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Abstract

Recent papers show that the all‐pay auction is better at

raising money for charity than the first‐price auction

with symmetric bidders under incomplete information.

Yet, this result is lost with sufficiently asymmetric

bidders under complete information. In this paper, we

consider a framework on charity auctions with asym-

metric bidders under some incomplete information. We

find that the all‐pay auction still raises more money than

the first‐price auction. Thus, the all‐pay auction should

be seriously considered when one wants to organize a

charity auction.

1 | INTRODUCTION

Fundraising activities for charitable purposes have become increasingly popular. One reason is
the growing number of nongovernmental organizations with humanitarian or social purposes.
Another one is the decrease of government participation in culture, education, and related
activities. The purpose of these associations is either the development and promotion of culture
or aid and humanitarian services. Even in France, a country without any fundraising tradition,
some organizations began to appear, such as the French Association of Fundraisers1 in 2007.

Commonly used mechanisms to raise money are voluntary contributions, lotteries, and
auctions. Even though most of the fundraisers still use voluntary contributions,2 auctions are
increasingly used. Indeed, for some special events or particular situations, auctions provide a
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This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivatives License, which
permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no

modifications or adaptations are made.

1http://www.fundraisers.fr/

2There is further evidence of this phenomenon on the Internet with the emergence of sites, such as http://www.JustGive.org.
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particular atmosphere. The popularity of auctions for charity purposes can also be observed by the
increase in Internet websites offering the sale of objects and donating a part of their proceeds to
charity. Well‐known examples include Yahoo! and Giving Works of eBay. Many others have been
created, such as the Pass It On Celebrity Charity Auction3 in 2003, where celebrities donated objects
whose sale revenue contributed to a “charity of the month”. We can also cite cMarket Charitable
Auctions Online4 created in 2002 and selected as a charity vehicle by more than 930 organizations.

Therefore, given the well‐developed and wide theoretical literature on altruism and
charitable fundraising (e.g., Andreoni, 1989, 1998, 2004), there is a growing and recent research
on charity auctions.5 Goeree, Maasland, Onderstal, and Turner (2005) and Engers and
McManus (2007) investigate an independent private value’s model and show that all‐pay
auctions are better at raising money for charity than winner‐pay auctions. Moreover, Schram
and Onderstal (2009) lead a lab experiment and confirm these theoretical results. However,
Carpenter, Homes, and Matthews (2008) run a field experiment in four American preschools. In
their experiments the ranking of the revenues is reversed. They attribute this result to the
unfamiliarity of the participants to the mechanism and endogenous participation (see
Carpenter, Homes, & Matthews, 2010 for a theoretical investigation of the endogenous
participation). In addition, we can also investigate this question in a situation where people are
different in the sense that they do not have the same beliefs. Indeed, Goeree et al. (2005) and
Engers and McManus (2007) assume that bidders have the same altruism parameter and
valuations are drawn from the same distribution. Bos (2016) provides an answer with complete
information. He investigates a model with complete information and heterogeneity on the
bidders’ values, and shows that when the asymmetry among bidders is strong enough, the
ranking of the expected revenues is affected. In particular, winner‐pay auctions outperform all‐
pay auctions. Damianov and Peeters (2018) confirm in a lab experiment the nonoptimality of
all‐pay auctions in a complete information framework.

The point of this paper is then to determine, whether all‐pay auctions are still better at
raising money for charity when bidders are asymmetric under some incomplete information
(provided by a uniform distribution). To do so, we compare the first‐price auction and the
(first‐price) all‐pay auction. The former is the most used sealed‐bid auction in practice and the
latter raises theoretically more money for charity than winner‐pay auctions in a symmetric
incomplete information framework. We do not consider the optimal auction determined by
Goeree et al. (2005), the lowest‐price all‐pay auction, because of its difficult implementation and
potential participants misunderstanding.6 If we conclude that all‐pay auctions are still better
with asymmetric bidders and our specific incomplete information setting with uniformly
distributed values, we should seriously consider implementing all‐pay auctions to raise money
for charity in some environments. Indeed, to the best of our knowledge, all‐pay auctions
have never been implemented in real life for charity purposes. However, it seems easy to do.
For example, every bidder could buy a number of tickets simultaneously as in a raffle.
Contrary to a raffle, though, the winner will be the buyer with the highest number of tickets
in hand.

3http://www.passitonline.org/

4http://www.cmarket.com/

5For a good understanding on prosocial behavior see Munoz‐Herrera and Nikiforakis (2019), who provide a thorough overview on the theoretical, lab, and field

experimental works of James Andreoni.

6Difficulties occurred on the field to implement the first‐price all‐pay auction (Carpenter et al., 2008; Onderstal, Schram, & Soetevent, 2013) and should be worst

with the lowest‐price all‐pay auction.
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In charity auctions, bids depend upon two parameters: their valuation for the item sold and
their altruism or sensitivity to the charity purpose. In this paper we consider valuations drawn
with the same distribution in an independent private value’s model. Therefore bidders are
asymmetric in their altruism parameter which are common knowledge. As in Bulow, Huang,
and Klemperer (1999) and Wasser (2013) this framework provides some advantages, mainly to
avoid the limited results of asymmetric auctions with incomplete information. In the usual
asymmetric auction literature, valuations are drawn from different distributions. Changing
these distributions can modify the ranking of the expected revenues among different auction
designs (e.g., see Krishna, 2009). Maskin and Riley (2000), de Frutos (2000), and Cantillon
(2008) determine the ranking of the expected revenues between the first‐price and the second‐
price auctions given some conditions on the probability distributions.

