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BENFORD’S LAW AS AN INDICATOR OF SURVEY
RELIABILITY—CAN WE TRUST OUR DATA?

Micha Kaiser*

University of Hohenheim
and Center for Consumer, Markets, and Politics (CCMP)

Abstract. This paper analyzes how closely different income measures conform to Benford’s law,
a mathematical predictor of probable first digit distribution across many sets of numbers. Because
Benford’s law can be used to test data set reliability, we use a Benford analysis to assess the
quality of six widely used survey data sets. Our findings indicate that although income generally
obeys Benford’s law, almost all the data sets show substantial discrepancies from it, which we
interpret as a strong indicator of reliability issues in the survey data. This result is confirmed by
a simulation, which demonstrates that household level income data do not manifest the same poor
performance as individual level data. This finding implies that researchers should focus on household
level characteristics whenever possible to reduce observation errors.

Keywords. Benford´s law; Data quality; Fraud detection; Measurement error; Survey quality

JEL Classification. C18; C15; C46; C55; C81; I100

1. Introduction

The widespread use of survey data across both social and life sciences has led to the development over
recent decades of a multitude of econometric and statistical methods designed to detect causal relations
and make the most precise predictions possible. One crucial issue that remains, however, is measurement
error, which may severely bias estimates.1 Although research streams in both econometrics and statistics
are already concentrating on how to deal with measurement error-induced reliability problems, researchers
could benefit greatly from advance knowledge about data quality.2 Such knowledge is even more important
for policy makers, who do not apply econometric techniques to the survey data on which they base their
policy inferences, especially when those data have been collected for particular government purposes.

Although myriad methods already exist for checking the quality of a particular data set, most rely on
expensive procedures like matching employee and employer data to enable comparison (for a detailed
description, see Mellow and Sider, 1983; Duncan and Hill, 1985). An alternative, and less costly, option
is to apply Benford’s law of likely first digit distribution in a data set, and detect anomalies and possible
quality problems by measuring the number of deviations from the theoretical pattern. This rule, however
commonly used by tax authorities to detect fraud, is still not widely applied in social sciences.3 Authors
who have used it to evaluate (survey) data quality include Judge and Schechter (2009), mainly for agricul-
tural data; Nigrini and Miller (2007), for hydrological data; Sandron (2002), for population numbers; Mir
(2014), for religious data; Ausloos et al. (2015), for long-term birth numbers; Fu et al. (2007), for image
forensics; and Swanson, Cho and Eltinge (2003), for consumption expenditures. Additionally, further
studies exist that discuss the use of Benford´s law as a lie detector (Gauvrit et al., 2017), to detect incorrect
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information of countries regarding their effort to combat money laundering (Deleanu, 2017), or to assess
the reliability of financial reports in developing countries (Shi et al., 2018). The literature thus lacks large-
scale analyses of how individual income data conforms to Benford’s law, knowledge that could be used
to improve the assessment of survey data quality. Given the widespread use of income data in both econo-
metric and policy analyses, however, correct assessment of data quality is crucial for accurate inference.

This paper attempts to meet this need by making the following contributions to the existing literature:
First, we show plausible reasons to consider income as generally in compliance with Benford’s law.
Second, we use the law to assess income data quality in six harmonized survey data sets that are widely
used in economics and social science. Third, by using three different variables, we detect systematic
differences in the quality and design of these income measures. Fourth, we introduce a simple but efficient
simulation algorithm that improves the validity of a Benford analysis for any particular survey data set.

The paper is organized as follows: Section 2 describes Benford’s law and the conditions for its
applications, explains the analytical method used for our analysis, and describes the data sets analyzed.
Section 3 reports the main results and Section 4 presents the specifications for and outcomes of the
simulation test for robustness. Section 5 then discusses the results and concludes the paper.

