How many assets 𝑑 < 𝑛 are enough to obtain a “reasonably small”

hedging error? In case of Neuberger’s formula for the variance swap—where infinitely many European

options reduce the hedging error to zero—how good is using 12, 6, or even just 3 options? Beyond that,

which 3 options should one select from, say, 30 that are available in the market? It turns out that this

problem of finding a sparse semistatic hedging strategy is closely related to the well-known prob-

lem of variable selection in high-dimensional regression (cf. Hastie, Tibshirani, & Friedman, 2013,

section 3.3), and more generally to sparse modeling approaches in statistics and machine learning.1

Indeed, to solve the problem of optimal selection we will draw from methods developed in statistics,

such as the LASSO, greedy forward selection and the method of Leaps-and-Bounds.

Finally, with the goal of a numerical implementation of sparse semistatic hedging in mind, we have

to find tractable methods to compute variances and covariances of hedging errors, expressed mathe-

matically as residuals in the Galtchouk-Kunita-Watanabe (GKW) martingale decomposition. Here, we

build on results from Kallsen and Pauwels (2010) which enable us to calculate the GKW decompo-

sition “semi-analytically,” i.e., in terms of Fourier integrals, in several models of interest, such as the

Heston model. The results of Kallsen and Pauwels (2010), which focus on calculation of the strategy

and the hedging error in a classic variance-optimal hedging framwork, are however not sufficient for

the semistatic hedging problem and we draw from some extensions that are developed in the technical

companion paper, Di Tella, Haubold, and Keller-Ressel (2019).

We conclude in Section 5 with a detailed numerical example, implementing the sparse semistatic

hedging problem for hedging a variance swap with put and call options in the Heston model. In partic-

ular, we compare the performance of the different solution methods for the subset selection problem,

analyze the dependency of optimal hedging portfolio and hedging error on the number 𝑑 of static

hedging assets, and study the influence of the leverage parameter 𝜌 on the optimal solution.
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2 VARIANCE-OPTIMAL SEMISTATIC HEDGING

To set up our model for the financial market, we fix a complete probability space (Ω, ,ℙ) equipped

with a filtration 𝔽 satisfying the usual conditions. We fix a time horizon 𝑇 > 0, assume that 0 is the

trivial 𝜎-algebra, and set  = 𝑇 . We denote by 𝑆 = (𝑆𝑡)𝑡≥0 the price process of a traded asset and set

interest rates to zero to simplify the exposition of results. Consistent with market practice, we assume

that a unique risk-neutral pricing measure ℚ, equivalent to ℙ, can be determined by calibration to

vanilla option prices, regardless of market completeness. Expectations 𝔼[.] denote expectations under

this risk-neutral measure ℚ, unless otherwise indicated. Finally, we make the technical assumption that

𝑆 is a continuous square-integrable martingale under ℚ. More generally, we denote by  2 =  2(𝔽 )
the set of real-valued 𝔽 -adapted square integrable ℚ-martingales, which becomes a Hilbert space when

equipped with the norm ‖𝑋‖2 2 ∶= 𝔼[𝑋2
𝑇
]. We also set  2

0 ∶= {𝑋 ∈ 2 ∶ 𝑋0 = 0}.

2.1 Variance-optimal hedging
Before discussing semistatic hedging, we quickly review variance-optimal hedging of a claim 𝐻 0

in 𝐿2(Ω, ,ℚ), up to the time horizon 𝑇 > 0, as discussed for instance in Föllmer and Sondermann

(1986). We identify the claim 𝐻0 with the martingale

𝐻0
𝑡
= 𝔼[𝐻0|𝑡], 𝑡 ∈ [0, 𝑇 ],

which is an element of 2. The set of all admissible dynamic strategies is denoted by

L2(𝑆) ∶=
{
𝜗 predictable and ℝ-valued: 𝔼

[
∫

𝑇

0
𝜗2
𝑡
d⟨𝑆, 𝑆⟩𝑡] < +∞

}
,

where ⟨𝑆, 𝑆⟩ denotes, as usual, the predictable quadratic variation of 𝑆. The variance-optimal hedge

𝜗 with initial capital 𝑐 of the claim 𝐻0 is the solution of

𝜖2 = min
𝜗∈L2(𝑆),𝑐∈ℝ

𝔼

[(
𝑐 + ∫

𝑇

0
𝜗𝑡d𝑆𝑡 −𝐻0

𝑇

)2]
. (1)

The resulting quantity 𝜖 is the minimal hedging error. The minimization problem (1) can be interpreted

as orthogonal projection (in  2) of the claim 𝐻0 onto the closed subspace spanned by deterministic

constants (corresponding to the initial capital 𝑐) and by 2(𝑆) ∶= {∫ 𝑇

0 𝜗𝑡d𝑆𝑡, 𝜗 ∈ L2(𝑆)} ⊂ 2
0 , the

set of claims attainable with strategies from L2(𝑆). The resulting orthogonal decomposition

𝐻0
𝑡
= 𝑐 + ∫

𝑡

0
𝜗𝑠d𝑆𝑠 + 𝐿𝑡 , (2)

of 𝐻0 is known as the GKW decomposition of 𝐻0 with respect to 𝑆, cf. Kunita and Watanabe (1967)

and Ansel and Stricker (1993). From the financial mathematics perspective, (2) decomposes the claim

𝐻0 into initial capital, hedgable risk, and unhedgable residual risk.

The orthogonality of 𝐿 to 2(𝑆) in the Hilbert space sense implies orthogonality of 𝐿 to 𝑆 in the

martingale sense, i.e., it holds that ⟨𝐿,𝑆⟩ = 0. Hence, the variance-optimal strategy 𝜗 can be computed

from (2) as

⟨𝐻,𝑆⟩𝑡 = ∫
𝑡

0
𝜗𝑠 d⟨𝑆, 𝑆⟩𝑠 , (3)

and 𝜗 can be expressed as the Radon-Nikodym derivative 𝜗 = d⟨𝐻,𝑆⟩∕d⟨𝑆, 𝑆⟩.



406 DI TELLA ET AL.

2.2 The variance-optimal semistatic hedging problem
We are now prepared to discuss the variance-optimal semistatic hedging problem and its solution.

In addition to the contingent claim 𝐻0, which is to be hedged, denote by 𝐻 = (𝐻1,… ,𝐻𝑛)⊤ the

vector of supplementary contingent claims, all assumed to be square-integrable random variables in

𝐿2(Ω, ,ℚ). Again, we associate to each 𝐻𝑖 the martingale

𝐻𝑖
𝑡
∶= 𝔼

[
𝐻𝑖||𝑡

]
, 𝑡 ∈ [0, 𝑇 ], 𝑖 = 0,… , 𝑛. (4)

The static part of the strategy can be represented by an element 𝑣 ofℝ𝑛, where 𝑣𝑖 represents the quantity

of claim 𝐻𝑖 bought at time 𝑡 = 0 and held until time 𝑡 = 𝑇 . The dynamic part 𝜗 of the strategy is again

represented by an element of L2(𝑆).

Definition 2.1 (Variance-Optimal Semistatic Hedging Problem). The variance-optimal semistatic

hedge (𝜗, 𝑣) ∈ L2(𝑆) ×ℝ𝑛 and the optimal initial capital 𝑐 ∈ ℝ are the solution of the minimization

problem

𝜖2 = min
(𝜗,𝑣)∈L2(𝑆)×ℝ𝑛,𝑐∈ℝ

𝔼

[(
𝑐 − 𝑣⊤𝔼

[
𝐻𝑇

]
+ ∫

𝑇

0
𝜗𝑡d𝑆𝑡 −

(
𝐻0

𝑇
− 𝑣⊤𝐻𝑇

))2]
. (5)

Note that 𝑣⊤𝔼[𝐻𝑇 ] is the cost of setting up the static part of the hedge and its terminal value is

𝑣⊤𝐻𝑇 . The dynamic part is self-financing and results in the terminal value ∫ 𝑇

0 𝜗𝑡d𝑆𝑡. Adding the initial

capital 𝑐 and subtracting the target claim 𝐻0
𝑇

yields the above expression for the hedging problem.

To solve the variance-optimal semistatic hedging problem, we decompose it into an inner and an

outer minimization problem and rewrite (5) as

⎧⎪⎨⎪⎩
𝜖2(𝑣) = min𝜗∈L2(𝑆),𝑐∈ℝ 𝔼

[(
𝑐 − 𝑣⊤𝔼

[
𝐻𝑇

]
+ ∫

𝑇

0
𝜗𝑡d𝑆𝑡 −

(
𝐻0

𝑇
− 𝑣⊤𝐻𝑇

))2]
, (inner prob.)

𝜖2 = min𝑣∈ℝ𝑛 𝜖(𝑣)2. (outer prob.)