Bulow et al. (1999) paper is probably the closest to the present analysis. They investigate
first‐price and ascending auctions with a two‐bidder common value setting. Each bidder
receives an independent uniformly distributed signal, which contributes to a common value,
and a parameter which can be interpreted as an altruism parameter for charity purpose. These
latter parameters are asymmetric and common knowledge. Although they apply this framework
to toeholds and takeovers, it is well suited for charity. In their analysis, they determine that
when these parameters are asymmetric and small enough, the revenue ranking could be reverse
(relatively to the symmetric case). Therefore the first‐price auction outperforms in terms of
expected revenue the ascending auction.7 Unlike them, we compare first‐price to all‐pay
auctions in an independent private value’s model. The only other papers on asymmetric
auctions with these kinds of externalities are de Frutos (2000) and Wasser (2013). de Frutos
(2000) compares the first‐price and the second‐price auctions with altruism parameters equal to
∕1 2 and different bidders’ value distributions. Her framework is quite different to ours as she
does not investigate all‐pay auctions and the asymmetry concerns bidders values instead of
altruism parameters. However, dividing our all‐pay auction by 1 minus the bidder’s altruism
parameter leads to the all‐pay auction in her framework with uniform distributions.8 Wasser
(2013) investigates k + 1‐price winner‐pay auctions with asymmetry on the altruism
parameters. Yet, he does not compare the expected revenue among the auction design but
focuses on the performance of auctions as mechanisms for partnership dissolution. Thus our
both papers are related through the existence and uniqueness of the first‐price auction but
differs on problems raised and results determined. Furthermore, Lu (2012) determines an
optimal mechanism with asymmetric altruism parameters in which all losers pay a fraction of
the winner payment and then is a kind of all‐pay auction. The set of mechanisms investigated is
contingent on the positive bidders’ reservation utilities and therefore requires a nonparticipa-
tion threat, such as the seller can cancel the auction. However in practice, a such threat is not
observed, the auction is not dissolved if some bidders do not participate. In our positive
approach, we compare the most popular sealed‐bid auction used for charity, the first‐price
auction, and the easiest all‐pay auction to implement, without any nonparticipation threat. It is
then an interesting complement of the Lu’s normative approach, and determines if all‐pay
mechanisms, in their simplest form, should replace the first‐price auction.

The paper is organized as follows. Section 2 introduces the formal setting, a two‐bidder
independent private value’s model with asymmetric altruism parameters. Section 3 and 4,
respectively, characterized the bidding equilibrium strategies for the all‐pay auction and the

7Moreover one of their main contributions is also to show how first‐price and ascending auctions are affected differently by the winners curse.

8This is not true for the first‐price auction.
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first‐price auction. Section 5 provides the revenue comparison of these auctions and determines that
all‐pay auction still outperforms first‐price auction independently of level of asymmetry in
their altruism parameters. Section 6 concludes. Proofs not providing after the results are collected
in the appendix.

2 | FORMAL SETTING

Suppose two bidders take part in an auction through a fundraising event, such as a charity
dinner. Each bidder is risk neutral and cares about how much she pays as well as her
competitor pays in the auction. Indeed, as the amount of money will be used for a charity
purpose, the bidders include in their utility function the bids paid. Thus, their bidding functions
depend of two parameters: Their valuation of the object sold and their altruism or their interest
for the charity purpose that the auction should finance. The more a bidder is sensitive to the
charity event the higher this parameter will be. Denote as vi the valuation and as ai bidder i’s
altruism parameter. Bidder valuations v v,1 2 are independently and identically distributed and
we assume them to uniform distributions on v[0, ]̄ with ≥v ̄ 1. Moreover, the altruism
parameters are common knowledge and heterogeneous such that ≥a a> 01 2 . Then, Bidder 1
has a higher preference for the charity purpose than Bidder 2. When a bidder takes part in a
charity auction, she obtains a positive externality from the amount of money raised. Indeed, she
hopes that the highest amount will be collected to finance the charity purpose. This is
equivalent to a situation in which she would benefit from a percentage of the revenue collected
as a return from the bids paid. In this paper we consider two auction designs: the all‐pay
auction, also called first‐price all‐pay auction, and the usual first‐price auction.

In the all‐pay auction the winner as well as the loser pays her own bid. Yet, each bidder
receives an externality from her own bid as well as from her competitor’s bid. Denote as
U v b b a( , , ; )i i i j i

A the utility of bidder i

U v b b a

v b a b b b b

b a b b b b

v
b a b b b b

( , , ; ) =

− + ( + ) if > ,

− + ( + ) if < ,

2
− + ( + ) if = .

i i i j i

i i i i j i j

i i i j i j

i
i i i j i j

A

⎧
⎨
⎪⎪

⎩
⎪⎪

(1)

In contrast, in the first‐price auction the bidder with the highest bid is the winner and pays
her own bid, whereas the loser does not pay anything. Contrary to the all‐pay auction, here each
bidder benefits from an externality only from the winner’s bid which could be her own bid.
Denote as U v b b a( , , ; )i i i j i

F ; the utility of bidder i follows

U v b b a

v b a b b b

a b b b

v b
a b b b

( , , ; ) =

− + if > ,

if < ,

2
−

2
+ if = .

i i i j i

i i i i i j

i j i j

i i
i i i j

F

⎧
⎨
⎪⎪

⎩
⎪⎪

(2)

It is clear that the payment rule affects the returns that bidders obtain. In the all‐pay auction,
bidder i’s utility is a function of her opponent’s bid for each outcome of the auction. In the first‐
price auction, on the other hand, if the bidder i is the winner her payoff is independent of her
opponent’s bid.

BOS | 323



Assumption (The limit of the bidders’ altruism). a < 11 in the all‐pay auction and the
first‐price auction.9

The assumption states that bidders strictly prefer to keep their money for personal use rather
than to spend it for the charitable purpose even if they win.