2. Methods and Data

2.1 Benford’s Law

Although named for American physicist Frank Benford (1938), the phenomenon on which Benford’s law
is based was first reported by Francis Newcomb (1881), who noted a more frequent use of logarithmic
tables that included numbers beginning with low digits. From this observation, he derived a mathematical
rule for the probability p of first digits d occurring in the numbers of a given data set. This rule is
characterized by the following logarithmic function (with B as the logarithmic base), which empirically
predicts the occurrence of first digits in a broad variety of data sets:

p ( j) = logB

(
1 + 1

j

)
(1)

Benford (1938) independently made this same observation over a half century later and published his
own first-digit law.4

In Figure 1, we illustrate Benford’s law by mapping first digits j ∈ {1, 2, 3 . . . , 9} onto a probability
space to produces a monotonically decreasing graph with higher probability values for lower digits and
almost uniform values for higher digits. Whereas the probability of observing a number beginning with
j = 1 in a given data set is approximately 6.5 times higher than that for a number beginning with
j = 9, the probability for a number beginning with j = 8 (rather than j = 9) is only 1.1 times higher.

Benford’s law does not, however, characterize every data set: rather, its occurrence requires the presence
of various criteria. Pinkham (1961), for instance, shows that changing the measurement scale should not
change the first digit distribution in a set of numbers. Thus, if the first digit occurrence probability in
a data set expressed in kilometers changes when the same data are expressed in meters, the data are
probably not following Benford’s law. In subsequent work, Hill (1995a) further shows that Benford’s
law is characterized by base invariance, meaning that the first digit occurrence probability must not
change with a change in the base B of the underlying logarithmic function (see equation (1)). Moreover,
as Pietronero et al. (2001) pointed out, the occurrence of Benford’s law is a result of multiplicative
processes, implying necessary Benford compliance by data generating processes that follow a Markov
chain (Berger et al., 2011). This latter throws valuable light on why many observable (economic) data obey
Benford’s law: many economics processes (e.g., GDP growth, employment rates, or income development)
are describable by Markov chains (Le Gallo, 2004). Another possible explanation for this interrelation is
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1604 KAISER

Figure 1. Benford First Digit Distribution of Numbers in a Given Data Set.

given by the fact that quantities that are related to the exponential function (as most economic processes)
show necessarily the pattern described by Benford‘s law (Whyman et al., 2016). These findings are in
line with recent work of Villas-Boas et al. (2017), which demonstrate that not only physical but also
economic behavioral systems are consistent with Benford‘s law.

The fact that the random numbers used in data generating processes need not be identically
distributed may also explain the frequent adherence to Benford’s law of “real world” data sets (Hill,
1995). For example, although the numbers used in scientific publications are invariably taken from
a mix of different probability distributions, they tend to obey Benford’s law to some extent (Tödter,
2009). The latter observation is also in line with Formann’s (2010) simulation evidence that data
from right-tailed distributions, particularly, are likely to obey Benford’s law. Again, this adherence
is likely if the resulting random variables in the data set stem from a mix such as the ratio of
two half-normal distributions. The latter conversely implies, however, that data resulting from a
symmetric distribution is unlikely to obey Benford’s law, which in fact is seldom the case in economic
data (e.g., income) because of its tendency to be log normally distributed (Clementi and Gallegati,
2005).

Wallace (2002) thus proposes a rule of thumb for data set adherence to Benford’s law that expects
fulfillment of two criteria: the mean of the data set should be higher than the median, and the data set
should be characterized by a positive skewness value. This rule implies that to obey Benford’s law, the
data must have sufficient volatility, including a sufficiently broad range of numbers (Durtschi et al., 2004).
Durtschi et al. (2004) conversely propose the following exclusion restriction: a data set is not likely to
obey Benford’s Law if it is, for instance, “influenced by human thought,” has a “built in minimum or
maximum,” or “is composed of assigned numbers” (p. 24). As a result of the above, economic data
are widely accepted to generally conform to Benford’s law. Hence, any discrepancies in the data sets
evaluated here may indicate a serious data reliability problem.

2.2 Hypothesis Testing

To make the most accurate evaluations of data reliability, we incorporate several of the many methods for
testing adherence to the first digit law but interpret the separate results as an aggregate. In particular, we
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combine a graphic analysis with three statistical methods: Pearson’s (1900) chi-squared (χ2) test as well
as the Kolmogorov–Smirnov (1948) test for goodness of fit, and a distance measure developed by Leemis
et al. (2000).

