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Abstract

We introduce the new F -Riesz distribution to model tail-heterogeneity in fat-tailed

covariance matrix observations. In contrast to the typical matrix-valued distributions

from the econometric literature, the F -Riesz distribution allows for di↵erent tail

behavior across all variables in the system. We study the consistency properties

of the maximum likelihood estimator in both static and dynamic models with F -

Riesz innovations using both one-step and two-step (targeting) estimation techniques.

Allowing for tail-heterogeneity when modeling covariance matrices appears empirically

highly relevant. When applying the new distribution to realized covariance matrices of

30 U.S. stocks over a 14 year period, we find huge likelihood increases both in-sample

and out-of-sample compared to all competing distributions, including the Wishart,

inverse Wishart, Riesz, inverse Riesz, and matrix-F distribution.

Key words: Matrix Distributions, Tail Heterogeneity, (inverse) Riesz Distribution,

Fat-Tails, Realized Covariance Matrices.
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1 Introduction

An important challenge in contemporary time series econometrics is designing parsimonious

yet flexible models for high dimensional, fat-tailed covariance-matrix-valued time series.

Such data is ever more abundant in today’s data rich environment, particularly in financial

markets. For recent examples, see for instance Andersen et al. (2003); Barndor↵-Nielsen

and Shephard (2004); Chiriac and Voev (2011); Lunde et al. (2016); Callot et al. (2017);

Bollerslev et al. (2018, 2020) and the references cited therein. Most of the models currently

available for these data are highly restrictive. For instance, the often used Wishart or inverse

Wishart distribution for matrix-valued time series only features a mean and a single degrees

of freedom parameter (Golosnoy et al., 2012; Jin and Maheu, 2013, 2016), while the matrix-F

distribution only features two tail parameters (Konno, 1991; Opschoor et al., 2018). While

such distributions might be suitable for low-dimensional matrices, in moderate to high

dimensions the implied constraints on tail behavior are typically too restrictive empirically.

For instance, a Wishart distribution restricts all diagonal elements of a random covariance

matrix to have exactly the same distributional shape.

One solution opted for in the literature is the use of copulas and conditional copulas

(Patton, 2009; Oh and Patton, 2017, 2018; Opschoor et al., 2020). Copulas allow one

to split the marginal modeling stage from the modeling of the dependence structure. As

such, the tail behavior between di↵erent marginals can be arbitrarily di↵erent. Though

convenient in many settings, the copula approach also has several drawbacks. First, by

splitting the marginal models from the copula, key characteristics of the joint distribution

may no longer be available in closed form. This may result in substantial simulation e↵ort

to obtain simple distributional characteristics like the mean and covariance matrix of the

joint distribution based on the copula model and the underlying marginals. Second, though

the di↵erent marginals may allow for flexibility in tail behavior, the typical copulas used

in the literature like the Gaussian, (skewed) Student’s t, and Archimedean copulas are still

tightly parameterized, with very little heterogeneity in the tail-dependence structure. Third,

there are substantial limitations to applying the copula methodology for more complex data

structures beyond the vector case. For instance, if we observe positive-definite matrix-valued

random variables, like in the context of realized covariance matrix modeling, defining the
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probability space for each of the marginal elements of the matrix random variables is highly

complex and largely impractical. In such cases, modeling the multivariate structure directly

by specifying a tractable yet flexible multivariate distribution on the space of positive

definite matrices may be a better way forward. Unfortunately, as mentioned before, current

alternatives like the Wishart, inverse Wishart, and matrix-F distribution appear too tightly

parameterized to be useful empirically for high dimensional data.