Bidder i’s strategy is a function ⋅ →α a v( ; ) : [0, ¯]i + in the all‐pay auction and a function
⋅ →β a v( ; ) : [0, ¯]i + in the first‐price auction which determines her bid for any value given her

altruism parameter. Given a sensitivity level ai different for each bidder, we focus on the
asymmetric equilibria such that ⋅ ≡ ⋅α a α( ; ) ( )i i and ⋅ ≡ ⋅β a β( ; ) ( )i i . However, as the bidders are
distinguished only thanks to their altruism parameter, their equilibrium bidding functions
would be symmetric in these parameters. Denote as ⋅ ⋅φ α( ) = ( )i i

−1 and ⋅ ⋅ϕ β( ) = ( )i i
−1 the

inverse functions of bidder i’s strategy functions given her altruism ai.
10 Notice that α α( , )i j is a

Bayesian Nash equilibrium such that it fulfills the first‐ and second‐order conditions if and only
if φ φ( , )i j also fulfills the first‐ and second‐order conditions. The same relationship also holds in
the first‐price auction with β β( , )i j and ϕ ϕ( , )i j .

3 | ALL ‐PAY AUCTION

Using (1) we can compute the expected payoff of bidder i

U v b α a
v

v
α b b a b α v( , , ; ) =

¯
( ) − + ( + ( )).i i i j i

i
j i i i i j j

A −1  (3)

To determine the effect of the altruism on the expected payoff we can divide (3) in two terms,
the usual expected utility and the return from the charity purpose, κi

A. Then,

U v b α a
v

v
α b b κ b α a( , , ; ) =

¯
( ) − + ( , ; )i i i j i

i
j i i i i j i

A −1 A

with κ b α a a b α v( , ; ) = ( + ( ))i i j i i i j j
A  . Thus, if bidder i does not take account of the term κi

A, she
would face the usual all‐pay auction expected payoff.

Lemma 1. The bidders’ equilibrium strategies must be pure strategies that are continuous
and strictly increasing functions in vi.

Lemma 2. Minimum and maximum bids must be the same for both bidders so that
α α(0) = (0) = 01 2 and α v α v b( )̄ = ( )̄ = ̄

1 2 .11

In an all‐pay auction, bidders care about their bids if they win as well as when they lose. In
both cases, they get a positive return from their opponent’s bid. Thus, their equilibrium bid
depends on their own altruism parameter as well as on their competitor’s. An immediate

9It follows that a a< < 12 1 .

10It is established in Lemmas 1 and 3 that ⋅α ( )i and ⋅β ( )i are strictly increasing functions.

11Notice that contrary to Amann and Leininger (1996) and Lu and Parreiras (2017) who investigated two‐bidder all‐pay auctions with asymmetric beliefs, in our

model there is no mass bid at zero. Bidders have symmetric beliefs and are asymmetric in their altruism parameters, which are common knowledge and lower

than 1. Therefore both bidders have the same beliefs about their rival to be a zero value and a zero value bidder gets the same losing and winning payoffs. The

effect of asymmetry for a zero value is vanished and only the symmetric beliefs play a role.
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consequence of Lemma 1 is that the inverse function of α φ,i i is increasing and differentiable
almost everywhere on b[0, ]̄. Furthermore, φ (0) = 0i and φ b v( )̄ = ̄i , where b α v α v̄ = ( )̄ = ( )̄1 2 .

To derive the equilibrium, we state here only the necessary condition. A sufficient condition
is given in the appendix (Proof of Proposition 1). Differentiating (3) with respect to bi it follows
that

∈φ b v
a

φ b
b b( ) = ¯

1 −

( )
for all (0, ¯],

′1
1

2

(4)

∈φ b v
a

φ b
b b( ) = ¯

1 −

( )
for all (0, ¯].

′2
2

1

(5)

Then, from (4) and (5) and using the boundary conditions φ (0) = 0i we get

∈φ b φ b a vb a vb b b( ) ( ) = (1 − ) ̄ + (1 − ) ̄ for all (0, ]̄.i j i j (6)

As φ b v( )̄ = ̄i for all i, b ̄ = v

a a

̄

2 − −1 2
follows from (6). Then, for some level of the altruism

parameters, bidders could submit a maximum bid higher than their valuation. Indeed, this
would be the case if the sum of the altruism parameters is higher than 1. Moreover, if each
altruism parameter is close to 1, the maximum bid would be infinite as in the case of symmetric
bidders (see Goeree et al., 2005). Thus, revenue is not bounded and could potentially be infinite.

Using (5), for i = 1, 2 Equation (6) leads to

∈φ b
a a

a
φ b b b b( ) =

2 − −

1 −
( ) for all (0, ¯].′i

i j

j
i (7)

From this we obtain an explicit solution to the inverse bid functions which characterize the
unique Bayesian Nash equilibrium12 ⋅ ⋅φ φ( ( ), ( ))1 2 :

∈φ b v a a b b b i( ) = ¯ ((2 − − ) ) for all (0, ¯], for = 1, 2.i i j

ai
ai aj

aj
ai aj

1−
2− −

1−

2− − (8)

Proposition 1. There exists a unique Bayesian Nash equilibrium α α( , )1 2 such that

∈ ≠α v
v a a

v v v i i j( ) =
1

̄

1

2 − −
for all [0, ]̄, = 1, 2 and .i

i j
ai
aj

ai aj
aj

1−
1−

2− −

1−

Obviously, for ≡a a a=1 2 we get the symmetric Nash equilibrium

α v α v
v a

v( ) = ( ) =
1

̄

1

2(1 − )
.1 2

2

12Let us assume there are two solutions to Equation (7), φ ̄ and φ. It follows that = =
aj

ai aj b

φ b

φ b

φ b

φ b

1 −

2 − −

1 ′̄( )

