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Summary. We develop new multiscale methods to test qualitative hypotheses about the function
m in the non-parametric regression model Yt,T D m.t=T/ C "t with time series errors "t. In time
series applications, m represents a non-parametric time trend. Practitioners are often interested
in whether the trend m has certain shape properties. For example, they would like to know
whether m is constant or whether it is increasing or decreasing in certain time intervals. Our
multiscale methods enable us to test for such shape properties of the trend m. To perform the
methods, we require an estimator of the long-run error variance σ2 D Σ1

lD�1cov."0, "l /. We
propose a new difference-based estimator of σ2 for the case that {"t} belongs to the class
of auto-regressive AR(1) processes. In the technical part of the paper, we derive asymptotic
theory for the proposed multiscale test and the estimator of the long-run error variance. The
theory is complemented by a simulation study and an empirical application to climate data.

Keywords: Anticoncentration bounds; Long-run variance; Multiscale statistics; Non-
parametric regression; Shape constraints; Strong approximations; Time series errors

1. Introduction

The analysis of time trends is an important aspect of many time series applications. In a wide
range of situations, practitioners are particularly interested in certain shape properties of the
trend. They raise questions such as the following: does the observed time series have a trend at
all? If so, is the trend increasing or decreasing in certain time intervals? Can one identify the
intervals of increase and decrease? As an example, consider the time series plotted in Fig. 1
which shows the yearly mean temperature in central England from 1659 to 2017. Climatologists
are very much interested in learning about the trending behaviour of temperature time series
like this; see for example Benner (1999) and Rahmstorf et al. (2017). Among other things, they
would like to know whether there is an upward trend in the central England mean temperature
towards the end of the sample as visual inspection might suggest.

In this paper, we develop new methods to test for certain shape properties of a non-parametric
time trend. We in particular construct a multiscale test which enables us to identify local increases
and decreases of the trend function. We develop our test in the context of the following model
setting: we observe a time series {Yt,T : 1� t �T} of the form

Yt,T =m

(
t

T

)
+ "t .1:1/
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Fig. 1. Yearly mean temperature in central England from 1659 to 2017 measured in degrees centigrade

for 1 � t � T , where m : [0, 1] → R is an unknown non-parametric regression function and the
error terms "t form a stationary time series process with E["t ] = 0. In a time series context, the
design points t=T represent the time points of observation and m is a non-parametric time trend.
As usual in non-parametric regression, we let the function m depend on rescaled time t=T rather
than on realtime t. A detailed description of model (1.1) is provided in Section 2.

Our multiscale test is developed step by step in Section 3. Roughly speaking, the procedure
can be outlined as follows: let H0.u, h/ be the hypothesis that m is constant in the time window
[u−h, u+h]⊆ [0, 1], where u is the midpoint and 2h the size of the window. In a first step, we set
up a test statistic ϕ̂T .u, h/ for the hypothesis H0.u, h/. In a second step, we aggregate the statistics
ϕ̂T .u, h/ for a large number of time windows [u − h, u + h]. We thereby construct a multiscale
statistic which enables us to test the hypothesis H0.u, h/ simultaneously for many time windows
[u−h, u+h]. In the technical part of the paper, we derive the theoretical properties of the result-
ing multiscale test. To do so, we come up with a proof strategy which combines strong approx-
imation results for dependent processes with anticoncentration bounds for Gaussian random
vectors. This strategy is of interest in itself and may be applied to other multiscale test problems
for dependent data. As shown by our theoretical analysis, our multiscale test is a rigorous levelα
test of the overall null hypothesis H0 that H0.u, h/ is simultaneously fulfilled for all time windows
[u−h, u+h] under consideration. Moreover, for a given level of significance α∈ .0, 1/, the test
enables us to make simultaneous confidence statements of the following form: we can claim,
with statistical confidence 1−α, that there is an increase or decrease in the trend m on all time
windows [u−h, u+h] for which the hypothesis H0.u, h/ is rejected. Hence, the test enables us to
identify, with a prespecified statistical confidence, time intervals where the trend m is increasing
or decreasing.

For independent data, multiscale tests have been developed in a variety of contexts in recent
years. In the regression context, Chaudhuri and Marron (1999, 2000) introduced the so-called
SiZer method which has been extended in various directions; see for example Hannig and Mar-
ron (2006) where a refined distribution theory for SiZer is derived. Hall and Heckman (2000)
constructed a multiscale test on monotonicity of a regression function. Dümbgen and Spokoiny
(2001) developed a multiscale approach which works with additively corrected supremum statis-
tics and derived theoretical results in the context of a continuous Gaussian white noise model.
Rank-based multiscale tests for non-parametric regression were proposed in Dümbgen (2002)
and Rohde (2008). More recently, Proksch et al. (2018) have constructed multiscale tests for
inverse regression models. In the context of density estimation, multiscale tests have been inves-
tigated in Dümbgen and Walther (2008), Rufibach and Walther (2010), Schmidt-Hieber et al.
(2013) and Eckle et al. (2017) among others.
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Whereas a large number of multiscale tests for independent data have been developed in
recent years, multiscale tests for dependent data are much rarer. Most notably, there are some
extensions of the SiZer approach to a time series context. Park et al. (2004) and Rondonotti et al.
(2007) introduced SiZer methods for dependent data which can be used to find local increases
or decreases of a trend and which may thus be regarded as an alternative to our multiscale test.
However, these SiZer methods are mainly designed for data exploration rather than for rigorous
statistical inference. Our multiscale method, in contrast, is a rigorous levelα test of the hypothesis
H0 which enables us to make simultaneous confidence statements about the time intervals where
the trend m is increasing or decreasing. Some theoretical results for dependent SiZer methods
were derived in Park et al. (2009), but only under quite a severe restriction: only time windows
[u−h, u+h] with window sizes or scales h are taken into account that remain bounded away
from zero as the sample size T grows. Scales h that converge to 0 as T increases are excluded.
This effectively means that only large time windows [u−h, u+h] are taken into consideration.
Our theory, in contrast, enables us to consider simultaneously scales h of fixed size and scales h

that converge to 0 at various rates. We can thus take into account time windows of many sizes.
In Section 3.4, we compare our approach with SiZer methods for dependent data in more detail.

Our multiscale approach is also related to wavelet-based methods: similar to the wavelet-based
methods, it takes into account different locations u and resolution levels or scales h simulta-
neously. However, whereas our multiscale approach is designed to test for local increases and
decreases of a non-parametric trend, wavelet methods are commonly used for other purposes.
Among other things, they are employed for estimating or reconstructing non-parametric regres-
sion curves (see for example Donoho et al. (1995) or Von Sachs and MacGibbon (2000)) and
for change point detection (see for example Cho and Fryzlewicz (2012)).

The test statistic of our multiscale method depends on the long-run error variance σ2 =
Σ∞

l=−∞cov."0, "l/, which is usually unknown in practice. To carry out our multiscale test, we
thus require an estimator of σ2. Indeed, such an estimator is required for virtually all inferential
procedures in the context of model (1.1). Hence, the problem of estimating σ2 in model (1.1)
is of broader interest and has received considerable attention in the literature; see Müller and
Stadtmüller (1988), Herrmann et al. (1992) and Hall and Van Keilegom (2003) among many
others. In Section 4, we introduce a new difference-based estimator of σ2 for the case that {"t}
belongs to the class of auto-regressive AR(∞) processes. This estimator improves on existing
methods in several respects.

The methodological and theoretical analysis of the paper is complemented by a simulation
study in Section 5 and two empirical applications in Section 6. In the simulation study, we
examine the finite sample properties of our multiscale test and compare it with the dependent
SiZer methods that were introduced in Park et al. (2004) and Rondonotti et al. (2007). Moreover,
we investigate the small sample performance of our estimator of σ2 and compare it with the
estimator of Hall and Van Keilegom (2003). In Section 6, we use our methods to analyse the
temperature data from Fig. 1 as well as a sample of global temperature data. The data that are
analysed in the paper and the computer code that was used for the simulations and the analysis
of the empirical data can be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-
b-datasets.

2. The model

We now describe the model setting in detail which was briefly outlined in Section 1. We observe
a time series {Yt,T : 1� t �T} of length T which satisfies the non-parametric regression equation

https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-b-datasets
https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-b-datasets
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Yt,T =m

(
t

T

)
+ "t .2:1/

for 1 � t � T . Here, m is an unknown non-parametric function defined on [0, 1] and {"t : 1 �
t � T} is a zero-mean stationary error process. For simplicity, we restrict attention to equi-
distant design points xt = t=T . However, our methods and theory can also be carried over to
non-equidistant designs. The stationary error process {"t} is assumed to have the following
properties.

Condition 1. The variables "t allow for the representation "t =G.: : : , ηt−1, ηt , ηt+1, : : :/, where
ηt are independent and identically distributed (IID) random variables and G : RZ → R is a
measurable function.

Condition 2. It holds that ‖"t‖q <∞ for some q> 4, where ‖"t‖q = .E|"t|q/1=q.

Following Wu (2005), we impose conditions on the dependence structure of the error process
{"t} in terms of the physical dependence measure dt,q =‖"t −"′

t‖q, where "′
t =G.: : : , η−1, η′

0, η1,
: : : , ηt−1, ηt , ηt+1, : : :/ with {η′

t} being an IID copy of {ηt}. In particular, we make the following
assumption.

Condition 3. Define Θt,q =Σ|s|�t ds,q for t � 0. It holds that Θt,q = O{t−τq log.t/−A}, where
A> 2

3 .1=q+1+ τq/ and τq ={q2 −4+ .q−2/
√

.q2 +20q+4/}=.8q/.

Conditions 1–3 are fulfilled by a wide range of stationary processes {"t}. As a first example,
consider linear processes of the form "t =Σ∞

i=0 ciηt−i with ‖"t‖q < ∞, where ci are absolutely
summable coefficients and ηt are IID innovations with E[ηt ]=0 and ‖ηt‖q <∞. Trivially, condi-
tions 1 and 2 are fulfilled in this case. Moreover, if |ci|=O.ρi/ for some ρ∈ .0, 1/, then condition
3 is easily seen to be satisfied as well. As a special case, consider an auto-regressive moving aver-
age (ARMA) process {"t} of the form "t −Σp

i=1ai"t−i =ηt +Σr
j=1bjηt−j with ‖"t‖q <∞, where

a1, : : : , ap and b1, : : : , br are real-valued parameters. As before, we let ηt be IID innovations
with E[ηt ] = 0 and ‖ηt‖q < ∞. Moreover, as usual, we suppose that the complex polynomials
A.z/ = 1 −Σp

j=1ajzj and B.z/ = 1 +Σr
j=1bjzj do not have any roots in common. If A.z/ does

not have any roots inside the unit disc, then the ARMA process {"t} is stationary and causal.
Specifically, it has the representation "t =Σ∞

i=0 ciηt−i with |ci|=O.ρi/ for some ρ∈ .0, 1/, imply-
ing that conditions 1–3 are fulfilled. The results in Wu and Shao (2004) show that condition 3
(as well as the other two conditions) is not only fulfilled for linear time series processes but also
for a variety of non-linear processes.