(6)

The inner problem is of the same form as (1), while the outer problem turns out to be a finite dimen-

sional quadratic optimization problem. To formulate the solution, we write the GWK decompositions

of the claims (𝐻0,… ,𝐻𝑛) with respect to 𝑆 as

𝐻 𝑖
𝑡
= 𝐻 𝑖

0 + ∫
𝑡

0
𝜗𝑖
𝑠
d𝑆𝑠 + 𝐿𝑖

𝑡
, 𝑖 = 0,… , 𝑛. (7)

Similarly to (3) we get

𝜗 𝑖 =
d⟨𝐻 𝑖, 𝑆⟩
d⟨𝑆, 𝑆⟩ , 𝑖 = 0,… , 𝑛, (8)

and introduce the vector notation 𝜗 ∶= (𝜗 1,… , 𝜗 𝑛)⊤ for the strategies and 𝐿 ∶= (𝐿 1,… , 𝐿𝑛)⊤ for the

residuals in the GKW decomposition. Finally we formulate the following condition.

Definition 2.2 (Nonredundancy condition). The supplementary claims 𝐻 = (𝐻1,… ,𝐻𝑛)⊤ satisfy the

nonredundancy condition if there is no 𝑥 ∈ ℝ𝑛 ⧵ {0} with 𝑥⊤𝐿𝑇 = 0, a.s.
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Intuitively, existence of a nonzero 𝑥 with 𝑥⊤𝐿𝑇 = 0 means that the number of supplementary assets

can be reduced without changing the hedging error 𝜖2 in (5). We are now prepared to state our main

result on the solution of the variance-optimal semistatic hedging problem.

Theorem 2.3. Consider the variance-optimal semistatic hedging problem (5) and set

𝐴 ∶= Var
[
𝐿 0

𝑇

]
, 𝐵 ∶= Cov

[
𝐿𝑇 ,𝐿

0
𝑇

]
, 𝐶 ∶= Cov[𝐿𝑇 ,𝐿𝑇 ] . (9)

Under the nonredundancy condition, 𝐶 is invertible and the unique solution of the semistatic hedging
problem is given by

𝑐 = 𝔼
[
𝐻0

𝑇

]
, 𝑣 = 𝐶−1𝐵, 𝜗𝑣 = 𝜗0 − 𝑣⊤𝜗.

The minimal squared hedging error is given by

𝜀2 = 𝐴 − 𝐵⊤𝐶−1𝐵.

Moreover, the elements of 𝐴, 𝐵, and 𝐶 can be expressed as

𝔼
[
𝐿𝑖
𝑇
𝐿
𝑗

𝑇

]
= 𝔼

[⟨𝐿𝑖, 𝐿𝑗⟩𝑇 ] = 𝔼
[⟨𝐻𝑖,𝐻𝑗⟩𝑇 − ∫

𝑇

0
𝜗𝑖
𝑡
𝜗
𝑗

𝑡
d⟨𝑆, 𝑆⟩𝑡], 𝑖, 𝑗 = 0,… , 𝑛 . (10)

Corollary 2.4. If the nonredundancy condition does not hold true, then any solution 𝑣 ∈ ℝ𝑛 of the
linear system 𝐶𝑣 = 𝐵, together with 𝑐 = 𝔼[𝐻0

𝑇
] and 𝜗𝑣 = 𝜗0 − 𝑣⊤𝜗 is a solution of the semistatic

hedging problem. The solution set is never empty, and the solution that minimizes the Euclidian norm
of 𝑣 can be obtained by setting 𝑣 = 𝐶†𝐵, where 𝐶† denotes the Moore–Penrose pseudo-inverse of 𝐶 .

Notice that the minimal squared hedging error 𝜀2 in Theorem 2.3 is the Schur complement of the

block 𝐶 in the ‘extended covariance matrix’

Cov
[(
𝐿0
𝑇
, 𝐿𝑇

)
,
(
𝐿0
𝑇
, 𝐿𝑇

)]
=
[
𝐴 𝐵⊤

𝐵 𝐶

]
.

In particular, if (𝐿0
𝑇
, 𝐿𝑇 ) has normal distribution, then 𝜀2 can be expressed as 𝜀2 = Var[𝐿 0

𝑇
|𝐿𝑇 ].

Proof of Theorem 2.3 and Corollary 2.4. First, we consider the inner minimization problem in (6).

This problem is equivalent to the variance-optimal hedging problem for the claim 𝐻𝑣 ∶= 𝐻0 − 𝑣⊤𝐻 .

The solution 𝜗𝜈 is given by the GKW decomposition

(
𝐻0

𝑡
− 𝑣⊤𝐻𝑡

)
=
(
𝐻0

0 − 𝑣⊤𝐻0
)
+ ∫

𝑡

0
𝜗𝑣
𝑠
d𝑆𝑠 + 𝐿𝑣

𝑡
, 𝑡 ∈ [0, 𝑇 ] (11)

of the martingale (𝐻 0 − 𝑣⊤𝐻) with respect to 𝑆. By (3) we obtain

𝜗𝑣
𝑡
=

d⟨(𝐻0 − 𝑣⊤𝐻), 𝑆⟩𝑡
d⟨𝑆, 𝑆⟩𝑡 = 𝜗0

𝑡
− 𝑣⊤𝜗𝑡,

using the bilinearity of the predictable quadratic covariation. Uniqueness of the GKW decomposition

yields 𝐿𝑣
𝑡
= 𝐿0

𝑡
− 𝑣⊤𝐿𝑡 and the squared hedging error is given by

𝜀(𝑣)2 = 𝔼
[
(𝐿𝑣)2

]
= 𝔼

[(
𝐿 0
𝑇
− 𝑣⊤𝐿𝑇

)2] = 𝑣⊤𝔼
[
𝐿𝑇𝐿

⊤
𝑇

]
𝑣 − 2𝑣⊤𝔼

[
𝐿𝑇𝐿

0
𝑇

]
+ 𝔼

[(
𝐿 0

𝑇

)2] =
= 𝑣⊤𝐶𝑣 − 2𝑣⊤𝐵 + 𝐴.
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Thus, the outer optimization problem in (6) becomes

𝜀2 = min
𝑣∈ℝ𝑛

(𝑣⊤𝐶𝑣 − 2𝑣⊤𝐵 + 𝐴). (12)

Because 𝐶 is positive semidefinite, the first-order condition 𝐶𝑣 = 𝐵 is necessary and sufficient for

optimality of 𝑣. Under the nonredundancy condition, Var(𝑥⊤𝐿𝑇 ) > 0 for any 𝑥 ∈ ℝ𝑛⧵{0}, hence 𝐶

is positive definite and in particular invertible. The unique solution of the outer problem is therefore

given by 𝑣 = 𝐶−1𝐵, completing the proof of Theorem 2.3.

For the corollary, it remains to show that 𝐶𝑣 = 𝐵 has a solution, even when the nonredundancy

condition does not hold. A solution exists, if 𝐵 is in the range of 𝐶 , or equivalently, if 𝐵 is in

(ker 𝐶)⊥. By assumption ker 𝐶 is nonempty, and we can choose come 𝑥 ∈ ker 𝐶 , i.e., with 𝑥⊤𝐶 = 0.

Because 𝐶 is the covariance matrix of 𝐿𝑇 is follows that 𝑥⊤𝐿𝑇 = 0, a.s. This implies that also

𝑥⊤𝐵 = Cov(𝑥⊤𝐿𝑇 , 𝐿
0
𝑇
) = 0, for all 𝑥 ∈ ker 𝐶 and hence that 𝐵 ∈ (ker 𝐶)⊥. □

Finally, we compute the hedge contribution of a single supplementary asset 𝐻𝑛+1. By hedge con-

tribution, we mean the reduction in squared hedging error that is achieved by adding the asset 𝐻𝑛+1

to a given pool of supplementary assets (𝐻1,… ,𝐻𝑛). We denote by 𝜀2
𝑛

and 𝜀2
𝑛+1 the minimal hedging

error achieved with supplementary assets (𝐻1,… ,𝐻𝑛) and (𝐻1,… ,𝐻𝑛+1), respectively.

Proposition 2.5 (Relative Hedge Contribution). Suppose that the non-redundancy condition holds true
for all supplementary assets 𝐻1,… ,𝐻𝑛+1. Then, the relative hedge contribution 𝑅𝐻𝐶𝑛+1 of 𝐻𝑛+1 is
given by

𝑅𝐻𝐶2
𝑛+1 ∶=

𝜀2
𝑛
− 𝜀2

𝑛+1

𝜀2
𝑛

=
(
Cov

[
𝐿𝑛+1
𝑇

, 𝐿0
𝑇

]
−𝐾⊤𝐶−1𝐵

)2(
Var

[
𝐿𝑛+1
𝑇

]
−𝐾⊤𝐶−1𝐾

)(
𝐴 − 𝐵⊤𝐶−1𝐵

) ∈ [0, 1], (13)

where 𝐾 ∈ ℝ𝑛 with 𝐾𝑖 = Cov(𝐿𝑖
𝑇
, 𝐿𝑛+1

𝑇
) for 𝑖 = 1,… , 𝑛.