̄ ( )

′( )

( )
for all ∈b b(0, ]̄. Then

∣ ∣ ∣ ∣φ b φ b cln ̄ ( ) = ln ( ) + with ∈c . φ b φ b̄ ( )̄ = ( )̄ implies that c = 0 and therefore φ b φ b̄ ( ) = ( ) for all ∈b b(0, ]̄. Hence a contradiction.
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The bidder i’s equilibrium bidding strategy is increasing in her altruism parameter ai.
Indeed, the more she is sensitive to the charity purpose the more aggressively she will bid.
However, the bidder i’s equilibrium bidding strategy is not monotonic in her opponent’s
altruism parameter aj. These results can be verified by computing the following derivatives:

∂

∂
≥

∂

∂

α

a
v a a

v

a a

v

v

a a

a

v

v

α

a
v a a

v

a a

v

v
a a

a

a

v

v

( ; , ) =
(2 − − ) ¯

1 −
2 − −

1 −
ln

¯
0,

( ; , ) =
(2 − − ) ¯

1 + (2 − − )
1 −

(1 − )
ln

¯
.

i

i
i j

i j

i j

j

i

j
i j

i j
i j

i

j

2

2 2

ai
aj

ai
aj

1−
1−

1−
1−

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

However, it follows from Proposition 1 that a higher sensitivity to altruism leads to a higher
aggressiveness. Figure 1 depicts the equilibrium bidding strategies for a = 0.751 , a = 0.252 , and
v ̄ = 1.

Corollary 1. In the all‐pay auction, the more altruistic bidder is the more aggressive one.
More precisely, if a a>1 2, then α v α v( ) > ( )1 2 for all ∈v v(0, )̄.

4 | FIRST ‐PRICE AUCTION

Using (2) we can then compute the expected payoff of bidder i

∫U v b β a
v a b

v
β b

a

v
β v dv( , , ; ) =

− (1 − )

¯
( ) +

¯
( ) .i i i j i

i i i
j i

i

β b

v

j
F −1

( )

¯

j i
−1

 (9)

FIGURE 1 Equilibrium bidding strategies
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Again, we can split the expected payoff in two terms. The first one is the expected payoff of
the usual first‐price auction and the second the return from the charity purpose, κi

F:

v b

v
β b κ b β a

−

¯
( ) + ( , ; )i i

j i i i j i
−1 F

with ∫κ b β a b β b β v dv( , ; ) = ( ( ) + ( ) )i i j i
a

v i j i β b

v
j

F
¯

−1
( )

¯i

j i
−1 . As in the all‐pay auction, if bidder i does not

take account of the term κi
F she would face the usual first‐price auction expected payoff.

Lemma 3. The bidders’ equilibrium strategies must be pure strategies that are continuous
and strictly increasing functions in vi.

Lemma 4. Minimum and maximum bids must be the same for both bidders so that
β β(0) = (0) = 01 2 , β v β v b( )̄ = ( )̄ = ̄

1 2 , and ∈b v¯ [ , ¯)
v̄

2
.

Lemma 5. Each bidder submit a nonnegative bid inferior to her value such that β v v( ) <i

for all ∈v v(0, ]̄ and i = 1, 2.

As in the case of the all‐pay auction, from Lemma 3 the inverse function of βi, ϕi, is
increasing and differentiable almost everywhere on b[0, ]̄. Furthermore, ϕ ϕ(0) = (0) = 01 2 and
ϕ b ϕ b v( )̄ = ( )̄ = ̄1 2 . Bidders could not submit a maximum bid higher than their valuation.
Furthermore, the maximum bid is bounded because of the limit on the bidders’ altruism. The
maximum bid in the all‐pay auction is therefore higher than the one in the first‐price auction.13

To derive the equilibrium, as above we state only the necessary condition, whereas the
sufficient condition is similar to the one in Theorem 1 of de Frutos (2000) and therefore
omitted. Differentiating (9) with respect to bi it follows

∈ϕ b
a

ϕ b b
ϕ b b b( ) =

1 −

( ) −
( ) for all (0, ¯],′

1
2

2
1 (10)

∈ϕ b
a

ϕ b b
ϕ b b b( ) =

1 −

( ) −
( ) for all (0, ¯].′

2
1

1
2 (11)

There is no explicit solution to this differential equation systems with our boundary
conditions. Equations (10) and (11) and the boundary conditions define equilibrium strategies if
they define the optimal decision for each bidder.

Proposition 2. The unique Bayesian Nash equilibrium β β( , )1 2 is characterized by the
inverse bidding functions ϕ ϕ( , )1 2 such that

∈ϕ b a
ϕ b

ϕ b
b b b( ) = (1 − )

( )

( )
+ for all [0, ¯],

′i i
j

j

which satisfies the boundary conditions ϕ ϕ b v(0) = 0, ( )̄ = ̄i i , for i = 1, 2 and ≠i j.

13This result is not obvious as for some values of the altruism parameters the maximum bid in the all‐pay auction is <1. Claim 1 establishes this result in Section 5.
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For ≡a a a=1 2 we get the symmetric Nash equilibrium (see Engers & McManus, 2007 for
details) such that β v( ) =i

v

a2 −
for i = 1, 2. The maximum bids, and therefore the expected

revenue, are bounded. As in the all‐pay auction we can established a strict ranking of the
bidding functions.

Corollary 2. In the first‐price auction, the more altruistic bidder is the more aggressive
one. More precisely, if a a>1 2, then β v β v( ) > ( )1 2 for all ∈v v(0, )̄.

This result is useful to determine the shape of the bidding strategies at the equilibrium.
Indeed, β1 and β2 cannot intersect. Moreover, the equilibrium bidding strategies are concave for
Bidder 1 and convex for Bidder 2.14Figure 2 depicts the curves of β1 and β2 for v ̄ = 1.

