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Abstract

Surgical measures to combat obesity are very effective in terms of weight loss,
recovery from diabetes, and improvement in cardiovascular risk factors. How-
ever, previous studies found both positive and negative results regarding the
effect of bariatric surgery on health care utilization. Using claims data from the
largest health insurance provider in Germany, we estimated the causal effect
of bariatric surgery on health care costs in a time period ranging from 2 years
before to 3 years after bariatric intervention. Owing to the absence of a con-
trol group, we employed a Bayesian structural forecasting model to construct a
synthetic control. We observed a decrease in medication and physician expen-
ditures after bariatric surgery, whereas hospital expenditures increased in the
post-intervention period. Overall, we found a slight increase in total costs after
bariatric surgery, but our estimates include a high degree of uncertainty.
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1 INTRODUCTION

Overweight and obesity are a global public health concern. If current trends continue, by 2025, global obesity prevalence
will reach 18% in men and surpass 21% in women (NCD Risk Factor Collaboration, 2016). In Germany, the prevalence of
overweight has not risen in the last few years, but the prevalence of obesity has continued to increase. Approximately one
in five 18- to 79-year-olds has a body mass index of at least 30 kg/m2 and is therefore considered obese (Mensink et al.,
2013). A number of comorbidities are associated with overweight and obesity. People with obesity are at increased risk of
type II diabetes mellitus, cardiovascular diseases, and certain types of cancer (Garg, Maurer, Reed, & Selagamsetty, 2014).
Ultimately, these conditions lead to a shortened life expectancy compared with people of normal weight (Hu et al., 2004).

Conservative treatment methods include dietary changes, physical activity, and behavioral therapy (Berg et al., 2014).
However, surgical intervention is more effective than conservative treatment with respect to reduction in body fat,
improvement of obesity-associated diseases, and lowering mortality (Colquitt, Pickett, Loveman, & Frampton, 2014;
Jakobsen et al., 2018; Sjöström et al., 2009; Wirth, Wabitsch, & Hauner, 2014). Different types of bariatric surgery are
available and are used to counteract existing obesity in very obese individuals. Bariatric surgery may be considered for
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individuals with a body mass index greater than or equal to 35 kg/m2, when the use of conventional methods has been
unsuccessful. (Consensus Development Conference Panel, 1991) Surgical procedures enable substantial and long-term
weight loss (Sjöström et al., 2004), leading to a reduction in the incidence of diabetes (Carlsson et al., 2012), cardiovascular
events (Sjöström et al., 2012), and neoplasms.(Narbro et al., 2002)

On account of the high economic cost of overweight and obesity for health care providers (Tsai et al., 2011; Yates et al.,
2016), the economic aspects of bariatric surgery also need to be considered. In Germany, absorption of the costs of bariatric
surgical procedures is currently not included in the standard benefit catalog of statutory health insurance (SHI). However,
the interventions can be requested for individual cases and financed by the patient's insurance fund. This could be the
reason why the number of bariatric interventions in relation to the population is considerably lower in Germany than in
neighboring countries. The frequency of operations for morbid obesity is currently 9 per 100,000 adults in Germany; in
other European countries, it is many times higher (Sweden: 77; France: 57; and Belgium: 108; Angrisani et al., 2015).

Given the increasing number of obese people and thus increasing costs to SHI funds, an evaluation of the economic
impact of bariatric surgery is of great importance. Bariatric surgery is associated with a reduction in the use of medication
for the treatment of obesity-related diseases (Keating, Peeters, Swinburn, Carter, & Moodie, 2013; Makary et al., 2010;
Narbro et al., 2002; Potteiger et al., 2004), but a reduction in the use of medication alone is not a sufficient proof that a
procedure is economically reasonable.

The clinical effects of bariatric surgery are well documented (Wirth et al., 2014), but it is a very expensive procedure,
and the question to whether bariatric surgery is cost-effective (i.e., more effective but more costly than usual care) or even
cost saving (i.e., more effective and less costly than usual care) is still unanswered (Maciejewski & Arterburn, 2013).

Only a few studies have compared the pre-surgical and post-surgical costs among individuals who underwent bariatric
surgery in the main service categories of a health care system. Although three studies showed higher total health expen-
ditures after surgery (Bleich et al., 2012; Maciejewski et al., 2010; McEwen et al., 2010), cost reductions were observed in
another (Crémieux et al., 2008). These differing results do not produce a conclusive picture of how a bariatric interven-
tion affects the use of medical services, especially as these studies did not analyze the reasons for utilization. Only one
study investigated the economic consequences of bariatric surgery under the conditions of the German health care system
(Augurzky et al., 2016). This study used a matched control group to evaluate the effects of bariatric surgery, which can be
problematic as relevant inclusion and matching criteria may not be available in the data or not known and even a rich set
of covariates is insufficient to control for preexisting differences between the treatment and control groups (Arceneaux,
Gerber, & Green, 2006).

As an alternative to estimate the causal impact that bariatric surgery has on health care utilization, we use a “synthetic
control” approach. The term synthetic control originally referred to the method of Abadie, Diamond, and Hainmueller
(2010) but today includes a broader range of similar methods (Xu, 2017). These methods have been shown to be useful
in the analysis of intervention effects through time series data in the absence of a randomized controlled trial. In health
economics and health policy evaluation, the synthetic control method (SCM) has been used, for example, to estimate the
effect of user fee removal in Zambia (Lépine, Lagarde, & Le Nestour, 2018), pay for performance (Kreif et al., 2016; Ryan,
Krinsky, Kontopantelis, & Doran, 2016), and universal health insurance coverage (Courtemanche & Zapata, 2014). For
more applications in health research, consult the review by Bouttell, Craig, Lewsey, Robinson, and Popham (2018). In this
paper, we use a Bayesian structural approach that estimates the model on the pretreatment period using Gibbs sampling
and then iterate each sampling trajectory forward using the estimated parameters to construct the post-intervention coun-
terfactual. This counterfactual forecasting method has the advantage that it does not require a set of dedicated control
units, that is, untreated individuals, and instead can use any sort of related time series to predict the counterfactual.