This paper aims to provide a substantial step forward by introducing the F -Riesz

distribution, deriving the consistency properties of the maximum likelihood estimator for

the parameters of static and dynamic versions of it, and showing the empirical relevance

of the new distribution. The F -Riesz distribution allows for di↵erent tail-heterogeneity

in each of its coordinates. The increases in in-sample and out-of-sample likelihood are

strikingly high for this new distribution, illustrating we are dealing with an empirically

relevant and sizeable phenomenon. We obtain the F -Riesz distribution by mixing a Riesz

distribution (Hassairi and Lajmi, 2001; Dı́az-Garćıa, 2013) and Inverse Riesz distribution

(Tounsi and Zine, 2012; Louati and Masmoudi, 2015), which are generalizations of the

Wishart and Inverse Wishart distributions. Their domain is the space of positive (semi)-

definite matrices. The Riesz distribution has been used in the physics literature (Andersson

and Klein, 2010). In econometrics, we could only trace the concurrent and independent

recent paper by (Gribisch and Hartkopf, 2020), who apply the Riesz distribution to financial

data. The main di↵erence between the Riesz and the Wishart distribution is that the

Riesz distribution is characterized by as many degrees of freedom as the dimension of the

data, whereas the Wishart only has one single degrees of freedom parameter. This allows

for much more heterogeneity in tail behavior. The Riesz distribution, however, still has

thin-tailed behavior for its coordinates. This is at odds with many empirical data sets in

finance and economics, which typically exhibit fat-tailed behavior. Be mixing a Riesz and

inverse Riesz distribution, the F -Riesz distribution as constructed in this paper allows for

heterogeneous fat-tailed behavior in all directions. The F -Riesz distribution is characterized

by a matrix-valued mean, and two vectors of degrees of freedom parameters, thus allowing

for considerable extra flexibility in tail behavior. If each of these vectors is scalar (i.e., has

the same elements), then the F -Riesz reduced to the matrix-F distribution (see Konno,

1991; Opschoor et al., 2018).
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We apply the F -Riesz distribution to a sample of daily realized covariance matrices

of dimension up to 30 using U.S. stock data over 2001–2014. The full-sample results

indicate that tail heterogeneity is an important feature of the data: we find huge log-

likelihood increases when assuming a conditional F -Riesz distribution is used instead of

a matrix-F or (inverse) Riesz or (inverse) Wishart distribution. We strongly reject the

matrix-F distribution as an adequate model for the realized covariance matrix data, despite

it being already substantially better (by a wide margin) than the Wishart and inverse

Wishart distribution, both with and without allowing for a time-varying mean of the realized

covariance matrices. This strong result is confirmed in an out-of-sample analysis, where we

forecast the density of the realized covariance matrix one-step ahead. Using the log-score to

discriminate among our di↵erent distributions, we again find that the F -Riesz distribution

is superior against the competitors by a wide margin. Given the ease of estimation, the

F -Riesz distribution might therefore be a highly relevant tool for econometric modeling,

both in a classical and a Bayesian framework.

The rest of this paper is set-up as follows. In Section 2 we briefly introduce the Riesz

distribution and its main properties. In Section 3, we derive the F -Riesz distribution

and its dynamic extension. Section 4 considers consistency properties of the maximum

likelihood estimator using a one-step or a two-step targeting approach. Section 5 presents

the new model’s performance using simulated data. Section 6 presents the empirical results,

in particular the major increases in likelihood possible with the additional flexibility of

the F -Riesz. Section 7 concludes. An appendix gathers all the technical results. As a

general notation guide, scalars have normal type face, vectors are bolded, and matrices are

bolded and capitalized. We number theorems, propositions, definitions and assumptions

consecutively.

2 The Riesz distribution

This section starts with a brief introduction of the Riesz distribution as an extension of

the Wishart distribution that allows for more tail heterogeneity. We discuss the Riesz

distribution’s most important properties and review some key notation that is also required

for the definition of the F -Riesz distribution in the next section.
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The Riesz distribution (Hassairi and Lajmi, 2001) is defined over the space of positive

definite matrices. It generalizes the well-known Wishart distribution, which has probability

density function (pdf)

pW(Y ;⌃, ⌫) =
|Y |0.5(⌫�k�1) · etr

�
�1

2⌃
�1
Y
�

|⌃|0.5⌫ · �k (⌫/2) · 2k·⌫/2
, (1)

for a positive definite matrix random variable Y 2 Rk⇥k, a positive definite scaling

matrix ⌃ 2 Rk⇥k, and a positive scalar degrees of freedom parameter ⌫, where etr( · ) =

exp(trace( · )) denotes the exponential trace operator, and �k( · ) is the multivariate gamma

function,

�k (⌫) = ⇡
k(k�1)/4

kY

i=1

�
�
⌫ + 1�i

2

�
. (2)