3. The multiscale test

In this section, we introduce our multiscale method to test for local increases and decreases of
the trend function m and analyse its theoretical properties. We assume throughout that m is
continuously differentiable on [0, 1]. The test problem under consideration can be formulated
as follows: let H0.u, h/ be the hypothesis that m is constant on the interval [u−h, u+h]. Since
m is continuously differentiable, H0.u, h/ can be reformulated as

H0.u, h/ : m′.w/=0 for all w ∈ [u−h, u+h],

where m′ is the first derivative of m. We want to test the hypothesis H0.u, h/ not just for a single
interval [u−h, u+h] but simultaneously for many intervals. The overall null hypothesis is thus
given by

H0 : the hypothesis H0.u, h/ holds true for all .u, h/∈GT ,
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where GT is some large set of points .u, h/. The details on the set GT are discussed at the end
of Section 3.1. Note that GT in general depends on the sample size T , implying that the null
hypothesis H0 = H0,T depends on T as well. We thus consider a sequence of null hypotheses
{H0,T : T =1, 2, : : :} as T increases. For simplicity of notation, however, we suppress the depen-
dence of H0 on T . In Sections 3.1 and 3.2, we step by step construct the multiscale test of the
hypothesis H0. The theoretical properties of the test are analysed in Section 3.3.

3.1. Construction of the multiscale statistic
We first construct a test statistic for the hypothesis H0.u, h/, where [u − h, u + h] is a given
interval. To do so, we consider the kernel average

ψ̂T .u, h/=
T∑

t=1
wt,T .u, h/Yt,T ,

where wt,T .u, h/ is a kernel weight and h is the bandwidth. To avoid boundary issues, we work
with a local linear weighting scheme. We in particular set

wt,T .u, h/= Λt,T .u, h/

{
∑T

t=1 Λt,T .u, h/2}1=2
, .3:1/

where

Λt,T .u, h/=K

(
t=T −u

h

){
ST ,0.u, h/

(
t=T −u

h

)
−ST ,1.u, h/

}
,

ST ,l.u, h/= .Th/−1
T∑

t=1
K

(
t=T −u

h

)(
t=T −u

h

)l

for l=0, 1, 2 and K is a kernel function with the following properties.

Condition 4. The kernel K is non-negative, symmetric about zero and integrates to 1. More-
over, it has compact support [−1, 1] and is Lipschitz continuous, i.e. |K.v/−K.w/|�C|v− w|
for any v, w ∈R and some constant C> 0.

The kernel average ψ̂T .u, h/ is nothing other than a rescaled local linear estimator of the
derivative m′.u/ with bandwidth h. Alternatively to the local linear weights defined in equation
(3.1), we could work with the weights wt,T .u, h/=K′{.t=T −u/=h}=[ΣT

t=1K′{.t=T −u/=h}2]1=2,
where the kernel function K is assumed to be differentiable and K′ is its derivative. However, we
prefer to use local linear weights as these have superior theoretical properties at the boundary.

A test statistic for the hypothesis H0.u, h/ is given by the normalized kernel average ψ̂T .u, h/=σ̂,
where σ̂2 is an estimator of the long-run varianceσ2 =Σ∞

l=−∞cov."0, "l/ of the error process {"t}.
The problem of estimating σ2 is discussed in detail in Section 4. For the time being, we suppose
that σ̂2 is an estimator with reasonable theoretical properties. Specifically, we assume that σ̂2 =
σ2 +op.ρT / with ρT =o{1= log.T/}. This is a fairly weak condition which is in particular satisfied
by the estimator of σ2 analysed in Section 4. The kernel weights wt,T .u, h/ are chosen such that,
in the case of independent errors "t , var{ψ̂T .u, h/}=σ2 for any location u and bandwidth h,
where the long-run error variance σ2 simplifies to σ2 =var."t/. In the more general case that the
error terms satisfy the weak dependence conditions from Section 2, var{ψ̂T .u, h/}=σ2 +o.1/

for any u and h under consideration. Hence, for sufficiently large sample sizes T , the test statistic
ψ̂T .u, h/=σ̂ has approximately unit variance.
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We now combine the test statistics ψ̂T .u, h/=σ̂ for a wide range of locations u and bandwidths
or scales h. There are different ways to do so, leading to different types of multiscale statistics.
Our multiscale statistic is defined as

Ψ̂T = max
.u,h/∈GT

{∣∣∣ ψ̂T .u, h/

σ̂

∣∣∣−λ.h/

}
, .3:2/

whereλ.h/=√
[2 log{1=.2h/}] and GT is the set of points .u, h/ that are taken into consideration.

The details on the set GT are given below. As can be seen, the statistic Ψ̂T does not simply
aggregate the individual statistics ψ̂T .u, h/=σ̂ by taking the supremum over all points .u, h/∈GT

as in more traditional multiscale approaches. We rather calibrate the statistics ψ̂T .u, h/=σ̂ that
correspond to the bandwidth h by subtracting the additive correction term λ.h/. This approach
was pioneered by Dümbgen and Spokoiny (2001) and has been used in numerous other studies
since then; see for example Dümbgen (2002), Rohde (2008), Dümbgen and Walther (2008),
Rufibach and Walther (2010), Schmidt-Hieber et al. (2013) and Eckle et al. (2017).

To see the heuristic idea behind the additive correction λ.h/, consider for a moment the
uncorrected statistic

Ψ̂T ,uncorrected = max
.u,h/∈GT

∣∣∣ ψ̂T .u, h/

σ̂

∣∣∣ .3:3/

and suppose that the hypothesis H0.u, h/ is true for all .u, h/∈GT . For simplicity, assume that
the errors "t are IID normally distributed and neglect the estimation error in σ̂, i.e. set σ̂=σ.
Moreover, suppose that the set GT consists of only the points .uk, hl/ = ..2k − 1/hl, hl/ with
k =1, : : : , 	1=.2hl/
 and l=1, : : : , L. In this case, we can write

Ψ̂T ,uncorrected = max
1�l�L

max
1�k�	1=.2hl/


∣∣∣ ψ̂T .uk, hl/

σ

∣∣∣:
Under our simplifying assumptions, the statistics ψ̂T .uk, hl/=σ with k = 1, : : : , 	1=.2hl/
 are
independent and standard normal for any given bandwidth hl. Since the maximum over 	1=.2h/

independent standard normal random variables is λ.h/ + op.1/ as h → 0, we obtain that
maxk ψ̂T .uk, hl/=σ is approximately of size λ.hl/ for small bandwidths hl. As λ.h/ → ∞ for
h→0, this implies that maxk ψ̂T .uk, hl/=σ tends to be much larger for small than for large band-
widths hl. As a result, the stochastic behaviour of the uncorrected statistic Ψ̂T ,uncorrected tends to
be dominated by the statistics ψ̂T .uk, hl/ corresponding to small bandwidths hl. The additively
corrected statistic Ψ̂T , in contrast, puts the statistics ψ̂T .uk, hl/ corresponding to different band-
widths hl on a more equal footing, thus counteracting the dominance of small bandwidth values.

The multiscale statistic Ψ̂T simultaneously takes into account all locations u and bandwidths
h with .u, h/∈GT . Throughout the paper, we suppose that GT is some subset of Gfull

T ={.u, h/ :
u = t=T for some 1 � t � T and h ∈ [hmin, hmax]}, where hmin and hmax denote some minimal
and maximal bandwidth value respectively. For our theory to work, we require the following
conditions to hold.

Condition 5. |GT | = O.T θ/ for some arbitrarily large but fixed constant θ> 0, where |GT |
denotes the cardinality of GT .

Condition 6. hmin �T −.1−2=q/ log.T/, i.e. hmin={T −.1−2=q/ log.T/}→∞ with q>4 defined in
condition 2 and hmax < 1

2 .

According to condition 5, the number of points .u, h/ in GT should not grow faster than T θ for
some arbitrarily large but fixed θ>0. This is a fairly weak restriction as it allows the set GT to be
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extremely large compared with the sample size T . For example, we may work with the set GT =
{.u, h/ : u= t=T for some 1 � t �T and h∈ [hmin, hmax] with h= t=T for some 1 � t �T}, which
contains more than enough points .u, h/ for most practical applications. Condition 6 imposes
some restrictions on the minimal and maximal bandwidths hmin and hmax. These conditions
are fairly weak, allowing us to choose the bandwidth window [hmin, hmax] extremely large. The
lower bound on hmin depends on the parameter q defined in condition 2 which specifies the
number of existing moments for the error terms "t . As we can see, we can choose hmin to be of
the order T −1=2 for any q> 4. Hence, we can let hmin converge to 0 very quickly even if only the
first few moments of the error terms "t exist. If all moments exist (i.e. q=∞), hmin may converge
to 0 almost as quickly as T −1 log.T/. Furthermore, the maximal bandwidth hmax is not even
required to converge to 0, which implies that we can pick it very large.

Remark 1. The above construction of the multiscale statistic can be easily adapted to hy-
potheses other than H0. To do so, we simply need to replace the kernel weights wt,T .u, h/ that
are defined in equation (3.1) by appropriate versions which are suited to test the hypothesis of
interest. For example, if we want to test for local convexity or concavity of m, we may define the
kernel weights wt,T .u, h/ such that the kernel average ψ̂T .u, h/ is a (rescaled) estimator of the
second derivative of m at the location u with bandwidth h.

3.2. The test procedure
To formulate a test for the null hypothesis H0, we still need to specify a critical value. To do so,
we define the statistic

ΦT = max
.u,h/∈GT

{∣∣∣φT .u, h/

σ

∣∣∣−λ.h/

}
, .3:4/

where φT .u, h/=ΣT
t=1wt,T .u, h/σZt and Zt are independent standard normal random variables.

The statistic ΦT can be regarded as a Gaussian version of the test statistic Ψ̂T under the null
hypothesis H0. Let qT .α/ be the .1−α/-quantile of ΦT . Importantly, the quantile qT .α/ can be
computed by Monte Carlo simulations and can thus be regarded as known. Our multiscale test
is now defined as follows: for a given level of significance α∈ .0, 1/, we reject the overall null
hypothesis H0 if Ψ̂T > qT .α/. In particular, for any .u, h/ ∈ GT , we reject H0.u, h/ if the (cor-
rected) test statistic |ψ̂T .u, h/=σ̂|−λ.h/ lies above the critical value qT .α/, i.e. if |ψ̂T .u, h/=σ̂|>
qT .α/+λ.h/.