Remark 2.6. The expression for the relative hedge contribution has an intuitive interpretation under

the assumption that the residuals (𝐿0
𝑇
,… , 𝐿𝑛+1

𝑇
) have multivariate normal distribution. In this case the

hedge contribution of 𝐻𝑛+1 is equal to the partial correlation Cor(𝐿0
𝑇
, 𝐿𝑛+1

𝑇
|𝐿𝑇 ) of 𝐿0

𝑇
and 𝐿𝑛+1

𝑇
,

given 𝐿𝑇 (cf. Muirhead, 2009, Ch. 5.3). Thus, roughly speaking, a supplementary asset has a high

hedge contribution, if it is strongly correlated with 𝐻0, even after conditioning on all claims that are

attainable with semistatic strategies in 𝑆 and (𝐻1,… ,𝐻𝑛).

Proof. We set 𝐵 new ∶= [𝐵⊤,Cov[𝐿𝑛+1
𝑇

, 𝐿0
𝑇
]]⊤; 𝐶 new ∶= (𝐶 new

𝑖,𝑗
)𝑖,𝑗=1,…,𝑛+1, where 𝐶 new

𝑖,𝑗
∶=

Cov[𝐿𝑖
𝑇
, 𝐿

𝑗

𝑇
], 𝑖, 𝑗 = 1,… , 𝑛 + 1. Then, we have

𝐶 new =
[
𝐶 𝐾

𝐾⊤ Var
[
𝐿𝑛+1
𝑇

]] ,
which is invertible due to the non-redundancy condition. Write 𝑀 = (Var[𝐿𝑛+1

𝑇
] −𝐾⊤𝐶 −1𝐾) for the

Schur complement of 𝐶 in 𝐶 new. Using the Schur complement, the inverse of the block matrix 𝐶 new

can be written as

(𝐶 new)−1 =
[
𝐶 −1 + 𝐶 −1KK⊤𝐶 −1𝑀 −1 −𝐶 −1KM−1

−𝐾⊤𝐶 −1𝑀 −1 𝑀 −1

]
,
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cf. Horn and Johnson (2012), and applying Theorem 2.3 yields 𝜀𝑛+1(𝑢)2 = 𝐴 −
(𝐵 new)⊤(𝐶 new)−1𝐵 new. Consequently,

𝜀𝑛(𝑢)2 − 𝜀𝑛+1(𝑢)2 = (𝐵new)⊤(𝐶new)−1𝐵new − 𝐵⊤𝐶−1𝐵

and further algebraic manipulation yields (13). □

2.3 Hedging under ℚ vs. ℙ
The hedging criteria in (1) and (5) of minimizing the risk-neutral variance may seem “unnatural” at first

sight, compared with the arguably more natural criterion of minimizing the variance under ℙ. After all,

the ℙ-variance represents a quantification of the “true” risk associated to a hedging portfolio, which

may be different from its risk-neutral counterpart. This discrepancy has been much discussed in the

literature, with a good overview to be found in Cont and Tankov (2004, section 10.4.3). We also remark

that the variance-optimal hedging principle has indeed been extended to the “physical setting” under

ℙ (see the surveys of Pham, 2000 and Schweizer, 2001), albeit at the cost of an even more demanding

mathematical theory. Instead of pursuing the path of variance-optimal hedging under ℙ, we present

two arguments why the risk-neutral objectives (1) and (5) are a sensible choice after all, in particular

with applications in mind:

• Minimizing the hedging error under ℙ requires an accurate statistical estimation of the drift of the

underlying asset(s), which is a challenging task from an econometric point of view. The risk-neutral

pricing measureℚ on the other hand can usually be inferred without difficulty from observed options

prices (“model calibration”). Also the fact that an infinitude of equivalent local martingale measures

exists in an incomplete market setting is of little concern in practice, as the choice of a parameter-

ized model (e.g., the Heston stochastic volatility model) reduces the choice of ℚ to an optimization

problem in a low-dimensional parameter space, which can easily be solved by numerically, cf. Cont

(2010).

• Contrary to portfolio optimization, where long time horizons prevail and views on the growth rate of

assets (i.e., on the “ℙ-world”) are indispensable, the manager of a hedging portfolio remains focused

on shorter time horizons and will avoid to make his/her choice of hedging portfolio dependent on

subjective views on asset growth. Therefore, risk-neutral variance minimization may be in better

correspondence to the actual objectives of the manager of a hedging portfolio.

2.4 The variance swap and long/short constraints
We review the semistatic hedging of a variance swap with an infinite pool of European put- and call-

options, as discussed in Neuberger (1994) and Carr and Madan (2001). We will apply the methods

developed in this paper to this hedging problem in Section 5. It also serves as a motivation to add

long/short constraints to the semistatic hedging problem.

Recall that a variance swap is a contingent claim on an underlying traded asset 𝑆, which at maturity

𝑇 pays an amount𝐻
swap

𝑇
∶= [log𝑆, log𝑆]𝑇 − 𝑘, where 𝑘 ∈ ℝ. Usually, 𝑘 is chosen such that the value

of the contract is zero at inception, and the corresponding value 𝑘∗ = 𝔼[[log𝑆, log𝑆]𝑇 ] is called the

swap rate. Recall that our only assumption on the discounted price process 𝑆 is that it is a square-

integrable strictly positive continuous martingale. Applying Itô’s formula to log𝑆𝑇 we get

log𝑆𝑇 = log𝑆0 + ∫
𝑇

0

1
𝑆𝑡

d𝑆𝑡 −
1
2 ∫

𝑇

0

1
𝑆2
𝑡

d[𝑆, 𝑆]𝑡. (14)
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Hence,

𝐻
swap

𝑇
= ∫

𝑇

0

1
𝑆2
𝑡

d[𝑆, 𝑆]𝑡 − 𝑘 = 2∫
𝑇

0

1
𝑆𝑡

d𝑆𝑡 − 2 log
𝑆𝑇

𝑆0
− 𝑘,

that is, to hedge the variance swap, it is enough to dynamically trade in the stock 𝑆 and enter a static

position in the “log-contract” with payoff log 𝑆𝑇

𝑆 0
, cf. Neuberger (1994). Furthermore, from Carr and

Madan (2001), we have

log
𝑆𝑇

𝑆 0
=
𝑆𝑇 − 𝑆 0

𝑆 0
− ∫

𝑆 0

0

(𝐾 − 𝑆𝑇 )+

𝐾 2 d𝐾 − ∫
∞

𝑆 0

(𝑆𝑇 −𝐾)+

𝐾 2 d𝐾 , (15)

which inserting into the above equation yields

𝐻
swap

𝑇
= 2∫

𝑇

0

(
1
𝑆𝑡

− 1
𝑆0

)
d𝑆𝑡 − 𝑘 + 2∫

𝑆 0

0

(𝐾 − 𝑆𝑇 )+

𝐾 2 d𝐾 + 2∫
∞

𝑆 0

(𝑆𝑇 −𝐾)+

𝐾 2 d𝐾. (16)

This equality can be interpreted as a semistatic replication strategy for the variance swap, which uses

a dynamic position in 𝑆 and a static portfolio of infinitesimally small positions in an infinite number
of out-of-the-money puts and out-of-the-money calls. We make several observations:

(a) For any practical implementation the “infinitesimal portfolio” has to be discretized and portfolio

weights have to be assigned to each put and call.

(b) As they are calls and puts on the same underlying asset, the static hedging assets are highly corre-

lated.

(c) The static positions in puts and calls are long positions only.

To address point (a) different ad hoc discretizations of the integrals in (16) are possible (e.g., left

or right Riemann sums, trapezoidal sums). However, it is not obvious which discretization is optimal

in the sense of minimizing the hedging error. The choice of an optimal discretization in the variance-

minimizing sense is precisely given by Theorem 2.3.

Point (b) suggests that given a moderate number (say 30) of puts and calls as static hedging assets,

many of them will be redundant in the sense that their hedge contribution (given the other supplemen-

tary assets) is small. This observation motivates the sparse approach of the next section and will be

confirmed numerically in the application Section 5.

Point (c) finally motivates the addition of short/long constraints, or more generally, linear constraints

of the type

𝑣⊤𝑝 ≥ 0, (17)

where 𝑝 ∈ R𝑛 is fixed, to the outer problem in (6). With these constraints, the outer problem is a

linearly constrained quadratic optimization problem, which can still be efficiently solved by standard

numerical software.

3 SPARSE SEMISTATIC HEDGING

We now focus on the problem of optimal selection of static hedging assets, as outlined in the introduc-

tion and motivated in the previous section. Note that the subset selection only affects the static part of



DI TELLA ET AL. 411

the strategy and hence only the outer problem in (6). Recall the 𝓁1-norm ‖𝑣‖1 = ∑𝑛

𝑖=1 |𝑣𝑖| on ℝ𝑛 and

the (nonconvex) 𝓁0-quasinorm ‖𝑣‖0, which counts the number of nonzero elements of 𝑣, cf. Foucart

and Rauhut (2013).