5 | REVENUE COMPARISONS

In this section we examine the performance of the all‐pay and first‐price auctions in terms of
the expected revenue. Our next result describes the ranking of the equilibrium bidding
strategies for each bidder.

FIGURE 2 Equilibrium bidding strategies for the uniform distribution on [0, 1]

14A proof is provided in Section 5, Claim 3.
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Lemma 6. Bidders’ i bidding strategies in the all‐pay and the first‐price auction intersect
only once such that

≥ ∈

∈ ≠

β v α v v v α v β v v

v v i i j

( ) ( ) for all [0, ̄] and ( ) > ( ) for all

( ̄ , ]̄, for = 1, 2 and .

i i i i i

i

Let us denote ei
A and ei

F the expected payment of bidder i in the all‐pay and first‐price
auctions. These expected payments are e v α v( ) = ( )i i

A and e v ϕ β v β v( ) = ( ( )) ( )i v j i i
F 1

¯
for all

∈v v[0, ]̄.15 Comparing the expected payments will be useful for ranking the expected
revenues.

Proposition 3. The expected payment of bidder i in the all‐pay auction is greater than her
expected payment in the first‐price auction when her valuation is sufficiently high. Moreover,
her expected payment is the same in both auctions when her valuation is equal to zero.

It is not clear if the expected payment of bidder i in the all‐pay auction is greater than in the
first‐price auction. Indeed it could happen that for some range of valuations the latter
outperforms the former. The next proposition determines the ranking of the expected
revenue.

Proposition 4. The expected revenue in the all‐pay auction is strictly higher than in the
first‐price auction.

Thus, the introduction of the asymmetry on the altruism parameters does not change the
ranking of the expected revenue (Engers & McManus, 2007; Goeree et al., 2005). This result was
not predictable as the asymmetry can reverse the ranking of the expected revenue in first and
second‐price auctions (Bulow et al., 1999). Furthermore, this contradicts results with complete
information which determine that the first‐price auction leads to a higher revenue than the all‐
pay‐auction when bidders are asymmetric enough. Bos (2016) established this revenue
comparison for asymmetric valuations. Yet, the ranking of revenues in Bos (2016) also holds for
asymmetric altruism parameters, using the Nash equilibrium in mixed strategies for the all‐pay
auction with asymmetric altruism parameters determined in Bos (2016) and the result of
Ettinger (2010) for the first‐price auction. Therefore, our result tends to confirm the dominance
of the all‐pay auction at raising money for charity in an incomplete information framework.

Our results are established for uniform distributions and two bidders, and explore neither all
possible probability distributions nor the effect of the number of bidders. However we
determine in a setting with uniformly distributed values, independently of the level of
asymmetry on the altruism parameters, that the all‐pay auction performs better as in the
symmetric case with incomplete information and contrary to the asymmetric case with
complete information. Moreover, the number of bidders does not have consequences on the
ranking of revenues in these both complete and incomplete information settings.

Bidders are aware that a strong asymmetry in the altruism parameters leads to a more aggressive
behavior of the bidder with a high level of altruism. In the all‐pay auction, that provides incentives, for

15Indeed, ≤e v β V β v β v ϕ β v β v( ) = ( ( ) ( )) ( ) = ( ( )) ( )i j j i i v j i i
F 1

¯
 .

BOS | 329



the bidder with a low altruism parameter, to reduce her bid. However, despite bidders know the
altruism parameters, and then the level of asymmetry, the bidders’ values are drawn by a uniform
distribution. This uncertainty on the other’s value compensates the effect of asymmetry as each bidder
can compute her positive probability of winning. There is a positive chance that the other bidder has a
sufficiently low type to lose the auction despite a higher altruism parameter. The effect of asymmetry
is then balanced enough such that the all‐pay auction, and its benefits from all bids paid, raise more
money for charity than the first‐price auction.

Moreover, the expected revenue in the all‐pay auction is given by

∫ ∫R a a v
α v

v
dv v

α v

v
dv

v

a a

a

a a

a

a a

( , ) = ¯
( )

¯
+ ¯

( )

¯

=
¯

2 − −

1 −

3 − − 2
+

1 −

3 − 2 −
.

v v
A

1 2
0

¯ 1

0

¯ 2

1 2

2

1 2

1

1 2

a
a

a
a

1− 1
1− 2

1− 2
1− 1

⎛
⎝⎜

⎞
⎠⎟

It is interesting to see how the asymmetry affects the expected revenue in the all‐pay auction.
Consider the altruism parameters are no longer strictly order such that a1 could be inferior as
well as superior than a2. Let us denote ā a a= +1 2, such as ∈ā [0, 2). Upon substitution, we
can see that R a ā a( , − )A

1 1 is maximized at a =
ā

1 2
and then increasing for a <

ā
1 2

and

decreasing for a >
ā

1 2
. For example, Figure 3 depicted the situation in which ā = 1 and v ̄ = 1.

The next results follow.

Lemma 7. The greater the asymmetry in the altruism parameters the lower the expected
revenue will be in the all‐pay auction.

FIGURE 3 Expected revenue of the all‐pay auction for ā = 1 and v ̄ = 1
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This result is in line with results on asymmetric all‐pay auctions with complete information.
Hillman and Riley (1989) determine that the expected revenue decreases when the bidders
become more asymmetric.