The Pearson’s goodness-of-fit uses the following test statistic:

χ2 =
m∑

j=1

(
N j − n j

)2

n j
, (2)

which computes the sum of the squared (and standardized) deviations of the empirical number of
observations N j (with n = ∑9

j=1 N j ) for each of the first digits j ∈ {1, 2, 3 . . . , 9} and the expected
frequency n j = p( j) × n as proposed by Benford’s law. Given a particular significance level α, we
will not reject the null hypothesis that the data obey Benford’s law if the test statistic does not exceed
the corresponding critical value (20.09 for α = 0.01 and 15.51 (13.36) for α = 0.05 (α = 0.10),
respectively).

The Kolmogorov–Smirnov (1948) test is expressed as

Dn = supx |Fn (x) − F (x))|, (3)

where F (x) = p(x ≤ j) represents the cumulative distribution function of the Benford distribution and
Fn (x) = Prn (x ≤ j) denotes the empirical cumulative distribution function (cumulative frequency) for
all n observations.5 Here, we reject the null hypothesis if the test statistic Dn exceeds the critical values
k, calculated as follows (Sachs, 2004, p. 427–431):

k = bα√
n

, (4)

where bα ∈ {1.224, 1.358, 1.628} depends on significance level. The distance measure (Leemis et al.,
2000) used to test the degree of similarity between the first digit distribution in the data sets analyzed and
those in the Benford distribution is then expressed by

m = max j=1,2,...,9 {|Prn ( j) − p ( j)|} (5)

2.3 Data

The analysis evaluates six different longitudinal data sets from the Health and Retirement Study (HRS)
family of studies, originated by the U.S. National Institute on Aging (NIA). All six focus on a broad
range of health, wealth, and income issues, and include quality of life measures that provide insights
into the life situations of older citizens. To accurately identify and compare the quality differences in the
individual data sets, in five cases, instead of the originals, we employ the harmonized data sets provided
by Gateway to Global Aging (2017).6 A major advantage of harmonization is that the resulting data sets
tend to include similar variables, which facilitates both the analysis and interpretation of the separate
analytical results:

HRS (America). The original Health and Retirement Study (HRS), funded by the NIA, whose first
wave (1992–1993) served as a baseline for the remaining 11 waves (ending in 2014–2015), which all
closely mirrored its structure. From an original sample size of 12,600 individuals over 51 years old,
the sample size increased to 18,700 by 2014.

Harmonized ELSA (England). The English Longitudinal Study of Ageing (ELSA), administered to
individuals over 50 years old, was funded by the NIA and three different UK government departments.7
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Its sample declined from 12,000 in 2002–2003 to approximately 9,600 in 2014–2015. The harmonized
dataset covers four of the original six waves.
Harmonized SHARE (Europe).8 The Survey of Health, Ageing, and Retirement in Europe (SHARE),
structured like the HRS and ELSA and funded by the European Commission, was administered to
individuals over 50 years old. Having been conducted in 19 European countries plus Israel, SHARE
offers notably larger samples: 30,700 in the first wave and 68,200 in the latest. The harmonized data
set covers four SHARE waves: 2004–2005, 2006–2007, 2010–2011, and 2012–2013.

Harmonized CRELES (Costa Rica). The Costa Rican Longevity and Healthy Aging Study (CRELES)
was a joint project of the University of Costa Rica‘s Centroamericano de Población, Instituto de
Investigaciones, and the University of California, Berkeley. In contrast to its sister studies, the CRELES,
administered in five waves from 2004–2005 to 2012–2013, includes two different cohorts: those over
55- and those over 60 years old.

Harmonized TILDA (Ireland). The Irish Longitudinal Study on Ageing (TILDA), conducted with
individuals over 50 years old, was funded by the Department of Health, Atlantic Philanthropies, and
Irish Life. The harmonized TILDA data set compiles two survey waves: 2010–2011 (sample = 8,500)
and 2012–2013 (sample = 7,200).

Harmonized LASI (India). The Longitudinal Aging Study in India (LASI), funded by the NIA,
the Government of India, and the United Nations Population Fund, differs from the other surveys
in that it was only administered once, in 2010, to individuals over 45 years old. Nonetheless,
although the sample only includes 1,600 individuals, the survey is structured similarly to the
HRS.