Definition 3.1 (Sparse Variance-Optimal Semistatic Hedging Problem). The sparse variance-optimal
semistatic hedge (𝜗, 𝑣) ∈ L2(𝑆) ×ℝ𝑛 with effective portfolio size 𝑑 < 𝑛 and its optimal initial capital

𝑐 ∈ ℝ are the solution of the minimization problem (6), with the outer problem replaced by

𝜖2 = min
𝑣∈ℝ𝑛,𝑣≥0(𝑣

⊤𝐶𝑣 − 2𝑣⊤𝐵 + 𝐴), subj. to ‖𝑣‖0 ≤ 𝑑. (𝓁0-constrained problem) (18)

The 𝓁1-relaxation of this problem is given by

𝜖2 = min
𝑣∈ℝ𝑛,𝑣≥0(𝑣

⊤𝐶𝑣 − 2𝑣⊤𝐵 + 𝐴) + 𝜆‖𝑣‖1, (𝓁1-relaxation). (19)

where 𝜆 > 0 is a tuning parameter that replaces 𝑑. In both problems, we allow for long/short contains

of the form (17).

The minimization problem (18) is of course equivalent to the extensively studied subset selec-

tion problem in linear regression and (19) to its convex relaxation in Lagrangian form, usually called

LASSO. We refer to Hastie et al. (2013) for a general overview and to Tibshirani (1996) for the LASSO.

We emphasize that

• The𝓁0-constrained subset selection problem (18) is nonconvex and hard to solve exactly if the dimen-

sion 𝑛 is high.

• The 𝓁1-penalized minimization problem (19) is convex and efficient numerical solvers exist even

for large 𝑛. Its solution is usually a good approximation to the exact subset selection problem, but no

guarantee of being close to the solution of (18) can be given in general.2

To illustrate the effect of the 𝓁1-penalty, denote by 𝑣∗ the solution of the unpenalized hedging prob-

lem (5) and assume for a moment that all GKW-r esiduals (𝐿0
𝑇
,… , 𝐿𝑑

𝑇
) are uncorrelated. This assump-

tion is highly unrealistic in the hedging context, but leads to a simple form of the solution of the penal-

ized problem, cf. Tibshirani (1996): It is given by 𝑣′ = sign(𝑣∗)(|𝑣∗| − 𝜆)+, i.e., all static positions are

shrunk toward zero by 𝜆 and truncated when zero is reached. This nicely illustrates the sparsifying

effect of the penalty and the role of 𝜆.

While (19) is frequently used as a surrogate for (18), the following alternatives exist for solving (18)

directly, or for approximating its solution. Again, we refer to Tibshirani (1996) for further details on

the described methods:

Brute-Force Solve the quadratic optimization problem for each possible subset of car-

dinality 𝑑. As there are
(𝑛
𝑑

)
of these subsets, this approach is usually not

efficient and becomes completely infeasible for large 𝑛.

Leaps-and-Bounds “Leaps-and-Bounds” is a branch-and-bound algorithm introduced by Fur-

nival and Wilson (1974) for subset selection in linear regression, which

gives an exact solution to (18) without testing all possible subsets. Essen-

tially, a tree of nested subsets of hedging instruments (or regression vari-

ables) is formed, some branches of which can be discarded a priori, see

Furnival and Wilson (1974) for details. While the worst case performance

is no better than in the brute-force approach, it tends to be much faster in

many practical settings.
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Greedy Forward Selection A simple greedy approximation to (18) is to assume that the optimal subsets

of different cardinality are nested. In the forward approach the problem (18)

is first solved for 𝑑 = 1, which is easy. Then, iteratively, the supplementary

claim with the largest relative hedge contribution (see (2.5)) is added to

the set of active static positions in each step. The same procedure could be

used backward (“greedy backward selection”) i.e., starting with 𝑑 = 𝑛 and

then removing iteratively the supplementary claim with the smallest hedge

contribution. In general, no guarantee of being close to the exact solution

of (18) can be given for these methods.

We will compare the practical performances of the different solution methods in Section 5.

4 STOCHASTIC VOLATILITY MODELS WITH FOURIER
REPRESENTATION

The final ingredient still missing for a numerical solution of the (sparse) semistatic hedging problem is

an efficient method to compute the quantities 𝐴, 𝐵, and 𝐶 from Theorem 2.3. One possible approach

would be to compute transition densities of 𝑆 and 𝐻0,… ,𝐻𝑛 by Monte Carlo simulation and to com-

pute the GKW decomposition by sequential backward regression, cf. Föllmer and Schweizer (1988).

Due to the fact that the joint distribution of𝑆 and all price processes of supplementary claims is needed,

we expect a heavy computational load in order to obtain reasonably high accuracy with this method. An

interesting alternative method has been suggested by Kallsen and Pauwels (2010) (see also Hubalek,

Kallsen, & Krawczyk, 2006; Pauwels, 2007) for the classic variance-optimal hedging problem (1) of

European claims. This alternative is based on the well-known Fourier method for pricing of European

claims, cf. Carr and Madan (2001); Raible (2000); Kallsen and Pauwels (2010).

4.1 Fourier representation of strategies and hedging errors
We stay close to the framework of Kallsen and Pauwels (2010) and assume that the payoff of some

option 𝐻 is given by 𝐻 = 𝑓 (𝑋𝑇 ), where 𝑋 is the log-price process of the underlying stock, i.e., we

also assume 𝑆 = exp(𝑋). The payoff of a call for example can be written as 𝑓 (𝑥) = (𝑒𝑥 −𝐾)+, but it

is not necessary to restrict to this specific case. Furthermore, we assume that the (rescaled) two-sided

Laplace transform

𝑓 (𝑢) = 1
2𝜋 i ∫

+∞

−∞
exp(− 𝑢𝑥)𝑓 (𝑥)d𝑥 (20)

of the payoff exists at some 𝑢 = 𝑅 ∈ ℝ and is integrable over the strip

(𝑅) ∶= {𝑢 ∈ ℂ ∶ Re 𝑢 = 𝑅}

in the complex plane. If the integrability condition 𝔼[𝑒𝑅𝑋𝑇 ] < ∞ holds, then the risk-neutral price of

the claim 𝐻 at time 𝑡 ∈ [0, 𝑇 ] can be recovered by the Fourier-type integral

𝐻𝑡 = ∫(𝑅)𝐻𝑡(𝑢)𝑓 (𝑢)d𝑢, (21)



DI TELLA ET AL. 413

along (𝑅), where we denote the conditional moment generating function (analytically extended to

the complex plane) of 𝑋𝑇 by

𝐻𝑡(𝑢) ∶= 𝔼[𝑒𝑢𝑋𝑇 |𝑡].

Note that 𝐻𝑡(𝑢) is well defined on (𝑅) due to the integrability condition imposed on 𝑋𝑇 . In the

important cases of European puts and calls, the two-sided Laplace transform 𝑓 is given by

𝑓 (𝑢) = 1
2𝜋 i

𝐾1−𝑢

𝑢(𝑢 − 1)
,

with 𝑅 > 1 for calls and 𝑅 < 0 for puts, (cf. Hubalek et al., 2006, section 4).

The key insight, pioneered by Hubalek et al. (2006) for variance-optimal hedging in models with

independent increments and by Kallsen and Pauwels (2010) and Pauwels (2007) for affine stochastic

volatility models, is that the Fourier representation (21) of European claims can be extended to their

GKW decomposition (2). More precisely, both the strategy 𝜗 and the hedging error 𝜖2 = 𝔼[𝐿2
𝑇
] of

the variance-optimal hedging problem (1) can be expressed in terms of Fourier-type integrals, similar

to (21). For our problem of interest, the semistatic hedging problem (5), the results of Hubalek et al.

(2006), Kallsen and Pauwels (2010), and Pauwels (2007) are not sufficient: To obtain the quantities

𝐴, 𝐵, and 𝐶 of Theorem 2.3, we also need to compute the covariances 𝔼[𝐿𝑖
𝑇
𝐿
𝑗

𝑇
] between the GKW

residuals of different claims. In the companion paper, Di Tella et al. (2019), we extend the results

of Hubalek et al. (2006), Kallsen and Pauwels (2010), and Pauwels (2007) to the semistatic hedging

problem. Moreover, we show that the method can be used in any stochastic volatility models where the

Fourier transform of the log-price 𝑋 is known (e.g., the Heston, the 3/2 or the Stein–Stein model, cf.

Lewis, 2000). Here, we only need a special case of the more general results in Di Tella et al. (2019),

which is condensed into Theorem 4.1(i) below.