A Wishart distributed random variable, denoted as W(⌃, ⌫), thus has two key parameters:

one matrix-valued, and one scalar. Interestingly, the Wishart distribution can be constructed

using the so-called Bartlett decomposition; see Anderson (1962). Define the lower triangular

matrix G 2 Rk⇥k with all its elements independent random variables with G
2
ii ⇠ �

2
⌫�i+1

and Gij ⇠ N (0, 1) for i > j, i.e.,

G =

0

BBBBBB@

p
�2
⌫ 0 · · · 0

N (0, 1)
. . . 0

...
... N (0, 1)

. . . 0

N (0, 1) · · · N (0, 1)
q

�
2
⌫�k+1

1

CCCCCCA
. (3)

Then Y = GG
> ⇠ W(Ik, ⌫), and Y = LGG

>
L

> ⇠ W(⌃, ⌫) for a matrix L such that

⌃ = LL
>. A key property of the Bartlett decomposition is that the same degrees of freedom

parameter ⌫ plays a role in all the diagonal elements of G in (3). The Riesz distribution

generalizes the Wishart by instead introducing a vector ⌫ = (⌫1, . . . , ⌫k)> of degrees of

freedom parameters, and inserting it into (3). This is done in Definition 4 below. A Riesz

distribution R(⌃,⌫) is thus characterized by a scaling matrix ⌃ and a vector ⌫.

To write the appropriate pdf of a R(⌃,⌫) random variable (and of a F -Riesz random

variable later), we introduce the concepts of the generalized multivariate gamma function
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and the power weighted determinant.

Definition 1 (generalized multivariate gamma functions). The lower generalized

multivariate gamma function for a vector-valued argument ⌫ = (⌫1, . . . , ⌫k)> 2 Rk⇥1 is

defined as

�(⌫) = ⇡
k(k�1)/4

kY

i=1

�

✓
⌫i +

1� i

2

◆
, (4)

with 2⌫i > i� 1 for i = 1, . . . , k.

The upper generalized multivariate gamma function is defined similarly as

�U(⌫) = ⇡
k(k�1)/4

kY

i=1

�

✓
⌫i +

i� k

2

◆
= �(⌫ + �̃), (5)

for 2⌫i > k � i for i = 1, . . . , k, and

�̃ = 1
2(k + 1)�

⇣
k, k � 1, . . . , 1

⌘>
=

⇣
�1

2 (k � 1) , . . . , 12 (k � 1)
⌘>

. (6)

The upper and lower generalized multivariate gamma functions enter the integrating

constant of the Riesz distribution. Note that if ⌫ = (⌫, . . . , ⌫)> in (4) such that all its

elements are the same, then �(⌫) = �k(⌫), with �k(⌫) the standard multivariate gamma

function from (2).

Next, we introduce the concept of Lower Power Weighted Determinants (LPWD) and

Upper Power Weighted Determinants (UPWD). The power weighted determinants for the

Riesz density take a similar role as the standard determinants in expression (1) for the

Wishart density.

Definition 2 (power weighted determinants). Consider the vector ⌫ 2 Rk⇥1 and a

positive definite matrix Y . Let L and U be the (unique) lower and upper triangular

Cholesky decompositions of Y , i.e., Y = LL
> = UU

>, with L and U a lower and upper

triangular matrix, respectively, each with positive diagonal elements. Then the Lower Power

Weighted Determinant (LPWD) and Upper Power Weighted Determinant (UPWD) of Y ,

6



denoted as |Y |⌫ and U |Y |⌫ , respectively, are given by

|Y |⌫ =
kY

i=1

L
2⌫i
i,i , U |Y |⌫ =

kY

i=1

U
2⌫i
i,i . (7)