To test whether the numbers in the data sets come close to following Benford’s law, we focus on three
different (income) variables measured over the previous 12 months: total household income (HITOT) from
all sources; total respondents earnings (RIEARN) from both labor and trade; and spousal employment
earnings (SIEARN) from both labor and trade.9 One reason for choosing these particular variables is that
not all the individual surveys covered by the harmonized data sets necessarily address the same topics,
which makes it hard to compare data set quality. For instance, although it would be interesting to evaluate
the reliability of individual health data (e.g., hospital stays per year), this information is only available in
some surveys. Moreover, the health related data contained in almost every survey tend to refer to different
time spans.10

At the same time, because the conditions for a set of numbers (or variables) to obey Benford’s
law are relatively strict, not every variable can be exploited for data reliability assessment using a
Benford analysis. Information on cigarette intake per day, for example, although an interesting candidate
for reliability testing, does not obey Benford’s law because of its built-in maximum (Durtschi et al.,
2004). Income, however, is a widely used analytic variable across scientific disciplines—especially in
economics or social sciences—so the reliability of these income variables is central to assessing the
validity of the corresponding analytic conclusions. In particular, because wealth related policy decisions
tend to be based on major survey data, the data underlying income distribution information must be
reliable.11

To avoid analytic distortion, our summaries of the mean, median, skewness, and number of observations
for these three variables in each data set (Tables 1–3) exclude observations in which each variable has a zero
value. For all data sets, the mean values for HITOT, RIEARN, and SIEARN (Tables 1–3, respectively) are
higher than the medians, and all distributions appear positively skewed. This pattern is a strong indicator
that the income variables used should generally obey Benford’s law and hence be suitable for detecting
reliability problems in the data (Wallace, 2002).
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Table 1. Descriptive Statistics for Total Household Income for the Different Data Sets.

HITOT Mean Median Skewness Obs.

HRS 57,510.78 34,800 189.72 224,287
ELSA 23,854.1 18,616 11.463 61,742
CRELES 16,221.65 1,440 102.56 10,703
LASI 124,161.7 58,900 5.62 1,504
SHARE 36,651.25 22,933.14 5.97 25,028
TILDA 59,086.01 32,028 19.534 12,579

Notes: The values are measured in the following units: HRS – nominal dollars; ELSA – nominal pounds; CRELES
– 1,000 Costa Rican colons; LASI – Indian rupees; TILDA – euros; SHARE – euros, except for Denmark, Sweden,
Switzerland, Poland, Czech Republic, Hungary, and Estonia. The first wave of SHARE includes before-tax income,
whereas all subsequent waves consider after-tax income.

Table 2. Descriptive Statistics for Respondent Employment Earnings for the Different Data Sets.

RIEARN Mean Median Skewness Obs.

HRS 36,446.42 25,000 30.89 84,375
ELSA 14,736.67 12,009.24 12.70 19,796
CRELES 4,015.614 1,800 6.39 2,435
LASI 32,656.59 13,750 2.61 92
SHARE 22,318.6 18,000 1.44 9,836
TILDA 30,899.19 25,000 1.04 2,421

Notes: The values are measured in the following units: HRS – nominal dollars before taxes and other deductions;
ELSA – nominal pounds after taxes and other deductions; CRELES – 1,000 Costa Rican colons; LASI – Indian rupees;
TILDA – euros; SHARE – euros, except for Denmark, Sweden, Switzerland, Poland, Czech Republic, Hungary, and
Estonia. The first wave of SHARE includes before-tax income, whereas all subsequent waves consider after-tax
income.

Table 3. Descriptive Statistics for Spousal Employment Earnings for the Different Data Sets.

SIEARN Mean Median Skewness Obs.

HRS 38,561.26 27,000 31.91 63,085
ELSA 15,047.19 12,309.47 13.65 16,229
CRELES 3,696.734 2,400 3.86 1,390
LASI 36,030.64 15,000 2.40 70
SHARE 22,827.07 18,511.64 1.43 6,488
TILDA 32,301.43 26,000 0.977 1,389

Notes: The values are measured in the following units: HRS – nominal dollars before taxes and other deductions;
ELSA – nominal pounds after taxes and other deductions; CRELES – 1,000 Costa Rican colons; LASI – Indian rupees;
TILDA – euros; SHARE – euros, except for Denmark, Sweden, Switzerland, Poland, Czech Republic, Hungary, and
Estonia. The first wave of SHARE includes before-tax income, whereas all u subsequent waves consider after-tax
income.
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Figure 2. Relative Frequencies for GDP and Benford.