6 | CONCLUSION

The purpose of this paper is to determine which of the two auction designs—the all‐pay auction and
the first‐price auction—is better at raising money for charity when bidders are asymmetric in their
altruism parameters with complete information and bidders’ valuations are uniformly distributed in
an independent private value’s model. As in the case with symmetric bidders with incomplete
information (Goeree et al., 2005) we conclude that the all‐pay auction is better than the first‐price
auction. This result shows that different auction designs are better for different environments. Indeed,
in a complete information framework first‐price auctions outperform all‐pay auctions when the
asymmetry among bidders is strong enough. Moreover, Carpenter et al. (2010) conclude there is no
strict ranking of revenues when the participation is endogenous.

Our result also complements the normative approach of Lu (2012), who determines a
revenue‐maximizing all‐pay mechanism, in which all losers pay a fraction of the winner
payment and the seller can cancel the auction through a nonparticipation threat. The all‐pay
auction considered in our analysis should be easier to implement on the field and does not
require a nonparticipation threat which is not observed in practice.

This paper, and more generally the idea that the optimal auction design for charity depends
on the informational setting, is a good candidate for a lab experiment. Another natural follow‐
up question concerns dynamic charity auctions. Although Engers and McManus (2007)
determined that the second‐price and the English auctions are still strategically equivalent,
there is no result about the other usual mechanisms, such as the Dutch auction. Recent works
about optimal release information in environments with no externality might be useful to
investigate this question.16 Finally, another interesting investigation would be to understand if
repeated charity auctions can lead to some charitable cooperations among bidders.17
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APPENDIX

Proof of Lemma 1. Lemma 1 in de Frutos (2000) determines the same result for the first‐
price auction with asymmetric values and symmetric altruism parameters equal to ∕1 2.
Our result, for the all‐pay auction with asymmetric altruism parameters, can be
established with similar technical arguments. Therefore, the proof is omitted and
available on request. □

Proof of Lemma 2. Assume that ≤ ≤α α0 (0) (0)i j . Each bidder gets the same payoff by
winning as well as losing. As bidders have a strict preference for a higher payoff
independently of the outcome, it follows that α α(0) = (0) = 0i j . Assume that
α v α v( )̄ > ( )̄j i . Then, the Bidder 1 can decrease her bid without affecting her winning
probability and increasing her payoffs. Similarly, α v α v( )̄ > ( )̄i j cannot be part of the
equilibrium. Thus, α v α v( )̄ = ( )̄1 2 . □

Proof of Proposition 1. It is clear that at the equilibrium α (0) = 0i . Indeed, if b = 0i the
payoff of the bidder i for v > 0i is strictly inferior to the one for v = 0i . Consider now the
payoff of the bidder i for all ∈b b(0, ]̄i .

∂

∂

U

b
v b α a

v

v
φ b a

v φ b

v
φ b

( , , ; ) =
¯

( ) − (1 − )

=
− ( )

¯
( ).

′

′

i

i
i i j i

i
j i i

i i i

j i

A

To get the last line we used the necessary condition φ b φ b v a( ) ( ) = ¯ (1 − )′i i j i i . When

v φ b> ( )i i i it follows that ∂

∂
v b α a( , , ; ) > 0

U

b i i j i
i

i

A

. In a similar manner, when v φ b< ( )i i i ,
∂

∂
v b α a( , , ; ) < 0

U

b i i j i
i

i

A

. Thus, ∂

∂
v α α a( , , ; ) = 0

U

b i i j i
i

i

A

. As a result, the maximum of

U v α α a( , , ; )i i i j i
A is achieved for v φ b= ( )i i i and then b α v= ( )i i i . □

Proof of Corollary 1. Recall that we assume a a>1 2. The result follows. □

Proof of Lemma 3. This proof can be established with the same technical arguments
than Lemma 1 in de Frutos (2000) and therefore omitted. □

Proof of Lemma 4. and 5. Assume that β β(0) < (0)i j . When the valuation is 0, the payoff
of losing is higher than the payoff of winning. Then, both bidders deviate and submit a
bid equal to 0 such that β β(0) = (0) = 01 2 .
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Using the same mathematical arguments than in Lemma 1 of de Frutos (2000), we can
be established b v̄ < .̄ Let us show that ≥b ̄

v ̄

2
. Summing differential equations (10) and

(11) it follows

ϕ b ϕ b ϕ b ϕ b b ϕ b ϕ b ϕ b ϕ b

a ϕ b a ϕ b

( ) ( ) + ( ) ( ) − ( ( ) + ( )) − ( ( ) + ( ))

= − ( ) − ( ).

′ ′ ′ ′
1 2 2 1 1 2 1 2

1 2 2 1

Integrating this equation and using ϕ b v( )̄ = ̄i ,

∫v v b a ϕ x a ϕ x dx¯ ( ¯ − 2 ¯) = − ( ) + ( ) .
b

0

¯

1 2 2 1

Hence the result. □

Proof of Proposition 2. The existence and uniqueness follows from Theorem 2 and
Corollary 4 in Lebrun (1999), as in Theorem 3 of de Frutos (2000). □

Proof of Corollary 2. This proof uses the same technical arguments than Proposition 4.4
in Krishna (2009) and therefore omitted. □

Proof of Lemma 6. To prove this result we first establish properties of the bidding
strategies. □

Claim 1. The maximum bid in all‐pay auction is higher than that in first‐price auction
for nonnegative altruism parameters.

Proof. Let us denote b̄A and b̄F the maximum bids in the all‐pay and first‐price auctions,
respectively. Clearly, ≥b v b¯ ¯ > ¯A F for all ≥a a+ 11 2 . Let us assume that ≥b b¯ ¯F A for some
a a+ < 11 2 . Then, by continuity there exists a value of a a+1 2 such that b b¯ = ¯F A. If this
case happens with asymmetric bidders that also happens with symmetric bidders. In the
latter case, a a a+ =1 2 , b̄ =

v

a

F ¯

2 −
, and b̄ =

v

a

A ¯

2(1 − )
. Hence the result. □

Claim 2. φ b ϕ b( ) > ( )i i and φ b ϕ b( ) > ( )j j for all b close to 0.