The rest of the paper is organized as follows. First, we provide an overview on SCMs and detail the Bayesian structural
time-series (BSTS) model in Section 2. In Section 3, we give an overview of the data. We present the results of our analysis
in Section 4. Finally, we discuss the results in Section 5 with the implications of the model results and the limitations,
before we conclude in Section 6.

2 SYNTHETIC CONTROL METHODS

In this section, we briefly review existing methods for synthetic controls and explain the difference from the Bayesian
structural model. We start by defining the general framework and notation, closely following Imbens and Rubin (2015).

In the synthetic control framework, we assume T time points and J + 1 units, where the first unit, j = 0, is exposed
to the intervention in periods T0 + 1 to T and unexposed in periods 1 to T0. The synthetic control unit is created from a
collection of the remaining J control units, the so-called donor pool. These units are unexposed in all time periods.
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We define 𝑦1
𝑗t as the outcome that would be observed for unit j at time t if unit j is exposed to the intervention in periods

T0 + 1 to T and 𝑦0
𝑗t as the outcome that would be observed for unit j at time t in the absence of the intervention.

The observed outcome yjt can be written in terms of the potential outcomes framework (Neyman, 1923; Rubin, 1974):

𝑦0t =
{

𝑦0
0t for t = 1, … ,T0

𝑦1
0t for t = T0 + 1, … ,T

.

The treatment effect for unit j at time t is defined as 𝜏𝑗t = 𝑦1
𝑗t − 𝑦0

𝑗t for t = T0 + 1, … ,T. This is the treatment effect on the
treated. However, the counterfactual 𝑦0

0t is never observed for the post-intervention period. In consequence, to estimate
this treatment effect, the missing counterfactual observations have to be imputed. In the present case, the response vari-
able is health care utilization (in particular, we look at medication costs, inpatient costs, and outpatient costs as proxies
for utilization), so the causal effect of interest is the difference between the observed series, and the series that would have
been observed had the intervention—in our case, bariatric surgery—not taken place. Note that for all pre-intervention
periods t ∈ {1, … ,T0}, we have 𝑦1

𝑗t = 𝑦0
𝑗t.

To estimate a treatment effect, it is necessary to make an assumption regarding the outcomes that would have occurred
in the absence of treatment for the treated unit 𝑦0

0t. Let djt be an indicator variable equal to 1 if unit j is treated at time t
and 0 otherwise. Furthermore, let xjt be observed covariates. We now assume that the treatment-free potential outcome
for both groups is the same in expectation conditional on past outcomes and observed covariates:

𝑦0
𝑗h ⟂ d𝑗t|(y𝑗 , x𝑗t),

where the symbol ⟂ defines statistical independence, h > T0 marks the post-intervention period, and y𝑗 = (𝑦𝑗1, … , 𝑦𝑗T0)
is the set of pre-treatment outcomes. This assumption is called the conditional independence assumption. Under this
assumption, individuals with similar outcomes in the pre-treatment period would be anticipated to have similar potential
treatment-free outcomes in post-treatment periods after conditioning on observed covariates xjt (O'Neill et al., 2016).
However, the validity of a particular identifying assumption can never be tested empirically because the counterfactual
outcome cannot be observed. In the following, we always assume conditional independence.

2.1 Traditional synthetic control methods
The SCM by Abadie and Gardeazabal (2003) and Abadie et al. (2010) is an alternative approach for evaluating the treat-
ment effect in observational settings without randomized controls that goes beyond simple pre-post comparisons of
means. With this method, a number of time series that are unaffected by the intervention are optimally weighted accord-
ing to their fit to the outcome in the pre-intervention period. They are then combined into a composite time series to
which the treatment group is compared. This comparison is used to estimate what would have happened to the treatment
group if it had not received the treatment and allows variation of observed and unobserved predictors over time. It is
important that the control time series themselves must not be affected by the intervention and the relationship between
the control time series and the treated time series, as established during the pre-period, must remain stable throughout
the post-period. Essentially, the model parameters are estimated on the pre-intervention data and used to calculate the
entire post-intervention path. Formally, the goal is to find a vector of weights W = (w1, … ,wJ) that minimizes the dis-
tance in pre-treatment outcomes between the treated and the weighted average of the control units. This can be written
as the following optimization problem:

W∗ = arg min
w∈W

1
T0

T0∑
t=1

(𝑦0t −
∑
𝑗≠0

w𝑗𝑦𝑗t)2.

Abadie et al. (2010) restrict the weights to be positive and sum to 1,
∑

𝑗w𝑗 = 1,w𝑗 ≥ 0. This has the appealing property of
being a simple weighted combination of the control units that can be easily interpreted. In addition, Athey and Imbens
(2017) point out that very often positive weights are only applied to a subset of the control units; therefore, variable
selection is performed as only relevant control units are chosen.