In the physics literature, the power weighted determinants are commonly introduced via

so-called weight functions; see for instance Gross and Richards (1987). In this paper, we

instead use the notation of power weighted determinants as it is closer to the econometric

literature and stresses the analogy between the Wishart and Riesz density expressions. It

also allows us to easily see that the Wishart is a special case of the Riesz. To facilitate the

latter, we provide some manipulation rules for power weighted determinants that will prove

convenient. In particular, we note that the power weighted determinant is not a regular

determinant. Simple properties like |A ·B| = |A| · |B| for matrices A,B 2 Rk⇥k need (and

in general will) no longer hold for power weighted determinants. The following lemma is

proved in the online appendix and lists a number of useful properties. For instance, while

properties (i)–(iii) and (v) are intuitive, property (iv) is an important di↵erence with the

standard determinant. In particular, |Y |⌫ 6= |Y �1|�⌫ in general, whereas for a positive

definite Y , non-zero ⌫, and a regular determinant we have |Y |⌫ = |Y �1|�⌫ .

Lemma 3. Given a scalar ⌫, a vector ⌫ = (⌫1, . . . , ⌫k)> 2 Rk⇥1, a vector of ones ◆k 2 Rk⇥1,

and Y 2 Rk⇥k a positive definite matrix, then we have the following identities.

(i) If ⌫ = ⌫ · ◆k, then |Y |⌫·◆k = U |Y |⌫·◆k = |Y |⌫. As special case, when ⌫ = 1, we have

|Y |◆k = U |Y |◆k = |Y |.

(ii) Let ⌫1,⌫2 2 Rk⇥1 be two vectors of constants, then we have |Y |⌫1 · |Y |⌫2 = |Y |⌫1+⌫2 ,

and U |Y |⌫1 · U |Y |⌫2 = U |Y |⌫1+⌫2 .

(iii) ( |Y |⌫ )�1 = |Y |�⌫ , and ( U |Y |⌫ )�1 = U |Y |�⌫ .

(iv) |Y |⌫ = U |Y �1|�⌫ .

(v) If L,⌃ 2 Rk⇥k, where ⌃ is positive definite with lower triangular Cholesky

decomposition L such that ⌃ = LL
>, then |L�1

Y (L�1)>|⌫ = |Y |⌫ · |⌃|�⌫ .

Similarly, if U is the upper triangular Cholesky decomposition of ⌃ with ⌃ = UU
>,

then U |U�1
Y (U�1)>|⌫ = U |Y |⌫ · U |⌃|�⌫ .
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We can now introduce the lower triangular (type-I) and upper triangular (type-II) version

of the Riesz distribution; see also for instance Dı́az-Garćıa (2013) and Louati and Masmoudi

(2015).

Theorem 4 (Riesz distribution type I and II).

(i) Consider the Bartlett decomposition G 2 Rk⇥k, defined as

G =

0

BBBBBB@

p
�2
⌫1 0 · · · 0

N (0, 1)
. . . 0

...
... N (0, 1)

. . . 0

N (0, 1) · · · N (0, 1)
q
�
2
⌫k�k+1

1

CCCCCCA
, (8)

for ⌫i > i�1 for i = 1, . . . , k, and let Y = LGG
>
L

>, where L is the lower triangular

Cholesky decomposition of ⌃, such that ⌃ = LL
>. Then Y has density function

pRI (Y ;⌃,⌫) =
|Y |0.5(⌫�k�1) · etr

�
�1

2⌃
�1
Y
�

|⌃|0.5⌫ · � (⌫/2) · 2⌫>◆k/2
, (9)

also known as a Riesz type-I density, RI(⌃,⌫), where the generalized multivariate

Gamma function �( · ) and the Lower Power Weighted Determinant | · |⌫ were defined

in Definitions 1 and 2, respectively.

(ii) Let the Bartlett decomposition H 2 Rk⇥k be defined as

H =

0

BBBBBB@

q
�
2
⌫1�k+1 N (0, 1) · · · N (0, 1)

0
. . . N (0, 1)

...
... 0

. . . N (0, 1)

0 · · · 0
p

�2
⌫k

1

CCCCCCA
, (10)

for ⌫i > k � i for i = 1, . . . , k, and let X = UHH
>
U

>, where U is the upper

triangular Cholesky decomposition of ⌃, such that ⌃ = UU
>. Then X has density

function

pRII (X;⌃,⌫) =
U |X|0.5(⌫�k�1) · etr

�
�1

2⌃
�1
X

�

U |⌃|0.5⌫ · �U (⌫/2) · 2⌫>◆k/2
, (11)
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also known as a Riesz type-II density, RII(⌃,⌫), with �U( · ) and U | · |⌫ as defined

in Definitions 1 and 2.