Proof. Using L’Hôspital’s rule in (10) implies

→ →

→

a ϕ b
ϕ b b

ϕ b
ϕ

ϕ b b

ϕ b

ϕ
ϕ b

ϕ b
ϕ

1 − = lim ( )
( ) −

( )
= (0)lim

( ) −

( )

= (0)lim
( ) − 1

( )
= (0) − 1.

′ ′

′
′

′
′

i
b

j
i

j
j

b

i

j

j
b

i

j
i

0 0

0

Thus, ϕ a(0) = 2 −′
i i for i = 1, 2.

As φ b v a a a b( ) = ¯ (1 − )((2 − − ) )′
i j i j

ai
ai aj

ai
ai aj

1−
2− −

−1+
2− − , and a a>i j, ∞

→
φ blim ( ) = +′

b
i

0
. Hence,

φ ϕ(0) > (0)′ ′
i i for i = 1, 2. Therefore, φ b ϕ b( ) > ( )i i for all b sufficiently close to 0 and
β v α v( ) > ( )i i for all v sufficiently close to 0. □
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Claim 3. The inverse bidding strategies ϕ1 and ϕ2 are, respectively, convex and concave
functions.

Proof. Remark that from (10) and (11) ϕ1 and ϕ2 are continuous functions and therefore
differentiable. From (10) and (11) we obtain

≠ϕ b
a

ϕ b b
ϕ b ϕ b b ϕ b ϕ b i i j″( ) =

1 −

( ( ) − )
( ′( )( ( ) − ) − ( ( )( ′( ) − 1))) for = 1, 2 and .i

j

j
i j i j2

(A1)

Let us assume that ϕ b( ) > 0″
2 for all ∈b b[0, ¯ ]F . Note that ϕ b( ) < 0″

1 is equivalent

to <
ϕ b

ϕ b

ϕ b

ϕ b b

( )

( )

( ) − 1

( ) −

′ ′
1

1

2

2

. Using (10), this is also equivalent to ϕ b a( ) > 2 −′
2 2. Thus, as

ϕ a(0) = 2 −′
2 2ϕ2 convex leads to ϕ1 concave. Yet, ϕ1 concave, ϕ2 convex, and the

boundary conditions contradict Corollary 2. Hence, ϕ2 cannot be convex.
Let us assume that ϕ2 is neither convex nor concave. Then there exists at least one

inflection point b, such as ϕ b( ) = 0″
2 . Denote b̃ the first inflection point. Then, ϕ b( ˜) = 0″

2

and (A1) imply ϕ b a( ˜) = 2 −′
1 1. As ϕ a(0) = 2 −′

1 1, ϕ ′1 is not strictly monotone on b[0, ˜]

and there exists b̃̃ , such as ϕ b( ˜̃) = 0″
1 with b b˜̃ < ˜.18 In the same way, ϕ b( ˜̃) = 0″

1 and (A1)

imply ϕ b a( ˜̃) = 2 −′
2 2. As ϕ a(0) = 2 −′

2 2, ϕ ′2 is not monotone on b[0, ˜̃] which contradicts
that b̃ is the first inflection point of ϕ2.

19 Hence, ϕ2 has to be either convex or concave.
With a symmetric argument we get the same result for ϕ1.

In consequence ≤ϕ b( ) 0″
2 for all ∈b b[0, ¯ ]F . Furthermore, ≥ϕ b( ) 0″

1 if and only if
≥a ϕ b2 − ( )′2 2

which is true as ϕ2 is concave and ϕ a(0) = 2 −′
2 2. Hence, ϕ1 is convex. □

Claim 4. The inverse bidding strategy φi is a concave function.

Proof. Differentiating twice (8) leads to φ b v a a( ) = − ¯ (1 − )(1 − )″
i j i

ai
ai aj

1−
2− −

a a b((2 − − ) )i j

ai aj
ai aj

−3+2 +

2− − for all ∈b b[0, ¯ ]A , which is negative. □

Claims 2–4 imply that the curves ϕi and φi intersect once and only once. Moreover,
≥φ b ϕ b( ) ( )i i for all ∈b b[0, ˜ ]i with b b˜ < ¯

i
F and φ b ϕ b( ) < ( )i i for all ∈b b b[ ˜ , ¯ ]i

F . Furthermore,
we have shown that α v β v( ) > ( )i i for all ∈v v v[ ̄ , ]̄i with α v b( ¯ ) = ¯

i i
F. This completes the proof of

Lemma 6. □

Proof of Proposition 3. The expected payment of Bidder 1 from the first‐price auction is
given by e v ϕ β v β v( ) = ( ( )) ( )

v1
F 1

¯ 2 1 1 . Then, e (0) = 01
F and e v b( ¯) = ¯

1
F F. As β1 and ϕ2 are both

positive and increasing functions, e1
F is also a positive and increasing function. Moreover

e α(0) = (0) = 01
F

1 and e v α v( ¯) < ( ¯)1
F

1 . Therefore, the expected payments are equal in both
auctions when the Bidder 1’s valuation is equal to zero. Moreover, the Bidder 1’s expected
payment in the all‐pay auction is greater than her expected payment in the first‐price
auction when her valuation is sufficiently high. As e α(0) = (0) = 02

F
2 and e v α v( ¯) < ( ¯)2

F
2 ,

the same result holds for the Bidder 2. □

18If ϕ ′1 is constant on b[0, ˜], ϕ ′2 is also constant on this interval and b̃ cannot be an inflection point.

19If ϕ ′2 is constant on b[0, ˜̃], ϕ ′1 is also constant on this interval. Thus, b̃̃ cannot be an inflection point for ϕ1.
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Proof of Proposition 4. Before showing the result, let us establish inequality (A2).