The SCM is not a generative model but exploits linear relationships between treated and control units to construct a
counterfactual. Abadie et al. (2010) proved that when both unobserved and observed characteristics of the treated unit lie
in the convex hull of the characteristics of control units, the SCM estimator is asymptotically unbiased. In cases where the
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treated unit lies outside the distribution of the control units, no convex combination of control units can be constructed,
leading to severe bias (Abadie et al., 2010; Ferman & Pinto, 2016).

Recent SCM extensions include elastic net (Zou & Hastie, 2005) regularization (Doudchenko & Imbens, 2016), inter-
active fixed effects (Xu, 2017), or use matrix completion methods to estimate counterfactual (untreated) outcomes in
synthetic control settings (Athey, Bayati, Doudchenko, Imbens, & Khosravi, 2017).

The SCM has proven valuable as a means of relaxing the parallel trends assumption required by additive fixed effect
models and difference in differences (DiD). If the synthetic control succeeds in balancing the treated unit outcome with
a weighted combination of control units in the pre-intervention period, unmeasured time-varying confounders will also
be balanced. This permits additional flexibility, because DiD only allows for measured time-varying confounders.

2.2 Bayesian structural time series
In this paper, we use the BSTS approach to construct the synthetic control. The main difference from the traditional
synthetic control approach by Abadie et al. (2010) is that it explicitly models the outcome of the treated unit and uses the
control units (which can also be other explanatory predictor time series) to capture remaining variation. That includes
using information from the post-intervention period for the control units. The BSTS approach thus produces a dynamic
forecast conditional on the pre-intervention trends as well as the pre-intervention and post-intervention values of the
predictor time series. In addition, it is not restricted to the class of convex combinations of predictor variables and can
more flexibly include time-series effects such as trends and seasonality. BSTS was first proposed by Scott and Varian (2013)
and extended to the synthetic control setting by Brodersen, Gallusser, Koehler, Remy, and Scott (2015). The basis of BSTS
is a local linear trends model in a state-space setting (Durbin & Koopman, 2012) that incorporates a set of predictive
covariates in the observation equation. It starts by defining two equations:

𝑦0t
(1×1)

= Zt
(1×d)

𝛼t
(d×1)

+ 𝜀t
(1×1)

(observation equation),

𝛼t+1
(d×1)

= Tt
(d×d)

𝛼t
(d×1)

+ Rt
(d×q)

𝛼t
(q×1)

(state equation),

where 𝜀t ∼  (0, 𝜎2) is the observation noise and 𝛼t ∼  (0,Q) is a q-dimensional system error with a q×q state diffusion
matrix Q. Both are independent of each other. The vector y0t contains the observed outcome at time t for the treated unit,
whereas 𝜶t is the vector of the latent state process at time t. The values 𝜶t are unobserved and determined by the system,
therefore describing the state.

Zt is a (1, d)-dimensional matrix containing the regressors that predict y0t, Tt is a transition matrix that describes
evolution of the state vector over time, and Rt is a control matrix that defines which states vary over time.

The local linear trends model from above can be directly interpreted by its components. If we decompose the model as
a sum of trend component 𝜇t and regression component 𝜆t, we can rewrite it as follows:

𝑦0t = 𝜇t + 𝜆t + ut, ut ∼  (0, 𝜎2
u).

In this sense, 𝜶t is now the aggregation of these components:

𝛼t =
[
𝜇T

t , 𝜆
T
t
]T
,

where all state components are modeled independently, yielding an additive contribution to y0t. The first component, 𝜇t,
is a local linear trend and models the underlying level changes over time, that is, expresses the data as a linear function
of time:

𝜇t = 𝜇t−1 + 𝛿t−1 + vt, vt ∼  (0, 𝜎2
v ),

𝛿t = 𝛿t−1 + wt, wt ∼  (0, 𝜎2
w).

The error term vt allows the level of the trend to shift stochastically, whereas wt supports the slope of the trend to change
over time. The special case that 𝜎2

v = 𝜎2
w = 0 results in deterministic trend. The second component, 𝜆t, is the regression

component with static coefficients 𝜷,
λt = 𝛃xt,
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where xt is the pool of available predictor time series. This decomposition of the time series into several stochastic pro-
cesses captures the dynamics of the time series. The unknown parameters 𝜽 in this system are the variance terms and the
regression coefficients:

𝛉 ∶ {𝜎2
u, 𝜎

2
v , 𝜎

2
w,𝛃},

and are estimated by the Kalman filter model (Grewal, 2011). The Kalman filter has the advantage that it has no problem
with nonstationarity and requires no differencing or identification stages. Instead, it updates its estimates when new
observations arrive and therefore has a Bayesian interpretation. However, the Kalman filter assumes linearity and is based
upon noise terms that are normally distributed (Commandeur, Koopman, & Ooms, 2011). This strong assumption is not
always met in practice. If it is not met, the Kalman filter is the best linear estimator, but nonlinear estimators may be better.

Models in the state-space setting are very flexible: All autoregressive integrated moving average (ARIMA) time series
models, as well as all linear models, are special cases of state-space models. The state vector and the system matrices are
very modular, making it possible to incorporate various features, such as seasonality and circular effects, into this model
(Harvey, Trimbur, & Van Dijk, 2007). Please note that we omitted these additional components in the description above
for simplicity and did not use them in our analysis.

It is important that the outlined structure remains intact throughout the modeling period. If, for example, local
trends disappear over time or the static regression coefficients become dynamic, estimation accuracy may suffer (Qiu,
Jammalamadaka, & Ning, 2019).

