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ORIGINAL ARTICLE

ROBUST ESTIMATION OF STATIONARY CONTINUOUS-TIME ARMA
MODELS VIA INDIRECT INFERENCE

VICKY FASEN-HARTMANNa* AND SEBASTIAN KIMMIGb

a Institute of Stochastics, Karlsruhe, Germany
b Württembergische Versicherung AG, Stuttgart, Germany

In this article, we present a robust estimator for the parameters of a stationary, but not necessarily Gaussian, continuous-time
ARMA(p, q) (CARMA(p, q)) process that is sampled equidistantly. Therefore, we propose an indirect estimation procedure
that first estimates the parameters of the auxiliary AR(r) representation (r ≥ 2p − 1) of the sampled CARMA process using
a generalized M- (GM-)estimator. Since the map which maps the parameters of the auxiliary AR(r) representation to the
parameters of the CARMA process is not given explicitly, a separate simulation part is necessary where the parameters of the
AR(r) representation are estimated from simulated CARMA processes. Then, the parameters which take the minimum distance
between the estimated AR parameters and the simulated AR parameters give an estimator for the CARMA parameters. First,
we show that under some standard assumptions the GM-estimator for the AR(r) parameters is consistent and asymptotically
normally distributed. Then, we prove that the indirect estimator is also consistent and asymptotically normally distributed when
the asymptotically normally distributed LS-estimator is used in the simulation part. The indirect estimator satisfies several
important robustness properties such as weak resistance, 𝜋dn

-robustness and it has a bounded influence functional. The practical
applicability of our method is illustrated in a small simulation study with replacement outliers.
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Keywords: AR process; CARMA process; indirect estimator; influence functional; GM-estimator; LS-estimator; outlier;
resistance; robustness.
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1. INTRODUCTION

The article presents a robust estimator for the parameters of a discretely observed stationary continuous-time
ARMA (CARMA) process. A weak ARMA(p, q) process in discrete-time is a weakly stationary solution of the
stochastic difference equation

𝜙(B)Xm = 𝜃(B)Zm, m ∈ ℤ, (1)

where B denotes the backward shift operator (i.e., BXm = Xm−1),

𝜙(z) = 1 − 𝜙1z − · · · − 𝜙pzp and 𝜃(z) = 1 + 𝜃1z + · · · + 𝜃qzq

are the autoregressive and the moving average polynomials respectively, with𝜙1,… , 𝜙p, 𝜃1,… , 𝜃q ∈ ℝ,𝜙p, 𝜃q ≠ 0
and (Zm)m∈ℤ a weak white noise, that is, (Zm)m∈ℤ is an uncorrelated sequence with constant mean and constant vari-
ance. If (Zm)m∈ℤ is even an i.i.d. sequence then we call (Xm)m∈ℤ a strong ARMA process. A natural continuous-time
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ROBUST ESTIMATION OF CARMA MODELS 621

analog of this difference equation with i.i.d. noise (Zm)m∈ℤ is the formal pth order stochastic differential equation

a(D)Yt = c(D)DLt, t ∈ ℝ, (2)

where D denotes the differential operator with respect to t,

a(z) = zp + a1zp−1 + · · · + ap and c(z) = c0zq + c1zq−1 + · · · + cq

are the autoregressive and the moving average polynomials respectively, with p > q, and a1, … , ap, c0, … , cq ∈
ℝ, ap, c0 ≠ 0. The process (Lt)t∈ℝ is a Lévy process, that is, a stochastic process with L0 = 0 almost surely,
independent and stationary increments and almost surely càdlàg sample paths. However, this is not the formal
definition of a CARMA(p, q) process because a Lévy process is not differentiable. The idea is more that the differ-
ential operator on the autoregressive side acts like an integration operator on the moving average side. The precise
definition of a CARMA process is given later. A rigorous foundation for CARMA(p, 0) processes is provided in
Bergstrom (1983, 1984) and for CARMA(p, q) processes in Brockwell (2001). A Lévy driven CARMA process
can be defined via a controller canonical state space representation. Necessary and sufficient conditions for the
existence of strictly stationary CARMA processes are given in Brockwell and Lindner (2009). From Brockwell
and Lindner (2009) (see as well Thornton and Chambers, 2017) it is also well known that a discretely sampled
stationary CARMA process (Ymh)m∈ℤ (h > 0 fixed) admits a weak ARMA representation, but unfortunately this is
in general for Lévy driven models not a strong ARMA representation. For an overview and a comprehensive list
of references on CARMA processes we refer to Brockwell (2014) and Chambers et al. (2018).

In many situations it is more appropriate to specify a model in continuous time rather than in discrete time.
In recent years the interest in these models has increased with the availability of high-frequency data in finance
and turbulence but as well by irregularly spaced data, missing observations or situations when estimation and
inference at various frequencies are to be carried out. It is not surprising that stationary CARMA processes are
applied in many areas as, for example, signal processing and control (cf. Garnier and Wang, 2008; Larsson et
al., 2006), high-frequency financial econometrics (cf. Todorov, 2009) and financial mathematics (cf. Benth et al.,
2014a, 2014b). The first attempts for maximum-likelihood estimation of Gaussian stationary and non-stationary
MCAR(p) models are going back (Harvey and Stock, 1985a, 1985b, 1989) and were further explored in the
well-known paper of Zadrozny (1988). Zadrozny (1988) investigates continuous-time Brownian motion driven
ARMAX models and allows stocks and flows at different frequencies, and higher-order integration. There exist
a few papers dealing with the asymptotic properties of parameter estimators of discretely sampled stationary
CARMA models as Schlemm and Stelzer (2012) and Brockwell et al. (2011) and for non-stationary CARMA
models (Fasen-Hartmann and Scholz, 2019). The papers have in common that they use a quasi maximum likeli-
hood estimator (QMLE). However, it is well known that a QMLE is sensitive to outliers and irregularities in the
data. Hence, we are looking for an alternative robust approach.

In statistics the most fundamental question when considering robustness of an estimator is how the estimator
behaves when the data does not satisfy the model assumptions (cf. Huber and Ronchetti, 2009; Maronna et al.,
2006; Olive, 2017). In the case of small deviations from the model assumptions a robust estimator should give
estimations not too far away from the original model. The most common and best understood robustness property
is distributional robustness where the shape of the true underlying distribution deviates slightly from the assumed
model. The amount of measures for robustness is huge, for example, qualitative robustness, quantitative robustness,
optimal robustness, efficiency robustness and the breakdown point, to mention only a few. In contrast to the case
of i.i.d. random variables, in the case of time series, there exist several types of possible contamination of the data
which makes it more difficult to characterize robustness. In particular, for AR processes it is well-known that the
GM-estimator (cf. Boente et al., 1987; Künsch, 1984; Martin, 1980) and the RA-estimator (cf. Ben et al., 1999)
satisfy different robustness properties in contrast to M- or LS-estimators which are sensitive to the presence of
additive outliers (cf. Denby and Martin, 1979). However, for general ARMA models the GM-estimator and the
RA-estimator are again sensitive to outliers and hence, non-robust (cf. Bustos and Yohai, 1986). Muler et al. (2009)
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622 V. FASEN AND S. KIMMIG

develop a robust estimation procedure for ARMA models by calculating the residuals of the ARMA models with
the help of BIP-ARMA models. For their result it is essential to have a strong ARMA model. Unfortunately the
results cannot easily be extended to weak ARMA models which we have in our context.

In this article, we use the indirect inference method originally proposed by Smith (1993) for nonlinear dynamic
economic models. That paper was extended by Gallant and Tauchen (1996) and Gouriéroux et al. (1993) (see also
the overview in Gouriéroux and Monfort, 1997) for models with intractable likelihood functions and moments.
If the likelihood function and moments are intractable maximum likelihood estimation and generalized methods
of moments are infeasible. The authors applied the indirect inference method to macroeconomics, microeco-
nomics, finance, and auction models; see as well Monfort (1996) and Phillips and Yu (2009) for applications to
continuous-time models, Gouriéroux et al. (2000) and Kyriacou et al. (2017) for applications to time series mod-
els, and Monfardini (1998) for applications to stochastic volatility models. In addition indirect inference is used
for bias reduction in finite samples as, for example, in Gouriéroux et al. (2000), Gouriéroux et al. (2010), Yu
(2011), Kyriacou et al. (2017), and do Rêgo Sousa et al. (2019). An alternative approach for bias correction is
given in Wang et al. (2011) for univariate and multivariate diffusion models. There the discretization bias is set-up
to have the opposite sign to the estimation bias. For estimators of the mean revision parameter based on the Euler
approximation and the trapezoidal approximation for discretization, the authors calculate the bias and relate it to
the estimation bias and discretization bias. Our motivation for the indirect inference method is robust estimation
(cf. de Luna and Genton, 2000, 2001; Kyriacou et al., 2017).

The core idea of the indirect estimation method is to avoid estimating the parameters of interest directly and
instead fit an auxiliary model to the data, estimate the parameters of this auxiliary model, and then use this estimates
with simulated data to construct an estimator for the original parameter of interest (see de Luna and Genton, 2001
for a schematic overview over the indirect estimation method). de Luna and Genton (2000, 2001) recognized that
it is possible to construct robust estimators via this approach, even for model classes where direct robust estimation
is difficult. The reason is that it is sufficient if the parameters of the auxiliary model are estimated by a robust
estimation method. Therefore, de Luna and Genton (2001) present an indirect estimation procedure for strong
ARMA processes (without detailed assumptions and rigorous proofs). They fit an AR(r) process to the ARMA
model and estimate the parameters of the AR(r) process with a GM-estimator. We present a similar approach in
our article for the estimation of the CARMA parameters. Since the discretely sampled stationary CARMA process
admits a weak ARMA representation instead of a strong ARMA representation several proofs have to be added
and identifiability issues have to be taken into account.

The article is structured as follows. In Section 2, we first present our parametric family of stationary CARMA
processes and our model assumptions. Furthermore, we motivate that for any r ≥ 2p − 1 any stationary CARMA
process has an AR(r) representation. Then, in Section 3, we introduce the indirect estimation procedure and give
sufficient criteria for indirect estimators to be consistent and asymptotically normally distributed independent
of the model; we have to assume at least consistent and asymptotically normally distributed estimators in the
estimation part and in the simulation part of the indirect estimation method. Since the auxiliary AR(r) parameters
of the sampled CARMA process are estimated by a GM-estimator we give an introduction into GM-estimators
in Section 4 and derive consistency and asymptotic normality of this estimator in our setup. Moreover, we see
that the GM-estimator is still asymptotically normally distributed for CARMA processes with outliers as additive
outliers and replacement outliers. Our conclusions extend the results of Bustos (1982). Finally, in Section 5, we
are able to show that the indirect estimator for the parameters of the discretely observed stationary CARMA
process is consistent and asymptotically normally distributed using in the estimation part a GM-estimator and in
the simulation part a LS-estimator. Several robustness properties of this estimator are derived as well as qualitative
robustness and a bounded influence functional. After all, an illustrative simulation study, in Section 6, shows the
practical applicability of our indirect estimator and its robustness properties. Furthermore, we compare the indirect
estimator with the non-robust QMLE. Conclusions are given in Section 7. The article ends with the proofs of the
results in Section A.

Notation. We use as norms the Euclidean norm ‖⋅‖ in ℝd and its operator norm ‖⋅‖ in ℝm×d which is sub-
multiplicative. For a matrix A ∈ ℝm×d we denote by AT its transpose. For a matrix function f (𝜗) in ℝm×d
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ROBUST ESTIMATION OF CARMA MODELS 623

with 𝜗 ∈ ℝs the gradient with respect to the parameter vector 𝜗 is ∇𝜗f (𝜗) = 𝜕vec(f (𝜗))
𝜕𝜗T

∈ ℝdm×s and similarly

∇2
𝜗
f (𝜗) = 𝜕vec(∇𝜗f (𝜗))

𝜕𝜗T
∈ ℝdms×s. Finally, we write


−→ for weak convergence and

ℙ
→ for convergence in probability.

In general C denotes a constant which may change from line to line.

2. PRELIMINARIES
2.1. The CARMA Model
In this article, we consider a parametric family of stationary CARMA processes. Let Θ ⊆ ℝN(Θ) (N(Θ) ∈ ℕ) be a
parameter space, p ∈ ℕ be fixed and for any 𝜗 ∈ Θ let a1(𝜗), … , ap(𝜗), c0(𝜗), … , cp−1(𝜗) ∈ ℝ, ap(𝜗) ≠ 0 and
cj(𝜗) ≠ 0 for some j ∈ {0,… , p − 1}. Furthermore, define

A𝜗 ∶=

⎛⎜⎜⎜⎜⎜⎝

0 1 0 … 0

0 0 1 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0

0 0 … 0 1
−ap(𝜗) −ap−1(𝜗) … … −a1(𝜗)

⎞⎟⎟⎟⎟⎟⎠
∈ ℝp×p,

q(𝜗) = inf{j ∈ {0,… , p − 1} ∶ cl(𝜗) = 0 ∀ l > j} with sup ∅ ∶= p − 1,

c𝜗 ∶= (cq(𝜗)(𝜗), cq(𝜗)−1(𝜗), … , c0(𝜗), 0,… , 0)T ∈ ℝp.

The CARMA process (Yt(𝜗))t∈ℝ is then defined via the controller canonical state space representation: let (Xt(𝜗))t∈ℝ
be a strictly stationary solution to the stochastic differential equation

dXt(𝜗) = A𝜗Xt(𝜗) dt + ep dLt, t ∈ ℝ, (3a)

where ep denotes the pth unit vector in ℝp. Then the process

Yt(𝜗) ∶= cT
𝜗
Xt(𝜗), t ∈ ℝ, (3b)

is said to be a (stationary) CARMA process of order (p, q(𝜗)). Rewriting (3) line by line (Yt(𝜗))t∈ℝ can be interpreted
as solution of the differential equation (2); see Brockwell (2001) and Marquardt and Stelzer (2007). This means
that in our parametric family of CARMA processes the order of the autoregressive polynomial is fixed to p but the
order of the moving average polynomial q(𝜗) may change. In addition, we investigate only stationary CARMA
processes.

Furthermore, we have the discrete-time observations Yh,… ,Ynh of the CARMA process (Yt)t∈ℝ = (Yt(𝜗0))t∈ℝ
with fixed grid distance h > 0. Hence, the true model parameter is 𝜗0. The aim of this article is to receive
from the observations Yh,… ,Ynh an estimator for 𝜗0. Throughout the article we will assume that the following
Assumption A holds.

Assumption A.

(A.1) The parameter space Θ is a compact subset of ℝN(Θ).
(A.2) The true parameter 𝜗0 is an element of the interior of Θ.
(A.3) 𝔼[L1] = 0, 0 < 𝔼L2

1 = 𝜎2
L < ∞ and there exists a 𝛿 > 0 such that 𝔼|L1|4+𝛿 <∞.

(A.4) The eigenvalues of A𝜗 have strictly negative real parts.
(A.5) For all 𝜗 ∈ Θ the zeros of c𝜗(z) = c0(𝜗)zq(𝜗) + c1(𝜗)zq(𝜗)−1 + · · · + cq(𝜗) are different from the eigenvalues

of A𝜗.