Claim 5.

∫ ∫ ∫ ∫

∫ ∫

≥
x

v
β x dx v

x
β vx dx v

x
dx β vx dx

x

v
dx β x

v
dx i

2¯
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( ¯ ) ¯

2
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for = 1, 2.
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i i i
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i

0

¯ 2

2 0

1 2
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1 2
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1

0

¯ 2

2 0

¯
(A2)

Proof. The left and right terms of the inequality (A2) are established thanks to an
integration by parts. β ′2 is an increasing function. Then, for i = 2 (A2) is a special case of
the Chebyshev’s inequality for monotone functions. Yet, this inequality cannot be applied
for i = 1 as β ′1 is decreasing. However,∫ ∫ ∫≥β x dx dx β x dx( ) ( )′ ′

v x

v

v x

v

v

v0

¯

2¯ 1 0

¯

2¯ 0

¯

1
1
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2
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to ∫ ≥β x dx( ( ) − ) 0′x

v

b

v0

1

2¯ 1

¯

¯

2

2

F

. Then, let us show that ≥β x( )′ b
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for all ∈x v[0, ]̄. Notice,

≥β x β v( ) ( ¯)′ ′
1 1

and ≤b̄
v

a

F ¯

2 − 2
as β ′1 is decreasing and the maximum bid with asymmetric

bidders cannot be higher than the maximum bid with symmetric bidders. Therefore, it is
enough to establish that ≥β v( ¯)′

a1
1

2 − 2
. Suppose the contrary which is equivalent to

ϕ b a( ¯ )′ > 2 −1
F

2. This inequality is also equivalent to v a¯ > 2 −
a

b

1 −

1 − ¯ 2
1
F which leads to

b̄ >
v

a

F ¯

2 − 2
; hence a contradiction. □

Denote by Δi the difference among ∫ e v dv( )
v

v
i

1

¯ 0

¯ A and ∫ e v dv( )
v

v
i

1

¯ 0

¯ F . Then for i = 1, 2 and
≠i j,
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¯
⎜ ⎟
⎛
⎝

⎞
⎠ (A3)
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∫b
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vα v dv
b

= ¯ −
1

¯
( ) −

¯
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¯ F

(A5)

≥
v

a a

v

a a

v

a

¯

2 − −
−

¯

3 − 2 −
−

¯

3(2 − )
.

j i1 2 2

(A6)

Using ≥v ϕ β v( ( ))1 2 from Corollary 2 and integrating by parts (A4) follows. Using Claim 5
we obtain (A5). To get (A6) remark that the maximum bid with asymmetric bidders cannot be
higher than the maximum bid with symmetric bidders. Then it follows

≥

≥

v
a a a a a a

a a a a a

v
a a a a

a a a a a

Δ ¯
5 − − 3 − 2 +

3(2 − )(2 − − )(3 − − 2 )
,

Δ ¯
− 2 + 2 −

3(2 − )(2 − − )(3 − 2 − )
,

1
1 1

2
1 2 2 2

2

2 1 2 1 2

2
1 1

2
2 2

2

2 1 2 1 2
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and ≥Δ + Δ
vδ a a

a a a a a a a1 2
̄ ( , )

3(2 − )(2 − − )(3 − 2 − )(3 − − 2 )
1 2

2 1 2 1 2 1 2
with

δ a a a a a a a a a a a a

a a a a

( , ) = (3 − − 2 )( − 2 + 2 − ) + (3 − 2 − )(5 −

− 3 − 2 + ).

1 2 1 2 1 1
2

2 2
2

1 2 1 1
2

1 2 2 2
2

Let us show that the function δ a a( , )1 2 is positive for all a1 given a2 fixed and a a>1 2.
First, note that for each value of a2 inferior to a1:

• ⟶
→

δ a a a a( , ) 18(−1 + ) > 0
a a

1 2 2
2

2
1 2

.

• ⟶
→

δ a a a a( , ) 2 − 3 + > 0
a

1 2
1

2 2
3

1

.

Moreover, ∂
∂

a a a a a a a( , ) = 2[6 + (11 − 20) + 9 − 7 + ]
δ

a 1 2 1
2

1 2 2 2
2

1
. Then, to determine the mono-

tonicity of δ given a2 requires the determination of the sign of the polynomial

a a a a a6 + (11 − 20) + 9 − 7 + .1
2

1 2 2 2
2 (A7)

The discriminant of Equation (A7) is a a85 − 188 + 762
2

2 and thus nonpositive for all

≡a a> ~ 0.5322 2
94 − 2 594

85
. Therefore, for all ∈a a( , 1)1 2 given a a>2 2 the function δ is

increasing in a1. Hence, Δ + Δ > 01 2 .
Yet, when ≤a a2 2 Equation (A7) could positive as well as negative. Indeed, (A7) is positive for all

≤a a1 1 and nonpositive for all a a>1 1 with ≡a
a a a

1
20 − 11 + 85 − 188 + 76

12

2 2
2

2 . Note that a1 is positive

but superior to 1 when ≡a a> ˜ ~ 0.43422 2
−1 + 13

6
. Then, we have to distinguish two cases:

• For all ∈a (0, 1)1 given a a< ˜2 2, δ is increasing for ∈a a(0, ]1 1 and decreasing for ∈a a[ , 1)1 1 .
It follows that Δ + Δ > 01 2 .

• For all ∈a a[ ˜ , 1)1 2 , such as ∈a a a[ ˜ , ]2 2 2 , δ is increasing. Hence, Δ + Δ > 01 2 .

Finally, we have determined that the function δ is nonnegative for all a1 given each value of a2

inferior to a1. This completes the proof. □
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