In order to formulate the representation result, we assume that a claim𝐻0 (e.g., a variance swap), and

supplementary assets𝐻1,… ,𝐻𝑛 with Fourier representations (20) are given, and define for 𝑢, 𝑢1, 𝑢2 ∈
ℂ complex-valued predictable processes of finite variation ,(𝑢),(𝑢1, 𝑢2) by

d = d⟨𝐻0,𝐻0⟩ − 𝜗0𝜗0d⟨𝑆, 𝑆⟩, 0 = 0 (22a)

d(𝑢) = d⟨𝐻0,𝐻(𝑢)⟩ − 𝜗0𝜗(𝑢)d⟨𝑆, 𝑆⟩, 0(𝑢) = 0, (22b)

d(𝑢1, 𝑢2) = d⟨𝐻(𝑢1),𝐻(𝑢2)⟩ − 𝜗(𝑢1)𝜗(𝑢2)d⟨𝑆, 𝑆⟩, 0(𝑢1, 𝑢2) = 0. (22c)

Theorem 4.1. Let a stochastic volatility model with forward price process 𝑆 = 𝑒𝑋 and variance
process 𝑉 be given, and let 𝑇 > 0 be a fixed time horizon. Let 𝐻0 be a variance swap with payoff
[𝑋,𝑋]𝑇 = ∫ 𝑇

0 𝑉𝑡d𝑡 and let the supplementary assets (𝐻1,… ,𝐻𝑛) be European puts or calls with
Fourier representations given by (20). Assume that (𝑆, 𝑉 ) are continuous square-integrable semi-
martingales and that there exist functions ℎ(𝑢, 𝑡, 𝑉𝑡), 𝛾(𝑡, 𝑉𝑡), continuously differentiable in the last
component, such that

𝐻𝑡(𝑢) = 𝔼[𝑒𝑢𝑋𝑇 |𝑡] = 𝑒𝑢𝑋𝑡ℎ(𝑢, 𝑇 − 𝑡, 𝑉𝑡), 𝐹𝑡 ∶= 𝔼
[
[𝑋,𝑋]𝑇 − [𝑋,𝑋]𝑡||𝑡

]
= 𝛾(𝑇 − 𝑡, 𝑉𝑡). (23)
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Then, the following holds true:

(i) The quantities 𝐴, 𝐵, and 𝐶 in Theorem 2.3 can be represented as

𝐴 = 𝔼
[𝑇

]
(24a)

𝐵𝑖 = ∫(𝑅𝑖)
𝔼
[𝑇 (𝑢)

]
𝑓𝑖(𝑢)d𝑢, 𝑖 ∈ {1,… , 𝑛} (24b)

𝐶𝑖𝑗 = ∫(𝑅𝑖) ∫(𝑅𝑗 )
𝔼
[𝑇 (𝑢1, 𝑢2)]𝑓𝑖(𝑢1)𝑓𝑗(𝑢2)d𝑢1d𝑢2, (𝑖, 𝑗) ∈ {1,… , 𝑛}2. (24c)

(ii) The processes (22) can be written as

d𝑡 = (𝜕𝑣𝛾(𝑇 − 𝑡, 𝑉𝑡))2 𝑑𝑄𝑡, (25a)

d𝑡(𝑢) = 𝑒𝑢𝑋𝑡 𝜕𝑣ℎ(𝑢, 𝑇 − 𝑡, 𝑉𝑡) 𝜕𝑣𝛾(𝑇 − 𝑡, 𝑉𝑡) 𝑑𝑄𝑡 (25b)

d𝑡(𝑢1, 𝑢2) = 𝑒(𝑢1+𝑢2)𝑋𝑡 𝜕𝑣ℎ(𝑢1, 𝑇 − 𝑡, 𝑉𝑡) 𝜕𝑣ℎ(𝑢2, 𝑇 − 𝑡, 𝑉𝑡) 𝑑𝑄𝑡, (25c)

where

𝑑𝑄 = d[𝑉 , 𝑉 ] − d[𝑋, 𝑉 ]
d[𝑋,𝑋]

d[𝑋, 𝑉 ]. (26)

Proof. Part (i) of the theorem is technically demanding and follows from theorems 4.5, 4.6, and 4.8 in

the companion paper Di Tella et al. (2019). In order to show part (ii), let 𝑌 be a ℝ𝑛-valued continuous

semimartingale and let 𝛼, 𝛽 be functions in𝐶2(ℝ𝑛,ℂ). Using Ito’s formula (cf. Jacod & Shiryaev, 2003,

theorem I.4.57) and the properties of quadratic covariation (cf. Jacod & Shiryaev, 2003, theorem I.4.49)

we obtain the calculation rule

d[𝛼(𝑌 ), 𝛽(𝑌 )] =
∑
𝑖,𝑗

𝜕𝑦𝑖𝛼(𝑌 )𝜕𝑦𝑗 𝛽(𝑌 )d[𝑌𝑖, 𝑌𝑗]. (27)

Inserting the definition of the variance-optimal strategy 𝜗(𝑢) = d⟨𝐻(𝑢),𝑆⟩⟨𝑆,𝑆⟩ into (22) and recognizing that

for continuous martingales predictable variation ⟨.,.⟩ and quadratic variation [.,.] coincide, we obtain

𝑑𝐶(𝑢1, 𝑢2) = d[𝐻(𝑢1),𝐻(𝑢2)] −
d[𝐻(𝑢1), 𝑆]
d[𝑆, 𝑆]

d[𝐻(𝑢2), 𝑆]

for 𝐶 and similar expressions for 𝐵 and 𝐴. Using assumption (23) and applying (27) several times we

obtain (25). □

4.2 The Heston model
In the Heston model (cf. Heston, 1993) the risk neutral price process 𝑆 is given by 𝑆𝑡 = 𝑆 0 exp(𝑋𝑡),
𝑡 ≥ 0, where

d𝑋𝑡 = −1
2
𝑉 𝑡d𝑡 +

√
𝑉 𝑡d𝑊 1

𝑡
, (28a)
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d𝑉 𝑡 = −𝜆(𝑉 𝑡 − 𝜅)d𝑡 + 𝜎
√
𝑉 𝑡d𝑊 2

𝑡
, (28b)

where 𝑊 1 and 𝑊 2 are two Brownian motions such that ⟨𝑊 1,𝑊 2⟩ 𝑡 = 𝜌𝑡, 𝜌 ∈ [−1, 1]; 𝜆, 𝜎, 𝜅 > 0.

The joint moment generating function of the Heston model is known explicitly and of the form

𝔼[exp (𝑢𝑋𝑇 +𝑤𝑉𝑇 )] = exp (𝜙𝑇 (𝑢,𝑤) + 𝜓𝑇 (𝑢,𝑤)𝑉0 + 𝑢𝑋0), (29)

well defined for real arguments in the set

𝑇 ∶=
{
(𝑢,𝑤) ∈ ℝ2 ∶ 𝔼[exp

(
𝑢𝑋𝑇 +𝑤𝑉𝑇

)
] <∞

}
, (30)

and with analytic extension to the associated “complex strip”

𝑆(𝑇 ) ∶=
{
(𝑢,𝑤) ∈ ℂ2 ∶ (Re 𝑢,Re𝑤) ∈ 𝑇

}
.

To represent 𝜙𝑡(𝑢,𝑤) and 𝜓𝑡(𝑢,𝑤), we introduce Δ(𝑢) = (𝜌𝜎𝑢 − 𝜆)2 − 𝜎2(𝑢2 − 𝑢),

𝑟± = 𝑟±(𝑢,𝑤) ∶= 1
𝜎2

(
𝜆 − 𝜌𝜎𝑢 ±

√
Δ(𝑢)

)
𝑔 = 𝑔(𝑢,𝑤) =

𝑟− −𝑤

𝑟+ −𝑤
.

Then, the explicit expression of 𝜓𝑡 is given, for (𝑢,𝑤) ∈ 𝑡 by (cf. Alfonsi, 2015, proposition 4.2.1),

𝜓𝑡(𝑢,𝑤) ∶=
⎧⎪⎨⎪⎩
𝑤 + (𝑟− −𝑤)

1−exp
(
−𝑡
√
Δ
)

1−𝑔 exp(−𝑡
√
Δ)
, Δ(𝑢) ≠ 0;

𝑤 + (𝑟− −𝑤)2 𝜎2𝑡
2+𝜎2𝑡(𝑟−−𝑤) , Δ(𝑢) = 0 ,

(31)

with the convention

exp(−𝑡
√
Δ) − 𝑔

1 − 𝑔
∶= 1,

1 − exp(𝑡
√
Δ)

1 − 𝑔 exp(𝑡
√
Δ)

∶= 0

whenever the denominator of 𝑔 is equal to zero. Moreover, 𝜙𝑡(𝑢,𝑤) is given by

𝜙𝑡(𝑢,𝑤) ∶=
⎧⎪⎨⎪⎩
𝜆𝜅𝑟−𝑡 −

2𝜆𝜅
𝜎2

log
(

1−𝑔 exp(−𝑡
√
Δ)

1−𝑔

)
Δ(𝑢) ≠ 0;

𝜆𝜅𝑟−𝑡 −
2𝜆𝜅
𝜎2

log
(
1 + 𝜎2

2 (𝑟− −𝑤)𝑡
)

Δ(𝑢) = 0 .
(32)

The following theorem specializes Theorem 4.1 to the Heston model and gives (up to integration)

explicit expressions for the quantities 𝐴, 𝐵, and 𝐶 from Theorem 2.3. The proof of the theorem is

given in Appendix A.