J. Time Ser. Anal. 41: 620–651 (2020) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
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624 V. FASEN AND S. KIMMIG

(A.6) For any 𝜗, 𝜗′ ∈ Θ we have (c𝜗,A𝜗) ≠ (c𝜗′ ,A𝜗′ ).
(A.7) For all 𝜗 ∈ Θ the spectrum of A𝜗 is a subset of {z ∈ ℂ ∶ − 𝜋

h
< Im(z) < 𝜋

h
} where Im(z) denotes the

imaginary part of z.
(A.8) The maps 𝜗 → A𝜗 and 𝜗 → c𝜗 are three times continuous differentiable.

Remark 2.1.

(i) (A.1) and (A.2) are standard assumptions in point estimation theory.
(ii) (A.4) guarantees that there exists a stationary solution of the state process (3a) and hence, a stationary

CARMA process (Yt(𝜗))t∈ℝ (see Marquardt and Stelzer, 2007). For this reason we can and will assume
throughout the article that (Yt(𝜗))t∈ℝ is stationary. The assumption of a stationary CARMA process (Yt(𝜗))t∈ℝ
is essential for the indirect estimation approach of this article.

(iii) A consequence of (A.4), (A.8), the compactness of Θ and the fact that the eigenvalues of a matrix are continu-
ous functions of its entries (cf. Bernstein (2009, Fact 10.11.2)) is sup𝜗∈Θ max{|𝜆| ∶ 𝜆 is eigenvalue of eA𝜗} <
1 and hence, sup𝜗∈Θ ‖eA𝜗u‖ ≤ Ce−𝜌u for some C, 𝜌 > 0.

(iv) Due to (A.5) the state space representation (3) of the CARMA process is minimal (cf. Bernstein (2009,
Proposition 12.9.3) and Hannan and Deistler (2012, Theorem 2.3.3)).

(v) A consequence of (A.5) and (A.6) is that the family of stationary CARMA processes (Yt(𝜗))t∈ℝ is identifiable
from their spectral densities and in combination with (A.7) that the same is true for the discrete-time process
(Ymh(𝜗))m∈ℤ (cf. Schlemm and Stelzer (2012, Theorem 3.13)).

(vi) The CARMA process has to be sampled sufficiently finely to ensure that (A.7) holds so that the parameters
can be identified from the discrete data.

In the following we denote the autocovariance function of the stationary CARMA process (Yt(𝜗))t∈ℝ as (𝛾𝜗(t))t∈ℝ
which has by Schlemm and Stelzer (2012, Proposition 3.1) the form

𝛾𝜗(t) = Cov(Ys+t(𝜗),Ys(𝜗)) = cT
𝜗
eA𝜗tΣ𝜗c𝜗, t ≥ 0, (4)

with Σ𝜗 = 𝜎2
L ∫ ∞

0 eA𝜗uepeT
p eA𝜗udu. Due to Assumption A the autocovariance function is three times continuous

differentiable as well.

2.2. The AR(r) Representation of a Stationary CARMA Process

First, we define the auxiliary AR(r) representation of the sampled CARMA process (Ymh(𝜗))m∈ℤ.

Proposition 2.2. For every 𝜗 ∈ Θ and every r ≥ 2p − 1, there exists a unique

𝜋(𝜗) ∶= (𝜋1(𝜗),… , 𝜋r(𝜗), 𝜎(𝜗)) ∈ ℝr × [0,∞)

such that

Um(𝜗) ∶= Ymh(𝜗) −
r∑

k=1

𝜋k(𝜗)Y(m−k)h(𝜗) (5)

is stationary with 𝔼[U1(𝜗)] = 0, Var(U1(𝜗)) = 𝜎2(𝜗) and

𝔼
[
Um(𝜗)Y(m−k)h(𝜗)

]
= 0 for k = 1,… , r. (6)

We call 𝜋(𝜗) the auxiliary parameter of the AR(r) representation of (Ymh(𝜗))m∈ℤ.

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 41: 620–651 (2020)
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ROBUST ESTIMATION OF CARMA MODELS 625

Remark 2.3. Um(𝜗) can be interpreted as the error of the best linear predictor of Y𝜗(mh) in terms of
Y(m−1)h(𝜗),… ,Y(m−r)h(𝜗). Per construction, however, the sequence (Um(𝜗))m∈ℤ is not an uncorrelated sequence,
Um(𝜗) is only uncorrelated with Y(m−1)h(𝜗),… ,Y(m−r)h(𝜗).

Definition 2.4. LetΠ ⊆ ℝr×[0,∞) be the parameter space containing all possible parameter vectors of stationary
AR(r) processes. The map 𝜋 ∶ Θ → Π with 𝜗 → 𝜋(𝜗) and 𝜋(𝜗) as given in Proposition 2.2 is called the link
function or binding function.

Lemma 2.5. Let r ≥ 2p − 1. Then, 𝜋(𝜗) is injective and three times continuously differentiable.

Finally, due to Lemma 2.5 we suppose throughout the article:

Assumption B. Let r ≥ 2p − 1.

3. INDIRECT ESTIMATION

For fixed r, denote by 𝜋n an estimator of 𝜋(𝜗0) that is calculated from the observations n = (Yh,… ,Ynh). If
we were able to analytically invert the link function 𝜋 and calculate 𝜋−1(𝜋n), then 𝜋−1(𝜋n) would be an estima-
tor for 𝜗0 = 𝜋−1(𝜋(𝜗0)). However, this is not possible in general since no analytic representation of 𝜋−1 exists.
To overcome this problem, we perform a second estimation, which is based on simulations, and constitutes the
other building block of indirect estimation. We fix a number s ∈ ℕ and simulate a sample path of length sn of
a Lévy process (LS

t )t∈ℝ with 𝔼LS
1 = 0 and 𝔼(LS

1)
2 = 𝜎2

L. Then, for a fixed parameter 𝜗 ∈ Θ we generate a sam-
ple path of the associated CARMA process (YS

t (𝜗))t∈ℝ using the simulated path (LS
t )t∈ℝ. This gives us a vector of

‘pseudo-observations’  sn
S (𝜗) = (YS

h (𝜗),… ,YS
snh(𝜗)) of length sn. From this observation  sn

S (𝜗) we estimate again
𝜋(𝜗) by an estimator 𝜋S

sn(𝜗). The idea is now to choose that value of 𝜗 as estimator for 𝜗0 which minimizes a
suitable distance between 𝜋n and 𝜋S

n (𝜗). The formal definition is as follows.

Definition 3.1. Let 𝜋n be an estimator for 𝜋(𝜗0) calculated from the data n, let 𝜋S
sn(𝜗) be an estimator for 𝜋(𝜗)

calculated from the pseudo-observations  sn
S (𝜗) = (YS

h (𝜗),… ,YS
𝜗
(snh)) and let Ω ∈ ℝN(Θ)×N(Θ) be a symmetric

positive definite weighting matrix. The function Ind ∶ Θ → [0,∞) is defined as

Ind(𝜗,n) ∶= [𝜋n − 𝜋S
sn(𝜗)]

TΩ[𝜋n − 𝜋S
sn(𝜗)].

Then, the indirect estimator for 𝜗0 is

𝜗Ind
n = argmin

𝜗∈Θ
Ind(𝜗,n).

We are able to present general conditions under which this indirect estimator is consistent and asymptotically
normally distributed.

Theorem 3.2.

(a) Suppose that the following assumptions are satisfied:

(C.1) 𝜋n

ℙ
→ 𝜋(𝜗0) as n → ∞.

(C.2) sup𝜗∈Θ ‖𝜋S
n (𝜗) − 𝜋(𝜗)‖ ℙ

→ 0 as n → ∞.

Define the map

𝒬Ind ∶ Θ → [0,∞) as 𝜗 → [𝜋(𝜗) − 𝜋(𝜗0)]TΩ[𝜋(𝜗) − 𝜋(𝜗0)]. (7)
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Then

sup
𝜗∈Θ

|Ind(𝜗,n) − 𝒬Ind(𝜗)| ℙ
→ 0 and 𝜗Ind

n

ℙ
→ 𝜗0.

If we replace in (C.1) and (C.2) convergence in probability by almost sure convergence then we can replace in
the statement convergence in probability by almost sure convergence as well.

(b) Assume additionally to (C.1) and (C.2):

(C.3)
√

n(𝜋S
n (𝜗) − 𝜋(𝜗))


−→  (0,ΞS(𝜗)) as n → ∞ for any 𝜗 ∈ Θ.

(C.4)
√

n(𝜋n − 𝜋(𝜗0))

−→  (0,ΞD(𝜗0)) as n → ∞.

(C.5) For any sequence (𝜗n)n∈ℕ with 𝜗n

ℙ
→ 𝜗0 as n → ∞ the asymptotic behaviors

∇𝜗𝜋
S
n (𝜗n)

ℙ
→ ∇𝜗𝜋(𝜗0),

∇2
𝜗
𝜋S

n (𝜗n) = OP(1),

hold as n → ∞ and ∇𝜗𝜋(𝜗0) has full column rank N(Θ).

Then, as n → ∞, √
n(𝜗Ind

n − 𝜗0)

−→  (0,ΞInd(𝜗0)),

where
ΞInd(𝜗0) = Ind(𝜗0)−1Ind(𝜗0)Ind(𝜗0)−1

with

Ind(𝜗0) = [∇𝜗𝜋(𝜗0)]TΩ[∇𝜗𝜋(𝜗0)] and

Ind(𝜗0) = [∇𝜗𝜋(𝜗0)]TΩ
[
ΞD(𝜗0) +

1
s
ΞS(𝜗0)

]
Ω[∇𝜗𝜋(𝜗0)].

Gouriéroux et al. (1993) develop for a dynamic model as well the consistency and the asymptotic normality
of the indirect estimator but under different assumptions mainly based on Ind(𝜗,n) (see as well Smith, 1993).
These results are again summarized in Gouriéroux and Monfort (1997). In the context of indirect estimation of
ARMA models, de Luna and Genton (2001, p. 22) mention the asymptotic normality of their indirect estimator but
without stating any regularity conditions and only referring to Gouriéroux and Monfort (1997, Proposition 4.2).

Remark 3.3.

(a) The asymptotic covariance matrix can be written as

ΞInd(𝜗0) = (𝜗0)
(
ΞD(𝜗0) +

1
s
ΞS(𝜗0)

)(𝜗0)T ,

where (𝜗0) = [∇𝜗𝜋(𝜗0)TΩ∇𝜗𝜋(𝜗0)]−1[∇𝜗𝜋(𝜗0)]TΩ. This is the analog form of de Luna and Genton (2001,
eq. (4.4)).

(b) Note that the asymptotic results hold for any r ≥ 2p − 1. But increasing the auxiliary AR order does not
necessarily yield better results. On the other hand, increasing s increases the efficiency. For s → ∞ we receive

ΞInd(𝜗0) → (𝜗0)ΞD(𝜗0)(𝜗0)T . The best efficiency is received for Ω = [ΞD(𝜗0)]−1 in which case ΞInd(𝜗0)
s→∞
→[

∇𝜗𝜋(𝜗0)TΞD(𝜗0)−1∇𝜗𝜋(𝜗0)
]−1

.
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Remark 3.4. A fundamental assumption for Proposition 2.2 is (A.4) resulting in the existence of stationary
CARMA processes. In particular, in the case of integrated CARMA processes (Yt(𝜗))t∈ℝ, where A𝜗 has eigenvalue
0, the result of Proposition 2.2 does not hold in general. For this reason the indirect estimation approach of this
article cannot be extended to integrated CARMA processes which are non-stationary. Even for integrated CARMA
processes it is well known that estimators for the parameter determining the integration have a n convergence
instead of a

√
n convergence (cf. Chambers and McCrorie, 2007; Fasen-Hartmann and Scholz, 2019; Chambers

et al., 2018).

Remark 3.5. The discretely observed stationary CARMA(p, q(𝜗)) process (Ymh(𝜗))m∈ℤ admits a representation
as a stationary ARMA(p, p − 1) process with weak white noise of the form

𝜙(B)Ymh(𝜗) = 𝜃(B)𝜖m(𝜗), (8)

where 𝜙(z) =
∏p

i=1(1 − eh𝜆i z) (the 𝜆i being the eigenvalues of A𝜗), 𝜃(z) is a monic, Schur-stable polynomial and
(𝜀m(𝜗))m∈ℤ is a weak white noise (see Brockwell and Lindner (2009, Lemma 2.1)), that is, (Ymh(𝜗))m∈ℤ is a weak
ARMA(p, p − 1) process. Such an exact discrete-time ARMA representation for multivariate CARMA processes
was generalized in Thornton and Chambers (2017, Theorem 1) to possible non-stationary multivariate CARMA
processes. Thus, it is as well possible to do an indirect estimation procedure by estimating the parameters of
the discrete-time ARMA(p, p − 1) representation, for example, using maximum-likelihood estimation, instead of
estimating the parameters of the auxiliary AR(r) model. Then the map 𝜋 is replaced by the map 𝜋1 which maps the
parameters of the CARMA process to the coefficients of the weak ARMA(p, p − 1) representation of its sampled
version (8). Using 𝜋1(𝜗) instead of 𝜋(𝜗) in Theorem 3.2, Theorem 3.2 can be adapted under the same assumptions
giving asymptotic normality of the indirect estimator based on the discrete-time ARMA representation of the
CARMA process. In particular, it is as well possible to derive an estimation procedure for non-stationary CARMA
processes. However, until now there does not exist robust estimators for the parameters of weak ARMA processes
such that this approach does not give robust estimators for the parameters of the stationary CARMA process,
which is the topic of this article.

4. ESTIMATING THE AUXILIARY AR(r) PARAMETERS OF A CARMA PROCESS WITH OUTLIERS

To apply the indirect estimator to a discretely sampled stationary CARMA process we need strongly consistent
and asymptotically normally distributed estimators for the parameters of the auxiliary AR(r) representation. We
will study generalized M- (GM-) estimators. The GM-estimator will be applied to a stationary CARMA process
afflicted by outliers because we want to study some robustness properties of our estimator as well. Outliers can be
thought as typical observations that do not arise because of the model structure but due to some external influence,
for example, measurement errors. Therefore, a whole sample of observations which contains outliers does not come
from the true model anymore but it is still close to it as long as the total number of outliers is not overwhelmingly
large.

Definition 4.1. Let g ∶ [0, 1] → [0, 1] be a function that satisfies g(𝛾) − 𝛾 = o(𝛾) for 𝛾 → 0. Let (Vm)m∈ℤ be a
stochastic process taking only the values 0 and 1 with

ℙ(Vm = 1) = g(𝛾)

and let (Zm)m∈ℤ be a real-valued stochastic process. The disturbed process (Y𝛾
mh(𝜗))m∈ℤ is defined as

Y𝛾
mh(𝜗) = (1 − Vm)Ymh(𝜗) + VmZm. (9)

The disturbed process (Y𝛾
mh(𝜗))m∈ℤ is in general not a sampled CARMA process anymore.
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Remark 4.2.