3. Results

First, to verify the assumption that income measures should generally be Benford distributed, we
also include World Bank (2017) GDP data from 1960 onward measured in current U.S. dollars for
264 countries. The total number of observations is 11,315, with a mean and median of US$ 966 billion
and US$ 13.8 billion, respectively. This higher mean than median, combined with the positively skewed
(8.44) GDP distribution, strongly suggests that the GDP data should obey Benford’s law.

By comparing the relative frequencies for the first digits in the GDP data set with those proposed by
Benford’s law (Figure 2), we reveal a relatively good fit, with only minor deviations. This finding is
confirmed by the fact that neither the chi-squared nor Kolmogorov–Smirnov tests exceed their respective
critical values (see Table 4), leading to acceptance of the null hypothesis. Likewise, the maximum
deviation in the distance test is 0.0033, which corresponds to a 7% maximum (occurring at the ninth
digit), a negligible discrepancy. Both these results provide strong evidence for the assumption that income
data obey Benford’s law, with any deviation merely an indicator of a reliability issue in the underlying data.

We then compare the frequency graph for HITOT in the harmonized data sets with that for the Benford
distribution (Figure 3), revealing clearly that the first digit distribution for the income variable in the

Table 4. Test Statistic Values for GDP.

GDP

χ 2 2.9737
Dn 0.0046
m 0.0033
n 11,315

Notes: This table lists the test statistics values for the chi-squared (χ2), the Kolmogorov–Smirnov (Dn), and distance
(m) tests. *p < 0.1, **p < 0.05, ***p < 0.01.
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Figure 3. Relative Frequencies for HITOT and Benford for the Different Data Sets.

SHARE, HRS, and LASI data sets is close to that of the Benford distribution. The income data from
the harmonized ELSA and CRELES, in contrast, although still showing a general pattern, perform
comparatively poorly in terms of Benford similarity, whereas the harmonized TILDA, although generally
patterned close to Benford, shows a major discrepancy in the first number.

The results revealed by this graphic analysis are largely confirmed by the statistical analysis (see
Table 5). Although the HITOT variable seems to fully obey Benford’s law only in the LASI data set (in
which the null hypothesis cannot be rejected for either the chi-squared or Kolmogorov–Smirnov test),
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Figure 4. Relative Frequencies for RIEARN and Benford for the Different Data Sets.

the deviations indicated by the chi-square values are lower for the HRS and SHARE data than for the
ELSA and CRELES data. The chi-square for the TILDA analysis seems comparatively low. When the
values for each maximum deviation are compared, however, the accuracy pattern implied by the graphics
holds true: the values for the ELSA, TILDA, and CRELES are higher than those for the other data sets.
Hence, taken together, the graphic and empirical analyses point to major differences in the reliability
of the HITOT variable across the different data sets, with particularly poor performance in the ELSA,
TILDA, and CRELES data sets.

As regards RIEARN and SIEAR (Figures 4 and 5, respectively), the graphic analysis suggests that
the first digits of these earnings variables do not fit Benford’s law as well as does household income.
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Figure 5. Relative Frequencies for SIEARN and Benford for the Different Data Sets.

Although the generally decreasing probability pattern is still present, all data sets show more or fewer
major deviations for both variables. This observation is supported by the statistical analysis in which both
the chi-square and Kolmogorov–Smirnov values (see Table 5) show statistically significant differences
from the Benford for the first digit distributions of RIEAN and SIEARN in all data sets except the LASI.
In this latter, however, acceptance of the null is mainly attributable to the low number of observations and
should thus be treated with caution, as should the comparatively low chi-square values for the CRELES
and TILDA data. This caveat is supported by the overall occurrence in the distance measure (for all data
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sets except the TILDA) of much larger values than observed in the HITOT analysis. Given the results
of both the statistical and graphic analyses, a general reliability issue with the RIEARN and SIEARN
variables across all data sets analyzed is highly probable.