Theorem 4.2. Let (𝑋, 𝑉 ) be given by the Heston model (28) and let the claim 𝐻0 be a variance
swap, i.e., with payoff 𝐻0

𝑇
= [𝑋,𝑋]𝑇 at maturity 𝑇 . Let the supplementary claims (𝐻1,… ,𝐻𝑛) be

European puts and calls with payoffs 𝑓𝑖 and two-sided Laplace transforms 𝑓𝑖, integrable along strips
(𝑅𝑖), as in (21). If 𝔼[𝑒2𝑅𝑖𝑋𝑇 ] < ∞ for all 𝑖 = 1,… , 𝑛 then the quantities 𝐴, 𝐵, and 𝐶 , defined in
Theorem 2.3 are given by

𝐴 = 𝜎2(1 − 𝜌2)
𝜆2 ∫

𝑇

0

(
1 − 𝑒−𝜆(𝑇−𝑡)

)2𝔼[𝑉𝑡] 𝑑𝑡,
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𝐵𝑖 =
𝜎2(1 − 𝜌2)

𝜆 ∫
𝑇

0 ∫(𝑅𝑖)

(
1 − 𝑒−𝜆(𝑇−𝑡)

)
𝜓𝑇−𝑡(𝑢)𝔼

[
𝐻𝑡(𝑢)𝑉𝑡

]
𝑓𝑖(𝑢) 𝑑𝑢 𝑑𝑡,

𝐶𝑖𝑗 = 𝜎2(1 − 𝜌2)⋅

∫
𝑇

0 ∫(𝑅𝑖) ∫(𝑅𝑗 )
𝜓𝑇−𝑡(𝑢1)𝜓𝑇−𝑡(𝑢2)𝔼

[
𝐻𝑡(𝑢1, 𝑢2)𝑉𝑡

]
𝑓𝑖(𝑢1)𝑓𝑗(𝑢2) 𝑑𝑢1 𝑑𝑢2 𝑑𝑡,

where

𝔼
[
𝑉𝑡
]
= 𝑒−𝜆𝑡𝑉0 +

(
1 − 𝑒−𝜆𝑡

)
𝜅 (33a)

𝔼
[
𝐻𝑡(𝑢)𝑉𝑡

]
=
{
𝜕𝑤𝜙

(
𝑢, 𝜓𝑇−𝑡(𝑢, 0)

)
+ 𝑉0𝜕𝑤𝜓

(
𝑢, 𝜓𝑇−𝑡(𝑢, 0)

)}
𝑒𝑢𝑋0ℎ(𝑢, 𝑡, 𝑉0), (33b)

𝔼
[
𝐻𝑡(𝑢1)𝐻𝑡(𝑢2)𝑉𝑡

]
=
{
𝜕𝑤𝜙

(
𝑢, 𝑞𝑇−𝑡(𝑢1, 𝑢2)

)
+ 𝑉0𝜕𝑤𝜓

(
𝑢, 𝑞𝑇−𝑡(𝑢1, 𝑢2)

)}
⋅ (33c)

𝑒(𝑢1+𝑢2)𝑋0ℎ(𝑢1, 𝑡, 𝑉0)ℎ(𝑢2, 𝑡, 𝑉0),

with

𝑞𝑡(𝑢1, 𝑢2) = 𝜓𝑡(𝑢1, 0) + 𝜓𝑡(𝑢2, 0), ℎ(𝑢, 𝑡, 𝑉0) = exp
(
𝜙𝑡(𝑢, 0) + 𝑉0𝜓𝑡(𝑢, 0)

)
.

Remark 4.3. Note that the common leading factor 𝜎2(1 − 𝜌2) of 𝐴, 𝐵, and 𝐶 also becomes the leading

factor of the minimal squared hedging error 𝜖2, cf. (12). This makes perfect sense, as it makes the

hedging error roughly proportional to vol-of-vol 𝜎 and shows that the hedging error vanishes in the

complete-market boundary cases 𝜌 = ±1 of the Heston model. However, 𝜌 and 𝜎 also appear inside 𝜙,

𝜓 and therefore their influence on 𝜖2 is not limited to the leading factor 𝜎2(1 − 𝜌2) alone.

Remark 4.4. The domain 𝐷𝑇 of finite moments in the Heston model has been described in Andersen

& Piterbarg (cf. 2007, proposition 3.1) (see also Friz & Keller-Ressel, 2010). Using these results,

the moment condition in Theorem 4.2 can be checked in the following way: Set 𝜒(𝑢) ∶= 𝜌𝜎𝑢 − 𝜆,

Δ(𝑢) ∶= 𝜒(𝑢)2 − 𝜎2(𝑢2 − 𝑢) and define

𝑇∗(𝑢) =

⎧⎪⎪⎨⎪⎪⎩

+∞ , Δ(𝑢) ≥ 0, 𝜒(𝑢) < 0;
1√
Δ(𝑢)

log
(

𝜒(𝑢)+
√
Δ(𝑢)

𝜒(𝑢)−
√
Δ(𝑢)

)
, Δ(𝑢) ≥ 0, 𝜒(𝑢) > 0;

2√
−Δ(𝑢)

(
arctan

√
−Δ(𝑢)
𝜒(𝑢) + 𝜋1{𝜒(𝑢)<0}

)
, Δ(𝑢) < 0 .

(34)

By Andersen & Piterbarg (2007, prop. 3.1), the moment condition 𝔼[𝑒2𝑅𝑖𝑋𝑇 ] < ∞ is equivalent to

𝑇 < 𝑇∗(2𝑅𝑖).

5 NUMERICAL RESULTS

The following numerical implementation should be considered in terms of a ‘stylized financial market’

setting, i.e., while we do not calibrate the model to current market data, we use parameters that are

realistic in a market setting. More specifically, we use the Heston model parameters from Gatheral

(2006):
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𝜅 = 0.0354 𝜆 = 1.3253 𝜌 = −0.7165

𝜎 = 0.3877 𝑉0 = 0.0174.
(35)

In Section 5.4 we vary the leverage parameter 𝜌, but keep all other parameters fixed. The current stock

price is normalized to 𝑆0 = 100 and we use a time-to-maturity of 𝑇 = 1 (years) for the variance swap

and the call options. The price of a variance swap (i.e., the swap rate 𝑘∗ = 𝔼[[log𝑆, log𝑆]𝑇 ]) can be

readily calculated as

𝑘∗ = ∫
𝑇

0
𝔼
[
𝑉𝑡
]
𝑑𝑡 = 𝜅𝑇 + (𝑉0 − 𝜅)1 − 𝑒−𝜆𝑇

𝜆
= 0.025427.

The supplementary assets are OTM-puts and OTM-calls with strikes ranging from

𝐾min = 50 to 𝐾max = 150 in steps of Δ𝐾 = 5.

We focus on three aspects of the semistatic hedging problem:

• Comparing the different methods that were proposed in Section 3 to solve the sparse semistatic

hedging problem;

• Analyzing the dependency of hedging error and optimal portfolio composition on effective portfolio

size 𝑑;

• Analyzing the dependency of hedging error and optimal portfolio composition on the leverage

parameter 𝜌.

5.1 Comparison of methods
As a first step, we computed 𝐴, 𝐵, and the matrix 𝐶 from Theorem 2.3 using the Fourier representation

in Theorem 4.2 by adaptive integration in MATLAB. Next, we implemented the methods, described

in Section 3, i.e.,

(1) Greedy forward selection (with and without short-sale constraints)

(2) Leaps-and-Bounds (with and without short-sale constraints)

(3) LASSO

in the statistical computing environment R; using the function lars in the package lars with option

type=”lasso” for the computation of the LASSO solution. While computationally most demanding,

the Leaps-and-Bounds solution can serve as a benchmark solution, as it is (up to numerical error) the

exact solution of the sparse semistatic hedging problem (18). The other methods, in contrast, only

return a “reasonably close” solution to (18). In all cases, we report the relative hedging error 𝜖∕𝑘∗,

i.e., the hedging error normalized by the price of the variance swap.

A challenge that is faced by all methods is the bad condition of the matrix𝐶 . With parameters chosen

as in (35) the reciprocal condition number of 𝐶 is 1.11 × 10−6. While small, this number is still several

orders of magnitude larger than the machine precision of 2.22 × 10−16 (double precision arithmetic)

on the computer that was used. The bad condition of 𝐶 is not surprising, as put and call options with

neighboring strikes are highly correlated. This effect is likely amplified by the fact that 𝐶 contains the

correlations of the GKW residuals and not the correlations of the option prices themselves. While we

have considered preconditioning of 𝐶 , along the lines of Neumaier (1998), we have found that greedy
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F I G U R E 1 Relative hedging error (on log-scale) for sparse semistatic hedging of a variance swap with different

effective portfolio sizes 𝑑. The plot compares the solutions obtained with the Leaps-and-Bounds method (blue crosses),

greedy method (red diamonds) and LASSO (green circles) [Color figure can be viewed at wileyonlinelibrary.com]

forward selection and Leaps-and-Bounds perform well even without additional conditioning. Also the

addition of short-sale constraints seems to have a regularizing effect on the methods.

Figure 1 shows the relative hedging error (as percentage of the variance swap price) attained with

the optimal portfolio returned by Methods 1–3 for different effective portfolio sizes 𝑑 = 0…21. Notice

that the implementation of LASSO adds and removes supplementary assets from the active set, such

that the graph can show multiple solutions for the same effective portfolio size (e.g., for 𝑑 = 15).

Focusing on the comparison of methods, we find that

• The Leaps-and-Bounds method returns the solution with the smallest hedging error, consistent with

the fact that it solves (18) exactly. It is remarkably fast, but further numerical experiments indicate

that its runtime is sensitive to the choice of model parameters.