(a) The interpretation of this model is that at each point m ∈ ℤ an outlier is observed with probability g(𝛾) while
the true value Ymh(𝜗) is observed with probability 1 − g(𝛾). The model has the advantage that one can obtain
both additive and replacement outliers by choosing the processes (Zm)m∈ℤ and (Vm)m∈ℤ adequately. Specifically,
to model replacement outliers, one assumes that (Zm)m∈ℤ, (Vm)m∈ℤ, and (Ymh(𝜗))m∈ℤ are jointly independent.
Then, if the realization of Vm is equal to 1, the value Ymh(𝜗) will be replaced by the realization of Zm justifying
the use of the name replacement outliers. On the other hand, modeling additive outliers can be achieved by
taking Zm = Ymh(𝜗) + Wm for some process (Wm)m∈ℤ and assuming that (Ymh(𝜗))m∈ℤ is independent from
(Vm)m∈ℤ. Then we have Y𝛾

mh(𝜗) = Ymh(𝜗) + VmWm such that the realization of Wm is added to the realization of
Ymh(𝜗) if Vm is 1.

(b) Another advantage of this general outlier model is that one can easily model the temporal structure of outliers.
On the one hand, if (Vm)m∈ℤ is chosen as an i.i.d. sequence with ℙ(Vm = 1) = 𝛾 , then outliers typically appear
isolated, that is, between two outliers there is usually a period of time where no outliers are present. On the
other hand, one can also model patchy outliers by letting (Bm)m∈ℤ be an i.i.d. process of Bernoulli random
variables with success probability 𝜖 and setting Vm = max(Bm−l,… ,Bm) for a fixed l ∈ ℕ. Then as 𝜖 → 0,

ℙ(Vm = 1) = 1 − (1 − 𝜖)l = l𝜖 + o(𝜖),

which results in 𝛾 = l𝜖. For 𝜖 sufficiently small, outliers then appear in a block of size l.

Recall the following notion:

Definition 4.3. A stationary stochastic process Y = (Yt)t∈I with I = ℝ or I = ℤ is called strongly (or 𝛼-)
mixing if

𝛼l ∶= sup
{|ℙ(A ∩ B) − ℙ(A)ℙ(B)| ∶ A ∈  0

−∞, B ∈ ∞
l

} l→∞
→ 0

where  0
−∞ = 𝜎(Yt ∶ t ≤ 0) and ∞

l = 𝜎(Yt ∶ t ≥ l). If 𝛼l ≤ C𝛼l for some constants C > 0 and 0 < 𝛼 < 1 we call
Y = (Yt)t∈I exponentially strongly mixing.

Assumption D.

(D.1) The processes (Vm)m∈ℤ and (Zm)m∈ℤ are strictly stationary with 𝔼|V1| <∞ and 𝔼|Z1| < ∞.
(D.2) Either we have the replacement model where the processes (Ymh(𝜗))m∈ℤ, (Vm)m∈ℤ, and (Zm)m∈ℤ are jointly

independent, and (Vm)m∈ℤ and (Zm)m∈ℤ are exponentially strongly mixing, that is, 𝛼V (m) ≤ C𝜌m and
𝛼Z(m) ≤ C𝜌m for some C > 0, 𝜌 ∈ (0, 1) and any m ∈ ℕ. Or we have the additive model with
Zm = Ymh(𝜗) + Wm where the processes (Ymh(𝜗))m∈ℤ, (Vm)m∈ℤ and (Wm)m∈ℤ are jointly independent, and
(Vm)m∈ℤ and (Wm)m∈ℤ are exponentially strongly mixing.

(D.3) For all a ∈ ℝ, 𝜋 ∈ ℝr with |a| + ‖𝜋‖ > 0:

ℙ(aY𝛾
(r+1)h(𝜗) + 𝜋1Y𝛾

rh(𝜗) + · · · + 𝜋rY
𝛾
h (𝜗) = 0) = 0.

We largely follow the ideas of Bustos (1982) for the GM-estimation of AR(r) parameters, however our model
and our assumptions are slightly different. Assumption D corresponds to Bustos (1982, Assumption (M2), (M4),
(M5)). The main difference is that the sampled stationary CARMA process (Ymh)m∈ℤ is in Bustos (1982) an
infinite-order moving average process whose noise is Φ-mixing which is in general not satisfied for a sampled sta-
tionary CARMA process. However, we already know from Marquardt and Stelzer (2007, Proposition 3.34) that
a stationary CARMA process is exponentially strongly mixing which is weaker than Φ-mixing. Therefore, we
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assume that (Vm)m∈ℤ, (Zm)m∈ℤ, and (Wm)m∈ℤ are exponentially strongly mixing instead of Φ-mixing as in Bustos
(1982).

In the following we define GM-estimators. Let two functions𝜙∶ℝr×ℝ → ℝ and 𝜒∶ℝ → ℝ be given. Moreover,
assume that we have observations n,𝛾 (𝜗) = (Y𝛾

h (𝜗),Y
𝛾
2h(𝜗),… ,Y𝛾

nh(𝜗)) from the disturbed process in (9). The
parameter

𝜋GM(𝜗𝛾 ) = (𝜋GM
1 (𝜗𝛾 ),… , 𝜋GM

r (𝜗𝛾 ), 𝜎GM(𝜗𝛾 ))

is defined as the solution of the equations

𝔼

[
𝜙

((
Y𝛾

h (𝜗)
⋮

Y𝛾
rh(𝜗)

)
,

Y𝛾
(r+1)h(𝜗) − 𝜋1Y𝛾

rh(𝜗) − · · · − 𝜋rY
𝛾
h (𝜗)

𝜎

)(
Y𝛾

h (𝜗)
⋮

Y𝛾
rh(𝜗)

)]
= 0, (10a)

𝔼
⎡⎢⎢⎣𝜒
⎛⎜⎜⎝
(

Y𝛾
(r+1)h(𝜗) − 𝜋1Y𝛾

rh(𝜗) − · · · − 𝜋rY
𝛾
h (𝜗)

𝜎

)2⎞⎟⎟⎠
⎤⎥⎥⎦ = 0 (10b)

for (𝜋1,… , 𝜋r, 𝜎) ∈ ℝr×(0,∞). The idea is again that these are the parameters of the auxiliary AR representation of
(Y𝛾

mh(𝜗))m∈ℤ. Note that 𝜋GM(𝜗𝛾 ) depends on the processes (Vm)m∈ℤ and (Zm)m∈ℤ as well. We choose not to indicate
this in the notation to make the exposition more readable. For the uncontaminated process (Ymh(𝜗))m∈ℤ we also
write 𝜋GM(𝜗) instead of 𝜋GM(𝜗0). Now, the GM-estimator 𝜋GM

n (𝜗𝛾 ) = (𝜋GM
n,1 (𝜗𝛾 ),… , 𝜋GM

n,r (𝜗𝛾 ), 𝜎GM
n (𝜗𝛾 )) based on

𝜙 and 𝜒 is defined to satisfy

1
n − r

n−r∑
k=1

𝜙
⎛⎜⎜⎝
⎛⎜⎜⎝

Y𝛾
kh(𝜗)
⋮

Y𝛾
(k+r−1)h(𝜗)

⎞⎟⎟⎠ ,
Y𝛾
(k+r)h(𝜗) − 𝜋

GM
n,1 (𝜗𝛾 )Y𝛾

(k+r−1)h(𝜗) − · · · − 𝜋GM
n,r (𝜗𝛾 )Y𝛾

kh(𝜗)

𝜎GM
n (𝜗𝛾 )

⎞⎟⎟⎠
⎛⎜⎜⎝

Y𝛾
kh(𝜗)
⋮

Y𝛾
(k+r−1)h(𝜗)

⎞⎟⎟⎠ = 0, (11a)

1
n − r

n−r∑
k=1

𝜒
⎛⎜⎜⎝
(

Y𝛾
(k+r)h(𝜗

𝛾 ) − 𝜋GM
n,1 (𝜗𝛾 )Y𝛾

(k+r−1)h(𝜗) − · · · − 𝜋GM
n,r (𝜗𝛾 )Y𝛾

kh(𝜗)

𝜎GM
n (𝜗𝛾 )

)2⎞⎟⎟⎠ = 0. (11b)

Throughout the article we assume that there exists a solution of (11) although this is not always the case in practice.

Example 4.4.

(a) There are two main classes of GM-estimators, the so-called Mallows estimators and the Hampel–Krasker–
Welsch estimators. More information on them can be found in Bustos (1982), Denby and Martin (1979),
Martin (1980), and Martin and Yohai (1986). In the literature, this kind of estimators sometimes appear under
the name BIF (for bounded influence) estimators. The class of Mallows estimators are defined as 𝜙(y, u) =
w(y)𝜓(u), where w is a strictly positive weight function and 𝜓 is a suitably chosen robustifying function. The
Hampel–Krasker–Welsch estimators are of the form

𝜙(y, u) =
𝜓(w(y)u)

w(y)
,

where w is a weight function and 𝜓 is again a suitably chosen bounded function.
(b) Typical choices for 𝜓 are the Huber 𝜓k-functions (cf. Maronna et al. (2006, eq. (2.28))). Those functions

are defined as 𝜓k(u) = sign(u)min{|u|, k} for a constant k > 0. A possibility for w is, for example, w(y) =
𝜓k(|y|)∕|y| for a Huber function𝜓k. Another choice for𝜓 is the so-called Tukey bisquare (or biweight) function
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which is given by

𝜓(u) = u

(
1 − u2

k2

)2

𝟙{|u|≤k},

where k is a tuning constant.
(c) For the function 𝜒 , a possibility is 𝜒(x2) = 𝜓2(x) −𝔼Z[𝜓2(Z)] with the same 𝜓 function as in the definition of

𝜙. The random variable Z is suitably distributed.

To develop an asymptotic theory and to obtain a robust estimator it is necessary to impose assumptions on 𝜙
and 𝜒 analogous to Bustos (1982, (E1)–(E6)) which we will do next:

Assumption E. Suppose 𝜙 ∶ ℝr ×ℝ → ℝ and 𝜒 ∶ ℝ → ℝ satisfy the following assumptions:

(E.1) For each y ∈ ℝr, the map u → 𝜙(y, u) is odd, uniformly continuous and 𝜙(y, u) ≥ 0 for u ≥ 0.
(E.2) (y, u) → 𝜙(y, u)y is bounded and there exists a c > 0 such that

|𝜙(y, u)y − 𝜙(z, u)z| ≤ c‖y − z‖ for all u ∈ ℝ.

(E.3) The map u → 𝜙(y,u)
u

is non-increasing for y ∈ ℝr and there exists a u0 ∈ ℝ such that 𝜙(y,u0)
u0

> 0.

(E.4) 𝜙(y, u) is differentiable with respect to u and the map u → 𝜕𝜙(y,u)
𝜕u

is continuous, while (y, u) → 𝜕𝜙(y,u)
𝜕u

y is
bounded.

(E.5) 𝔼

[
sup
u∈ℝ

{
u

(
𝜕
𝜕u
𝜙

((
Y𝛾

h (𝜗)
⋮

Y𝛾
rh(𝜗)

)
, u

))‖‖‖‖‖‖
(

Y𝛾
h (𝜗)
⋮

Y𝛾
rh(𝜗)

)‖‖‖‖‖‖
}]

<∞.

(E.6) 𝜒 is bounded and increasing on {x ∶ −a ≤ 𝜒(x) < b} where b = supx∈ℝ 𝜒(x) and a = −𝜒(0). Furthermore,
𝜒 is differentiable and x → x𝜒 ′(x2) is continuous and bounded. Lastly, 𝜒(u2

0) > 0.

In the remaining of this section we always assume that Assumptions D and E are satisfied.

Remark 4.5. As pointed out in Bustos (1982, p. 497) one can deduce from Maronna and Yohai (1981,
Theorem 2.1) that there exists a solution 𝜋GM(𝜗𝛾 ) ∈ ℝr × (0,∞) of Equation (10) if Assumption E holds. More-
over, there exists a compact set K ⊂ ℝr × (0,∞) with 𝜋GM(𝜗𝛾 ) ∈ K and for any 𝜋 ∈ Kc Equation (10) does not
hold (see Bustos (1982, p. 500)).

In general it is not easy to verify that 𝜋GM(𝜗𝛾 ) is unique. Additionally, one would like to have that 𝜋GM(𝜗0) =
𝜋GM(𝜗) = 𝜋(𝜗) are the parameters of the auxiliary AR(r) model in the case that the GM-estimator is applied to
realizations of an uncontaminated sampled stationary CARMA process (Ymh(𝜗))m∈ℤ. The following proposition
gives a sufficient condition.

Proposition 4.6. Suppose that Ur+1(𝜗) as defined in Equation (5) satisfies

(Ur+1(𝜗),Yrh(𝜗),… ,Yh(𝜗))

= (−Ur+1(𝜗),Yrh(𝜗),… ,Yh(𝜗)). (12)

Assume further that the function u → 𝜙(y, u) is non-decreasing and strictly increasing for |u| ≤ u0, where u0

satisfies Assumptions (E.3) and (E.6), and the function 𝜒 is chosen in such a way that

𝔼

[
𝜒

((
U1(𝜗)
𝜎(𝜗)

)2
)]

= 0. (13)
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Finally, assume that 𝛾 = 0 so that (Y𝛾
mh(𝜗))m∈ℤ = (Ymh(𝜗))m∈ℤ. Then the auxiliary parameter 𝜋(𝜗) as defined in

Proposition 2.2 is the unique solution of (10), that is, 𝜋GM(𝜗0) = 𝜋(𝜗).

Remark 4.7.

(a) Assumption (12) holds if the distribution of Ur+1(𝜗) is symmetric and Ur+1(𝜗) is independent of
(Yrh(𝜗),… ,Yh(𝜗)). This again is satisfied if (Lt)t∈ℝ is a Brownian motion.

(b) The monotonicity assumption on 𝜙 is valid, for example, for both the Mallows and Hampel–Krasker–Welsch
estimators when the function 𝜓 is chosen as a Huber 𝜓k-function with u0 = k.

(c) The assumption on 𝜒 is fulfilled, for example, if 𝜒 is chosen as in Example 4.4(c) with Z

=

U1(𝜗)∕
√
Var(U1(𝜗)). In the case that the driving Lévy process is a Brownian motion this means that Z ∼

 (0, 1).

Theorem 4.8. Suppose that there exists a unique solution 𝜋GM(𝜗𝛾 ) of (10). Then 𝜋GM
n (𝜗𝛾 )

n→∞
→ 𝜋GM(𝜗𝛾 ) ℙ-a.s.