3.3. Theoretical properties of the test
To examine the theoretical properties of our multiscale test, we introduce the auxiliary multiscale
statistic

Φ̂T = max
.u,h/∈GT

{∣∣∣ φ̂T .u, h/

σ̂

∣∣∣−λ.h/

}
.3:5/

with φ̂T .u, h/= ψ̂T .u, h/− E[ψ̂T .u, h/] =ΣT
t=1wt,T .u, h/"t . The following result is central to the

theoretical analysis of our multiscale test. According to it, the (known) quantile qT .α/ of the
Gaussian statistic ΦT that was defined in Section 3.2 can be used as a proxy for the .1 −α/-
quantile of the multiscale statistic Φ̂T .

Theorem 1. Let conditions 1–6 be fulfilled and assume that σ̂2 = σ2 + op.ρT / with ρT =
o{1= log.T/}. Then

P{Φ̂T �qT .α/}=1−α+o.1/:
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A full proof of theorem 1 is given in the on-line supplementary material. Here we briefly outline
the proof strategy, which splits up into two main steps. In the first, we replace the statistic Φ̂T

for each T �1 by a statistic Φ̃T with the same distribution as Φ̂T and the property that

|Φ̃T −ΦT

∣∣=op.δT /, .3:6/

where δT = o.1/ and the Gaussian statistic ΦT is defined in Section 3.2. We thus replace the
statistic Φ̂T by an identically distributed version which is close to a Gaussian statistic whose
distribution is known. To do so, we make use of strong approximation theory for dependent
processes as derived in Berkes et al. (2014). In the second step, we show that

sup
x∈R

|P.Φ̃T �x/−P.ΦT �x/|=o.1/, .3:7/

which immediately implies the statement of theorem 1. Importantly, the convergence result (3.6)
is not sufficient for establishing the result in equation (3.7). Put differently, the fact that Φ̃T can
be approximated by ΦT in the sense that Φ̃T −ΦT =op.δT / does not imply that the distribution
of Φ̃T is close to that of ΦT in the sense of equation (3.7). For equation (3.7) to hold, we ad-
ditionally require that the distribution of ΦT has some sort of continuity property. Specifically,
we prove that

sup
x∈R

P.|ΦT −x|� δT /=o.1/, .3:8/

which says that ΦT does not concentrate too strongly in small regions of the form [x−δT , x+δT ].
Anticoncentration bounds for Gaussian random vectors as derived in Chernozhukov et al.
(2015) are the main tool for verifying the result in equation (3.8). The claim (3.7) can be proved
by using equation (3.6) together with equation (3.8), which in turn yields theorem 1.

The main idea of our proof strategy is to combine strong approximation theory with anti-
concentration bounds for Gaussian random vectors to show that the quantiles of the multiscale
statistic Φ̂T can be proxied by those of a Gaussian analogue. This strategy is quite general in
nature and may be applied to other multiscale problems for dependent data. Strong approxi-
mation theory has also been used to investigate multiscale tests for independent data; see for
example Schmidt-Hieber et al. (2013). However, it has not been combined with anticoncentra-
tion results to approximate the quantiles of the multiscale statistic. As an alternative to strong
approximation theory, Eckle et al. (2017) and Proksch et al. (2018) have recently used Gaussian
approximation results that were derived in Chernozhukov et al. (2014, 2017) to analyse multi-
scale tests for independent data. Even though it might be possible to adapt these techniques to
the case of dependent data, this is not trivial at all as part of the technical arguments and the
Gaussian approximation tools strongly rely on the assumption of independence.

We now investigate the theoretical properties of our multiscale test with the help of theorem
1. The first result is an immediate consequence of theorem 1. It says that the test has the correct
(asymptotic) size.

Proposition 1. Let the conditions of theorem 1 be satisfied. Under the null hypothesis H0, it
holds that

P{Ψ̂T �qT .α/}=1−α+o.1/:

The second result characterizes the power of the multiscale test against local alternatives. To
formulate it, we consider any sequence of functions m=mT with the following property: there
exists .u, h/∈GT with [u−h, u+h]⊆ [0, 1] such that
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m′
T .w/� cT

√{
log.T/

Th3

}
for all w ∈ [u−h, u+h], .3:9/

where {cT } is any sequence of positive numbers with cT →∞. Alternatively to expression (3.9),
we may also assume that −m′

T .w/� cT
√{log.T/=.Th3/} for all w ∈ [u−h, u+h].

Proposition 2. Let the conditions of theorem 1 be satisfied and consider any sequence of
functions mT with the property (3.9). Then

P{Ψ̂T �qT .α/}=o.1/:

According to proposition 2, our test has asymptotic power 1 against local alternatives of the
form (3.9). The proof can be found in the on-line supplementary material.

The next result formally shows that we can make simultaneous confidence statements about
the time intervals where the trend m is increasing or decreasing. To formulate it, we define

Π±
T ={Iu,h = [u−h, u+h] : .u, h/∈A±

T },

Π+
T ={

Iu,h = [u−h, u+h] : .u, h/∈A+
T and Iu,h ⊆ [0, 1]

}
,

Π−
T ={

Iu,h = [u−h, u+h] : .u, h/∈A−
T and Iu,h ⊆ [0, 1]

}
,

where

A±
T =

{
.u, h/∈GT :

∣∣∣ ψ̂T .u, h/

σ̂

∣∣∣>qT .α/+λ.h/

}
,

A+
T =

{
.u, h/∈GT :

ψ̂T .u, h/

σ̂
>qT .α/+λ.h/

}
,

A−
T =

{
.u, h/∈GT :− ψ̂T .u, h/

σ̂
>qT .α/+λ.h/

}
:

The object Π±
T can be interpreted as follows: our multiscale test rejects the null hypothesis

H0.u, h/ if |ψ̂T .u, h/=σ̂| > qT .α/ +λ.h/. Put differently, it rejects H0.u, h/ for all .u, h/ ∈ A±
T .

Hence, Π±
T is the collection of time intervals Iu,h = [u − h, u + h] for which our test rejects

H0.u, h/. The objects Π+
T and Π−

T can be interpreted analogously: if ψ̂T .u, h/=σ̂>qT .α/+λ.h/,
i.e., if .u, h/∈A+

T , then our test rejects H0.u, h/ and indicates an increase in the trend m on the
interval Iu,h, taking into account the positive sign of the statistic ψ̂T .u, h/=σ̂. Hence, Π+

T is the
collection of time intervals Iu,h for which our test indicates an increase in the trend m. Likewise,
Π−

T is the collection of intervals for which the test indicates a decrease. Note that Π±
T (as well as

Π+
T and Π−

T ) is a random collection of intervals: whether our test rejects H0.u, h/ for some .u, h/

depends on the realization of the random vector .Y1,T , : : : , YT ,T /. Hence, whether an interval
Iu,h belongs to Π±

T depends on this realization as well. Having defined the objects Π±
T , Π+

T and
Π−

T , we now consider the events

E±
T ={∀ Iu,h ∈Π±

T : m′.v/ 
=0 for some v∈ Iu,h = [u−h, u+h]
}

,

E+
T ={∀ Iu,h ∈Π+

T : m′.v/> 0 for some v∈ Iu,h = [u−h, u+h]
}

,

E−
T ={∀ Iu,h ∈Π−

T : m′.v/< 0 for some v∈ Iu,h = [u−h, u+h]
}

:

E±
T .E+

T , E−
T / is the event that the function m is non-constant (increasing, decreasing) on all
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intervals Iu,h ∈ Π±
T .Π+

T , Π−
T /. More precisely, E±

T .E+
T , E−

T / is the event that, for each interval
Iu,h ∈Π±

T .Π+
T , Π−

T /, there is a subset Ju,h ⊆ Iu,h with m being a non-constant (increasing, de-
creasing) function on Ju,h. We can make the following formal statement about the events E±

T ,
E+

T and E−
T , whose proof is given in the on-line supplement.

Proposition 3. Let the conditions of theorem 1 be fulfilled. Then for l ∈{±, + , −}, it holds
that

P.El
T /�1−α+o.1/:

According to proposition 3, we can make simultaneous confidence statements of the following
form: with (asymptotic) probability 1 −α or greater, the trend function m is non-constant
(increasing, decreasing) on each interval Iu,h ∈Π±

T .Π+
T , Π−

T /. Hence, our multiscale procedure
enables us to identify, with prespecified confidence, time intervals where there is an increase or
decrease in the trend m.

Remark 2. Unlike Π±
T , the sets Π+

T and Π−
T only contain intervals Iu,h = [u − h, u + h]

which are subsets of [0, 1]. We thus exclude points .u, h/∈A+
T and .u, h/∈A−

T which lie at the
boundary, i.e. for which Iu,h � [0, 1]. The reason is as follows: let .u, h/ ∈A+

T with Iu,h � [0, 1].
Our technical arguments enable us to say, with asymptotic confidence 1 −α or greater, that
m′.v/ 
= 0 for some v ∈ Iu,h. However, we cannot say whether m′.v/ > 0 or m′.v/ < 0, i.e. we
cannot make confidence statements about the sign. Crudely speaking, the problem is that the
local linear weights wt,T .u, h/ behave quite differently at boundary points .u, h/ with Iu,h �
[0, 1]. As a consequence, we can include boundary points .u, h/ in Π±

T but not in Π+
T and

Π−
T .

Remark 3. The statement of proposition 3 suggests that we graphically present the results
of our multiscale test by plotting the intervals Iu,h ∈Πl

T for l ∈ {±, + , −}, i.e. by plotting the
intervals where (with asymptotic confidence 1−α or greater) our test detects a violation of the
null hypothesis. The drawback of this graphical presentation is that the number of intervals in
Πl

T is often quite large. To obtain a better graphical summary of the results, we replace Πl
T

by a subset Πl, min
T which is constructed as follows: as in Dümbgen (2002), we call an interval

Iu,h ∈Πl
T minimal if there is no other interval Iu′,h′ ∈Πl

T with Iu′,h′ ⊂ Iu,h. Let Πl, min
T be the set

of all minimal intervals in Πl
T for l∈{±, + , −} and define the events

E
±, min
T ={∀ Iu,h ∈Π±, min

T : m′.v/ 
=0 for some v∈ Iu,h = [u−h, u+h]},

E
+, min
T ={∀ Iu,h ∈Π+, min

T : m′.v/> 0 for some v∈ Iu,h = [u−h, u+h]},

E
−, min
T ={∀ Iu,h ∈Π−, min

T : m′.v/< 0 for some v∈ Iu,h = [u−h, u+h]}:

It is easily seen that El
T =E

l, min
T for l∈{±, + , −}. Hence, by proposition 3, it holds that

P.E
l, min
T /�1−α+o.1/

for l ∈ {±, + , −}. This suggests that we plot the minimal intervals in Πl, min
T rather than the

whole collection of intervals Πl
T as a graphical summary of the test results. We in particular use

this way of presenting the test results in our application in Section 6.