To estimate the set of model parameters 𝜽, we define y = (𝑦01, … , 𝑦0T0) as the observed data in the pre-intervention
period and let 𝛼 = (𝛼1, … , 𝛼T0) denote the corresponding state sequence. We then define a prior distribution p(𝜽) on
the model parameters and a distribution p(𝜶|𝜽) on the initial state values. This allows us to sample from the posterior
p(𝜶,𝜽|y) using Markov chain Monte Carlo (MCMC) through a Gibbs sampler. We can then draw predictions of the coun-
terfactual from p(𝜽,𝜶|y). We define an inverse gamma prior for the state error variance parameter and a “spike-and-slab”
prior for the regression coefficients. This prior is commonly used in Bayesian regression modeling because it performs
variable selection by combining a point mass at 0 (the spike) with a weakly informative distribution on the set of
non-zero coefficients (the slab). The spike part is a Bernoulli distribution, and the slab part is a weakly informative
normal-inverse-gamma distribution. See Brodersen et al. (2015) for more details and George and McCulloch (1997) for
a discussion on Bayesian variable selection. This stochastic approximation to inference using MCMC is used because no
closed-form posterior exists for this model.

To estimate the causal effect of the bariatric surgery, we use the estimated states and parameters to forecast trajectories
of the treated unit �̂�0

0t for the post-intervention time points t = T0 +1, … ,T. This procedure is repeated many times. Each
draw of parameters from the posterior results in slightly different forecasts that are then averaged. Madigan and Raftery
(1994) proved that averaging over an ensemble of models is at least as good as the best single model (see Fragoso, Bertoli,
& Louzada, 2018, for a review on Bayesian model averaging). We compare the actual response to the forecasted posterior
distribution. This allows us to report the tail-area probability, that is, the probability under the calculated posterior that the
response is at least as extreme (away from the expected value) as the observed one. Subtracting this predicted time series
from the observed response during the post-intervention period yields a semiparametric Bayesian posterior distribution
for the causal effect. We report the pointwise causal impact in this paper.

The BSTS model is asymptotically unbiased because, given that the model outlined above is the true data-generating
model, the posterior distribution will converge to a point mass on its true value as the number of post-intervention time
points goes to infinity.

The advantage of this Bayesian approach is that we can use these samples from the posterior to report statistics such as
the average absolute and relative effect caused by the intervention, including their credible intervals (CIs). The CI can be
thought of as the region of highest subjective belief within which an unobserved parameter falls (Jaynes & Kempthorne,
1976). We implement BSTS in the R (R Core Team, 2017) programming language with the CausalImpact (Brodersen
et al., 2015) package.

3 DATA DESCRIPTION

The analysis is based on quarterly insurance billing claims data from AOK, an association of health insurance plans
that serves more than 24 million people and thus almost a third of the German population. We included data from all
individuals who underwent bariatric surgery–associated interventions between the second quarter of 2007 and the third
quarter of 2010 for whom complete information (i.e., no missing values or incomplete insurance status) was available
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over the 5-year period from 2006 to 2011. We decided to chose 2006 as the earliest year of observation because, until this
year, outpatient diagnoses were not coded with a sufficient degree of quality. Moreover, we assumed that the introduction
of a diagnosis-related group (DRG) system in the hospital sector (2005) changed coding strategies. 2011 is the year when
the data agreement ended.

Only patients who underwent sleeve gastrectomy (OPS code 54345), gastric bypass (OPS codes 54454 and 54455), or
gastric banding (OPS code 5448) were kept in the analytic cohort. Patients with biliopancreatic diversion (OPS codes
54343, 54344, and 54346) were excluded because of the low number of cases undergoing this procedure. All individuals
had a primary diagnosis of obesity (International Statistical Classification of Diseases and Related Health Problems, 10th
Edition [ICD-10] codes E65–E68), and no diagnosis of neoplasms of digestive organs before or during index hospitalization
(ICD-10 codes C15–C26, D00, D01, and D10–D13) to make sure the focus of the intervention was on the treatment of
obesity. We ended up with N = 2, 733 individuals who received bariatric surgery in our analysis. Table 1 presents an
overview of the baseline characteristics. The mean age at the time of surgery was 43.6 years, with 70.3% females. Some
36.5% of all individuals underwent sleeve gastrectomy, 37.9% gastric bypass, and 25.6% gastric banding surgery.

The observation period for each patient was defined with reference to the date of the first bariatric intervention. A
patient may have received multiple bariatric interventions in the observation period, for example if a gastric band had to
be replaced. Therefore, we determined the quarter of the bariatric intervention (QBI) by the discharge date of the stay in
hospital based on the first bariatric surgery. For example, for an individual discharged from hospital on April 24, 2009,
QBI would have been q2/2009. We analyzed the 8 quarters before and the 12 quarters after QBI. To exclude utilization that
is directly related to the intervention, we omitted the quarter immediately before and after QBI as well as the QBI itself.
Because the QBI is different in each individual, the full observation period is not available for all individuals. Figure 1
shows the number of individuals in each quarter. At least 1,024 individuals were observed in each quarter.

The outcome parameters in our analysis were health care utilization and expenditures in the main service categories
of a health care system from the payer perspective: medication, physician care, and hospital care. In our analysis, we
aggregated the individual data into a single time series, so the reported outcome is always the average costs per patient.
This is a common approach for the analysis of health outcomes and costs in time-series analyses (Getzen, 2006; Lee
& Miller, 2002; Xie et al., 2016). Hospital care refers to a defined period of time that may extend over several quarters.
Therefore, we assigned the costs of hospitalization proportional to the time of service use within a quarter, assuming
constant amounts per day. We standardized cost data to 2016 values using German health care–specific inflation rates to
ensure the comparability of costs per quarter.