The proof goes in the same vein as the proof of Bustos (1982, Theorem 2.1) and is therefore omitted.
Next, we would like to deduce the asymptotic normality of the GM-estimator. Let the set K be given as in

Remark 4.5 and for 𝜋 = (𝜋1,… , 𝜋r, 𝜎) ∈ K define

𝒬GM(𝜋, 𝜗𝛾 ) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝔼

[
𝜙

((
Y𝛾

h (𝜗)
⋮

Y𝛾
rh(𝜗)

)
,

Y𝛾
(r+1)h(𝜗) − 𝜋1Y𝛾

rh(𝜗) − · · · − 𝜋rY
𝛾
h (𝜗)

𝜎

)(
Y𝛾

h (𝜗)
⋮

Y𝛾
rh(𝜗)

)]

𝔼
⎡⎢⎢⎣𝜒
⎛⎜⎜⎝
(

Y𝛾
(r+1)h(𝜗) − 𝜋1Y𝛾

rh(𝜗) − · · · − 𝜋rY
𝛾
h (𝜗)

𝜎

)2⎞⎟⎟⎠
⎤⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
. (14)

For the proof of the asymptotic normality of the GM estimator we use a Taylor expansion of 𝒬GM(𝜋, 𝜗𝛾 ) at
𝜋GM(𝜗𝛾 ). With the knowledge of the asymptotic behavior 𝒬GM(𝜋GM

n (𝜗𝛾 ), 𝜗𝛾 ) and ∇𝜋𝒬GM(𝜋GM
n (𝜗𝛾 ), 𝜗𝛾 ) it is then

straightforward to derive the asymptotic behavior of the GM-estimator 𝜋GM
n (𝜗𝛾 ).

We need the following auxiliary result which is the analog of Bustos (1982, Lemma 3.1) under our different
model assumptions.

Lemma 4.9. Define the map Ψ ∶ ℝr+1 ×ℝr × (0,∞) → ℝr+1 as

Ψ(y, 𝜋) =

⎛⎜⎜⎜⎜⎝
𝜙

((
y1
⋮
yr

)
,

yr+1 − 𝜋1yr − · · · − 𝜋ry1

𝜎

)(
y1
⋮
yr

)
𝜒

((yr+1 − 𝜋1yr − · · · − 𝜋ry1

𝜎

)2
)

⎞⎟⎟⎟⎟⎠
.

Furthermore, define the stochastic process Ψ(𝜗𝛾 ) = (Ψk(𝜗𝛾 ))k∈ℕ as Ψk(𝜗𝛾 ) = Ψ(Y𝛾
kh(𝜗),… ,Y𝛾

(k+r+1)h(𝜗), 𝜋
GM(𝜗𝛾 )).

Then

1√
n − r

n−r∑
k=1

Ψk(𝜗𝛾 )

→  (0,GM(𝜗𝛾 )),

where the (i, j)th component of GM(𝜗𝛾 ) is

[GM(𝜗𝛾 )]ij = 𝔼
[
Ψ1,i(𝜗𝛾 )Ψ1,j(𝜗𝛾 )

]
+ 2

∞∑
k=1

𝔼
[
Ψ1,i(𝜗𝛾 )Ψ1+k,j(𝜗𝛾 )

]
(15)
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and Ψk,i(𝜗𝛾 ) denotes the ith component of Ψk(𝜗𝛾 ), i = 1,… , r + 1. Especially, each [GM(𝜗𝛾 )]ij is finite for i, j ∈
{1,… , r + 1}.

First, we derive the asymptotic behavior of the gradient ∇𝜋𝒬GM(𝜋n, 𝜗
𝛾 ).

Lemma 4.10. Let 𝒬GM(𝜋, 𝜗𝛾 ) be defined as in (14). Then the gradient ∇𝜋𝒬GM(𝜋, 𝜗𝛾 ) exists. Moreover, for any

sequence (𝜋n)n∈ℕ with 𝜋n

ℙ
→ 𝜋GM(𝜗𝛾 ) as n → ∞ we have as n → ∞,

∇𝜋𝒬GM(𝜋n, 𝜗
𝛾 )

ℙ
→ ∇𝜋𝒬GM(𝜋GM(𝜗𝛾 ), 𝜗𝛾 ).

Next, we deduce the asymptotic normality of 𝒬GM(𝜋GM
n (𝜗𝛾 ), 𝜗𝛾 ).

Lemma 4.11. Let 𝒬GM(𝜋, 𝜗𝛾 ) be defined as in (14) and suppose that ∇𝜋𝒬GM(𝜋, 𝜗𝛾 ) is non-singular. Furthermore,

let GM(𝜗𝛾 ) be given as in (15) and suppose that 𝜋GM
n (𝜗𝛾 )

ℙ
→ 𝜋GM(𝜗𝛾 ) as n → ∞. Then, as n → ∞,√

n − r𝒬GM(𝜋GM
n (𝜗𝛾 ), 𝜗𝛾 )


−→  (0,GM(𝜗𝛾 )).

The following analog version of Bustos (1982, Theorem 2.2) holds in our setting which gives the asymptotic
normality of the GM-estimator.

Theorem 4.12. Let 𝒬GM(𝜋, 𝜗𝛾 ) be defined as in (14) and suppose that GM(𝜗𝛾 ) ∶= ∇𝜋𝒬GM(𝜋, 𝜗𝛾 ) is non-singular.

Furthermore, let GM(𝜗𝛾 ) be given as in (15) and suppose that 𝜋GM
n (𝜗𝛾 )

ℙ
→ 𝜋GM(𝜗𝛾 ) as n → ∞. Then, as n → ∞,√

n − r(𝜋GM
n (𝜗𝛾 ) − 𝜋GM(𝜗𝛾 ))


−→  (0,ΞGM(𝜗𝛾 )),

where

ΞGM(𝜗𝛾 ) ∶= [GM(𝜗𝛾 )]−1GM(𝜗𝛾 )[GM(𝜗𝛾 )]−1. (16)

5. THE INDIRECT ESTIMATOR FOR THE CARMA PARAMETERS

5.1. Asymptotic Normality

In Section 3 we already introduced the indirect estimator and presented in Theorem 3.2 sufficient criteria for the
indirect estimator to be consistent and asymptotically normally distributed. In the following we want to show that
these assumptions are satisfied in the setting of discretely sampled CARMA processes when we use as estimator
𝜋S

n (𝜗) in the simulation part the least-squares- (LS-) estimator 𝜋LS
n (𝜗) and for 𝜋n the GM-estimator 𝜋GM

n (𝜗0).

Definition 5.1. Based on the sample  sn
S (𝜗) = (YS

h (𝜗),… ,YS
snh(𝜗)) the LS-estimator 𝜋LS

sn (𝜗) =
(𝜋LS

sn,1(𝜗),… , 𝜋LS
sn,r(𝜗), 𝜎

LS
sn (𝜗)) of 𝜋(𝜗) minimizes

LS(𝜋, sn
S (𝜗)) ∶= 1

sn − r

sn−r∑
k=1

(
YS
(k+r)h(𝜗) − 𝜋1YS

(k+r−1)h(𝜗) − · · · − 𝜋rY
S
kh(𝜗)

)2
(17)

in Π′ ∶= 𝜋(Θ) and 𝜎LS
sn (𝜗) is defined as

𝜎2
LS,sn(𝜗) =

1
sn − r

sn−r∑
k=1

(
YS
(k+r)h(𝜗) − 𝜋

LS
sn,1(𝜗)Y

S
(k+r−1)h(𝜗) − · · · − 𝜋LS

sn,r(𝜗)Y
S
kh(𝜗)

)2
.
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Remark 5.2. The quasi ML-function for the auxiliary AR(r) parameters of the discretely sampled CARMA
process is defined as

QMLE(𝜋, sn
S (𝜗)) = 1

sn − r

sn−r∑
k=1

(
log(𝜎2) +

(YS
(k+r)h(𝜗) − 𝜋1YS

(k+r−1)h(𝜗) − · · · − 𝜋rY
S
kh(𝜗))

2

𝜎2

)

and the quasi ML-estimator as 𝜋QMLE
sn (𝜗) = argmin𝜋∈Π′ QMLE(𝜋, sn

S (𝜗)). It is well known that for the estimation
of AR(r) parameters the ML-estimator and the LS-estimator are equivalent (this can be seen by straightforward
calculations taking the derivatives of the ML-function QMLE which are proportional to the derivatives of LS).

Theorem 5.3. Let Assumption A, B, D, and E hold. Suppose that the unique solution 𝜋GM(𝜗0) of (10) for
(Ymh)m∈ℤ is 𝜋(𝜗0), that ∇𝜗𝜋(𝜗0) has full column rank N(Θ) and that GM(𝜗0) is non-singular. Further, assume that
𝔼|LS

1|2N∗
for some N∗ ∈ ℕ with 2N∗ > max(N(Θ), 4 + 𝛿). If 𝜋S

n (𝜗) = 𝜋LS
n (𝜗) and 𝜋n = 𝜋GM

n (𝜗0) then the indirect

estimator 𝜗Ind
n is weakly consistent and

√
n(𝜗Ind

n − 𝜗0)

−→  (0,ΞInd(𝜗0)),

where

ΞInd(𝜗0) = Ind(𝜗0)−1Ind(𝜗0)Ind(𝜗0)−1

with

Ind(𝜗0) = [∇𝜗𝜋(𝜗0)]TΩ[∇𝜗𝜋(𝜗0)] and

Ind(𝜗0) = [∇𝜗𝜋(𝜗0)]TΩ
[
ΞGM(𝜗0) +

1
s
ΞLS(𝜗0)

]
Ω[∇𝜗𝜋(𝜗0)],

where the matrix ΞLS(𝜗) is defined as in (16) with 𝜙(y, u) = u and 𝜒(x) = x − 1.

We have already proven that (C.1) and (C.4) of Theorem 3.2 are satisfied. To show the remaining conditions on
the LS-estimator 𝜋LS

n (𝜗) we require several auxiliary results. The remaining of this section is devoted to that.
Sufficient conditions for (C.2) and (C.5) are the weak uniform convergence of the LS-estimator and its deriva-

tives. Since the LS-estimator is defined via the sample autocovariance function we first derive the uniform weak
convergence of the sample autocovariance function and its derivatives.

Proposition 5.4. For j, l ∈ {0,… , r} define

𝛾̂𝜗,n(l, j) =
1

n − r

n−r∑
k=1

Y(k+l)h(𝜗)Y(k+j)h(𝜗).

Then for i, u ∈ {1,… ,N(Θ)} the following statements hold.

(a) sup𝜗∈Θ |𝛾̂𝜗,n(l, j) − 𝛾𝜗(l − j)| ℙ
→ 0.

(b) sup𝜗∈Θ
||| 𝜕𝜕𝜗i

𝛾̂𝜗,n(l, j) −
𝜕

𝜕𝜗i
𝛾𝜗(l − j)||| ℙ

→ 0.

(c) sup𝜗∈Θ
||| 𝜕2

𝜕𝜗i𝜕𝜗u
𝛾̂𝜗,n(l, j) −

𝜕

𝜕𝜗i𝜕𝜗u
𝛾𝜗(l − j)||| ℙ

→ 0.

Then the proof of (C.2) follows from Proposition 5.5.
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Proposition 5.5.

(a) sup𝜗∈Θ |𝜋LS
n (𝜗) − 𝜋(𝜗)| ℙ

→ 0.

(b) sup𝜗∈Θ |∇𝜗𝜋
LS
n (𝜗) − ∇𝜗𝜋(𝜗)| ℙ

→ 0.

(c) sup𝜗∈Θ |∇2
𝜗
𝜋LS

n (𝜗) − ∇2
𝜗
𝜋(𝜗)| ℙ

→ 0.

A direct consequence from this is the next corollary.

Corollary 5.6. Let 𝜗n be a sequence in Θ with 𝜗n

ℙ
→ 𝜗0. Then the following statements hold:

(a) 𝜋LS
n (𝜗n)

ℙ
→ 𝜋(𝜗0).

(b) ∇𝜗𝜋
LS
n (𝜗n)

ℙ
→ ∇𝜗𝜋(𝜗0).

(c) ∇2
𝜗
𝜋LS

n (𝜗n)
ℙ
→ ∇2

𝜗
𝜋(𝜗0).

This corollary already gives (C.5).
Finally, (C.3) is a consequence of Proposition 5.7 which gives the asymptotic normality of the LS-estimator. In

principle this follows from Theorem 4.12 by interpreting the least squares estimator as a particular GM-estimator
with 𝜙(y, u) = u and 𝜒(x) = x − 1.

Proposition 5.7. For any 𝜗 ∈ Θ the LS-estimator 𝜋LS
n (𝜗) is strongly consistent and as n → ∞,

√
n(𝜋LS

n (𝜗) − 𝜋(𝜗))

−→  (

0,ΞLS(𝜗)
)
.

5.2. Robustness Properties

Roughly speaking an estimator is robust when small deviations from the nominal model have not much effect on
the estimator. This property is known as qualitative robustness or resistance of the estimator and was originally
introduced in Hampel (1971) for i.i.d. sequences. The same article also gives a slight extension to the case of data
that are generated by permutation-invariant distributions, introducing the term 𝜋-robustness (Hampel (1971, p.
1893)). Of course, time series do not satisfy the assumption of permutation invariance in general. Therefore, there
have been various attempts to generalize the concept of qualitative robustness to the time series setting. Boente et
al. (1987, Theorem 3.1) prove that their 𝜋dn

-robustness for time series is equivalent to Hampel’s 𝜋-robustness for
i.i.d. random variables and therefore, extends Hampel’s 𝜋-robustness. They go ahead and define the term resistance
as well. The concept of resistance has the intuitive appeal of making a statement about changes in the values of the
estimator when comparing two deterministic samples. In contrast, 𝜋dn

-robustness is only a statement concerning
the distribution of the estimator, which is in general not easily tractable. The indirect estimator is weakly resistant
and 𝜋dn

-robust. The explicit definitions and the derivation of these properties for our indirect estimator are given
in Section B.1 in the Supporting information.

Intuitively speaking, the influence functional measures the change in the asymptotic bias of an estimator caused
by an infinitesimal amount of contamination in the data. This measure of robustness was originally introduced as
influence curve by Hampel (1974) for i.i.d. processes. It was later generalized to the time series context by Künsch
(1984) who explicitly studies the estimation of autoregressive processes. However, in the paper of Künsch only
estimators which depend on a finite-dimensional marginal distribution of the data-generating process and a very
specific form of contaminations are considered. To remedy this, a further generalization was then made by Martin
and Yohai (1986) who consider the influence functional and explicitly allow for the estimators to depend on the
measure of the process which makes more sense in the time series setup (cf. Martin and Yohai (1986, section 4)).
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In the sense of Martin and Yohai (1986, section 4) the indirect estimator has a bounded influence functional; see
Section B.2 in the Supporting information.