Proposition 3 enables us to make confidence statements for a fixed level of significance α∈
.0, 1/. In some situations, we may be interested in letting α=αT ∈ .0, 1/ → 0 as T →∞. This
situation is considered in the following corollary to proposition 3, whose proof can be found in
the on-line supplementary material.
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Corollary 1. Let the conditions of theorem 1 be fulfilled and letα=αT ∈ .0, 1/→0 as T →∞.
Then P.El

T /→1 for l∈{±, + , −}.

Corollary 1 can be interpreted as a consistency result: if we let the level of significance α=αT

go to 0, then the event E±
T (E+

T , E−
T ) occurs with probability tending to 1, i.e. the trend m is non-

constant (increasing, decreasing) on each interval Iu,h ∈Π±
T .Π+

T , Π−
T / with probability tending

to 1.

3.4. Comparison with SiZer methods
As already mentioned in Section 1, some SiZer methods for dependent data have been introduced
in Park et al. (2004) and Rondonotti et al. (2007), which we refer to as dependent SiZer for short.
Informally speaking, both our approach and dependent SiZer are methods to test for local
increases and decreases of a non-parametric trend function m. The formal problem is to test the
hypothesis H0.u, h/ simultaneously for all .u, h/∈GT , where, in this section, we let GT =UT ×HT

with UT being the set of locations and HT the set of bandwidths or scales. In what follows, we
compare our approach with dependent SiZer and point out the most important differences.

Dependent SiZer is based on the statistics ŝT .u, h/= m̂′.u, h/=ŝd{m̂′.u, h/}, where m̂′.u, h/ is
a local linear kernel estimator of m′.u/ with bandwidth h and ŝd{m̂′.u, h/} is an estimator of
its standard deviation. The statistic ŝT .u, h/ parallels the statistic ψ̂T .u, h/=σ̂ in our approach.
In particular, both can be regarded as test statistics of the hypothesis H0.u, h/. There are two
versions of dependent SiZer, as follows.

(a) The global version aggregates the individual statistics ŝT .u, h/ into the overall statistic
ŜT =maxh∈HT ŜT .h/, where ŜT .h/=maxu∈UT |ŝT .u, h/|. The statistic ŜT is the counterpart
to the multiscale statistic Ψ̂T in our approach.

(b) The rowwise version considers each scale h∈HT separately. In particular, for each band-
width h∈HT , a test is carried out based on the statistic ŜT .h/. A rowwise analogue of our
approach would be obtained by carrying out a test for each scale h∈HT separately based
on the statistic Ψ̂T .h/=maxu∈UT |ψ̂T .u, h/=σ̂|. Note that we can drop the correction term
λ.h/ in this case as it is a fixed constant if only a single bandwidth h is taken into account.

In practice, SiZer is commonly implemented in its rowwise form. The main reason is that it
has more power than the global version by construction. However, this gain of power comes
at a cost: rowwise SiZer carries out a test separately for each scale h ∈ HT , thus ignoring the
simultaneous test problem across scales h. Hence, it is not a rigorous level α test of the null H0.
For this reason, we focus on global SiZer in the rest of this section.

Even though related, our methods and theory are markedly different from those of the SiZer
approach. The main differences are as follows.

(a) Theory for SiZer is derived under the assumption that HT ⊆ H for all T , where H is a
compact subset of .0, ∞/. As already pointed out in Chaudhuri and Marron (2000) on
page 420, this is quite a severe restriction: only bandwidths h are taken into account
that remain bounded away from 0 as the sample size T increases. Bandwidths h that
converge to 0 are excluded. Our theory, in contrast, enables us to consider simultaneously
bandwidths h of fixed size and bandwidths h that converge to 0 at different rates. To
achieve this, we come up with a proof strategy which is very different from that in the
SiZer literature: as proven in Chaudhuri and Marron (2000) for the IID data case and in
Park et al. (2009) for the dependent data case, ŜT weakly converges to some limit S under
the overall null hypothesis H0. This is the central technical result on which the theoretical
properties of SiZer are based. In contrast with this, our proof strategy (which combines
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strong approximation theory with anticoncentration bounds as outlined in Section 3.3)
does not even require the statistic Ψ̂T to have a weak limit and is thus not restricted by
the limitations of classic weak convergence theory.

(b) There are different ways to combine the test statistics ŜT .h/=maxu∈UT |ŝT .u, h/| for differ-
ent scales h∈HT . One way is to take their maximum, which leads to the SiZer statistic ŜT =
maxh∈HT ŜT .h/. We could proceed analogously and consider the statistic Ψ̂T ,uncorrected =
maxh∈HT Ψ̂T .h/ = max.u,h/∈UT ×HT |ψ̂T .u, h/=σ̂|. However, as argued in Dümbgen and
Spokoiny (2001) and as discussed in Section 3.1, this aggregation scheme is not opti-
mal when the set HT contains scales h of many rates. Following the lead of Dümbgen
and Spokoiny (2001), we consider the test statistic Ψ̂T =max.u,h/∈UT ×HT {|ψ̂T .u, h/=σ̂|−
λ.h/} with the additive correction terms λ.h/. Hence, even though related, our multiscale
test statistic Ψ̂T differs from the SiZer statistic ŜT in important ways.

(c) The main complication in carrying out both our multiscale test and SiZer is to determine
the critical values, i.e. the quantiles of the test statistics Ψ̂T and ŜT under H0. To approxi-
mate the quantiles, we proceed quite differently from the SiZer literature. The quantiles of
the SiZer statistic ŜT can be approximated by those of the weak limit S. Usually, however,
the quantiles of S cannot be determined analytically but must be approximated themselves
(e.g. by the bootstrap procedures of Chaudhuri and Marron (1999, 2000)). Alternatively,
the quantiles of ŜT can be approximated by procedures based on extreme value theory
(as proposed in Hannig and Marron (2006) and Park et al. (2009)). In our approach, the
quantiles of Ψ̂T under H0 are approximated by those of a suitably constructed Gaussian
analogue of Ψ̂T . It is far from obvious that this Gaussian approximation is valid when
the data are dependent. To see this, deep strong approximation theory for dependent data
(as derived in Berkes et al. (2014)) is needed. It is important to note that our Gaussian
approximation procedure is not the same as the bootstrap procedures that were proposed
in Chaudhuri and Marron (1999, 2000). Both procedures can of course be regarded as
resampling methods. However, the resampling is done in quite a different way in our case.

4. Estimation of the long-run error variance

In this section, we discuss how to estimate the long-run variance σ2 =Σ∞
l=−∞cov."0, "l/ of the er-

ror terms in model (2.1). There are two broad classes of estimators: residual- and difference-based
estimators. In residual-based approaches, σ2 is estimated from the residuals "̂t =Yt,T − m̂h.t=T/,
where m̂h is a non-parametric estimator of m with the bandwidth or smoothing parameter h.
Difference-based methods proceed by estimating σ2 from the lth differences Yt,T −Yt−l,T of the
observed time series {Yt,T } for certain orders l. In what follows, we focus attention on difference-
based methods as these do not involve a non-parametric estimator of the function m and thus
do not require us to specify a bandwidth h for the estimation of m.

So far, we have assumed that {"t} is a general stationary error process which fulfils the weak
dependence condition 3. Estimating the long-run error variance σ2 in model (2.1) under general
weak dependence conditions is a notoriously difficult problem. Estimators of σ2 often tend to
be quite imprecise. To circumvent this issue in practice, it may be beneficial to impose a time
series model on the error process {"t}. Estimating σ2 under the restrictions of such a model may
of course create some misspecification bias. However, as long as the model gives a reasonable
approximation to the true error process, the estimates of σ2 that are produced can be expected
to be fairly reliable even though they are a little biased.

Estimators of the long-run error variance σ2 in model (2.1) have been developed for different
kinds of error models. Various researchers have analysed the case of moving average MA(m) or,
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more generally, m-dependent error terms. Difference-based estimators of σ2 for this case were
proposed in Müller and Stadtmüller (1988), Herrmann et al. (1992) and Tecuapetla-Gómez
and Munk (2017) among others. Presumably the most widely used error model in practice is
an AR(p) process. Residual-based methods to estimate σ2 in model (2.1) with AR(p) errors
can be found for example in Truong (1991), Shao and Yang (2011) and Qiu et al. (2013). A
difference-based method was proposed in Hall and Van Keilegom (2003).

We consider the class of AR(∞) processes as an error model, which is quite a large and
important subclass of linear time series processes. Formally speaking, we let {"t} be a process
of the form

"t =
∞∑

j=1
aj"t−j +ηt , .4:1/

where a1, a2, a3, : : : are unknown coefficients and ηt are IID with E[ηt ] = 0 and E[η2
t ] = ν2. We

assume that A.z/ :=1−Σ∞
j=1ajzj 
=0 for all complex numbers |z|�1+ δ with some small δ> 0,

which has the following implications:

(a) {"t} is stationary and causal;
(b) the coefficients aj decay to 0 exponentially fast, i.e. |aj|� Cξj with some C > 0 and ξ ∈

.0, 1/;
(c) {"t} has an MA(∞) representation of the form "t =Σ∞

k=0ckηt−k.

The coefficients ck can be computed iteratively from the equations

ck −
k∑

j=1
ajck−j =bk .4:2/

for k = 0, 1, 2, : : :, where b0 = 1 and bk = 0 for k > 0. Moreover, they decay to 0 exponentially
fast, i.e. |ck|�Cξk with some C > 0 and ξ∈ .0, 1/. Notably, the error model (4.1) nests AR(pÅ)
processes of any finite order pÅ as a special case: if apÅ 
=0 and aj =0 for all j>pÅ, then {"t} is
an AR process of order pÅ. In what follows, we let pÅ ∈N∪{∞} denote the true AR order of
{"t} which may be finite or infinite. We can thus rewrite the process (4.1) as

"t =
pÅ∑

j=1
aj"t−j +ηt , .4:3/

where the AR order pÅ is treated as unknown.
We now construct a difference-based estimator of σ2 for the case that {"t} is an AR(pÅ)

process of the form (4.3). To do so, we shall fit AR(p)-type models to {"t}, where we distinguish
between the following two cases (which are referred to as case A and case B).

(a) We do not know the precise AR order pÅ but we know an upper bound p on it. In this
case, p is a fixed natural number with p�pÅ (case A).

(b) We neither know pÅ nor an upper bound on it. In this case, we let p=pT →∞ as T →∞,
where formal conditions on the growth of p=pT are specified later (case B).

To simplify the notation, we let ΔlZt = Zt − Zt−l denote the lth differences of a general time
series {Zt}. Our estimation method relies on the following simple observation: if {"t} is an
AR(pÅ) process of the form (4.3), then the time series {Δq"t} of the differences Δq"t ="t −"t−q

is an ARMA(pÅ, q) process of the form
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Δq"t −
pÅ∑

j=1
ajΔq"t−j =ηt −ηt−q: .4:4/

As m is Lipschitz, the differences Δq"t of the unobserved error process are close to the differences
ΔqYt,T of the observed time series in the sense that

ΔqYt,T = "t − "t−q +m

(
t

T

)
−m

(
t −q

T

)
=Δq"t +O

(
q

T

)
: .4:5/

Taken together, equations (4.4) and (4.5) imply that the differenced time series {ΔqYt,T } is
approximately an ARMA(pÅ, q) process of the form (4.4). It is precisely this point which is
exploited by our estimation method.