The Riesz distributions of type I and II bear a close resemblance to the Wishart

distribution. Using manipulation rule (i) from Lemma 3, we directly establish the following

corollary.

Corollary 5. If ⌫ = (⌫, . . . , ⌫)> for some positive scalar ⌫ > k � 1, then the Wishart,

Riesz-I, and Riesz-II densities from (1), (9), and (11), respectively, all coincide.

The Wishart distribution is thus a special case of the Riesz. The Bartlett decompositions

in (8) and (10), moreover, provide a direct way to simulate from the Riesz-I and Riesz-II

distribution. Also note that the density expressions in Theorem 4 are easy to implement for

numerical maximization of a likelihood function to estimate ⌃ and ⌫. They only require

determinants and Cholesky decompositions.

Given the use of the Cholesky decomposition, it is clear that the ordering of the variables

matters. This is well-known and accepted in the Riesz literature. For instance for k = 2

and ⌃ = I2, switching both rows and columns of Y ⇠ RI(I2,⌫) for ⌫ = (⌫1, ⌫2)> does not

yield a Riesz distribution with (⌫2, ⌫1)> degrees of freedom. The order of the variables can

be recovered from the data under the assumption of correct specification by maximizing the

likelihood also over the order of the variables in the system, rather than over ⌃ and ⌫ only.

In high dimensional systems, this additional optimization is of combinatorial complexity.

Empirically, we found that changes in the orders of the variables in the system typically

result only in second order improvements of the likelihood function. The dominant increase

in the likelihood is obtained by generalizing the Wishart into a Riesz, or the matrix-F

into an F -Riesz. Nevertheless, we also propose a heuristic approach later in the paper to

optimize e�ciently over the ordering of the variables in order to maximize the likelihood.

Finally, like the Wishart, the Riesz distribution also allows for an inverse version, called

the inverse Riesz type-I iRI(⌃,⌫) and type II iRII(⌃,⌫). This will be important for

constructing F -Riesz distributions in the next section. The definition of the type I and II

inverse Riesz distributions is given in the following definition and theorem.

Definition 6.
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(i) Let Y be a Riesz distribution of type I, RI(⌃�1
,⌫), and let X = Y

�1, then X is

inverse Riesz distributed of type I, iRI(⌃,⌫).

(ii) Similarly, if Y ⇠ RII(⌃�1
,⌫), then X = Y

�1 is inverse Riesz type II, iRII(⌃,⌫).

Theorem 7. The pdf of an iRI(⌃,⌫) distributed random variable X is given by

piRI (X;⌃,⌫) =
|X�1|0.5(⌫+k+1) · etr

�
�1

2⌃X
�1
�

|⌃�1|0.5⌫ · � (⌫/2) · 2⌫>◆k/2
. (12)

The pdf of an iRII(⌃,⌫) distributed random variable X is given by

piRII (X;⌃,⌫) =
U |X�1|0.5(⌫+k+1) · etr

�
�1

2⌃X
�1
�

U |⌃�1|0.5⌫ · �U (⌫/2) · 2⌫>◆k/2
. (13)

The first moments of the Riesz and inverse Riesz distributions have been derived by

Dı́az-Garćıa (2013) and Louati and Masmoudi (2015).

3 The F -Riesz distribution

3.1 The static F -Riesz model

Given the Riesz and inverse Riesz distributions, we can now introduce the F -Riesz

distributions. A family tree of the di↵erent distributions considered in this paper is provided

in Figure 1. Starting from a Wishart distribution, the matrix-F distribution of Olkin et al.

(1964); Konno (1991) can be obtained by mixing a Wishart and an inverse-Wishart, i.e.,

considering a random variable X such that (X | Y ) ⇠ W(Y , µ), where Y ⇠ iW(⌃, ⌫).