We also used data related to medication, physician, and hospital costs of bariatric surgeries in Germany. In our BSTS
model, we took the total costs of medication, hospital, and outpatient treatments, as well as the costs and prevalences of
diabetes and obesity, the prevalence of hypertension, and the unemployment rate in Germany over the years 2006–2011
as covariates (see Figure 2). Because outcome is relative to QBI, we aggregated the control series in the same way as the
outcome, that is, calculated control time series for each individual's observation period and then averaged it. All these data

TABLE 1 Table of baseline characteristics (age, sex, operation type, and selected
comorbidities) of all 2,733 individuals at the time of bariatric surgery

Overall
Age (mean [SD]) 43.6 (11.0)
Sex, female (%) 1,922 (70.3)
Operation type (%)
Sleeve gastrectomy 997 (36.5)
Gastric bypass 1,036 (37.9)
Gastric banding 700 (25.6)

Sleep apnea (%) 764 (28.0)
Diabetes (%) 1,314 (48.1)
Arthritis (%) 1,280 (46.8)
Dyslipidemia (%) 1,163 (42.6)
Hypertension (%) 1,987 (72.7)
Observations 2,733

Note. Sleep apnea is defined by ICD-10 code
G473. Diabetes mellitus is defined by ICD-10
codes E10–E14. Arthritis is defined by ICD-10
codes M15–M19. Dyslipidemia is defined by
ICD-10 code E78, and hypertension is defined
by ICD-10 codes I10–I15.
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FIGURE 1 (a) Number of observations N in each quarter before and after bariatric surgery. The dashed vertical line marks the time of the
bariatric intervention. (b) Time line for each individual and the observed quarters for each. Vertical lines mark the period used for analysis

FIGURE 2 Time series used as covariates in the Bayesian structural time series model during the observation period. Upper row (a) shows
cost-related covariates, and lower row (b) shows risk factor–related variables and unemployment rate

are freely available from the German Federal Statistical Office (www.destatis.de). Only the costs of diabetes and obesity
and the unemployment rate were available quarterly, so we linearly interpolated the in-between quarters for the other
covariates. These variables describe the general time trend of health care costs in Germany and specifically for obese
patients, and are correlated with the medication, physician, and hospital expenditures in the pre-intervention period in
our AOK sample. To ensure that results are invariant to linear transformations of the data, we standardized the covariates.
We provide the code for our analysis online (Kurz, 2019).

4 RESULTS

Table 2 shows the results of the BSTS analysis. Figure 3 visualizes the observed and predicted time-series data. All
reported values are inflation-adjusted 2016 Euros (€). For medication costs, we find an average value of €265 during the
post-intervention period. In contrast, in the absence of an intervention, we would have expected average costs of €373.
The 95% CI of this counterfactual prediction is [258, 450]. Subtracting this prediction from the observed cost yields an
estimate of the causal effect that the intervention had on the cost variable. This effect is €−108 with a 95% CI of [−183,
4]. In relative terms, the cost variable showed a decrease of 29%. This means that the cost-saving effect observed during
the intervention period can be considered statistically significant as the probability of obtaining this effect by chance is
small (Bayesian one-sided tail-area p = .03). Figure 4 shows the mean costs per quarter in selected diagnostic categories
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TABLE 2 The causal effect of bariatric surgery on
health care costs

Average expenditures after bariatric surgery
Medication Physician Hospital

Actual 265 240 677
Predicted 373 355 397
95% CI [258, 450] [148, 507] [−59, 677]
Absolute effect −108 −115 278
95% CI [−183, 4] [−266, 92] [0, 736]
Relative effect −29% −32% 70%
95% CI [−49, 1] [−75, 26] [0, 185]
Posterior tail-area p .03 .07 .02
Posterior p of causal effect 97% 93% 98%

Note. All values are 2016 Euros (€).

FIGURE 3 Average medication, physician, and hospital expenditures per person and quarter before and after bariatric surgery. The upper
plots (“original”) show the observed expenditures (solid black line) and the counterfactual synthetic controls (dashed blue line) including the
95% credible interval according to the Bayesian structural time series model. The lower plots (“pointwise”) show the average difference
between the observed and estimated values [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Mean costs per quarter in selected
diagnostic categories of pharmaceutical care.
Cardiovascular diseases are defined by
Anatomical Therapeutic Chemical (ATC) codes
C01–C10. Diabetes mellitus is defined by ATC
code A10. Gastrointestinal disorders are defined
by ATC codes A02–A07. Psychiatric disorders
are defined by ATC codes N05 and N06. The
black vertical line marks the time of the
batriatric intervention [Colour figure can be
viewed at wileyonlinelibrary.com]

of pharmaceutical care before and after bariatric intervention. The overall reduction in medication expenditures after
bariatric surgery mainly results from cardiovascular diseases and diabetes mellitus: Medication expenditures for these
categories are greatly reduced in the post-intervention period. In contrast, medication expenditures for gastrointestinal
and psychiatric disorders remain the same after bariatric intervention.
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TABLE 3 Covariate coefficients from the medication, hospital, and physician expenditures, together with the inclusion
probabilities from the Bayesian structural time-series model

Medication Physician Hospital
Mean SD Inclusion p Mean SD Inclusion p Mean SD Inclusion p