The breakdown point is (for a sample of data with fixed length n) the maximum percentage of outliers which
can be contained in the data without ‘ruining’ the estimator. In this sense, it measures how much the observed data
can deviate from the nominal model before catastrophic effects in the estimation procedure happen. However, the
formal definition depends on the model and the estimator. Maronna and Yohai (1991) and Maronna et al. (1979)
deal explicitly with the breakdown point of GM-estimators in regression models and Martin and Yohai (1985)
and Martin (1980) study it in the time series context. A very general definition of the breakdown point is given in
Genton and Lucas (2003, Definitions 1 and 2). Heuristically speaking, the fundamental idea of that definition is
that the breakdown point is the smallest amount of outlier contamination with the property that the performance
of the estimator does not get worse anymore if the contamination is increased further. As already mentioned in
Martin (1980, p. 239) (the proof is given in the unpublished paper of Martin and Jong (1977)), and later in de
Luna and Genton (2001, p. 377) and Genton and Lucas (2003, p. 89), the breakdown point of the GM-estimator
applied to estimate the parameters of an AR(r) process is 1∕(r + 1). Hence, the breakdown point of our indirect
estimator is as well 1∕(r+1) since the other building block of the indirect estimator, the estimator 𝜋S

n (𝜗) is applied
to a simulated outlier-free sample.

6. SIMULATION STUDY

We simulate CARMA processes on the interval [0, n] and choose a sampling distance of h = 1, resulting in
n observations of the discrete-time process. The simulated processes are driven either by a standard Brownian
motion or by a univariate NIG (normal inverse Gaussian) Lévy process. The increments of a NIG-Lévy process
L(t) − L(t − 1) have the density

fNIG(x;𝜇, 𝛼, 𝛽, 𝛿) =
𝛼𝛿
𝜋

exp

(
𝛿
√
𝛼2 − 𝛽2 + 𝛽x

)
K1(𝛼

√
𝛿2 + x2)√

𝛿2 + x2
, x ∈ ℝ,

𝜇 ∈ ℝ is a location parameter, 𝛼 ≥ 0 is a shape parameter, 𝛽 ∈ ℝ is a symmetry parameter, and K1 is the modified

Bessel function of the third kind with index 1. The variance of the process is then 𝜎2
L = 𝛿𝛼2∕(𝛼2 − 𝛽2)

3
2 . For the

NIG Lévy process we use the parameters 𝛼 = 3, 𝛽 = 1, 𝛿 = 2.5145, and 𝜇 = −0.8890. These parameters result in a
zero-mean Lévy process with variance approximately 1 which allows for comparison of the results to the standard
Brownian motion case. For the outlier model we choose additive outliers where the process (Vm)m∈ℤ is a sequence
of i.i.d. Bernoulli random variables with ℙ(V1 = 1) = 𝛾 . The process (Zm)m∈ℤ is Zm = 𝜉 for m ∈ ℤ where 𝜉 and 𝛾
take different values in different simulations.

The indirect estimator is defined as in Section 5. We take 𝜋n as GM-estimator 𝜋GM
n (𝜗0) using the R software. The

R software provides the prebuilt function arGM in the package robKalman for applying GM-estimators to AR
processes. This function uses a Mallows estimator as in Example 4.4(a). The weight function w(y) is the Tukey
bisquare function from Example 4.4(b) applied to ‖y‖, for the function 𝜓(u) the user can choose between the
Huber 𝜓k-function and the bisquare function. The function is implemented as an iterative least squares procedure
as described by Martin (1980, p. 231ff.). We do 6 iterations using the Huber function and then 50 iterations with
the bisquare function, which is the maximum number of iterations. The algorithm stops earlier if convergence is
achieved. In our experiments we use k = 4 for the tuning constant of the 𝜓k-function. In general, we set s = 75
to obtain the simulation-based observations  sn

S (𝜗) = (YS
h (𝜗),… ,YS

snh(𝜗)) in the simulation part of the indirect
procedure. The type of Lévy process used for the simulation part is of the same type as the Lévy process driving
the CARMA process. For the estimator 𝜋S

n (𝜗) we apply the least squares estimator and as weighting matrix Ω we
take the identity matrix for convenience reasons. In some experiments we first estimated the asymptotic covariance
matrix of the GM-estimator by the empirical covariance matrix of a suitable number of independent realizations
of 𝜋n. Setting Ω as the inverse of that estimate did not significantly affect the procedure positively or negatively
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Table I. Indirect estimation of a CARMA(1, 0) process with parameter 𝜗0 = −2 driven by a Brownian motion with n = 1000

𝜉 = 0, 𝛾 = 0 (uncontaminated) 𝜉 = 5, 𝛾 = 0.01 𝜉 = 10, 𝛾 = 0.1

Mean Bias Var Mean Bias Var Mean Bias Var

IIE r = 1 −2.0463 −0.0463 0.0791 −2.0481 −0.0481 0.0811 −1.7611 0.2389 0.0465
IIE r = 2 −2.0446 −0.0446 0.0740 −2.0675 −0.0675 0.0789 −1.7977 0.2023 0.0558
IIE r = 3 −2.0442 −0.0442 0.0726 −2.1006 −0.1006 0.0788 −1.8096 0.1904 0.0668

Table II. Estimation results for CARMA(1, 0) processes with parameter 𝜗0 driven by a Brownian motion with n = 1000 and
r = 1

𝜉 = 0, 𝛾 = 0 (uncontaminated)

QMLE Indirect

Mean bias Var Mean bias Var

𝜗0 = −2 −2.0545 −0.0545 0.0658 −2.0463 −0.0463 0.0791
𝜗0 = −0.2 −0.2009 −0.0009 2e−04 −0.2027 −0.0027 6e−04
𝜗0 = −0.02 −0.0200 0.0000 0e+00 −0.0221 −0.0021 1e−04

𝜉 = 5, 𝛾 = 0.1

QMLE Indirect

Mean bias Var Mean bias Var

𝜗0 = −2 −2.3902 −0.3902 0.1989 −1.9730 0.0270 0.0727
𝜗0 = −0.2 −2.4616 −2.2616 0.0119 −0.1918 0.0082 0.0006
𝜗0 = −0.02 −1.8386 −1.8186 6e−04 −0.0210 −0.0010 1e−04

𝜉 = 5, 𝛾 = 0.15

QMLE Indirect

Mean bias Var Mean bias Var

𝜗0 = −2 −2.0794 −0.0794 0.2379 −2.0896 −0.0896 0.1099
𝜗0 = −0.2 −2.9602 −2.7602 0.0120 −0.1714 0.0286 0.0006
𝜗0 = −0.02 −1.9864 −1.9664 0.0240 −0.0187 0.0013 0.0001

so that the use of the convenient identity matrix seems justified. In each experiment, we calculate the indirect
estimator and, for comparison purposes, the QMLE as defined in Schlemm and Stelzer (2012). For the indirect
estimator as well for the QMLE we use 1000 independent samples and report on the average estimated value, the
bias and the empirical variance of the parameter estimates.

First, CARMA(1,0) processes with A𝜗 = 𝜗 and c𝜗 = 1 for 𝜗 ∈ (−∞, 0) are studied. These processes are of
particular interest because their discretely sampled version admits an AR(1) representation. In Table I, we estimate
contaminated and uncontaminated CARMA(1,0) processes with true parameter 𝜗0 = −2 driven by a Brownian
motion using in the indirect estimation method an auxiliary AR(r) process with r = 1, 2, 3. For all choices of r the
indirect estimator performs very well: the estimator seems to converge, the variance is quite low. Furthermore, we
get the impression that the choice of r has not a big influence on the estimation results (see as well Table D.1 in the
Supporting information for a further study). Next, in Table II, we compare the indirect estimator with r = 1 and
the QMLE for a Brownian motion driven CARMA(1, 0) process with either 𝜗0 = −2, 𝜗0 = −0.2 or 𝜗0 = −0.02.
For 𝜗0 = −0.02 the CARMA(1, 0) process is not so far away from a non-stationary process. In all cases we see
again that the QMLE and the indirect estimator work superb for uncontaminated CARMA(1,0) processes (top
of Table II). If we allow additionally outliers in the CARMA(1,0) model, the indirect estimator performs vastly
better than the QML estimator giving a much less biased estimate and lower variance. Indeed for contaminated
CARMA(1,0) models with 𝜗0 = −0.2 and 𝜗0 = −0.02 the QML estimator is far away from the true parameter
where the indirect estimator seems to converge to the true value.
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Table III. Estimation results for an uncontaminated CARMA(3, 1) process with parameter 𝜗0 = (−1,−2,−2, 0, 1) driven by a
Brownian motion with r = 5

n = 200

QMLE Indirect

Mean bias Var Mean bias Var

𝜗1 = −1 −1.0210 −0.0210 0.0101 −1.1190 −0.1190 0.1582
𝜗2 = −2 −2.0095 −0.0095 0.0183 −2.1111 −0.1111 0.4637
𝜗3 = −2 −1.9734 0.0266 0.0218 −1.9914 0.0086 0.1012
𝜗4 = 0 0.0019 0.0019 0.0076 0.0028 0.0028 0.0208
𝜗5 = 1 0.9943 −0.0057 0.0136 0.9005 −0.0995 0.0820

n = 1000

QMLE Indirect

Mean bias Var Mean bias Var

𝜗1 = −1 −1.0064 −0.0064 0.0010 −1.0116 −0.0116 0.0035
𝜗2 = −2 −1.9988 0.0012 0.0015 −1.9959 0.0041 0.0052
𝜗3 = −2 −1.9948 0.0052 0.0019 −1.9981 0.0019 0.0074
𝜗4 = 0 0.0091 0.0091 0.0006 0.0044 0.0044 0.0031
𝜗5 = 1 1.0092 0.0092 0.0005 0.9976 −0.0024 0.0037

n = 5000

QMLE Indirect

Mean bias Var Mean bias Var

𝜗1 = −1 −1.0050 −0.0050 1e−04 −1.0013 −0.0013 5e−04
𝜗2 = −2 −2.0002 −0.0002 1e−04 −1.9993 0.0007 2e−04
𝜗3 = −2 −1.9948 0.0052 1e−04 −1.9996 0.0004 6e−04
𝜗4 = 0 0.0086 0.0086 1e−04 −0.0002 −0.0002 3e−04
𝜗5 = 1 1.0085 0.0085 0e+00 1.0004 0.0004 3e−04

In a further study we investigate a CARMA(3,1) process. This especially means that the sampled process is not
a weak AR process anymore. The true parameter is 𝜗0 =

(
−1,−2,−2, 0, 1

)
and

A𝜗 =

(
0 1 0
0 0 1
𝜗1 𝜗2 𝜗3

)
∈ ℝ3×3 and c𝜗 = (𝜗1,−𝜗3𝜗4 + 𝜗5, 𝜗4).

This is the echelon canonical form for CARMA(3, 2) models as presented in Schlemm and Stelzer (2012, Theorem
4.2) which satisfies Assumption A. The echelon canonical form is widely used in the VARMA context, see, for
example, Lütkepohl and Poskitt (1996) and the textbooks of Lütkepohl (2005), or Hannan and Deistler (2012).
For this model we choose r = 5, which is also the minimum order of the auxiliary AR representation to satisfy
Assumption B. We also tried different values of r but they did not give better results (see Table D.1 in the Supporting
information).

In the first instance, we compare the QMLE and the indirect estimator for uncontaminated CARMA(3, 1) pro-
cesses in Tables III and IV respectively. In Table III the driving Lévy process is a Brownian motion where in
Table IV it is a NIG-Lévy process. For the Brownian motion driven model the QML optimization failed for
n = 200, 1000, and 5000 in 100, 74, and 20 cases respectively, where for the NIG driven model it failed in
92, 72, and 29 cases respectively. The indirect estimator never failed. The error occurs when the estimator is
not an element of Θ anymore. The results in the table are averaged over experiments in which the algorithm did
deliver a result, the failed attempts were discarded. The estimation results for the Brownian motion driven model
and the NIG driven model are very similar. For n = 200 the QMLE has in most of the cases a lower absolute
bias than the indirect estimator. But for n = 1000 and n = 5000 this changes and the absolute bias behaves
very similar for both estimators. The QMLE has in general a lower variance than the indirect estimator but it
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Table IV. Estimation results for an uncontaminated CARMA(3, 1) process with parameter 𝜗0 = (−1,−2,−2, 0, 1) driven by a
NIG Lévy process with r = 5

n = 200

QMLE Indirect

Mean bias Var Mean bias Var

𝜗1 = −1 −1.0218 −0.0218 0.0456 −1.1416 −0.1416 0.2758
𝜗2 = −2 −2.0056 −0.0056 0.0638 −2.12998 −0.12998 0.60993
𝜗3 = −2 −1.9919 0.0081 0.0319 −2.0162 −0.0162 0.1300
𝜗4 = 0 0.0033 0.0033 0.0092 −0.0008 −0.0008 0.0236
𝜗5 = 1 0.9971 −0.0029 0.0131 0.8884 −0.1116 0.0905

n = 1000

QMLE Indirect

Mean bias Var Mean bias Var

𝜗1 = −1 −1.0054 −0.0054 0.0012 −1.0240 −0.0240 0.0202
𝜗2 = −2 −2.0030 −0.0030 0.0017 −2.0090 −0.0090 0.0568
𝜗3 = −2 −1.9916 0.0084 0.0021 −1.9878 0.0122 0.0124
𝜗4 = 0 0.0053 0.0053 0.0006 −0.0025 −0.0025 0.0030
𝜗5 = 1 1.0053 0.0053 0.0006 0.9835 −0.0165 0.0057

n = 5000

QMLE Indirect

Mean bias Var Mean bias Var

𝜗1 = −1 −1.0044 −0.0044 1e−04 −1.0056 −0.0056 6e−04
𝜗2 = −2 −1.9994 0.0006 1e−04 −1.9977 0.0023 3e−04
𝜗3 = −2 −1.9962 0.0038 1e−04 −1.9971 0.0029 7e−04
𝜗4 = 0 0.0086 0.0086 1e−04 −0.0048 −0.0048 3e−04
𝜗5 = 1 1.0084 0.0084 1e−04 0.9947 −0.0053 5e−04

failed to give results in several cases. However, in general the performance of both estimators is excellent. We
obtained similar results as in Tables III and IV for different parameter values (see Table D.4 in the Supporting
information).

Furthermore, for the Brownian motion driven CARMA(3,1) process we estimate 𝜗0 for each of the following
contamination configurations in Table V (see as well Table D.2 in the Supporting information for different values
of n): 𝜉 = 5 and 𝛾 = 0.1, 𝜉 = 10 and 𝛾 = 0.1, 𝜉 = 5 and 𝛾 = 1∕6, and 𝜉 = 5 and 𝛾 = 0.25. The indirect
estimator performs quite well in the first three contamination cases with a low bias and a low variance. It is not
surprising that for 𝛾 = 1∕6 the estimation results are not as good as for 𝛾 = 0.1 because the breakdown point has
for r = 5 the upper bound 1∕6. Hence, it is apparent that for 𝛾 = 0.25 the indirect estimator has a higher bias and
variance because 𝛾 lies above the breakdown point. This is in accordance with the results of Section 5.2. However,
increasing n decreases both the bias and the variance significantly (see Table D.2 in the Supporting information).
The maximum likelihood estimator is severely biased and far from the true parameter value in all four scenarios.
Especially the inclusion of a zero component in the true parameter seems to pose a major problem since this
component is affected by the most bias. Even for 𝛾 = 0.25 the simulation results for the QMLE are worse than the
results for the indirect estimator.