The random variable X then has a matrix-F distribution. Analogously, the F -Riesz type

I distribution can be constructed by mixing a Riesz and inverse-Riesz distribution, i.e.,

(X | Y ) ⇠ RI(Y ,µ) with Y ⇠ iRII(⌃,⌫). In that case, X had a F -Riesz type I

distribution. A similar construction holds for the F -Riesz type II.1 Theorem 8 presents the

pdf of the F -Riesz distribution.

1F -Riesz distributions can be constructed in di↵erent ways. An earlier attempt for a beta type II Riesz
distribution, similar to our F -Riesz, was given by Dı́az-Garćıa (2016). The density expression in that paper
contains a subtle error that it does not a↵ect the estimation of the µ and ⌫ parameters for the standard
version of the distribution, i.e., for ⌃ = Ik. However, if ⌃ needs to be estimated the expression results
in severe biases in the parameter estimates. Theorem 25 following the proof of Theorem 8 in the online
appendix provides the appropriate correction.
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F -Riesz

Riesz

Wishart

matrix-F inverse-Riesz

inverse-
Wishart

Figure 1: Family of matrix distributions
This figure shows a family tree of the F -Riesz distributions. Connected lines means that distributions are
related by generalization.

Theorem 8 (F -Riesz distribution). (i) Assume X|Y ⇠ RI (Y ,µ) and Y ⇠

iRII (⌃,⌫), then X is FRI distributed with density function

pFRI (X;⌃,µ,⌫) =
�U

�
µ+⌫
2

�
· |⌃|0.5⌫

�U

�
⌫
2

�
�
�
µ
2

� |X|0.5(µ�k�1) |⌃+X|�0.5(µ+⌫) .

(ii) Assume X|Y ⇠ RII (Y ,µ) and Y ⇠ iRI (⌃,⌫), then X is FRII distributed with

density function

pFRII (X;⌃,µ,⌫) =
�
�
µ+⌫
2

�
· U |⌃|0.5⌫

�
�
⌫
2

�
�U

�
µ
2

� U |X|0.5(µ�k�1) U |⌃+X|�0.5(µ+⌫) .

(iii) Let ⌃ = LL
> = UU

> for lower and upper triangular matrix L and U , respectively.

If X ⇠ FRI(⌃,µ,⌫) then L
�1
X(L>)�1 ⇠ FRI(Ik,µ,⌫). Similarly, if X ⇠

FRII(⌃,µ,⌫) then U
�1
X(U>)�1 ⇠ FRII(Ik,µ,⌫).

The following corollary establishes that the matrix-F distribution of Konno (1991) as

used by Opschoor et al. (2018) is a special case of the F -Riesz distribution.

Corollary 9. From Theorem 8.(i), if we assume µ = µ · ◆k and ⌫ = ⌫ · ◆k, then X has a

matrix-F distribution F(µ, ⌫), and

pFRI (X;⌃, µ · ◆k, ⌫ · ◆k) = pF(X;⌃, µ, ⌫). (14)
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The corollary makes clear that it is possible to test whether the F -Riesz collapses to the

matrix-F distribution by testing whether all elements in µ are the same, as well as all

elements in ⌫. This is a simple likelihood ratio test, and we revisit this in the simulation

section later on.

We close this section by formulating the moments of the F -Riesz type I and II

distributions. These moments turn out to be useful for re-parameterizing the model and

for designing a two-step targeting approach to estimation. More details on this targeting

approach are provided in Section 3.2.

Theorem 10 (Expectation of the F -Riesz distribution).

(i) Let Y ⇠ FRI(I,µ,⌫), then E[Y ] = Ak, where Ak is a diagonal matrix with ith

diagonal element ai equal to

ai =

8
<

:

µ1

⌫1�k�1 , for i = 1,

1
⌫i�k+i�2

⇣
µi +

Pi�1
i=1 ai

⌘
, for i = 2, . . . , k.

(ii) Let Y ⇠ FRII(I,µ,⌫), then E[Y ] = Ak, where Ak is a diagonal matrix with ith

diagonal element ai equal to

ai =

8
<

:

1
⌫i�i�1

⇣
µi +

Pk
i=i+1 ai

⌘
, for i = 1, . . . , k � 1,

µk

⌫k�k�1 , for i = k.