Intercept 0.00 0.00 .00 0.00 0.00 .00 0.00 0.00 .00
Medication (ger) −0.01 2.26 .27 0.65 1.65 .23 2.29 2.28 .49
Hospital (ger) 0.55 1.24 .34 0.47 1.18 .32 −1.47 1.49 .66
Outpatient (ger) 0.38 1.45 .31 0.40 1.37 .30 0.10 1.94 .51
Diabetes (ger) 0.16 1.28 .31 0.29 1.13 .31 −0.46 1.48 .53
Obesity (ger) 0.02 1.37 .32 0.34 1.28 .29 1.86 1.56 .65
Diabetes prevalence (ger) −0.18 0.29 .50 0.08 0.78 .18 0.73 2.31 .19
Hypertension prevalence (ger) 0.01 0.31 .49 0.08 0.68 .27 0.45 1.56 .31
obesity prev. (ger) 0.01 0.80 .32 0.07 0.75 .31 −0.63 1.52 .31
Unemployment rate (ger) 0.06 0.77 .41 0.05 0.65 .29 −0.20 0.87 .31

We also see a cost-saving effect for physician expenditures. Here, the average value during the post-intervention period
is €240. In the absence of the surgery, we would have expected average costs of €355 with a 95% CI of [148, 507]. The causal
effect, measured by the difference between the predicted and the observed costs, is €−115 with a 95% CI of [−266, 92]. The
relative effect is a decrease of 32%. Because of the Bayesian one-sided tail-area p = .07, this effect cannot be considered
statistically significant.

For hospital expenditures, we see an increase in costs in the post-intervention period. In this period, average costs per
patient are €677. If individuals had not received the surgery, we would have expected an average cost of €397. The 95% CI of
this counterfactual prediction is [−59, 677]. The causal effect, measured by subtracting this prediction from the observed
cost, is €278 with a 95% CI of [0, 736]. The relative increase is 70%. The probability of obtaining this effect by chance is
p = .02. This means that the increasing effect for hospital costs observed during the intervention period is unlikely to
result from random fluctuations. In combination, we see an expected total average effect of €55 for medication, physician,
and hospital expenditures after bariatric surgery in the post-intervention period.

Table 3 shows the coefficients underlying the predictions from the BSTS model for all three models. The first two
columns represent the mean and standard deviation from the distributions of the estimated coefficients from all draws.
The third column shows the inclusion probability; that is, the probability that the variable is included in the regres-
sion, according to the spike-and-slab prior used for variable selection. Higher absolute values mean a higher effect. In all
models, the hospital and outpatient covariates have the highest influence on the model.

In all models, the medication covariate has the largest effect, whereas the hospital covariate is always among the highest
inclusion probabilities.

5 DISCUSSION

This study investigated the impact of bariatric surgery on health care costs analyzing a period ranging from 2 years before
to 3 years after the intervention. Bariatric surgery was associated with a cost reduction in pharmaceuticals and physician
services but also with rising costs for inpatient care. In total, we saw a slight increase in total costs after bariatric surgery.

5.1 Effect of bariatric surgery on costs
The cost reduction in pharmaceuticals after bariatric surgery is attributable to the lower costs of treating diabetes and
cardiovascular diseases and is in accordance with several previous studies that investigated pharmaceutical utilization in
a pre-surgical and post-surgical comparison (Keating et al., 2013; Makary et al., 2010; Neovius et al., 2012; Potteiger et al.,
2004).

Expenditures on hospital care were higher in the post-surgical period but with decreasing trend in the longer term.
When examining the reasons for hospital admissions in the post-operative period, the literature finds three main reasons
that explain the majority of the cost increase (Weiner et al., 2013). First, particularly during the first post-operative year,
the reason for admission is often the treatment of complications presumably related to the intervention, such as incisional
hernias or syndromes of the operated stomach. Second, as a result of weight loss after bariatric intervention, further
treatments such as plastic surgery to reduce skin tissue or the treatment of gallstone disease are required. Third, some
treatments can only be performed after successful weight loss following surgery, such as hip or knee joint replacement.
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This is supported by the decreasing trend of hospital expenditures after the sixth post-intervention quarter (i.e., after
1.5 years; see Figure 3).

Our findings showing higher total costs after surgery are in line with previous studies, which found increased expen-
ditures after bariatric intervention (Bleich et al., 2012; Maciejewski et al., 2010; McEwen et al., 2010). Other studies also
found decreasing costs for medication and physicians but increased inpatient spending (Weiner et al., 2013). The trend of
decreasing inpatient costs over time was confirmed in other studies (Czernichow et al., 2015; Neovius et al., 2012). Con-
trary to our analysis, most of these studies did not account for the increasing trend of expenditures in the pre-intervention
period. Still, because this trend is based on extrapolated data from the pre-period, it is not clear how long this extrapolation
may be valid or how strongly influenced it is by outliers.

The results obtained here are in contrast to the findings of some existing studies, which show that significant cost savings
can be expected after bariatric surgery (Crémieux et al., 2008; Makary et al., 2010). A study in the United Kingdom found
bariatric surgery to be cost-effective, where the incremental cost-effectiveness ratios for surgery ranged between £2,000
and £4,000 per quality adjusted life-year (Picot et al., 2009). A study of bariatric patients in the United States revealed
that the initial investment is returned within 4 years of the intervention (Crémieux et al., 2008). The authors attributed
the cost reductions after bariatric surgery to reductions of comorbidities and to a lower use of medical services for their
treatment. This relation could be seen in our analysis at least for the use of pharmaceuticals and physician care, but these
were offset by an increase for hospital care.