4. Simulation

Although the previous results raise doubts about the reliability of income data in longitudinal panel
studies, these doubts are based on the assumption that income data should generally obey Benford’s
law. If the opposite were true, our analytic outcomes would inevitably lead to rejection of the null
hypothesis because the first digit frequency patterns in the data sets analyzed would necessarily differ
from those proposed by Benford. In that case, it would be impossible to use Benford’s law for any
valid assessment of data reliability. We thus avoid false inference by employing a simple Monte Carlo
(MC) simulation in which we exploit information about the first and second moments of the HITOT
variable in all our data sets to construct hypothetical samples, which are then tested for Benford
adherence.12

The MC simulation is based on two assumptions:13

Assumption 1. HITOT = X = (X1, X2, . . . Xn) is a vector of log normally distributed random
variables log10(X ) ∼ N (μn, σ

2
n ), whose mean and variance are given by μn and σ 2

n , respectively.

Assumption 2. Y = (Y1, Y2, . . . Yn) is a vector of log normally distributed variables log10(Y ) ∼
N (μn, σ

2
n ), whose mean and variance are given by μn and σ 2

n , respectively.

The simulation itself can be characterized by the following repetitive process:

MC simulation pseudo-code:
(1) Create a vector T, with i elements
(2) Calculate E (X ) = μn and V ar (X ) = σ 2

n

(3) Create new random vector Y i containing n random variables
(4) Create vector Zi , with Zn

i = 10yn

(5) Conduct a Benford analysis and replace the ith element of T with the computed value for the χ 2 test
statistic

(6) Repeat steps 3 to 5 i times

As Formann (2010) shows, log normally distributed random variables obey Benford’s law if
the probability density function fulfills certain criteria that are dependent on the values of the
first two moments. Hence, the distribution of the simulated chi-square values for each data
set should contain information about whether the data set should generally obey Benford’s
law.

In Figure 6, we show the distribution of T calculated independently for each data set when i = 100.000,
with a vertical line indicating the critical value for the 99% confidence interval of the chi-squared
distribution. Except for the ELSA data set, most simulated chi-square values are below the critical
value,14 which reinforces the assumption that the Benford deviations reported in the Results section are,
in fact, the consequence of a reliability issue in the income data. It must nevertheless be noted that this
finding is unconformable for ELSA, which impedes the interpretation of reliability for that particular data
set.
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Figure 6. MC Simulation Results for Each Data Set.
Notes: The figure graphs the simulated χ 2values for each data set, with the vertical lines indicating the critical

value of the chi-squared distribution for the 99% confidence interval.

5. Conclusions

According to this analysis, Benford’s law seems to hold for income information from both aggregate
(GDP) and survey data. Nevertheless, although there is no significant difference between the Benford
first digit distribution and the first digit pattern in the World Bank GDP data, HRS data adherence to
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Benford’s law is less strict when measured statistically. Given income data’s general tendency to conform
with Benford’s law, this finding strongly suggests that the income data from our surveys are subject to
observational errors and should be treated with caution in terms of policy and econometric analysis. Such
caution need not apply, however, to all data sets and variables analyzed. Whereas respondent (or spousal)
personal earnings show poor reliability in all data sets, the household level income measure performs
comparably well in the HRS (America), SHARE (Europe), and LASI (India) data.15

To some extent, this finding contradicts Judge and Schechter’s (2009) conclusion that survey data from
developing countries is generally less reliable. Rather, our analysis of harmonized data sets suggests that
it is less a matter of origin and preparation than the framing of the question that determines the degree of
reliability. In particular, respondents tend to make less reliable statements about their individual income
than about household income.16 The overall robustness of these findings in all but the ELSA data set is
confirmed by a simulation implemented to determine whether Benford deviations do indeed indicate a
reliability problem or are merely the result of a non-Benford distributed variable.

Our study results have two important implications for both econometric and policy analyses of survey
data: First, our evidence of crucial reliability problems in data measured on the individual level strongly
suggests the use of household level data whenever possible, second, contrary to the accepted wisdom that
survey data from developed countries perform better than those from developing countries, our results
suggest that any data analyzed should be evaluated for quality using a Benford analysis confirmed via
simulation. As illustrated by our simulation results, this technique provides valuable insights on the
variable of interest’s general behavior, thereby improving the quality assessment of the underlying data.
Nonetheless, because we only analyze income’s Benford adherence for the first digit in a particular family
of surveys, our results—whether for different variables, different survey data sets, or for second (or later)
digits—are not generalizable to the broader body of survey research. Future research might thus make
use of the Benford analysis to evaluate additional variables, later digits, and data from other surveys to
enhance knowledge about the interrelation of data framing, origin, and reliability.
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This analysis is based primarily on income data from the harmonized datasets and codebooks developed
by Gateway to Global Aging, with funding help from the National Institute on Ageing (R01 AG030153,
RC2 AG036619, R03 AG043052; see www.g2aging.org). Additionally, GDP data are taken from the
World Bank
(http://data.worldbank.org/indicator/NY.GDP.MKTP.CD).