• The greedy method is the fastest method and the residual hedging error of its solution is only slightly

higher than the hedging error of the Leaps-and-Bounds solution. Moreover, the performance of the

greedy method is stable with respect to parameter choice.

• The LASSO methods seems to be severely affected by the bad condition of 𝐶 . This is not surprising,

as it has been remarked, for instance, in Bühlmann & Van De Geer (2011, section 2.6) that the

LASSO method has problems with highly correlated data.

Summing up, we can recommend the greedy method as fast, reliable, and easy to implement. The

Leaps-and-Bounds method is useful as an efficient way to compute an exact benchmark solution.

We cannot recommend LASSO, as it cannot deal well with the bad condition of 𝐶 .3 Interestingly,

this observations are contrary to the usual wisdom in variable selection for regression problems,

where greedy forward selection often has unstable performance and LASSO yields superior results

(cf. Bühlmann & Van De Geer, 2011, chapter 2). We attribute these findings to the highly correlated

nature of the matrix 𝐶 , which is untypical in regression scenarios, but a natural feature of our hedging

problem.
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5.2 Analysis of the hedging error
We return to Figure 1 to analyze the hedging error resulting from the sparse variance-optimal semistatic

hedging problem (18) for different effective portfolio sizes 𝑑. We consider the benchmark solution

returned by the Leaps-and-Bounds method with short-sale constraints. First, we note that dynamic

hedging in the underlying 𝑆, without using any static positions in puts and calls (𝑑 = 0), results in a

relative hedging error of 59.7%. This error is already reduced to 5.7% by just adding three supplemen-

tary assets (𝑑 = 3) and can be further reduced to 3.4% by selecting six supplementary assets (𝑑 = 6).
Finally, the error levels off to 1.6% when the full range (𝑑 = 21) of puts and calls between 𝐾min = 50
and 𝐾max = 150 is used. Further substantial reductions of the hedging error can only be achieved by

extending the range of available strikes; adding more options within the current range has only negli-

gible effects.

The sharp decrease of the hedging error between 𝑑 = 0 and 𝑑 = 3 affirms the basic premise of sparse
semistatic hedging: That selecting only a small number of supplementary assets already leads to a sig-

nificant reduction of the hedging error. On the other hand, the poor performance of the LASSO solution

shows that a suboptimal choice of supplementary assets does not result in a satisfactory reduction of

the hedging error. In other words, it is important that the sparse subportfolios are chosen optimally,

and not arbitrarily.

5.3 Composition of the hedging portfolios
We now turn to the composition of the static hedging portfolio, i.e., the vector 𝑣 ∈ ℝ𝑛 with the con-

straint ‖𝑣‖0 ≤ 𝑑, that is returned by the solution methods for the sparse semistatic hedging prob-

lem (18). Recall that the element 𝑣𝑖 is the nominal size of the position in the supplementary asset

𝐻𝑖, with negative sign indicating a short position. In our setting, the elements of 𝑣 can simply be

indexed by the strike 𝐾 of the corresponding put/call. The optimal portfolios returned by the different

solution methods, along with their dependency on effective portfolio size 𝑑 are shown in Figure 2. We

make the following observations:

• With the exception of the put 𝐾 = 55 only long positions are observed;

• Positions in OTM puts (𝐾 < 100) are larger than in OTM calls (𝐾 > 100), in line with Neuberger’s

replicating portfolio (16);

• The general pattern (going from effective portfolio size 𝑑 = 1 to 21) for all methods can be described

as follows: Start with an (approximately) ATM option. Proceed by selecting both OTM puts and calls,

going outwards as 𝑑 increases and putting more weight on OTM puts, until the limit 𝐾min = 50 is

reached. Continue by adding OTM calls and by filling up the gaps from earlier stages.

We suspect that the rare short positions are numerical artifacts, rather than belonging to the true opti-

mal solution of (18). Indeed, their effect on the hedging error is minuscule, and we hence recommend

to use a priori short-sale constraints, in the case of hedging a variance swap.

Figure 2 gives a good overview of the portfolio composition, but it is difficult to assess the precise

size of the individual positions 𝑣𝑖. For this reason, we provide in Figure 3 an additional plot of the port-

folio weights 𝑣 indexed by strike 𝐾 for the optimal portfolios of effective sizes 𝑑 = 3, 6, 12 in doubly

logarithmic coordinates. Note that Neuberger’s replicating portfolio (16) puts an infinitesimal weight

of 𝑣(𝐾)𝑑𝐾 = 1
𝐾2 𝑑𝐾 on an option with strike 𝐾 . In doubly logarithmic coordinates, this becomes

log 𝑣(𝐾) = −2 log𝐾,
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F I G U R E 2 Composition of optimal hedging portfolios in dependency on effective portfolio size. Long positions

are shown in red and short positions in blue; color saturation corresponds to position size 𝑣(𝐾). Different subplots

correspond to different solution methods [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 3 Portfolio weights 𝑣𝐾 in the optimal hedging portfolios of effective size 𝑑 = 3 (black crosses), 𝑑 = 6
(green circles), and 𝑑 = 12 (red x’s) in doubly logarithmic coordinates [Color figure can be viewed at

wileyonlinelibrary.com]

F I G U R E 4 Relative hedging error attainable with a portfolio of effective size 𝑑 = 3 (black crosses), 𝑑 = 6 (green

circles) and 𝑑 = 12 (red x’s) in relation to the leverage parameter 𝜌. Also shown are the graphs of 𝑓 (𝜌) = 𝑐𝑑

√
1 − 𝜌2

(blue dashes) with 𝑐𝑑 chosen to fit the red and blue graphs [Color figure can be viewed at wileyonlinelibrary.com]

i.e., the portfolio weights should form a line of downward slope −2. Figure 3 shows reasonable agree-

ment with this asymptotic result, even for effective portfolio size as small as 𝑑 = 3. For 𝑑 = 12 numer-

ical errors from the bad condition of the matrix 𝐶 seem to accumulate and could explain the unruly

shape of the graph.

5.4 The role of correlation
Finally, we turn to the role of the correlation parameter 𝜌, which is interesting for several reasons: First,

the value of 𝜌 does not affect the theoretical price of the variance swap. Second, 𝜌 also does not affect

the infinitesimally optimal strategy (16). Finally, 𝜌 allows to tune the degree of market incompleteness,
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as the Heston model becomes a complete market model in the boundary cases 𝜌 = ±1. Despite of the

first two points, it turns out that 𝜌 has a significant effect on the attainable hedging error and the

composition of the optimal portfolio in the sparse semistatic hedging problem. This influence can

already be suspected from the leading factor 1 − 𝜌2 appearing in Theorem 4.2, which propagates to

the (squared) hedging error itself, see also Remark 4.3. Indeed, as Figure 4 shows, the dependency of

the relative heading error on 𝜌 is very close to a “semi-circle law” 𝑓 (𝜌) = 𝑐𝑑

√
1 − 𝜌2, with different

constants 𝑐𝑑 for different effective portfolio sizes 𝑑.

6 CONCLUSIONS AND OUTLOOK

In this paper, we have introduced a general framework for semistatic and sparse variance-optimal hedg-

ing. We have also demonstrated the numerical feasibility of our approach in the concrete example of

hedging a variance-swap in the Heston model. In future work, we think it would be interesting to

examine the degree of model-dependency of these results, by implementing the same approach for

other models with known Fourier transform, e.g., the 3∕2 model of Carr and Sun (2007) or the recent

rough Heston model of El Euch and Rosenbaum (2019). Even in stochastic volatility models without

an explicit Fourier transform, a combination of PDE and Monte Carlo techniques should in principle

allow to compute the quantities 𝐴, 𝐵, and 𝐶 in Theorem 2.3 and hence to determine optimal semistatic

hedging strategies.

Finally, we identify two other directions, in which we see potential for relevant extensions of our

results: In the setup of Section 2 we have assumed that all supplementary assets (𝐻𝑖) as well as the

hedging target 𝐻0 mature at the same time. In practice, also assets with maturity mismatch can be

useful for hedging. For example, a variance swap with fixed maturity could be hedged—not perfectly,

but variance optimally—by a portfolio of European options with shorter, larger, or even mixed matu-

rities. Moreover, because the supplementary assets (𝐻𝑖) are typically less liquid than the underlying,

it seems reasonable to include a bid–ask spread for these assets. Such bid–ask spreads should only

lead to additional linear inequality constraints to the outer problem in (6). As a quadratic optimization

problem with linear constraints, the hedging problem should remain numerically feasible, even under

bid–ask spreads.
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ENDNOTES
1 These connections to linear regression should not come as a surprise: It has been noted already in Föllmer and Schweizer

(1988) that variance-optimal hedging in discrete time is equivalent to a sequential linear regression problem.

2 We remark that conditions for the perfect recovery of solutions of (18) by solving (19) can be given within the theoretical

framework of compressive sensing, see, for instance, Foucart and Rauhut (2013).

3 It should be said, in all fairness, that the R-function lars also provides the option “stepwise” instead of “lasso”
which effectively corresponds to the greedy method.
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APPENDIX A: THE PROOF OF THEOREM 4.2
We show Theorem 4.2 with the help of two lemmas.