5.2 Choice of data source
Our study is one of the first that examines the development of health care expenditures after bariatric surgery using data
from Germany. The analyses are based on claims data from an SHI provider. These data have the advantage that real
costs are depicted and a large number of individuals can be considered. The only other study under the regularities of the
German health care system by Augurzky et al. (2016) is also based on claims data but from a different provider with fewer
cases. As in our study, Augurzky et al. (2016) find increased hospital costs, reduced medication costs, and little change in
physician costs. They take into account the direct costs of the surgery itself and calculate the causal effect by a matched
control group.

We chose the payer perspective for the cost analysis. This perspective disregards out-of-pocket payments, and indirect
costs such as productivity losses cannot be taken into account. Physical complaints associated with obesity often result
in the incapacity to work. A recent study assessed the functional capacity of patients before and after bariatric surgery
in a cross-sectional study (Vargas, Picolli, Dani, Padoin, & Mottin, 2013). Improvements in test outcomes were seen only
3 months after surgery, which allows the presumption that an increase in productivity could be expected.

There are other limitations to this study regarding the data source. First, only expenditures in the three main service
areas of SHI were considered in the analyses. About 70% of the total expenditures of the SHI arise in these domains, but
spending on rehabilitation services, for example, is not included in this study. Second, the analyses are based on claims
data from a single health insurance fund. Because the characteristics of the insured can differ greatly between health
insurance companies, the generalizability of the results is restricted (Jaunzeme, Eberhard, & Geyer, 2013). However, the
market share of AOK to SHI for members is nearly 35%. In addition, baseline characteristics of individuals in our study
are in line with the German Bariatric Surgery Registry, which collects most bariatric surgery procedures in Germany
(N = 22, 364, mean age = 42.6, female = 72.4%; Stroh, Weiner, Wolff, Knoll, & Manger, 2014).

5.3 Choice of model
As in many natural experiment settings, we did not have a randomized control group. The provided data set contained
only cases, so no statistical matching procedures (e.g., based on propensity scores) were possible. We did not have a set of
untreated individuals. Therefore, we used a BSTS approach to construct a synthetic control, based only on covariates that
are predictive for health care costs. This model has advantages over several traditional approaches. Although, for example,
classical regression models already go beyond DiD schemes, in that they account for full counterfactual trajectories, they
disregard serial autocorrelation and do not allow temporal variation of the coefficients (Brodersen et al., 2015).

The BSTS approach has several advantages over the traditional SCM. Many of the SCM limitations arise from its
restriction to convex combinations of the control units. Ferman and Pinto (2016) show that the SC estimator is biased if
treatment assignment is correlated with unobserved heterogeneity and if treatment assignment is only correlated with
time-invariant–unobserved variables. BSTS is not restricted to convex combinations of the control units and has addi-
tional variable selection, making it less affected by this type of bias. A simulation study by Kinn (2018) compares SCM
and BSTS in terms of mean squared error (MSE) and bias. The author considers both parallel and heterogeneous trend
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cases, a case where a convex combination of controls is insufficient to recreate the treated unit, a case where trends are
not easily detected because of noise, and a case with a short pretreatment period and high noise. Kinn (2018) finds that
BSTS is superior or equal to SCM in all these cases. Especially in cases that are similar to our study (difficult trends and
noise, weakly associated control time series), BSTS is the most accurate method for finding the true treatment effect with
the lowest MSE, bias, and variance. (Kinn, 2018) also argues that the increased flexibility of methods such as BSTS can
better capture the data-generating process than SCM. However, BSTS cannot deal with multiple treated units as the SCM
can (Kreif et al., 2016).

Other classes of models, for example ARIMA models, can account for autocorrelation but only among observations and
not latent states. This inhibits the ability to distinguish between state noise and observation noise (Leeflang et al., 2009).
The fully Bayesian setting further allows incorporation of empirical priors on the parameters and takes model uncertainty
into account when forecasting the counterfactual. The spike-and-slab prior allows inclusion of covariates that may not
be predictive, as it automatically selects only the relevant ones and avoids several of the disadvantages of other variable
selection methods (George & McCulloch, 1997).

There is evidence that medical expenditures are subject to seasonal effects (Rolden, Rohling, van Bodegom, & Westen-
dorp, 2015), but including a stochastic dummy component to incorporate quarterly seasonal effects into the model did
not change the results.

Choice of priors had little effect on the results, as comparing them with the posteriors showed that they were
overwhelmed by the data.

5.4 Choice of covariate time series
Traditional applications of the SCM construct the counterfactual response by time series based on a comparable group in
a different country (Billmeier & Nannicini, 2013) or by having a set of unaffected individuals (Pechlivanoglou, Wieringa,
Jager, & Postma, 2015). The increased flexibility of BSTS allows for a much broader choice of covariates. For example,
Scott and Varian (2013) included dozens of correlated time series from Google Trends as covariates in their BSTS model.

We used data related to our outcomes as covariables where there might not be a strong causal relationship. A similar
approach was chosen by Elleby, Hansen, and Yu (2015) to predict the counterfactual rice and wheat prices in India, by
Shioda et al. (2019) to estimate the impact of vaccination, and by de Vocht (2019) for the impact of mobile phone use on
brain cancer.