Notes

1. Survey data tend to be subject to two different kinds of (nonsampling) measurement errors: random
errors, such as those caused by interviewer inattentiveness, or nonrandom (systematic) errors, such
as the inaccurate responses generated when the survey is badly constructed or includes problematic
survey items (for a detailed discussion, see Groves, 2004; Saris and Gallhofer, 2014; Bowling, 2005)

2. Saris and Revilla (2016) provide a useful overview of existing correction techniques for measurement
errors in survey data. Moreover, a wide body of literature focuses on measurement error in time-series
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data. Such techniques usually exploit the data’s distributional properties to overcome the uncertainty
from measurement problems (e.g., the Kalman (1960) filter, a powerful tool for improving predictions
in an evolving system).

3. For instance, a Benford analysis facilitated the uncovering of the 2001 Enron accounting fraud
(Nigrini, 2012, p. 207). See also Ausloos, Cerqueti and Mir (2017) for a more recent study about tax
fraud and Benford´s law.

4. A more generalized formulation of Benford’s law describes the probability of the occurrence of
a particular number j as the nth digit in the following form: p( j) = ∑Bn−1

k=Bn−1 logB(1 + 1
k·B+ j ).

Readers interested in the law’s application beyond the first digits addressed here will find additional
information in Hill (1995b) and Durtschi et al. (2004).

5. Here, Prn( j)equals the probability of observing a number beginning with digit j in a given data set
with n observations (i.e., the relative frequency of numbers beginning with j in a given data set).

6. For more information, see https://g2aging.org/?.
7. The Department of Health, the Department of Work and Pensions, and the Department for Transport.
8. SHARE data cover the following European countries: Austria, Belgium, Czech Republic, Denmark,

Estonia, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Poland,
Portugal, Slovenia, Spain, Sweden, and Switzerland.

9. Minor differences in income variable composition among the different surveys include the inclusion
(HRS) or exclusion (TILDA) of second job earnings in constructing the RIEARN and SIEARN
variables (see the respective data set codebooks for more information).

10. For instance, although almost all harmonized data sets include information about drinking behavior,
some questionnaires ask respondents for their daily alcohol intake (e.g., ELSA or LASI), whereas
others ask for the total number of drinks if the respondent is currently drinking (e.g., TILDA).

11. For example, the German Federal Ministry of Labor and Social Affairs regularly publishes a Poverty
and Wealth Report (Armuts-und Reichtumsbericht), which deals with income dynamics among
Germans. The report’s major analyses and conclusions are based on income data from the German
Socio-Economic-Panel (GSOEP), a large-scale, national, longitudinal survey (see http://www.armuts-
und-reichtumsbericht.de/DE/Startseite/start.html).

12. We apply the MC simulation only to the HITOT variable because the calculations are so
computationally intensive.

13. We base Assumption 1 on the demonstrable tendency of income data to be asymptotically log
normally distributed (Clementi and Gallegati, 2005).

14. The 99th percentile values are 20.0644 (HRS), 354.0885 (ELSA), 20.0874 (CRELES), 20.0644
(LASI), 20.1608 (SHARE), and 20.2041 (TILDA).

15. However, since there exists no clear cutoff for each statistical measure that indicates a change from a
good to a rather poor reliability, it is rather the relative discrepancy in the test statistics for different
data sets that matters in the assessment of the quality. For instance, while the SHARE data show
a chi-square value of around 90 for the analysis of HITOT, the tests statistic is 7 times higher for
the CRELES data. Given this discrepancy—together with the results of the Kolmogorov–Smirnov
as well as the distance measure—the SHARE shows a rather high quality compared to the CRELES
data.

16. Because all the data sets employ detailed income measures, the differences in these measures’
reliability do not stem from rounding errors.
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