We first describe our procedure to estimate the AR parameters aj. For any q � 1, the
ARMA(pÅ, q) process {Δq"t} satisfies the Yule–Walker equations

γq.l/−
pÅ∑

j=1
ajγq.l− j/=

{
−ν2cq−l for 1� l<q+1,
0 for l�q+1,

.4:6/

where γq.l/= cov.Δq"t , Δq"t−l/ and ck are the coefficients from the MA(∞) expansion of {"t}.
Combining equations (4.6) for l=1, : : : , p, we obtain that

Γqa =γq +ν2cq −ρq, .4:7/

where a = .a1, : : : , ap/T, γq = .γq.1/, : : : ,γq.p//T and Γq denotes the p × p covariance matrix
Γq = .γq.i−j/ : 1� i, j �p/. Moreover, cq = .cq−1, : : : , cq−p/T and ρq = .ρq.1/, : : : ,ρq.p//T with
ρq.l/=ΣpÅ

j=p+1ajγq.l − j/. Since the AR coefficients aj as well as the MA coefficients ck decay
exponentially fast to 0, ρq ≈ 0 and cq ≈ 0 for large values of q, implying that Γqa ≈ γq. This
suggests that we estimate a by

ãq = Γ̂
−1
q γ̂q, .4:8/

where Γ̂q and γ̂q are defined analogously to Γq and γq with γq.l/ replaced by the sample
autocovariances γ̂q.l/= .T −q/−1ΣT

t=q+l+1ΔqYt,T ΔqYt−l,T and q=qT →∞ as T →∞. For our
theory to work, we require that q=p→∞, i.e. q needs to grow faster than p. Formal conditions
on the growth of q are given later.

The estimator ãq depends on the tuning parameter q, i.e. on the order of the differences
ΔqYt,T . An appropriate choice of q needs to take care of the following two points.

(a) q should be chosen sufficiently large to ensure that the vector cq = .cq−1, : : : , cq−p/T is
close to zero. As we have already seen, the constants ck decay to 0 exponentially fast and
can be computed from the recursive equations (4.2) for given parameters a1, a2, a3, : : : : In
the special case of an AR(1) process, for example, one can readily calculate that ck �0:0035
for any k �20 and any |a1|�0:75. Hence, if we have an AR(1) model for the errors "t and
the error process is not too persistent, choosing q � 20 should make sure that cq is close
to 0. Generally speaking, the recursive equations (4.2) can be used to obtain some idea
for which values of q the vector cq can be expected to be approximately 0.

(b) q should not be chosen too large to ensure that the trend m is appropriately eliminated by
taking qth differences.

As long as the trend m is not very strong, the two requirements (a) and (b) can be fulfilled
without much difficulty. For example, by choosing q = 20 in the AR(1) case just discussed, we
not only take care of point (a) but also make sure that moderate trends m are differenced out
appropriately.
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When the trend m is very pronounced, in contrast, even moderate values of q may be too
large to eliminate the trend appropriately. As a result, the estimator ãq will have a strong bias.
To reduce this bias, we refine our estimation procedure as follows: by solving the recursive
equations (4.2) with a replaced by ãq, we can compute estimators c̃k of the coefficients ck and
thus estimators c̃r of the vectors cr for any r �1. Moreover, the innovation variance ν2 can be
estimated by ν̃2 = .2T/−1ΣT

t=p+2r̃2
t,T , where r̃t,T = Δ1Yt,T − Σp

j=1ãjΔ1Yt−j,T and ãj is the jth
entry of the vector ãq. Plugging the expressions Γ̂r, γ̂r, c̃r and ν̃2 into equation (4.7), we can
estimate a by

âr = Γ̂
−1
r .γ̂r + ν̃2c̃r/, .4:9/

where r is a much smaller differencing order than q. Specifically, in case A, we can choose r to
be any fixed number r � 1. Unlike q, the parameter r thus remains bounded as T increases. In
case B, our theory enables us to choose any number r with r � .1 + δ/p for some small δ> 0.
Since q=p →∞, it holds that q=r →∞ as well, which means that r is of smaller order than q.
Hence, in both case A and case B, the estimator âr is based on a differencing order r that is
much smaller than q; only the pilot estimator ãq relies on differences of the larger order q. As a
consequence, âr should eliminate the trend m more appropriately and should thus be less biased
than the pilot estimator ãq. To make the method more robust against estimation errors in c̃r,
we finally average the estimators âr for a few values of r. In particular, we define

â = 1
r̄ − r +1

r̄∑
r=r

âr, .4:10/

where r and r̄ are chosen as follows: in case A, we let r and r̄ be small natural numbers. In case B,
we set r = .1− δ/p for some small δ> 0 and choose r̄ such that r̄ − r remains bounded. For ease
of notation, we suppress the dependence of â on the parameters r and r̄. Once â = .â1, : : : , âp/T

has been computed, the long-run variance σ2 can be estimated by

σ̂2 = ν̂2

.1−∑p
j=1 âj/2

, .4:11/

where ν̂2 = .2T/−1ΣT
t=p+2r̂2

t,T with r̂t,T = Δ1Yt,T − Σp
j=1âjΔ1Yt−j,T is an estimator of the

innovation variance ν2 and we make use of the fact that σ2 =ν2=.1−ΣpÅ

j=1aj/2 for the AR(pÅ)
process {"t}.

We briefly compare the estimator â with competing methods. Presumably closest to our
approach is that of Hall and Van Keilegom (2003) which was designed for AR(pÅ) processes of
known finite order pÅ. For comparing the two methods, we thus assume that pÅ is known and
set p=pÅ. The two main advantages of our method are as follows.

(a) Our estimator produces accurate estimation results even when the AR process {"t} is quite
persistent, i.e. even when the AR polynomial A.z/=1−ΣpÅ

j=1ajzj has a root that is close
to the unit circle. The estimator of Hall and Van Keilegom (2003), in contrast, may have
very high variance and may thus produce unreliable results when the AR polynomial A.z/

is close to having a unit root. This difference in behaviour can be explained as follows:
our pilot estimator ãq = .ã1, : : : , ãpÅ/T has the property that the estimated AR polynomial
Ã.z/=1−ΣpÅ

j=1ãjzj has no root inside the unit disc, i.e. Ã.z/ 
=0 for all complex numbers
z with |z| � 1. (More precisely, Ã.z/ 
= 0 for all z with |z| � 1, whenever the covariance
matrix .γ̂q.i−j/ : 1� i, j �pÅ +1/ is non-singular. Moreover, .γ̂q.i−j/ : 1� i, j �pÅ +1/

is non-singular whenever γ̂q.0/>0, which is the generic case.) Hence, the fitted AR model
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with the coefficients ãq is ensured to be stationary and causal. Even though this may seem
to be a minor technical detail, it has a huge effect on the performance of the estimator
ãq: it keeps the estimator stable even when the AR process is very persistent and the
AR polynomial A.z/ has almost a unit root. This in turn results in reliable behaviour of
the estimator â in the case of high persistence. The estimator of Hall and Van Keilegom
(2003), in contrast, may produce non-causal results when the AR polynomial A.z/ is
close to having a unit root. As a consequence, it may have unnecessarily high variance
in the case of high persistence. We illustrate this difference between the estimators by the
simulation exercises in Section 5.2. A striking example is Fig. 6 there, which presents the
simulation results for the case of an AR(1) process "t = a1"t−1 + ηt with a1 =−0:95 and
clearly shows the much better performance of our method.

(b) Both our pilot estimator ãq and the estimator of Hall and Van Keilegom (2003) tend to
have a substantial bias when the trend m is pronounced. Our estimator â reduces this bias
considerably as demonstrated in the simulations of Section 5.2. Unlike the estimator of
Hall and Van Keilegom (2003), it thus produces accurate results even in the presence of
a very strong trend.

We close this section by deriving some basic asymptotic properties of the estimators ãq, â
and σ̂2. To formulate the following result, we use the shorthand vT � wT which means that
vT =wT →0 as T →∞.

Proposition 4. Let m be Lipschitz continuous and suppose that {"t} is an AR(pÅ) process
of the form (4.3) with the following properties: A.z/ 
= 0 for all |z| � 1 + δ with some small
δ> 0 and the innovations ηt have a finite fourth moment. Assume that p, q, r and r̄ satisfy the
following conditions. In case A, p, r and r̄ are fixed natural numbers and log.T/�q�√

T . In
case B, C log.T/�p�min{T 1=5, q} for some sufficiently large C, q�√

T , r = .1+δ/p for some
small δ> 0 and r̄ − r remains bounded. Under these conditions, ãq − a =Op{√

.p=T/} as well
as â −a =Op{√

.p3=T/} and σ̂2 −σ2 =Op{√
.p4=T/}.

The proof is provided in the on-line supplementary material. As we can see, the convergence
rate of the second-step estimator â is somewhat slower than that of the pilot estimator ãq. Hence,
from an asymptotic perspective, there is no gain from using the second-step estimator. Never-
theless, in finite samples, the estimator â vastly outperforms ãq since it considerably reduces the
bias of the latter.

5. Simulations

5.1. Small sample properties of the multiscale test
In what follows, we investigate the performance of our multiscale test and compare it with
the dependent SiZer methods from Park et al. (2004, 2009) and Rondonotti et al. (2007). We
consider the following versions of our multiscale test and SiZer.

(a) TMS is our multiscale test with the statistic Ψ̂T =maxh∈HT {Ψ̂T .h/−λ.h/}, where Ψ̂T .h/=
maxu∈UT |ψ̂T .u, h/=σ̂|. Here and in what follows, we write GT =UT ×HT , where UT is the
set of locations and HT the set of bandwidths.

(b) TUC is the uncorrected version of our multiscale test with the test statistic Ψ̂T ,uncorrected =
maxh∈HT Ψ̂T .h/, which has already been introduced in equation (3.3). The uncorrected
test is carried out in exactly the same way as TMS. The only difference is that the correction
terms λ.h/ are removed.
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(c) TRW is a rowwise (or scalewise) version of our multiscale test as briefly mentioned in
Section 3.4. This version carries out a test scalewise, i.e. separately for each scale h∈HT

based on the statistic Ψ̂T .h/. Note the following.
(i) For each h ∈ HT , the test based on Ψ̂T .h/ can be performed in the same way as the

multiscale test TMS, since it is a degenerate version of the latter with the set of scales
HT replaced by the singleton {h}.

(ii) It does not matter whether we correct the statistic Ψ̂T .h/ by subtracting λ.h/ or
not, since λ.h/ acts as a fixed constant when only one bandwidth h is taken into
account.