7. CONCLUSION

In this article we presented an indirect estimation procedure for the parameters of a discretely observed CARMA
process by estimating the parameters of its auxiliary AR(r) representation using a GM-estimator. Since there does
not exist an explicit form of the map between the AR parameters and the CARMA parameters, an additional
simulation step to get back from the AR parameters to the CARMA parameters was necessary. Sufficient conditions
were given such that the indirect estimator is consistent and asymptotically normally distributed, on the one hand,
in a general context, but on the other hand, as well for the special case where 𝜋n = 𝜋GM

n (𝜗0) and 𝜋S
n (𝜗) = 𝜋LS

n (𝜗).
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Table V. Estimation results for a CARMA(3, 1) process with parameter 𝜗0 = (−1,−2,−2, 0, 1) driven by a Brownian motion
with n = 1000 and r = 5

𝜉 = 5, 𝛾 = 0.1

QMLE Indirect

Mean bias Var Mean bias Var

𝜗1 = −1 −0.4392 0.5608 0.0028 −1.0109 −0.0109 0.0136
𝜗2 = −2 −2.9656 −0.9656 0.0096 −2.0348 −0.0348 0.0766
𝜗3 = −2 −2.3261 −0.3261 0.1019 −1.9860 0.0140 0.0167
𝜗4 = 0 1.9142 1.9142 0.0110 −0.0195 −0.0195 0.0059
𝜗5 = 1 1.8945 0.8945 0.0008 0.9407 −0.0593 0.0186

𝜉 = 10, 𝛾 = 0.1

QMLE Indirect

Mean bias Var Mean bias Var

𝜗1 = −1 −0.0842 0.9158 0.0041 −1.0115 −0.0115 0.0161
𝜗2 = −2 −3.7754 −1.7754 2.1064 −2.0318 −0.0318 0.0418
𝜗3 = −2 −4.4277 −2.4277 63.5757 −1.9864 0.0136 0.0190
𝜗4 = 0 4.0479 4.0479 0.2430 −0.0195 −0.0195 0.0060
𝜗5 = 1 2.4057 1.4057 0.1731 0.9395 −0.0605 0.0203

𝜉 = 5, 𝛾 = 1

6

QMLE Indirect

Mean bias Var Mean bias Var

𝜗1 = −1 −0.1646 0.8354 0.0144 −0.9601 0.0399 0.0937
𝜗2 = −2 −4.3789 −2.3789 7.7940 −2.2333 −0.2333 0.5094
𝜗3 = −2 −10.7587 −8.7587 179.4913 −1.9791 0.0209 0.0745
𝜗4 = 0 2.8016 2.8016 0.2456 −0.0490 −0.0490 0.0078
𝜗5 = 1 2.2468 1.2468 0.2453 0.7249 −0.2751 0.0649

𝜉 = 5, 𝛾 = 0.25

QMLE Indirect

Mean bias Var Mean bias Var

𝜗1 = −1 −0.1009 0.8991 0.0134 −0.3893 0.6107 7.0162
𝜗2 = −2 −4.6634 −2.6634 21.3373 −3.3718 −1.3718 32.4638
𝜗3 = −2 −8.2994 −6.2994 350.5529 −4.1272 −2.1272 147.8243
𝜗4 = 0 3.0630 3.0630 0.1360 1.9057 1.9057 13.9561
𝜗5 = 1 1.8534 0.8534 0.7225 1.2545 0.2545 16.2171

Moreover, the indirect estimator satisfies different robustness properties as weakly resistant, 𝜋dn
-robustness and it

has a bounded influence functional.
Summarizing the simulation studies, the indirect estimator performs convincingly for various orders p and q of

the CARMA process, for different driving Lévy processes and for a variety of outlier configurations. Some simu-
lations show as well that the estimator works well for other sampling frequencies (see Table D.3 in the Supporting
information for h = 2 and n = 2000 where we have in total 1000 observations). For contaminated CARMA pro-
cesses the indirect estimator is robust against several kind of outliers and estimates the parameters very well with a
low variance. Whereas the QMLE is severely biased with a high variance. In contrast to the indirect estimator, the
QMLE does not give reasonable results in the presence of outliers. Therefore, in the context of outliers the indirect
estimator is preferred to the QMLE. For uncontaminated CARMA processes both the indirect estimator and the
QMLE perform excellent. For small n the QMLE is less biased with a lower variance than the indirectly estimator.
But obviously the bias in the indirect estimation procedure can be decreased by using in the estimation and in the
simulation part the same type of estimator. Then the bias from the estimation part and the simulation part are cancel-
ing out (cf. Gouriéroux et al., 2000; Gouriéroux et al., 2010). But proving the asymptotic normality of the indirect
estimator using as well in the simulation part the GM estimator is involved. Thus, the comparison of the indirect
estimator and the QMLE needs some further exploration in the context of uncontaminated CARMA processes.
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Of course, it is clear that the indirect estimator has its bounds as well for contaminated CARMA processes.
Increasing 𝛾 too far eventually causes the indirect estimator to break down because we get above the breakdown
point. The breakdown point 1∕(r + 1) is very low if r is large, which is, however, necessary if the order p of
the CARMA(p, q) process is large. A possible alternative is instead of estimating the AR(r) parameters of the
discretely observed CARMA process with the GM-estimator to estimate the weak ARMA(p, p − 1) parameters
of the discretely observed CARMA process with the BMM-estimator of Muler et al. (2009) which has the largest
possible breakdown point of 1∕2. However, a problem is that the results of Muler et al. (2009) are based on ARMA
processes with i.i.d. noise where the discretely sampled CARMA process admits only an ARMA representation
with an uncorrelated white noise. Therefore, this extension is not as obvious and topic of some future research.
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APPENDIX A. PROOFS

A.1. Proofs of Section 2

Proof of Proposition 2.2. First, we need to show that for any r ∈ ℕ the covariance matrix of (Yh(𝜗),… ,Y(r+1)h(𝜗))
is non-singular. To see this, note that the autocovariance function of (Ymh(𝜗))m∈ℤ is 𝛾𝜗(mh) = cT

𝜗
eA𝜗hmΣ𝜗c𝜗, m ∈ ℕ0

(see (4)). Since Σ𝜗 is non-singular (cf. Schlemm and Stelzer (2012, Corollary 3.9)) and c𝜗 ≠ 0p we have that
𝛾𝜗(0) > 0. Moreover, the eigenvalues of A𝜗 have strictly negative real parts by Assumption (A.4) and therefore,
𝛾𝜗(mh) → 0 as m → ∞ holds. By Brockwell and Davis (1991, Proposition 5.1.1), it follows that the covariance
matrix of (Yh(𝜗),… ,Y(r+1)h(𝜗)) is non-singular for every r ∈ ℕ. Thus, a conclusion of Brockwell and Davis (1991,
§8.1) is that there exist unique 𝜋1(𝜗),… , 𝜋r(𝜗), 𝜎2(𝜗) which solve the set of r + 1 Yule–Walker equations, namely

𝜋∗(𝜗) ∶=
⎛⎜⎜⎝
𝜋1(𝜗)
⋮

𝜋r(𝜗)

⎞⎟⎟⎠=
⎛⎜⎜⎜⎜⎝

𝛾𝜗(0) 𝛾𝜗(h) · · · 𝛾𝜗((r − 1)h)
𝛾𝜗(h) 𝛾𝜗(0) · · · 𝛾𝜗((r − 2)h)
⋮ ⋮ ⋮

𝛾𝜗((r − 1)h) 𝛾𝜗((r − 2)h) · · · 𝛾𝜗(0)

⎞⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎝
𝛾𝜗(h)
⋮

𝛾𝜗(rh)

⎞⎟⎟⎠
=∶ Γ(r−1)(𝜗)−1𝛾 (r−1)(𝜗), (A1a)

𝜎2(𝜗) = 𝛾𝜗(0) − 𝜋∗(𝜗)T𝛾 (r−1)(𝜗). (A1b)

Proof of Lemma 2.5. We make use of the fact that the discretely observed stationary CARMA(p, q(𝜗)) process
(Ymh(𝜗))m∈ℤ admits a representation as a stationary ARMA(p, p − 1) process with weak white noise as is given in
(8). Then we can decompose the map 𝜋 ∶ Θ → Π into three separate maps for which we define the following
spaces:

 ∶= {(𝜙1,… , 𝜙p, 𝜃1,… , 𝜃p−1, 𝜎) ∈ ℝ2p ∶ The coefficients define a weak ARMA(p, p − 1)

model as in (1) for which 𝜙(z) and 𝜃(z) have no common zeros} ⊆ ℝ2p,

 ∶= {𝛾 = (𝛾0,… , 𝛾r) ∈ ℝr+1 ∶ The coefficients define the autocovariances up to order
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r of a stationary stochastic process where Γ(r−1) is non-singular} ⊆ ℝr+1,

Π ∶= {(𝜋1,… , 𝜋r, 𝜎) ∈ ℝr × (0,∞) ∶ (𝜋1,… , 𝜋r) are the coefficients of a stationary

AR(r) process and 𝜎2 is the variance of the noise} ⊆ ℝr+1,

where Γ(r−1) is defined as Γ(r−1)(𝜗) in (A1a). Denote by 𝜋1 ∶ Θ →  the map which maps the parameters of
a CARMA process to the coefficients of the weak ARMA(p, p − 1) representation of its sampled version as in
(8). Denote by 𝜋2 ∶  →  the map which maps the parameters of a weak ARMA(p, p − 1) process to its
autocovariances of lags 0,… , r. Lastly, denote by 𝜋3 ∶  → Π the map which maps a vector of autocovariances
(𝛾0,… , 𝛾r) to the parameters of the auxiliary AR(r) model. Then we have that 𝜋 = 𝜋3◦𝜋2◦𝜋1. We will show that 𝜋i is
injective for i = 1, 2, 3 and receive from this the injectivity of 𝜋. The three-times continuous-differentiability of the
map 𝜋 follows from the representation (A1) and the three-times continuous-differentiability of the autocovariance
function 𝛾𝜗.

Step 1: 𝜋1 is injective.
Due to Assumption A and Schlemm and Stelzer (2012, Theorem 3.13) the family of sampled processes
{(Ymh(𝜗)m∈ℤ ∶ 𝜗 ∈ Θ)} is identifiable from their spectral densities and hence, for any 𝜗 ≠ 𝜗′ ∈ Θ the parameters
of the weak ARMA process in (8) differ.

Step 2: 𝜋2 is injective if r ≥ 2p − 1.
The reason is that by the method of Brockwell and Davis (1991, p. 93), the autocovariances of ARMA(p, p − 1)
processes are completely determined as solutions of difference equations with p boundary conditions which depend
on the coefficient vector (𝜙1,… , 𝜙p, 𝜃1,… , 𝜃p−1, 𝜎). If r ≥ 2p−1, the number of equations r is greater than or equal
to the number of variables 2p−1 which results in the injectivity of 𝜋2 (see also de Luna and Genton (2001, section
4.1)). To be more precise, let 𝜽 = (𝜙1,… , 𝜙p, 𝜃1,… , 𝜃p−1, 𝜎) ∈  and 𝜽 = (𝜙1,… , 𝜙p, 𝜃1,… , 𝜃p−1, 𝜎) ∈ .

Case 1. (𝜙1,… , 𝜙p) ≠ (𝜙1,… , 𝜙p). Define Γ(p)(𝜃) ∈ ℝ(p+1)×(p+1) similarly to Γ(p−1)(𝜗) in (A1a). Due to
Brockwell and Davis (1991, (3.3.9))

(−𝜙p … − 𝜙1 1)Γ(p)(𝜃) = (0 0 · · · 0),

(−𝜙p … − 𝜙1 1)Γ(p)(𝜃) = (0 0 · · · 0).

But since the vectors (−𝜙p … −𝜙1 1) and (−𝜙p … −𝜙1 1) are linear independent this is only possible

if Γ(p)(𝜃) ≠ Γ(p)(𝜃) which implies 𝜋2(𝜃) ≠ 𝜋2(𝜃).
Case 2. (𝜙1,… , 𝜙p) = (𝜙1,… , 𝜙p). Assume that 𝜋2(𝜃) = 𝜋2(𝜃). But then due to Brockwell and Davis (1991,

(3.3.9)), (𝛾𝜃(k))k∈ℕ0
= (𝛾𝜃(k))k∈ℕ0

and hence, 𝜃 = 𝜃.
Step 3: 𝜋3 is injective.
We can also rewrite the linear Eqs. (A1) as a linear system with (r + 1) equations and the (r + 1) unknown

variables 𝛾0,… , 𝛾r which gives the injectivity of 𝜋3.

A.2. Proofs of Section 3

Proof of Theorem 3.2.
(a) We first start by proving the consistency. With the definition of 𝒬Ind we obtain

sup
𝜗∈Θ

|Ind(𝜗,n) − 𝒬Ind(𝜗)|
= sup

𝜗∈Θ
|[𝜋n − 𝜋S

sn(𝜗)]
TΩ[𝜋n − 𝜋S

sn(𝜗)] − [𝜋(𝜗) − 𝜋(𝜗0)]TΩ[𝜋(𝜗) − 𝜋(𝜗0)]|
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≤ |𝜋T
n Ω𝜋n − 𝜋(𝜗0)TΩ𝜋(𝜗0)| + sup

𝜗∈Θ
|𝜋S

sn(𝜗)
TΩ𝜋n − 𝜋(𝜗)TΩ𝜋(𝜗0)|

+ sup
𝜗∈Θ

|𝜋T
n Ω𝜋

S
sn(𝜗) − 𝜋(𝜗0)TΩ𝜋(𝜗)| + sup

𝜗∈Θ
|𝜋S

sn(𝜗)
TΩ𝜋S

sn(𝜗) − 𝜋(𝜗)
TΩ𝜋(𝜗)|.

The four summands on the right-hand side converge in probability to zero as n → ∞. For the first one, this is a
consequence of Assumption (C.1). For the remaining three terms, the arguments are similar, so that we treat only
the second one exemplary. We have

sup
𝜗∈Θ

|𝜋S
sn(𝜗)

TΩ𝜋n − 𝜋(𝜗)TΩ𝜋(𝜗0)|
≤ sup

𝜗∈Θ
|𝜋S

sn(𝜗)
TΩ𝜋n − 𝜋(𝜗)TΩ𝜋n| + sup

𝜗∈Θ
|𝜋(𝜗)TΩ𝜋n − 𝜋(𝜗)TΩ𝜋(𝜗0)|

≤ ‖Ω‖ sup
𝜗∈Θ

‖𝜋S
sn(𝜗) − 𝜋(𝜗)‖‖𝜋n‖ + ‖Ω‖ sup

𝜗∈Θ
‖𝜋(𝜗)‖‖𝜋n − 𝜋(𝜗0)‖ ℙ

→ 0.