Bayesian structural time-series is, in principle, a forecasting method. It can be used without any covariate time series.
For example, a study by Qiu et al. (2019) found that the prediction accuracy of BSTS is better than ARIMA. There are also
studies that use no covariate time series to construct a counterfactual. The study by Marschik et al. (2018) constructs the
counterfactual only based on trend calculation of the pre-intervention period to estimate the effect of a bovine vaccination
program. However, using no covariates should be avoided. A study by Gallego, Angulo, Suárez-García, and Gómez-Ullate
(2018) compared three different BSTS models according to their accuracy to estimate the effect of an advertising campaign:
one with no covariates, one with lagged outcome as covariate, and one with external covariates. As in our study, the
covariates were not a set of untreated control units but covariates with assumed predictive information, for example, price
index, unemployment rate, rainfall, and temperature. Gallego et al. (2018) find that these external regressors, even if only
weakly associated with the outcome, greatly improve BSTS accuracy and treatment effect estimation.

In general, it is difficult to judge whether a covariate is valid or similar to the outcome or constitutes a good fit (Bout-
tell et al., 2018). Because all covariables were selected by the model, we consider them appropriate in our analysis. We
believe that our linear between-quarters interpolation is adequate because all covariates show a relatively linear trend
(see Figure 2).

5.5 Limitations
Our results include a large amount of uncertainty. This means that, although it may look as though bariatric surgery shows
a small total increase in costs (€55), considering the intervention period as a whole, the 95% posterior probability intervals
for the effects in each of the three categories of health care costs (medication, physician, and hospital expenditures) include
0 in all cases. Therefore, the effect estimates have to be interpreted with caution. They could be the result of random
fluctuations that are unrelated to the intervention. According to Brodersen et al. (2015), this can be the case when the
intervention period is too short to distinguish signal from noise, when there are not enough control variables, or when
the control variables do not correlate well with the response variable during the learning period. Another solution would
be to specify more informative prior knowledge into the model, but this could lead to unrealistically small CIs.
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In recent years, there have been major changes in the application of surgical procedures in practice. In the considered
analysis period, gastric bands were more commonly used than they are currently (Stroh et al., 2016). This is because gastric
banding is less costly but also less effective and more often needs revision. Studies suggest that, with regard to diabetes
remission, gastric bypass is more effective than gastric banding (Weiner et al., 2014). However, in this evaluation, the cost
trends for gastric bypass and gastric banding did not differ when analyzed by type of surgery.

Our analysis only covers a 3-year observation period after surgery, including 1,024 individuals in the last quarter. This
makes it difficult to see the long-term effects of bariatric surgery. Studies on the medical effects of bariatric surgery have
shown reductions in obesity-related diseases such as diabetes and cardiovascular diseases. Although we already see this
effect for medication and physician expenditures, the effect on hospital expenditures may become more apparent in a
longer post-intervention period. High costs for the treatment of complications related to bariatric interventions immedi-
ately after surgery should decrease over time. This effect is already apparent in the later post-intervention quarters for
hospital expenditures in our analysis. In a longer observation period, it should be even more evident.

In our analysis, the number of included individuals varies over quarters, especially in the later post-intervention quar-
ters. However, we are only interested in the average effect of all individuals, and this effect should stay stable because we
still have many individuals and there is no underlying selection mechanism as to why an individual is not included. This
“censoring” is informative and does not cause bias, because it is unrelated to their disease status or health care utiliza-
tion (Ranganathan & Pramesh, 2012). Average age, sex, and operation types are nearly constant during all quarters, but it
might affect the statistical power of this study. In addition, the reliance on a single set of identification assumptions may
not be adequate but is a common practice.

Finally, because we do not include a (randomized) nonsurgical control group, we cannot conclude that changes in costs
after bariatric intervention definitely resulted from the procedure.

5.6 Sensitivity analysis
There is no way to check whether all assumptions that the BSTS approach requires are fulfilled (see Section 2), but we
performed several sensitivity analyses to verify the reliability and robustness of our results. First, we included only indi-
viduals who were observed over the whole period (N = 191). In this analysis, the direction of the effect stays the same
as in the main analysis, but the cost-saving effect for medication expenditures after bariatric surgery is bigger, whereas
the costs for hospital expenditures do not increase as much as in the main analysis (Appendix A.1). However, the small
sample size makes the analysis more vulnerable to outliers.

In the second analysis, we bootstrapped the data to have N = 5, 000 observations in each quarter. Here, the absolute
effects are slightly smaller than in the main analysis, especially for hospital expenditures. Relative effects are very similar
to the main analyses (Appendix A.2).

The third analysis does not use any covariate time series. Here, the counterfactual is only based on linear trend
calculation of the pre-intervention period. Again, the results are very similar to the main analysis, but the linear trend may
be overestimating the effects. This model also has very large confidence bands due to the increased uncertainty (Appendix
A.3).

In a fourth sensitivity analysis, we checked the validity of the covariate time series. This model included only random
noise time series as covariates, sampled from a standard normal distribution. It is very similar to the previous one; except
the hospital expenditures are estimated to be lower (Appendix A.4). This is likely to be because of the random variation
of the Gibbs sampler due to the large amount of uncertainty in this model. This sensitivity analysis proves the relevance
and predictive importance of our included covariates in the main analysis.

6 CONCLUSION

Despite these limitations, this study presents an important comparison of health care expenditures before and after
bariatric surgery and shows temporal trends based on data from Germany. Our findings indicate that, over a time horizon
of 3 years after bariatric surgery, medication costs and physician costs are substantially reduced, but the costs of inpatient
care increase. Our estimates include a large amount of uncertainty due to the study limitations through the absence of
a control group. Routine data are an important source for further research, but larger samples and longer follow-up are
needed. For a comprehensive economic evaluation, patient-reported data on indirect costs and on health outcomes have
to be analyzed together with direct medical costs.
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