(d) TSiZer is the rowwise version of dependent SiZer from Park et al. (2004, 2009) and Ron-
donotti et al. (2007). We do not consider a global version of dependent SiZer as such
a version was not fully developed in Park et al. (2004, 2009) and Rondonotti et al.
(2007).

The simulation set-up is as follows: we generate data from the model Yt,T = m.t=T/ + "t for
different trends m, error processes {"t} and sample sizes T . The error terms are supposed to
have the AR(1) structure "t =a1"t−1 +ηt , where a1 ∈{−0:9, −0:5, −0:25, 0:25, 0:5, 0:9}, ηt are
IID standard normal and the AR order pÅ =1 is treated as known. To simulate data under the
null, we let m be a constant function. In particular, we set m=0 without loss of generality. To
generate data under the alternative, we consider different non-constant trend functions which
are specified below. For each model specification, we simulate S =1000 data samples and carry
out the tests TMS, TUC, TRW and TSiZer for each simulated sample.

To implement our multiscale test TMS, we choose K to be an Epanechnikov kernel and let
GT =UT ×HT with

UT ={
u∈ [0, 1] : u=5t=T for some t ∈N

}
,

HT ={h∈ [log.T/=T , 1
4 ] : h=5l=T for some l∈N}:

We thus take into account all locations u on an equidistant grid UT with step length 5=T and all
bandwidths h=5=T , 10=T , 15=T , : : : with log.T/=T �h� 1

4 . Note that the lower bound log.T/=T

is motivated by condition 6 which requires that log.T/=T �hmin (given that all moments of "t

exist). As a robustness check, we have rerun the simulations for other grids. As the results are
very similar, we do not, however, report them here. To estimate the long-run error variance σ2,
we apply the procedure from Section 4 with r =1 and r̄ =10 and the following choices of q: for
a1 ∈ {−0:5, −0:25, 0:25, 0:5}, we set q = 25. As already discussed in Section 4, this should be
an appropriate choice for AR(1) errors that are not too strongly correlated, in particular, for
a1 ∈{−0:5, −0:25, 0:25, 0:5}. When the errors are very strongly correlated, larger values of q are
required to produce precise estimates of σ2. In the case of AR(1) errors with a1 ∈{−0:9, 0:9}, we
thus set q = 50. The dependence of our long-run variance estimator on the tuning parameters
q, r and r̄ is explored more systematically in Section 5.2. To compute the critical values of
the multiscale test TMS, we simulate 5000 values of the statistic ΦT defined in Section 3.2 and
compute their empirical .1 −α/-quantile qT .α/. The uncorrected and rowwise versions TUC
and TRW of our multiscale test are implemented analogously. The SiZer test is implemented
as described in Park et al. (2009). The details are summarized in section S.3 of the on-line
supplementary material.

5.1.1. Size simulations
The first part of our simulation study investigates the size properties of the four tests TMS,
TUC, TRW and TSiZer under the null that the trend m is constant. To start with, we focus on
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the multiscale test TMS. Table 1 reports the actual size of TMS for the AR parameters a1 ∈
{−0:5, −0:25, 0:25, 0:5}, which is computed as the number of simulations in which TMS rejects
the null divided by the total number of simulations. As can be seen, the actual size of the
multiscale test TMS is fairly close to the nominal target α for all the AR parameters and sample
sizes considered. Hence, the test has approximately the correct size.

In Table 1, we have explored the size of TMS when the errors are moderately auto-correlated.
The case of strongly auto-correlated errors is investigated in Table 2, where we consider AR(1)
errors with a1 ∈ {−0:9, 0:9}. We first discuss the results for the positive AR parameter a1 =
0:9. As can be seen, the size numbers are substantially downwardly biased for small sample
sizes, in particular, for T = 250 and T = 500. As the sample size increases, this downward bias
diminishes and the size numbers stabilize around their target α. In particular, for T �1000, the
size numbers give a decent approximation to α. An analogous picture arises for the negative
AR parameter a1 =−0:9. The size numbers, however, are upwardly rather than downwardly
biased for small sample sizes T and the size distortions appear to vanish a little more slowly as
T increases. To summarize, in the case of strongly auto-correlated errors, our multiscale test has
good size properties only for sufficiently large sample sizes. This is not very surprising: statistical
inference in the presence of strongly auto-correlated data is a very difficult problem in general
and satisfying results can only be expected for fairly large sample sizes.

We next compare our multiscale test TMS with TUC, TRW and TSiZer in terms of size. There is
an important difference between TMS and TUC on the one hand and TRW and TSiZer on the other.
TMS and its uncorrected version TUC are global test procedures: they test H0.u, h/ simultaneously
for all locations u∈UT and scales h∈HT . Hence, they control the size simultaneously over both
locations u and scales h. The methods TRW and TSiZer, in contrast, are rowwise (or scalewise) in
nature: they test the hypothesis H0.u, h/ simultaneously for all u ∈ UT but separately for each
scale h∈HT . Hence, they control the size for each scale h∈HT separately.

Table 1. Size of TMS for the AR parameters a1 2{�0.5, �0.25, 0.25, 0.5}

T Results for a1 =−0.5 Results for a1 =−0.25 Results for a1 =0.25 Results for a1 =0.5
and the following and the following and the following and the following
nominal sizes α: nominal sizes α: nominal sizes α: nominal sizes α:

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

250 0.013 0.040 0.086 0.016 0.054 0.106 0.009 0.045 0.094 0.014 0.058 0.106
500 0.013 0.044 0.102 0.008 0.041 0.089 0.013 0.057 0.107 0.014 0.056 0.101

1000 0.011 0.052 0.090 0.007 0.057 0.114 0.011 0.049 0.106 0.007 0.050 0.098

Table 2. Size of TMS for the AR parameters a1 2{�0.9, 0.9}

α Results for a1 =−0.9 and Results for a1 =0.9 and
the following sample sizes T : the following sample sizes T :

250 500 1000 2000 3000 250 500 1000 2000 3000

0.01 0.040 0.032 0.017 0.009 0.012 0.003 0.016 0.015 0.021 0.017
0.05 0.137 0.093 0.067 0.061 0.047 0.017 0.038 0.055 0.059 0.057
0.1 0.218 0.160 0.124 0.108 0.098 0.040 0.054 0.095 0.096 0.106
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Table 3. Global size comparisons for the level of significance αD0.05

T Results for a1 =−0.5 Results for a1 =0.5

TMS TUC TRW TSiZer TMS TUC TRW TSiZer

250 0.069 0.065 0.230 0.333 0.049 0.048 0.143 0.289
500 0.054 0.065 0.288 0.448 0.042 0.026 0.187 0.397

1000 0.046 0.051 0.318 0.522 0.052 0.049 0.276 0.509

We conduct some simulation exercises to illustrate this important distinction. To keep the
simulation study to a reasonable length, we restrict attention to the level of significance α=0:05
and the AR parameters a1 ∈{−0:5, 0:5}. To simplify the implementation of TSiZer, we assume
that the autocovariance function of the error process and thus the long-run error variance σ2 are
known. To keep the comparison fair, we treat σ2 as known also when implementing TMS, TUC
and TRW. Moreover, we use exactly the same location–scale grid for all four methods. To achieve
this, we start off with the grid GT = UT × HT with UT and HT defined above. We then follow
Rondonotti et al. (2007) and restrict attention to those points .u, h/∈GT for which the effective
sample size ESSÅ.u, h/ for correlated data is not smaller than 5. This yields the grid GÅ

T ={.u, h/∈
GT :ESSÅ.u, h/�5}. A definition of ESSÅ.u, h/ is given in section S.3 of the on-line supplement.

For our simulation exercises, we distinguish between global and rowwise (or scalewise) size:
global size is defined as the percentage of simulations in which the test under consideration
rejects H0.u, h/ for some .u, h/ ∈GÅ

T . Hence, it is identical to the size as computed in Tables 1
and 2. Rowwise size for scale hÅ ∈HT , in contrast, is the percentage of simulations in which the
test rejects H0.u, hÅ/ for some .u, hÅ/∈GÅ

T . Table 3 reports the global size of the four tests. As
can be seen, the size numbers of our multiscale test TMS and its uncorrected version TUC are
reasonably close to the target α= 0:05. The global size numbers of the rowwise methods TRW
and TSiZer, in contrast, are much larger than the target α= 0:05. Since the number of scales h

in the grid GÅ
T increases with T , they even move away from α as the sample size T increases. To

summarize, as expected, the global tests TMS and TUC hold the size reasonably well, whereas
the rowwise methods TRW and TSiZer are much too liberal.

Fig. 2 reports the rowwise size of the four tests by so-called parallel co-ordinate plots (Insel-
berg, 1985) for the sample size T =1000. Each curve in Fig. 2 specifies the rowwise size of one
of the tests for the scales h under consideration. As can be seen, the rowwise version TRW of our
multiscale test holds the size quite accurately across scales. The rowwise size of TSiZer also gives
an acceptable approximation to the target α=5%, even though the size numbers are upwardly
biased quite considerably. The global tests TMS and TUC, in contrast, have a rowwise size that
is much smaller than the target α= 5%, which reflects the fact that they control global rather
than rowwise size.

5.1.2 Power comparisons
In the second part of our simulation study, we compare the tests TMS, TUC, TRW and TSiZer in
terms of power. As above, we use the location–scale gridGÅ

T and treat the autocovariance function
of the error terms as known when implementing the tests. Moreover, we restrict attention to the
level of significance α=0:05 and the AR parameters a1 ∈{−0:5, 0:5}. Our simulation exercises
investigate the ability of the four tests to detect local increases in the trend m. (The same could of
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Fig. 2. Rowwise size comparisons for level of significance αD 5% and sample size T D 1000 (each curve
shows the rowwise size as a function of the bandwidth h for one of the four tests TMS ( ), TUC ( ), TRW
( ) and TSiZer ( )): (a) a1 D�0.5; (b) a1 D0.5

course be done for decreases.) The tests indicate a local increase in m according to the following
decision rules: for each .u, h/∈GÅ