From Theorem 8.(iii), the expectation of a general FRI(⌃,µ,⌫) random variable equals

LAkL
> for ⌃ = LL

>, with L lower triangular. Similarly, the expectation of a

FRII(⌃,µ,⌫) random variable equals UAkU
> for ⌃ = UU

>, with U upper triangular.

3.2 Conditional Autoregressive F -Riesz models

We apply the F -Riesz distribution later in this paper to observations Xt of realized

covariance matrices. Of course, one can assume that these are i.i.d. observations from

the F -Riesz or related distributions. This, however, is empirically implausible for realized

covariance matrices, which typically exhibit quite some persistence over time. To illustrate

the usefulness of the new distributions, we therefore consider a model specification that

12



allows for more persistence in Xt. As an example, we consider the F -Riesz type I

distribution. A similar set-up can be made for the other distributions discussed in this

paper. Let ⌃t = Lt L
>
t for a lower triangular matrix, then we consider the model

Xt | Ft�1 ⇠ FRI(⌃t,µ,⌫), (15)

Vt = E[Xt | Ft�1] = Lt M (µ,⌫)L>
t , (16)

Vt+1 = (1� A� B)⌦+ AXt +B Vt, (17)

where Ft�1 = {X1, . . . ,Xt�1} contains the lagged observations, and M (µ,⌫) is a diagonal

matrix-valued function containing the expectation of the standard (⌃t = Ik) F -Riesz type

I distribution. We take ⌦ as a symmetric positive definite parameter matrix, and A and B

as scalar parameters. The model will be labeled as the Conditional Autoregressive F -Riesz

model (CAFr). If we consider the Wishart rather than the F -Riesz distribution, the model

resembles the Conditional Autoregressive Wishart (CAW) model of Golosnoy et al. (2012)

In that case, the model is also one of the core equations of the Multivariate HEAVY model

of Noureldin et al. (2012). Of course, the model can easily be extended to have non-scalar A

and B, more lags of Vt and/or Xt, and other dynamics including long-memory or HAR type

dynamics (Corsi, 2009). For the sake of this paper, the current specification su�ces and

already shows that we obtain large increases in likelihood by allowing for tail-heterogeneity

using the F -Riesz distribution. The size of additional gains obtained by changing to more

persistent dynamics can be found in for instance Corsi (2009) and is not the core of our

contribution in this paper.

Model (15)–(17) is observation driven and thus allows for easy parameter estimation via

maximum likelihood using a standard prediction error decomposition. Standard errors are

obtained using the standard sandwich covariance matrix estimator.

To reduce the dimensionality of the optimization, we use a targeting approach to estimate

the matrix ⌦. First note that there is a simple mapping between ⌃t and Vt for given µ

and ⌫. In particular for the F -Riesz type I distribution, Lt = LVt M (µ,⌫)�1/2, where

LVt is a lower triangular matrix such that Vt = LVt
L

>
Vt
. Similar expressions hold for the

other distributions. The targeting approach works as follows. Assuming stationarity and

the existence of unconditional first moments, we can take unconditional expectations of the

13



left and right-hand sides of (17) to obtain V = E[Vt] = ⌦. We use this to estimate ⌦ by

the sample average, ⌦̂ = n
�1

Pn
t=1 Xt. The likelihood then holds only in the remaining

parameters A, B, µ, and ⌫.

3.3 Ordering of variables

A final issue for likelihood maximization is determining the order of the variables in the

system. As mentioned earlier, the order of the variable matters for the specification of

the Riesz type distributions. Enumeration of all possible orders and picking the highest

likelihood value is typically unfeasible in high dimensions. To approximate the optimal

order, we propose a heuristic approach, the core of which is described in the following

algorithm.

Algorithm 11 (Approximating the optimal ordering of variables in the system).

Let o = (o1, . . . , ok) be a permutation of the first k integers, indicating the order of the

variables in the system that make up the covariance matrix observations Xt. Also, let ✓

denote the static parameters that characterize the model and that need to be estimated by

maximum likelihood.