Lemma A.1. The set 𝑇 (from (30)) and the function 𝜓𝑡(𝑢,𝑤) (from (31)) have the following
properties:

(a) The sets 𝑇 are open and convex.
(b) If (𝑢,𝑤) ∈ 𝑆(𝑇 ), then (𝑢, 𝜓𝑇−𝑡(𝑢,𝑤)) ∈ 𝑆(𝑡).
(c) The functions 𝜙𝑡(𝑢,𝑤) and 𝜓𝑡(𝑢,𝑤) are analytic on 𝑆(𝑡).
(d) If (𝑎, 𝑏) ∈ 𝑇 , then (𝑎, 𝑏′) ∈ 𝑇 for all 𝑏′ ≤ 𝑏.
(e) Re𝜓𝑡(𝑢,𝑤) ≤ 𝜓𝑡(Re 𝑢,Re𝑤) for all (𝑢,𝑤) ∈ 𝑆(𝑡)

Proof. Properties (a), (b), and (c) are shown in Filipović and Mayerhofer (2009). For (d), note that

𝑉𝑇 ≥ 0 implies that

𝔼
[
exp

(
𝑎𝑋𝑇 + 𝑏′𝑉𝑇

)] ≤ 𝔼
[
exp

(
𝑎𝑋𝑇 + 𝑏𝑉𝑇

)]
for all 𝑏′ ≤ 𝑏. For (e), note that Jensen’s inequality implies

exp
(
Re𝜙𝑇 (𝑢,𝑤) + Re𝜓𝑇 (𝑢,𝑤)𝑉0 + Re 𝑢𝑋0

)
= |||𝔼[exp (𝑢𝑋𝑇 +𝑤𝑉𝑇

)]||| ≤
≤ 𝔼[| exp (𝑢𝑋𝑇 +𝑤𝑉𝑇 )|] = exp

(
𝜙𝑇 (Re 𝑢,Re𝑤) + 𝜓𝑇 (Re 𝑢,Re𝑤)𝑉0 + Re 𝑢𝑋0

)
.

As 𝑉0 can be chosen arbitrarily large, (e) follows. □
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Lemma A.2. Let (𝑋, 𝑉 ) be given by the Heston model (28) and assume that (𝑢,𝑤) ∈ (𝐷𝑡). Then,

𝔼
[
𝑒𝑢𝑋𝑡+𝑤𝑉𝑡𝑉𝑡

]
=
{
𝜕𝑤𝜙𝑡(𝑢,𝑤) + 𝑉0𝜕𝑤𝜙𝑡(𝑢,𝑤)

}
𝑒𝑋0ℎ(𝑢, 𝑡, 𝑉0).

Proof. Fix (𝑎, 𝑏) ∈ 𝐷𝑡 and consider (𝑢,𝑤) ∈ (𝐷𝑡) of the form (𝑢 = 𝑎 + 𝔦 𝑦,𝑤 = 𝑏 + 𝔦 𝑧). By assump-

tion 𝐾 = 𝔼[𝑒𝑎𝑋𝑡+𝑏𝑉𝑡 ] exists and is a number in (0,∞). Define a probability measure 𝕄 on (Ω,𝑡)

by
d𝕄
dℚ |𝑡 = exp(𝑎𝑋𝑡 + 𝑏𝑉𝑡)∕𝐾 , i.e., by exponential tilting of ℚ. Clearly, the characteristic function of

(𝑋𝑡, 𝑉𝑡) under 𝕄 is given by

𝔼𝕄[𝑒𝑖𝑦𝑋𝑡+𝑖𝑧𝑉𝑡
]
= 𝔼ℚ[𝑒𝑢𝑋𝑡+𝑤𝑉𝑡

]
= exp

(
𝜙𝑡(𝑢,𝑤) + 𝑉0𝜓𝑡(𝑡, 𝑢, 𝑤) + 𝑢𝑋0

)
.

Due to the analyticity properties of 𝜙𝑡(𝑢,𝑤) and 𝜓𝑡(𝑢,𝑤), cf. Lemma A.1(c), all partial derivatives

of the left-hand side with respect to (𝑦, 𝑧) exist. Standard results on differentiability of characteristic

functions (cf. Lukacs, 1960, section 2.3)) yield that

𝔼𝕄[𝑒𝑖𝑦𝑋𝑡+𝑖𝑧𝑉𝑡𝑉𝑡
]
= −𝑖 d

d𝑧
𝔼𝕄[𝑒𝑖𝑦𝑋𝑡+𝑖𝑧𝑉𝑡

]
= d

d𝑤
exp

(
𝜙𝑡(𝑢,𝑤) + 𝑉0𝜓𝑡(𝑢,𝑤) + 𝑢𝑋0

)
.

Transforming the left hand side back to ℚ yields the desired result. □

Proof of Theorem 4.2. First, we determine the relevant quantities of Proposition 4.1 in case of the

Heston model. Using (29) and (28) we obtain

ℎ(𝑢, 𝑇 − 𝑡, 𝑉𝑡) = exp
(
𝜙𝑇−𝑡(𝑢, 0) + 𝑉𝑡𝜓𝑇−𝑡(𝑢, 0)

)
, 𝜕𝑣ℎ(𝑢, 𝑇 − 𝑡, 𝑉𝑡) = 𝜓𝑇−𝑡(𝑢)ℎ(𝑢, 𝑇 − 𝑡, 𝑉𝑡),

𝜕𝑣𝛾(𝑇 − 𝑡, 𝑉𝑡) =
1
𝜆

(
1 − 𝑒−𝜆(𝑇−𝑡)

)
, 𝑑𝑄 = 𝜎2(1 − 𝜌2)𝑉𝑡 𝑑𝑡.

Therefore, by Proposition 4.1,

d = 𝜎2(1 − 𝜌2)
𝜆2

(
1 − 𝑒−𝜆(𝑇−𝑡)

)2
𝑉𝑡 𝑑𝑡,

d(𝑢) = 𝜎2(1 − 𝜌2)
𝜆

(
1 − 𝑒−𝜆(𝑇−𝑡)

)
𝜓𝑇−𝑡(𝑢)𝐻𝑡(𝑢)𝑉𝑡 𝑑𝑡,

d(𝑢1, 𝑢2) = 𝜎2(1 − 𝜌2)𝜓𝑇−𝑡(𝑢1)𝜓𝑇−𝑡(𝑢2)𝐻𝑡(𝑢1)𝐻𝑡(𝑢2)𝑉𝑡 𝑑𝑡.

If the expectations in (33) are finite, then an application of Theorem 4.1 yields the desired representa-

tions of 𝐴,𝐵, 𝐶 . Thus, it remains to show integrability and to evaluate the expectations in (33).

First, (33a) is easily obtained from the Heston SDE (28). To show (33b) we use Lemma A.1

and A.2. Let 𝑢 = 𝑥 + 𝑖𝑧 be element of some strip (𝑅𝑗) and note that the integrability condition on 𝑋𝑇

implies (𝑥, 0) ∈ 𝑇 . From Lemma A.1(b) we conclude that (𝑥, 𝜓𝑇−𝑡(𝑥, 0)) ∈ 𝑡. Now Re𝜓𝑇−𝑡(𝑢, 0) ≤
𝜓𝑇−𝑡(0, 𝑥), together with Lemma A.1(d) shows that also (Re 𝑢,Re𝜓𝑇−𝑡(0, 𝑢)) ∈ 𝑡, which is equiva-

lent to (𝑢, 𝜓𝑇−𝑡(𝑢, 0)) ∈ 𝑆(𝑡). Applying Lemma A.2 with 𝑤 = 𝜓𝑇−𝑡(𝑢, 0) yields (33b).

For (33c) we can use a similar argument: Write 𝑢1 = 𝑥1 + 𝑖𝑧1 and 𝑢2 = 𝑥2 + 𝑖𝑧2. The integrabil-

ity condition on 𝑋𝑇 implies that (2𝑥1, 0) and (2𝑥2, 0) are in 𝑇 . From Lemma A.1(b) we conclude

that (2𝑥1, 𝜓𝑇−𝑡(2𝑥1, 0)) ∈ 𝑡, and similarly for 𝑥2. Convexity of 𝑡, see Lemma A.1(a), shows that

(𝑥1 + 𝑥2,
1
2𝑞𝑇−𝑡(2𝑥1, 2𝑥2)) ∈ 𝑇 . Now convexity of 𝜓𝑇−𝑡 (and hence of 𝑞𝑇−𝑡), together with

Lemma A.1(d) yields that also (𝑥1 + 𝑥2, 𝑞𝑇−𝑡(𝑥1, 𝑥2)) ∈ 𝑡. To pass to complex arguments, note that

Lemma A.1(e) implies that also (𝑢1 + 𝑢2, 𝑞𝑇−𝑡(𝑢1, 𝑢2)) ∈ 𝑆(𝑇 ). Hence, we may apply Lemma A.2

with 𝑢 = 𝑢1 + 𝑢2 and 𝑤 = 𝑞𝑇−𝑡(𝑢1, 𝑢2), which yields (33c). □