T ,

TMS indicates an increase on [u−h, u+h]⇔ ψ̂T .u, h/=σ̂>qT .α/+λ.h/,

TUC indicates an increase on [u−h, u+h]⇔ ψ̂T .u, h/=σ̂>qUC
T .α/,

TRW indicates an increase on [u−h, u+h]⇔ ψ̂T .u, h/=σ̂>qRW
T .α, h/,

TSiZer indicates an increase on [u−h, u+h]⇔ ŝT .u, h/>qSiZer
T .α, h/,

where qUC
T .α/, qRW

T .α, h/ and qSiZer
T .α, h/ are the critical values of TUC, TRW and TSiZer respec-

tively. Note that the critical values of TRW and TSiZer depend on the scale h as these are rowwise
procedures.
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To be able to make systematic power comparisons, we consider a very simple trend function m.
More complicated signals m are analysed in section S.3 of the on-line supplementary material.
The trend function that we are considering here is defined as m.u/ = c1.u ∈ [0:45, 0:55]/[1 −
{.u− 0:5/=0:05}2]2, where c = 0:45 in the AR case with a1 =−0:5 and c = 1:3 in the case with
a1 = 0:5. The function m is increasing on I+ = .0:45, 0:5/, decreasing on I− = .0:5, 0:55/ and
constant elsewhere. Figs 3(a) and 3(d) give a graphical illustration of m, where the grey line in
the background is the time series path of a representative simulated data sample. As can be seen,
m is a small bump around u = 0:5, where c determines the height of the bump. The constant
c is chosen such that the bump is difficult but not impossible to detect for the four tests. We
distinguish between the following types of power for the tests Tj with j ∈{MS, UC, RW, SiZer},
where we restrict attention to increases in m:
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Fig. 3. Rowwise power and rowwise spurious power comparisons for αD 5% and T D 1000: (a)–(c)
a1 D �0:5; (d)–(f) a1 D 0:5; (a), (d) bump function m with a representative data sample in the background;
(b), (e) parallel co-ordinate plot reporting rowwise power (in particular, each curve shows the rowwise power
as a function of the bandwidth h for one of the four tests TMS ( ), TUC ( ), TRW ( ) and TSiZer
( )); (c), (f) parallel co-ordinate plot reporting rowwise spurious power in an analogous fashion



26 M. Khismatullina and M. Vogt

(a) global power; the percentage of simulation runs in which the test Tj indicates an increase
on some interval Iu,h = [u−h, u+h] where m is indeed increasing, i.e. on some Iu,h with
Iu,h ∩ I+ 
=∅;

(b) spurious global power; the percentage of simulation runs in which the test Tj indicates an
increase on some interval Iu,h = [u−h, u+h] where m is not increasing, i.e. on some Iu,h
with Iu,h ∩ I+ =∅;

(c) rowwise power on scale hÅ; the percentage of simulation runs in which the test Tj indicates
an increase on some interval Iu,hÆ = [u−hÅ, u+hÅ] where m is indeed increasing, i.e. on
some Iu,hÆ with Iu,hÆ ∩ I+ 
=∅;

(d) spurious rowwise power on scale hÅ; the percentage of simulation runs in which the test
Tj indicates an increase on some interval Iu,hÆ = [u−hÅ, u+hÅ] where m is not increasing,
i.e. on some Iu,hÆ with Iu,hÆ ∩ I+ =∅.

Table 4 reports the global power and global spurious power of the four tests. As can be seen,
our multiscale test TMS has higher power than the uncorrected version TUC. This confirms the
theoretical optimality theory in Dümbgen and Spokoiny (2001) (see also Dümbgen and Walther
(2008) and Rufibach and Walther (2010)) according to which the aggregation scheme of TMS
with its additive correction term should yield better power properties than the simpler scheme of
TUC. As expected, the rowwise methods TRW and TSiZer have substantially more power than the
global tests. Indeed, TSiZer is even a little more powerful than TRW, which is presumably because
it is somewhat too liberal in terms of rowwise size as observed in Fig. 2. The higher power of the
rowwise procedures comes at some cost: their spurious global power is much higher than that
of the global tests. For the sample size T =1000 and the AR parameter a1 =−0:5, for example,
TSiZer spuriously finds an increase in the trend m in more than 28% of the simulations, and TRW
in more than 15%. The multiscale test TMS (as well as its uncorrected version TUC), in contrast,
controls the probability of finding a spurious increase. In particular, as implied by proposition
3, its spurious global power is below 100α% =5%.

Fig. 3 gives a more detailed picture of the power properties of the four tests for the sample
size T = 1000. The parallel co-ordinate plots of Fig. 3 show how power and spurious power
are distributed across scales h. Let us first have a look at the rowwise methods. As can be seen,
TSiZer is more powerful than TRW on all scales under consideration. As already mentioned when
discussing the global power results, this is presumably because TSiZer is a little too liberal in terms
of rowwise size. Comparing the power curves of the two global methods gives an interesting
insight: our multiscale test TMS has substantially more power than the uncorrected version TUC
on medium and large scales. On small scales, in contrast, it is slightly less powerful than TUC.

Table 4. Global power and global spurious power comparisons for αD0.05

T Results for a1 =−0.5 Results for a1 =0.5

TMS TUC TRW TSiZer TMS TUC TRW TSiZer

250 Power 0.102 0.086 0.228 0.328 0.096 0.079 0.190 0.295
Spurious power 0.021 0.032 0.109 0.166 0.012 0.017 0.054 0.131

500 Power 0.212 0.166 0.464 0.617 0.186 0.160 0.406 0.587
Spurious power 0.020 0.024 0.137 0.212 0.016 0.016 0.082 0.192

1000 Power 0.575 0.425 0.817 0.901 0.526 0.394 0.780 0.884
Spurious power 0.023 0.024 0.158 0.283 0.020 0.019 0.123 0.252
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This again illustrates the theoretical optimality theory in Dümbgen and Spokoiny (2001) which
suggests that, asymptotically, the multiscale test TMS should be as powerful as TUC on small
scales but more powerful on large scales. This is essentially what we see in Figs 3(b) and 3(e).
Of course, TMS does not have exactly as much power as TUC on fine scales. However, the loss
of power on fine scales is very small compared with the gain of power on larger scales (which is
also reflected by the fact that TMS has more global power than TUC).

The main findings of our simulation exercises can be summarized as follows: if we are inter-
ested in an exploratory data tool for finding local increases or decreases of a trend, the rowwise
methods TRW and TSiZer both do a good job. However, if we want to make rigorous statistical
inference simultaneously across locations and scales, we need to opt for a global method. Our
simulation exercises have demonstrated that our multiscale test TMS is a global method which
enjoys good size and power properties. In particular, as predicted by the theory, it is a more
effective test than the uncorrected version TUC.

5.2. Small sample properties of the long-run variance estimator
In the final part of our simulation study, we analyse the estimators of the AR parameters
and of the long-run error variance from Section 4 and compare them with the estimators of
Hall and Van Keilegom (2003). We simulate data from the model Yt,T = m.t=T/ + "t , where
{"t} is an AR(1) process of the form "t = a1"t−1 + ηt . We consider the AR parameters a1 ∈
{−0:95, −0:75, −0:5, −0:25, 0:25, 0:5, 0:75, 0:95} and let ηt be IID standard normal innovation
terms. Throughout the simulation study, the AR order pÅ = 1 is treated as known. We report
our findings for the sample size T =500; the results for other sample sizes are very similar. For
simplicity, m is chosen to be a linear function of the form m.u/=βu with the slope parameter
β. For each value of a1, we consider two slopes β: one corresponding to a moderate and one to
a pronounced trend m. In particular, we let β= sβ

√
var."t/ with sβ ∈{1, 10}. When sβ =1, the

slope β is equal to the standard deviation
√

var."t/ of the error process, which yields a moderate
trend m. When sβ =10, in contrast, the slope β is 10 times as large as

√
var."t/, which results in

quite a pronounced trend m.
For each model specification, we generate S =1000 data samples and compute the following

quantities for each simulated sample:

(a) the pilot estimator ãq from equation (4.8) with the tuning parameter q, the estimator â

from equation (4.10) with the tuning parameters .r, r̄/ and the long-run variance estimator
σ̂2 from equation (4.11);

(b) the estimators of a1 and σ2 from Hall and Van Keilegom (2003), which are denoted by
âHvK and σ̂2

HvK (the estimator âHvK is computed as described in Section 2.2 of Hall and
Van Keilegom (2003) and σ̂2

HvK as defined at the bottom of page 447 in section 2.3 there;
the estimator âHvK (as well as σ̂2

HvK) depends on two tuning parameters which we denote
by m1 and m2 as in Hall and Van Keilegom (2003));

(c) oracle estimators âoracle and σ̂2
oracle of a1 and σ2, which are constructed under the assump-

tion that the error process {"t} is observed (for each simulation run, we compute âoracle
as the maximum likelihood estimator of a1 from the time series of simulated error
terms "1, : : : , "T . We then calculate the residuals rt = "t − âoracle"t−1 and estimate the
innovation variance ν2 = E[η2

t ] by ν̂2
oracle = .T − 1/−1ΣT

t=2r2
t . Finally, we set σ̂2

oracle =
ν̂2

oracle=.1− âoracle/
2.

Throughout this section, we set q=25, .r, r̄/= .1, 10/ and .m1, m2/= .20, 30/. We in particular
choose q to be in the middle of m1 and m2 to make the tuning parameters of the estimators ãq

and âHvK comparable. To assess how sensitive our estimators are to the choice of q and .r, r̄/,
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Fig. 4. MSE values for the estimators (a) â ( ), âHvK ( ) and âoracle ( ) and (b) σ̂2 ( ),
σ̂2

HvK ( ) and σ̂2
oracle ( ) in the simulation scenarios with a moderate trend (sβ D1)

we carry out robustness checks, considering a range of values for q and .r, r̄/. In addition, we
vary the tuning parameters m1 and m2 of the estimators from Hall and Van Keilegom (2003)
to make sure that the results of our comparison study are not driven by the particular choice
of any of the tuning parameters involved. The results of our robustness checks are reported in
section S.3 of the on-line supplement. They show that the results of our comparison study are
robust to different choices of the parameters q, .r, r̄/ and .m1, m2/.

For each estimator â, âHvK, âoracle, σ̂2, σ̂2
HvK and σ̂2

oracle, and for each model specification,
the simulation output consists of a vector of length S =1000 which contains the 1000 simulated
values of the respective estimator. Figs 4 and 5 report the mean-squared error (MSE) of these
1000 simulated values for each estimator. On the x-axis of each plot, the various values of the AR
parameter a1 are listed which are considered. The full curve in each plot gives the MSE values
of our estimators. The broken and dotted curves specify the MSE values of the Hall and Van
Keilegom and the oracle estimators respectively. Note that, for the long-run variance estimators,
the plots report the logarithm of the MSE rather than the MSE itself since the MSE values are too
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different across simulation scenarios to obtain a reasonable graphical presentation. In addition
to the MSE values that are presented in Figs 4 and 5, we depict histograms of the 1000 simulated
values that are produced by the estimators â, âHvK, âoracle, σ̂2, σ̂2

HvK and σ̂2
oracle for two specific

simulation scenarios in Figs 6 and 7. The main findings can be summarized as follows.