Here, we used the fact that sup𝜗∈Θ ‖𝜋(𝜗)‖ is finite due to the continuity of the map 𝜋 and the compactness of
Θ as well as both Assumptions (C.1) and (C.2). Therefore, the function Ind(𝜗,n) converges uniformly in 𝜗 in
probability to the limiting function 𝒬Ind(𝜗). Per construction, 𝜗Ind

n minimizes Ind(𝜗,n) and 𝒬Ind(𝜗) has a unique

minimum at 𝜗 = 𝜗0. Therefore, weak consistency of 𝜗Ind
n follows by arguing as in the proof of Schlemm and

Stelzer (2012, Theorem 2.4); although in their proof convergence in probability is replaced by almost sure con-
vergence, this doesn’t matter because we can use the subsequence criterion which says that a sequence converges
in probability iff any subsequence has a further subsequence which converges almost surely.

The proof of strong consistency goes similarly by replacing convergence in probability by almost sure
convergence.
(b) For the asymptotic normality, note that√

n(𝜋n − 𝜋S
sn(𝜗0)) =

√
n(𝜋n − 𝜋(𝜗0)) +

√
n(𝜋(𝜗0) − 𝜋S

sn(𝜗0)).

Since both estimators are independent from each other, we obtain with Assumptions (C.3) and (C.4) that

√
n(𝜋n − 𝜋S

sn(𝜗0))

−→  (

0,ΞD(𝜗0) +
1
s
ΞS(𝜗0)

)
. (A2)

Moreover,

0N(Θ) = ∇𝜗Ind(𝜗,n)||𝜗=𝜗Ind
n

= 2[∇𝜗𝜋
S
sn(𝜗

Ind
n )]TΩ[𝜋S

sn(𝜗
Ind
n ) − 𝜋n].

We now use a Taylor expansion of order 1 around the true value 𝜗0 to obtain

0N(Θ) =
√

n∇𝜗Ind(𝜗n
Ind,n)

=
√

n∇𝜗Ind(𝜗0,n) +
√

n∇2
𝜗
Ind(𝜗n,n)(𝜗Ind

n − 𝜗0)

= 2[∇𝜗𝜋
S
sn(𝜗0)]TΩ

√
n[𝜋S

sn(𝜗0) − 𝜋n] + 2
[
[(𝜋S

sn(𝜗n) − 𝜋n)TΩ]⊗ IN(Θ)

] [
𝛻2
𝜗
𝜋S

sn(𝜗n)
]√

n(𝜗Ind
n − 𝜗0)

+ 2[∇𝜗𝜋
S
sn(𝜗n)]TΩ[∇𝜗𝜋

S
sn(𝜗n)]

√
n(𝜗Ind

n − 𝜗0).

Here, 𝜗n is such that ‖𝜗n − 𝜗0‖ ≤ ‖𝜗Ind
n − 𝜗0‖ and hence, 𝜗n

ℙ
→ 𝜗0 as n → ∞. Moreover,

[∇2
𝜗
𝜋S

sn(𝜗
n
)]TΩ[𝜋S

sn(𝜗n) − 𝜋n] + [∇𝜗𝜋
S
sn(𝜗n)]TΩ[∇𝜗𝜋

S
sn(𝜗n)]

ℙ
→ [∇𝜗𝜋(𝜗0)]TΩ[∇𝜗𝜋(𝜗0)] (A3)
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due to Assumptions (C.1), (C.2) and (C.5) and the continuity of 𝜋(𝜗). Furthermore, the right-hand side is
non-singular since ∇𝜗𝜋(𝜗0) has full column rank and Ω is non-singular. Finally, we write

√
n(𝜗Ind

n − 𝜗0) =
(
[∇2

𝜗
𝜋S

sn(𝜗
n
)]TΩ[𝜋S

sn(𝜗n) − 𝜋n] + [∇𝜗𝜋
S
sn(𝜗n)]TΩ[∇𝜗𝜋

S
sn(𝜗n)]

)−1

⋅ [∇𝜗𝜋
S
sn(𝜗0)]TΩ

√
n(𝜋S

sn(𝜗0) − 𝜋n)

and use (A2), (A3), and Assumption (C.5) to obtain as n → ∞,

√
n(𝜗Ind

n − 𝜗0)

−→

(
[∇𝜗𝜋(𝜗0)]TΩ[∇𝜗𝜋(𝜗0)]

)−1 [∇𝜗𝜋(𝜗0)]TΩ ⋅ (
0,ΞD(𝜗0) +

1
s
ΞS(𝜗0)

)
.

This completes the proof.

A.3. Proofs of Section 4

Proof of Proposition 4.6. Using similar arguments as in Maronna and Yohai (1981, Lemma 2.1) (limx→0 𝜒(x) < 0,
limx→∞ 𝜒(x) = ∞, the continuity and boundedness of 𝜒 and the intermediate value theorem) we can show that for
each fixed (𝜋1,… , 𝜋r) ∈ ℝr there exists a unique solution 𝜎 of the equation

𝔼

[
𝜒

((
Y(r+1)h(𝜗) − 𝜋1Yrh(𝜗) − · · · − 𝜋rYh(𝜗)

𝜎

)2
)]

= 0.

By assumption (13), the function 𝜒 is chosen in such a way that for (𝜋1(𝜗),… , 𝜋r(𝜗)) this unique solution is 𝜎(𝜗).
Therefore, we have that 𝜋(𝜗) is a solution of (10b). Next, we show that 𝜋(𝜗) is a solution of (10a) as well. Since
the function 𝜙(y, u) is odd in u by Assumption (E.1), it holds that

𝔼

[
𝜙

((
Yh(𝜗)
⋮

Yrh(𝜗)

)
,

Ur+1(𝜗)
𝜎(𝜗)

)(
Yh(𝜗)
⋮

Yrh(𝜗)

)]
= 𝔼

[
−𝜙

((
Yh(𝜗)
⋮

Yrh(𝜗)

)
,−

Ur+1(𝜗)
𝜎(𝜗)

)(
Yh(𝜗)
⋮

Yrh(𝜗)

)]

= −𝔼

[
𝜙

((
Yh(𝜗)
⋮

Yrh(𝜗)

)
,

Ur+1(𝜗)
𝜎(𝜗)

)(
Yh(𝜗)
⋮

Yrh(𝜗)

)]
, (A4)

where the last equality follows from (12). From this equation we can conclude that

𝔼

[
𝜙

((
Yh(𝜗)
⋮

Yrh(𝜗)

)
,

Ur+1(𝜗)
𝜎(𝜗)

)(
Yh(𝜗)
⋮

Yrh(𝜗)

)]
= 0,

and therefore, 𝜋(𝜗) is a solution of Equation (10a).
Next, we show similarly to Maronna and Yohai (1981, Theorem 2.2(a)) for regression models that 𝜋(𝜗) is
the unique solution. Assume that another solution 𝜋′ = (𝜋′

1,… , 𝜋′
r, 𝜎

′) of (10) exists. But then (𝜋′
1,… , 𝜋′

r) ≠
(𝜋1,… , 𝜋r). Note that the arguments in the derivation of (A4) still hold if we replace 𝜎(𝜗) in the denominator of
the second argument of 𝜙 by 𝜎′. Thus, we obtain that

𝔼

[
𝜙

((
Yh(𝜗)
⋮

Yrh(𝜗)

)
,

Ur+1(𝜗)
𝜎′

)(
Yh(𝜗)
⋮

Yrh(𝜗)

)]
= 0,
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and therefore

𝔼

[[
𝜙

((
Yh(𝜗)
⋮

Yrh(𝜗)

)
,

Y(r+1)h(𝜗) − 𝜋′
1Yrh(𝜗) − · · · − 𝜋′

rYh(𝜗)
𝜎′

)(
Yh(𝜗)
⋮

Yrh(𝜗)

)

−𝜙

((
Yh(𝜗)
⋮

Yrh(𝜗)

)
,

Ur+1(𝜗)
𝜎′

)](
Yh(𝜗)
⋮

Yrh(𝜗)

)]
= 0. (A5)

Since ℙ((Yh(𝜗),… ,Yrh(𝜗)) = (0,… , 0)) = 0 and ℙ(Y(r+1)h(𝜗) − 𝜋′
1Yrh(𝜗) − · · · − 𝜋′

rYh(𝜗) = Ur+1(𝜗)) = 0 due to
Assumption (D.3) for 𝛾 = 0 and u → 𝜙(y, u) is strictly increasing on the interval (−u0, u0), for every y ∈ ℝr we
have that |||||Y(r+1)h(𝜗) − 𝜋′

1Yrh(𝜗) − · · · − 𝜋′
rYh(𝜗)

𝜎′

||||| ≥ u0 ℙ-a.s. (A6)

because otherwise (A5) cannot hold. Now, 𝜋′ is by assumption also a solution of (10b) and hence, we have due to
(A6) and Assumption (E.6)

0 = 𝔼

[
𝜒

((
Y(r+1)h(𝜗) − 𝜋′

1Yrh(𝜗) − · · · − 𝜋′
rYh(𝜗)

𝜎′

)2
)]

≥ 𝜒(u2
0) > 0

which is a contradiction.

Proof of Lemma 4.9. By the Cramer–Wold device, the statement of the lemma is equivalent to the assertion that
1√
n−r

xT ∑n−r
k=1 Ψk(𝜗𝛾 ) converges to a univariate normal distribution with mean 0 and variance xTGM(𝜗𝛾 )x for every

x ∈ ℝr+1. According to Ibragimov (1962, Theorem 1.7), this holds if we can show that

𝔼|xTΨk(𝜗𝛾 )|2+𝛿 <∞ (A7)

and that (xTΨk(𝜗𝛾 ))k∈ℕ is strongly mixing with mixing coefficients 𝛼xTΨ(𝜗𝛾 )(m) satisfying

∞∑
m=1

𝛼𝛿∕(2+𝛿)
xTΨ(𝜗𝛾 )(m) <∞ for some 𝛿 > 0. (A8)

The same theorem then also states that xTGM(𝜗𝛾 )x < ∞ from which we then deduce that for i, j ∈ {1,… , r + 1}
the entry [GM(𝜗𝛾 )]ij is finite and therefore, GM(𝜗𝛾 ) is well-defined.
We start to show the existence of the (2 + 𝛿)th moment of xTΨk(𝜗𝛾 ) in (A7). Therefore, note that

𝔼|xTΨk(𝜗𝛾 )|2+𝛿 ≤ C‖x‖2+𝛿
r+1∑
i=1

𝔼‖Ψk,i(𝜗𝛾 )‖2+𝛿 < ∞, (A9)

where the last inequality holds since Ψk,i(𝜗𝛾 ) is bounded by Assumptions (E.2) and (E.6).
Finally, the process (Y𝛾

mh(𝜗))m∈ℤ is strongly mixing and the mixing coefficients satisfy the above condition (A8)
for the following reason. Either we have in the case of replacement outliers that Y𝛾

mh(𝜗) = G(Vm,Zm,Ymh(𝜗)) for
some measurable function G and the three processes (Vm), (Zm) and (Ymh(𝜗)) are independent, or in the case of
additive outliers we have Y𝛾

mh(𝜗) = G(Vm,Wm,Ymh(𝜗)) for some measurable function G and the three processes
(Vm), (Wm) and (Ymh(𝜗)) are independent. Hence, by Bradley (2007, Theorem 6.6(II)), Assumption (D.2) and
Marquardt and Stelzer (2007, Proposition 3.34) we receive

𝛼Y𝛾 (𝜗)(m) ≤ 𝛼V (m) + 𝛼Z(m) + 𝛼Y(𝜗)(m) ≤ C𝜌m
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respectively, 𝛼Y𝛾 (𝜗)(m) ≤ 𝛼V (m) + 𝛼W(m) + 𝛼Y(𝜗)(m) ≤ C𝜌m for some C > 0 and 𝜌 ∈ (0, 1). Furthermore, Ψk(𝜗𝛾 )
depends only on the finitely many values Y𝛾

kh(𝜗),… ,Y𝛾
(k+r)h(𝜗) and by Bradley (2007, Remark 1.8(b)) this ensures

that 𝛼Ψ(𝜗𝛾 )(m) ≤ 𝛼Y𝛾 (𝜗)(m + r) ≤ C𝜌m. Thus, the strong mixing coefficients 𝛼xTΨ(𝜗𝛾 )(m) of xTΨ(𝜗𝛾 ) satisfy the
summability condition (A8) and the lemma is proven.

Proof of Lemma 4.10. Note, first that for i, j = 1,… , r,

sup
𝜋∈K

|||||| 𝜕𝜕𝜋i

𝜙

((
Y𝛾

h (𝜗)
⋮

Y𝛾
rh(𝜗)

)
,

Y𝛾
(r+1)h(𝜗) − 𝜋1Y𝛾

rh(𝜗) − · · · − 𝜋rY
𝛾
h (𝜗)

𝜎

)
Y𝛾

jh(𝜗)
||||||

= sup
𝜋∈K

‖‖‖‖‖‖
(
𝜕
𝜕u
𝜙
)((Y𝛾

h (𝜗)
⋮

Y𝛾
rh(𝜗)

)
,

Y𝛾
(r+1)h(𝜗) − 𝜋1Y𝛾

rh(𝜗) − · · · − 𝜋rY
𝛾
h (𝜗)

𝜎

)
Y𝛾

jh(𝜗)
‖‖‖‖‖‖
|||||
Y𝛾
(r+1−i)h(𝜗)
𝜎

|||||
≤ sup

u∈ℝ
C
‖‖‖‖‖‖
(
𝜕
𝜕u
𝜙
)((Y𝛾

h (𝜗)
⋮

Y𝛾
rh(𝜗)

)
, u

)(
Y𝛾

h (𝜗)
⋮

Y𝛾
rh(𝜗)

)‖‖‖‖‖‖
‖‖‖‖‖‖
(

Y𝛾
h (𝜗)
⋮

Y𝛾
rh(𝜗)

)‖‖‖‖‖‖ ≤ C
‖‖‖‖‖‖
(

Y𝛾
h (𝜗)
⋮

Y𝛾
rh(𝜗)

)‖‖‖‖‖‖
due to Assumption (E.4) and the boundedness of 1∕𝜎 on the compact set K. By Assumption (D.1) and (A.3) the
expectation on the right-hand side is finite. Similarly,

sup
𝜋∈K

‖‖‖‖‖‖ 𝜕𝜕𝜎𝜙
((

Y𝛾
h (𝜗)
⋮

Y𝛾
rh(𝜗)

)
,

Y𝛾
(r+1)h(𝜗) − 𝜋1Y𝛾

rh(𝜗) − · · · − 𝜋rY
𝛾
h (𝜗)

𝜎

)(
Y𝛾

h (𝜗)
⋮

Y𝛾
rh(𝜗)

)‖‖‖‖‖‖
≤ C sup

u∈ℝ

‖‖‖‖‖‖u
(
𝜕
𝜕u
𝜙
)((Y𝛾

h (𝜗)
⋮

Y𝛾
rh(𝜗)

)
, u

)(
Y𝛾

h (𝜗)
⋮

Y𝛾
rh(𝜗)

)‖‖‖‖‖‖ .
The expectation on the right-hand side is finite due to Assumption (E.5). Similar arguments,

using Assumption (E.6), also show that
||||| 𝜕𝜕𝜋i

𝜒

((
Y𝛾(r+1)h(𝜗)−𝜋1Y𝛾rh(𝜗)−···−𝜋rY𝛾h (𝜗)

𝜎

)2
)||||| for i = 1,… , r and||||| 𝜕𝜕𝜎 𝜒

((
Y𝛾(r+1)h(𝜗)−𝜋1Y𝛾rh(𝜗)−···−𝜋rY𝛾h (𝜗)

𝜎

)2
)||||| are uniformly dominated by integrable random variables. Therefore, by

Billingsley (1999, Theorem 16.8(ii)) (that is an application of dominated convergence) ∇𝜋𝒬GM(𝜋, 𝜗𝛾 ) exists on K
and the order of differentiation and expectation can be changed.