(a) In the simulation scenarios with a moderate trend (sβ =1), the estimators âHvK and σ̂2
HvK

of Hall and Van Keilegom (2003) exhibit a similar performance to that of our estimators â

and σ̂2 as long as the AR parameter a1 is not too close to −1. For strongly negative values
of a1 (in particular for a1 =−0:75 and a1 =−0:95), the estimators perform much worse
than ours. This can be clearly seen from the much larger MSE values of the estimators
âHvK and σ̂2

HvK for a1 =−0:75 and a1 =−0:95 in Fig. 4. Fig. 6 gives some further insights
into what is happening here. It shows the histograms of the simulated values that are
produced by the estimators â, âHvK and âoracle and the corresponding long-run variance
estimators in the scenario with a1 =−0:95 and sβ =1. As can be seen, the estimator âHvK



30 M. Khismatullina and M. Vogt

−1
.4

−1
.3

−1
.2

−1
.1

−1
.0

−0
.9

050100150200250300

a
−1

.4
−1

.3
−1

.2
−1

.1
−1

.0
−0

.9

050100150200250300

a H
vK

−1
.4

−1
.3

−1
.2

−1
.1

−1
.0

−0
.9

050100150200250300

a o
ra

cl
e

0.
2

0.
4

0.
6

0.
8

1.
0

0100200300400

σ2

0.
2

0.
4

0.
6

0.
8

1.
0

0100200300400

σ H
vK

2

0.
2

0.
4

0.
6

0.
8

1.
0

0100200300400

σ or
ac

le
2

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

Number of simulations Number of simulations

Number of simulations Number of simulations

Number of simulations Number of simulations

F
ig

.
6.

H
is

to
gr

am
s

of
th

e
si

m
ul

at
ed

va
lu

es
pr

od
uc

ed
by

th
e

es
tim

at
or

s
(a

)
â,
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does not obey the causality restriction |a1| < 1 but frequently takes values that are sub-
stantially smaller than −1. This results in a very large spread of the histogram and thus
in a disastrous performance of the estimator. A similar point applies to the histogram of
the long-run variance estimator σ̂2

HvK. Our estimators â and σ̂2, in contrast, exhibit stable
behaviour in this case.

Interestingly, the estimator âHvK (as well as the corresponding long-run variance esti-
mator σ̂2

HvK) performs much worse than ours for large negative values but not for large
positive values of a1. This can be explained as follows: in the special case of an AR(1)
process, the estimator âHvK may produce estimates that are smaller than −1 but it cannot
become larger than 1. This can be easily seen on inspecting the definition of the estimator.
Hence, for large positive values of a1, the estimator âHvK performs well as it satisfies the
causality restriction that the estimated AR parameter should be smaller than 1.

(b) In the simulation scenarios with a pronounced trend (sβ =10), the estimators of Hall and
Van Keilegom (2003) are clearly outperformed by ours for most of the AR parameters a1
under consideration. In particular, their MSE values reported in Fig. 5 are much larger
than the values that are produced by our estimators for most parameter values a1. The
reason is as follows: the Hall and Van Keilegom estimators have a strong bias since the
pronounced trend with sβ = 10 is not eliminated appropriately by the underlying differ-
encing methods. This point is illustrated by Fig. 7 which shows histograms of the simulated
values for the estimators â, âHvK and âoracle and the corresponding long-run variance
estimators in the scenario with a1 =0:25 and sβ =10. As can be seen, the histogram that is
produced by our estimator â is centred near the true value a1 =0:25, whereas that of âHvK
is strongly biased upwards. A similar picture arises for the long-run variance estimators
σ̂2 and σ̂2

HvK.
Whereas the methods of Hall and Van Keilegom (2003) perform much worse than ours

for negative and moderately positive values of a1, the performance (in terms of MSE) is
fairly similar for large values of a1. This can be explained as follows: when the trend m

is not eliminated appropriately by taking differences, this creates spurious persistence in
the data. Hence, the estimator âHvK tends to overestimate the AR parameter a1, i.e. âHvK
tends to be larger in absolute value than a1. Very loosely speaking, when the parameter a1
is close to 1, say a1 =0:95, there is not much room for overestimation since âHvK cannot
become larger than 1. Consequently, the effect of not eliminating the trend appropriately
has a much smaller effect on âHvK for large positive values of a1.

6. Application

The analysis of time trends in long temperature records is an important task in climatology.
Information on the shape of the trend is needed to understand long-term climate variability
better. In what follows, we use our multiscale test TMS to analyse two long-term temperature
records. Throughout the section, we set the level of significance to α=0:05 and implement the
multiscale test in exactly the same way as in the simulation study of Section 5.

6.1. Analysis of the central England temperature record
The central England temperature record is the longest instrumental temperature time series in
the world. The data are publicly available on the web page of the UK Met Office. A detailed
description of the data can be found in Parker et al. (1992). For our analysis, we use the data
set of yearly mean temperatures which consists of T =359 observations Yt,T covering the years
from 1659 to 2017. A plot of the time series is given in Fig. 8(a). We assume that the temperature
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data Yt,T follow the non-parametric trend model Yt,T = m.t=T/ + "t , where m is the unknown
time trend of interest. The error process {"t} is supposed to have the AR(pÅ) structure "t =
ΣpÅ

j=1aj"t−j +ηt , where ηt are IID innovations with mean 0 and variance ν2. As pointed out in
Mudelsee (2010) among others, this is the most widely used error model for discrete climate time
series. We select the AR order pÅ by the Bayesian information criterion, which yields pÅ = 2.
More precisely, we proceed as follows: we estimate the AR parameters and the corresponding
variance of the innovation terms for different AR orders by the methods from Section 4 and
then choose pÅ as the minimizer of the BIC. As a check of robustness, we have repeated this
procedure for a wide range of the tuning parameters q and .r, r̄/, which produces the value pÅ =2
throughout. Moreover, we have considered other information criteria such as the final prediction
error criterion, the Akaike information criterion and a bias-corrected version thereof, which give
the AR order pÅ =2 for almost all values of q and .r, r̄/. Given the AR order pÅ =2, we estimate
the AR(2) parameters a = .a1, a2/ and the long-run error variance σ2 by the procedures from
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Fig. 8. Summary of the results for the central England temperature record: (a) observed temperature time
series (in degrees centigrade); (b) minimal intervals in the set ΠC

T produced by our multiscale test (these are
[1684, 1744], [1839, 2009] and [1864, 2014]); (c) SiZer map produced by our multiscale test TMS; (d) SiZer
map produced by TSiZer
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Section 4 with q = 25 and .r, r̄/ = .1, 10/. This gives the estimators â1 = 0:164, â2 = 0:175 and
σ̂2 =0:737.

With the help of our multiscale method, we now test the null hypothesis H0 that m is constant
on all intervals [u−h, u+h] with .u, h/∈GÅ

T , where the grid GÅ
T is defined in the same way as in

Section 5. The results are presented in Fig. 8. Fig. 8(b) depicts the minimal intervals in the set
Π+

T which is produced by our multiscale test TMS. The set of intervals Π−
T is empty in the present

case. According to proposition 3, we can make the following simultaneous confidence statement
about the collection of minimal intervals plotted in Fig. 8(b). We can claim, with confidence of
about 95%, that the trend m has some increase on each minimal interval. More specifically, we
can claim with this confidence that there has been some upward movement in the trend both in
the period from around 1680 to 1740 and in the period from about 1870 onwards. Hence, our
test in particular provides evidence that there has been some warming trend in the period over
approximately the last 150 years. In contrast, as the set Π−

T is empty, there is no evidence of any
downward movement of the trend.

Fig. 8(c) presents the SiZer map that was produced by our multiscale test TMS. For compar-
ison, the SiZer map of the dependent SiZer test TSiZer is shown in Fig. 8(d). To produce Fig.
8(d), we have implemented SiZer as described in section S.3 of the on-line supplement, where
the autocovariance function of the errors {"t} is estimated with the help of our procedures from
Section 4 under the assumption that {"t} is an AR(2) process. The SiZer maps of Figs 8(c) and
8(d) are to be read as follows: each pixel of the map corresponds to a location–scale point .u, h/

or, put differently, to a time interval [u−h, u+h]. The pixel (u, h) is coloured dark grey if the
test indicates an increase in the trend m on the interval [u−h, u+h], white if the test indicates
a decrease and light grey if the test does not reject the null hypothesis that m is constant on
[u−h, u+h]. As can be seen, the two SiZer maps in Figs 8(c) and 8(d) have a similar structure.
Both our multiscale test and SiZer indicate increases in the trend m during a short time period
around 1700 and towards the end of the sample. However, in contrast with SiZer, our method
enables us to make formal confidence statements about the regions of dark pixels in the SiZer
map. In particular, as the set of dark grey pixels in Fig. 8(c) exactly corresponds to the collection
of intervals Π+

T , we can claim, with confidence of about 95%, that the trend m has an increase
on each time interval represented by a dark grey pixel in Fig. 8(c).

6.2. Analysis of global temperature data
We next analyse a data set which consists of annual global temperature anomalies from 1850 on-
wards. The data are plotted in Fig. 9(a) and are described in detail in Morice et al. (2012). They are
publicly available on the web page https://cdiac.ess-dive.lbl.gov/trends/temp/
jonescru/jones.html. As before, we assume that the data come from the model Yt,T =
m.t=T/+"t , where m is the trend and {"t} the noise process. We apply our multiscale methods to
test the null hypothesis H0 that m is constant on all time intervals [u−h, u+h] with .u, h/∈GT ,
where the grid GT is defined as in Section 5. We compare our results with those obtained by
Wu et al. (2001) who developed a method for testing the hypothesis that m is constant on [0, 1]
against the alternative that m is an arbitrary monotonic function. For comparability, we use ex-
actly the same data as in Wu et al. (2001): in particular, the yearly temperature anomalies from
1856 to 1998. Moreover, we use their estimate of the long-run error variance σ2 which amounts
to 0:01558. As we do not have an estimate available from Wu et al. (2001) for the autocovariance
function of the error process, we do not consider dependent SiZer in the application example at
hand.

The results produced by our multiscale test are reported in Fig. 9. Fig. 9(b) shows the minimal
intervals in Π+

T and Fig. 9(c) the SiZer map of the test. As can be clearly seen from both

https://cdiac.ess-dive.lbl.gov/trends/temp/jonescru/jones.html
https://cdiac.ess-dive.lbl.gov/trends/temp/jonescru/jones.html
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Fig. 9. Summary of the results for the global temperature anomalies: (a) observed temperature time series
(in degrees centigrade); (b) minimal intervals in the set ΠC

T produced by the multiscale test (these are [1905,
1935], [1915, 1945], [1920, 1950] and [1965, 1995]); (c) SiZer map of our test

Fig. 9(b) and Fig. 9(c), the test indicates an increase in the trend m during the first half of the
20th century followed by another increase during the second half. These findings are in line with
those in Wu et al. (2001) who rejected the null hypothesis that m is constant. In contrast with the
test of Wu et al. (2001), however, our multiscale method not only enables us to test whether the
null is violated. It also enables us to make formal confidence statements about where violations
occur, i.e. about where the trend m is increasing. In particular, we can claim, with confidence of
about 95%, that the trend has an increase on each interval plotted in Fig. 9(b).
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