Moreover, due Assumptions (E.4), (E.6) and Billingsley (1999, Theorem 16.8(i)) the map 𝜋 → ∇𝜋𝒬GM(𝜋, 𝜗𝛾 )
is continuous.

Hence, if 𝜋n

ℙ
→ 𝜋GM(𝜗𝛾 ) ∈ K then ∇𝜋𝒬GM(𝜋n, 𝜗

𝛾 )
ℙ
→ ∇𝜋𝒬GM(𝜋GM(𝜗𝛾 ), 𝜗𝛾 ).

Proof of Lemma 4.11. We use the decomposition

√
n − p𝒬GM(𝜋GM

n (𝜗𝛾 ), 𝜗𝛾 ) = 1√
n − r

n−r∑
k=1

[
𝒬GM(𝜋GM

n (𝜗𝛾 ), 𝜗𝛾 ) + Ψk(𝜗𝛾 )
]
− 1√

n − r

n−r∑
k=1

Ψk(𝜗𝛾 ).

The first term is of order oP(1) due to Bustos (1982, Lemma 3.5) (cf. Kimmig (2016, Lemma A.5) in our setting).
The second term converges to  (0,GM(𝜗𝛾 )) due to Lemma 4.9. Hence, we receive the statement.
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Proof of Theorem 4.12. Due to (10) we have 𝒬GM(𝜋(𝜗𝛾 ), 𝜗𝛾 ) = 0. Next, a first-order Taylor expansion around
𝜋GM

n (𝜗𝛾 ) gives

0 =
√

n − r𝒬GM(𝜋(𝜗𝛾 ), 𝜗𝛾 )

=
√

n − r𝒬GM(𝜋GM
n (𝜗𝛾 ), 𝜗𝛾 ) +

√
n − r∇𝜋𝒬GM(𝜋

GM
n (𝜗𝛾 ), 𝜗𝛾 )(𝜋GM(𝜗𝛾 ) − 𝜋GM

n (𝜗𝛾 )),

where ‖𝜋GM(𝜗𝛾 ) − 𝜋GM
n (𝜗𝛾 )‖ ≤ ‖𝜋GM(𝜗𝛾 ) − 𝜋GM

n (𝜗𝛾 )‖. The statement follows then from a combination of Lemma
4.10 and Lemma 4.11.

A.4. Proofs of Section 5

For the ease of notation we write in the following for the Lévy process (LS
t )t∈ℝ shortly (Lt)t∈ℝ and hence, assume

that 𝔼|L1|2N∗
for some 2N∗ > max(N(Θ), 4 + 𝛿); similarly (YS

t )t∈ℝ is (Yt)t∈ℝ.

Lemma A.1. Define for any 𝜗 ∈ Θ the function f𝜗(u) = cT
𝜗
eA𝜗uep1[0,∞)(u) and

G𝜗(u) =
(
f𝜗(u),∇𝜗f𝜗(u),∇2

𝜗
f𝜗(u)

)
.

Then ℙ-a.s. we have

(
Ymh(𝜗),∇𝜗Ymh(𝜗),∇2

𝜗
Ymh(𝜗)

)
m∈ℤ =

(
∫

mh

−∞
G𝜗(mh − u) dLu

)
m∈ℤ

which is strongly mixing and ergodic.

The proof is moved to Section C in the Supporting information.

Proof of Proposition 5.4. (a) First, we prove the pointwise convergence of the sample autocovariance function
and second, that 𝛾̂𝜗,n(l, j) is locally Hölder-continuous which results in a stochastic equicontinuity condition. Then
we are able to apply Pollard (1990, Theorem 10.2) which gives the uniform convergence.

Step 1. Pointwise convergence. From Lemma A.1 we already know that (Ymh(𝜗))m∈ℤ is a stationary and ergodic
sequence with 𝔼|Ymh(𝜗)|2 < ∞ due to 𝔼|L1|2 < ∞. Then Birkoff’s Ergodic Theorem gives as n → ∞,

𝛾̂𝜗,n(l, j)
ℙ
→ 𝛾𝜗(l − j).

Step 2. 𝛾̂𝜗,n(l, j) is locally Hölder-continuous. Let 𝛾 ∈
[
0, 1 − N(Θ)∕(2N∗)) and

Uk ∶= sup
0<‖𝜗1−𝜗2‖<1
𝜗1 ,𝜗2∈Θ

|Ykh(𝜗1) − Ykh(𝜗2)|‖𝜗1 − 𝜗2‖𝛾 .

Since ((Ymh(𝜗))𝜗∈Θ)m∈ℤ is a stationary sequence, Uk

d
= U1 and due to Lemma C.3 in the Supporting information,

𝔼U2N∗

1 < ∞. In particular, for any 𝜗1, 𝜗2 ∈ Θ with ‖𝜗1 − 𝜗2‖ < 1 the upper bound

|Ykh(𝜗1) − Ykh(𝜗2)| ≤ Uk‖𝜗1 − 𝜗2‖𝛾
wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 41: 620–651 (2020)

Journal of Time Series Analysis published by John Wiley & Sons Ltd DOI: 10.1111/jtsa.12526



ROBUST ESTIMATION OF CARMA MODELS 649

and hence,

|Y(k+l)h(𝜗1)Y(k+j)h(𝜗1) − Y(k+l)h(𝜗2)Y(k+j)h(𝜗2)|
≤
(

sup
𝜗∈Θ

|Y(k+l)h(𝜗)| + sup
𝜗∈Θ

|Y(k+j)h(𝜗)|) (Uk+l + Uk+j)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶U∗
k+l,k+j

‖𝜗1 − 𝜗2‖𝛾

hold. Finally,

|𝛾̂𝜗1,n
(l, j) − 𝛾̂𝜗2,n

(l, j)| ≤ 1
n − r

n−r∑
k=1

U∗
k+l,k+j‖𝜗1 − 𝜗2‖𝛾 for ‖𝜗1 − 𝜗2‖ < 1 (A10)

with

𝔼(U∗
k+l,k+j) = 𝔼(U∗

1+l,1+j) ≤ 4

(
𝔼
(

sup
𝜗∈Θ

Yh(𝜗)2
)
𝔼U2

1

)1∕2

< ∞

where we used Lemma C.3 in the Supporting information to get the finite expectation.
Step 3. Let 𝜖, 𝜂 > 0. Take 0 < 𝛿 < min{1, 𝜂𝜖∕𝔼(U∗

1+l,1+j)}
1∕𝛾 . Then (A10) and Markov’s inequality give

ℙ
⎛⎜⎜⎝ sup

0<‖𝜗1−𝜗2‖<𝛿
𝜗1 ,𝜗2∈Θ

|𝛾̂𝜗1,n
(l, j) − 𝛾̂𝜗2,n

(l, j)| > 𝜂⎞⎟⎟⎠ ≤ 𝔼(U∗
1+l,1+j)

𝛿𝛾

𝜂
< 𝜖.

A conclusion of this stochastic equicontinuity condition, the pointwise convergence in Step 1 and Pollard (1990,
Theorem 10.2) is the uniform convergence.

The proof of (b,c) goes in the same vein as the proof of (a).

Proof of Proposition 5.5. Define

𝛾̂ (r−1)
n (𝜗) =

(
𝛾̂𝜗,n(r, r − 1)

⋮
𝛾̂𝜗,n(r, 0)

)
and Γ̂(r−1)

n (𝜗) =

(
𝛾̂𝜗,n(r − 1, r − 1) · · · 𝛾̂𝜗,n(0, r − 1)

⋮ ⋮
𝛾̂𝜗,n(r − 1, 0) · · · 𝛾̂𝜗,n(0, 0)

)
.

Then

𝜋∗
n (𝜗) ∶=

⎛⎜⎜⎜⎝
𝜋LS

n,1(𝜗)
⋮

𝜋LS
n,r (𝜗)

⎞⎟⎟⎟⎠ = [Γ̂(r−1)
n (𝜗)]−1𝛾̂ (r−1)

n (𝜗),

𝜎2
LS,n(𝜗) = 𝛾̂𝜗,n(r, r) − [𝜋∗

n (𝜗)]
T 𝛾̂ (r−1)

n (𝜗). (A11)

A conclusion of Proposition 5.4(a) and the definition of Γ(r−1)(𝜗) and 𝛾 (r−1)(𝜗) in (A1) is that

sup
𝜗∈Θ

‖Γ̂(r−1)
n (𝜗) − Γ(r−1)(𝜗)‖ ℙ

→ 0 and sup
𝜗∈Θ

‖𝛾̂ (r−1)
n (𝜗) − 𝛾 (r−1)(𝜗)‖ ℙ

→ 0. (A12)

Due to the continuity and the positive definiteness of Γ(r−1)(𝜗) (cf. proof of Proposition 2.2), and the compactness
of Θ we receive sup𝜗∈Θ ‖Γ(r−1)(𝜗)−1‖ < ∞. Hence, statement (a) is a consequence of (A11)–(A12) and (A1).
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(b) Note that

𝜕

𝜕𝜗i
𝜋∗

n (𝜗)=−[Γ̂(r−1)
n (𝜗)]−1

[
𝜕

𝜕𝜗i
Γ̂(r−1)

n (𝜗)
]
[Γ̂(r−1)

n (𝜗)]−1𝛾̂ (r−1)
n (𝜗) + [Γ̂(r−1)

n (𝜗)]−1
[
𝜕

𝜕𝜗i
𝛾̂ (r−1)

n (𝜗)
]
,

𝜕

𝜕𝜗i
𝜋∗(𝜗)=−[Γ(r−1)(𝜗)]−1

[
𝜕

𝜕𝜗i
Γ(r−1)(𝜗)

]
[Γ(r−1)(𝜗)]−1𝛾 (r−1)(𝜗) + [Γ(r−1)(𝜗)]−1

[
𝜕

𝜕𝜗i
𝛾 (r−1)(𝜗)

]
.

(A13)

Applying Proposition 5.4(b) we receive that

sup
𝜗∈Θ

‖‖‖‖ 𝜕
𝜕𝜗i

Γ̂(r−1)
n (𝜗) − 𝜕

𝜕𝜗i

Γ(r−1)(𝜗)
‖‖‖‖ ℙ
→ 0 and sup

𝜗∈Θ

‖‖‖‖ 𝜕
𝜕𝜗i

𝛾̂ (r−1)
n (𝜗) − 𝜕

𝜕𝜗i

𝛾 (r−1)(𝜗)
‖‖‖‖ ℙ
→ 0. (A14)

Then the same arguments as in (a) and (A12)-(A14) lead to statement (b).
(c) The proof goes in analog lines as in (a) and (b).

Proof of Corollary 5.6. (a) We use the upper bound

‖𝜋LS
n (𝜗n) − 𝜋(𝜗0)‖ ≤ sup

𝜗∈Θ
‖𝜋LS

n (𝜗) − 𝜋(𝜗)‖ + ‖𝜋(𝜗n) − 𝜋(𝜗0)‖.
The first term converges in probability to 0 due Proposition 5.5(a) and the second term because 𝜋(𝜗) is continuous

(see Lemma 2.5) and 𝜗n

ℙ
→ 𝜗0. The proof of (b,c) goes on the same way.

Proof of Proposition 5.7. Due to Proposition 5.5(a) we already know that the LS-estimator 𝜋LS
n (𝜗) is consistent.

The asymptotic normality of 𝜋LS
n (𝜗) follows in principle from Theorem 4.12 by interpreting the least squares

estimator as a particular GM-estimator with 𝜙(y, u) = u and 𝜒(x) = x − 1. An assumption of Theorem 4.12 is
that the Jacobian GM(𝜗) = ∇𝜋𝒬GM(𝜋(𝜗), 𝜗) is non-singular. For the LS-estimator this can be verified by direct
calculations because

∇𝜋𝒬LS(𝜋, 𝜗) = LS(𝜗) = − 1
𝜎(𝜗)

⎛⎜⎜⎜⎜⎜⎝

𝛾𝜗(0) 𝛾𝜗(h) … 𝛾𝜗((r − 1)h) 0
𝛾𝜗(h) 𝛾𝜗(0) … 𝛾𝜗((r − 2)h) 0
⋮ ⋮ ⋱ ⋮ ⋮

𝛾𝜗((r − 1)h) … … 𝛾𝜗(0) 0
0 0 … 0 2

⎞⎟⎟⎟⎟⎟⎠
.

Hence, LS(𝜗) is non-singular if and only if the upper left r×r block is non-singular. However, the upper left block
is up to a positive factor the covariance matrix of the random vector (Yh(𝜗),… ,Yrh(𝜗)) which is non-singular (cf.
proof of Proposition 2.2).

Still, we need to be careful because the function 𝜙 and 𝜒 do not satisfy Assumptions (E.2), (E.4), and (E.6) with
respect to boundedness. However, a close inspection of the proof of Theorem 4.12 reveals that the boundedness is
only used at two points. First, in Lemma 4.9 where we deduce the finiteness of the expectation in (A9). However,
for the LS-estimator

Ψk,i(𝜗) =
[
Y(k+r)h(𝜗) − 𝜋1(𝜗0)Y(k+r−1)h(𝜗) − · · · − 𝜋r(𝜗0)Ykh(𝜗)

]
Y(k+i−1)h(𝜗)

for i = 1,… , r and

Ψk,r+1(𝜗) =
(

Y(k+r)h(𝜗) − 𝜋1(𝜗)Y(k+r−1)h(𝜗) − · · · − 𝜋r(𝜗)Ykh(𝜗)
𝜎(𝜗)

)2

− 1.
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Therefore, inequality (A9) follows since the Lévy process (Lt)∈ℝ has finite (4+ 𝛿)th moment which then transfers
to (Yt(𝜗))t∈ℝ by Marquardt and Stelzer (2007, Proposition 3.30) and subsequently the (2+𝛿∕2)-moment of Ψk,i(𝜗).

Second, the boundedness assumptions are used in the proof of Lemma 4.10 to deduce the existence of
∇𝜋𝒬LS(𝜋, 𝜗) and its continuity. But by the above calculations ∇𝜋𝒬LS(𝜋, 𝜗) exists obviously and is continuous.

Proof of Theorem 5.3. Assumption (C.1) and (C.4) follow from Theorem 4.8 and Theorem 4.12. Assumption (C.2)
is proven in Proposition 5.5. Assumption (C.3) is a consequence of Proposition 5.7. Finally, Assumption (C.5) is
derived in Corollary 5.6.
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