Step 0 Set j = 0.

Step 1 Select a random order o
(j) = (o(j)1 , . . . , o

(j)
k ).

Step 2 Given the ordering o
(j), estimate ✓ by maximum likelihood (possibly combined with a

targeting approach) to obtain ✓̂
(j).

Step 3 Loop over asset i, i = 1, . . . , k:

Step 3a Find i
? such that i = o

(j)
i? , i.e., find the position of asset i in the current ordering

o
(j).

Step 3b Put asset i in each of the possible positions 1, . . . , k, while keeping the

order of the other variables as in o
(j), i.e., consider the permutations

(o(j)i? , o
(j)
1 , . . . , o

(j)
i?�1, o

(j)
i?+1, . . . , o

(j)
k ), (o(j)1 , o

(j)
i? , o

(j)
2 , . . . , o

(j)
i?�1, o

(j)
i?+1, . . . , o

(j)
k ), up to

(o(j)1 , . . . , o
(j)
i?�1, o

(j)
i?+1, . . . , o

(j)
k , o

(j)
i? ). Retain the ordering that yields the highest log-

likelihood value for given ✓̂
(j) and store it as o(j+1).
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Step 3c Increase j to j + 1 and re-estimate ✓̂
(j).

Step 3d Continue the loop by proceeding to the next asset i+ 1.

Step 4 Repeat steps 1–3 for p di↵erent random initial orderings, retaining the final order

that yields the highest log-likelihood. Call this final order o
(opt) with corresponding

parameter estimate ✓̂
(opt).

Some more details and possible variations on this heuristic algorithm are provided in the

online appendix. The algorithm ensures that the maximized likelihood never decreases for

the di↵erent orderings of the variables in the system considered during the search. Moreover,

the algorithm is e�cient in that it limits the number of times we re-estimate the parameter

✓. The latter is costly due to the (possibly high-dimensional) non-linear optimization

problem. In particular, we only re-estimate ✓ p(k+1) times. This is substantially smaller for

large k than the full k! enumerated possible orderings and therefore provides an enormous

computational gain. Though no guarantee is given that we arrive at the true optimum

using this algorithm, the simulation evidence in the next section shows that it results in

some considerable likelihood increases and typically gets close to the correct order of the

variables measured in terms of rank correlations.

4 Consistency results

In this section, we establish the consistency of several estimators for the parameters of the

F -Riesz distribution. For the case of a sample {Xt}t=1,...,T composed of random i.i.d. draws

from a F -Riesz distribution, we study the consistency of the estimator V̂T of the matrix

V = E[Xt], the estimator ⌃̂T of the scale matrix ⌃, and the estimator (µ̂T , ⌫̂T ) of the

vector (µ,⌫), as a two-step maximum likelihood estimator relying on a plug-in formulation

of the log likelihood function. Additionally, for the case of a sample {Xt}t=1,...,T generated

by the conditional autoregressive F -Riesz model in (15)-(17), we obtain the consistency of

the MLE for all the static parameters.
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4.1 Consistency results for an i.i.d. sample

We first consider the consistent estimation of the unknown parameters of interest for an

i.i.d. random sample from a F -Riesz distribution using the maximum likelihood estimator

(MLE). Assumption 12 below states the distributional nature of the data generating process.

Assumption 13 imposes the finiteness of the true ⌃0 as well as restrictions on the parameter

space for the vector (µ,⌫).

Assumption 12. The sequence {Xt}t=1,...,T is i.i.d. with Xt ⇠ FRI(⌃0,µ0,⌫0) for every

t = 1, ..., T .

Assumption 13. The positive definite matrix ⌃0 satisfies k⌃0k < 1 and (µ,⌫) lie on a

compact set satisfying ⌫i > i+ 1 8 i, and µj > K + 1 8 j and containing (µ0,⌫0).

Proposition 14 now establishes the strong consistency of the sample average as an estimator

of V0 = E[Xt].

Proposition 14. Let assumptions 12 and 13 hold. Then V̂T = 1
T

PT
t=1 Xt

a.s.! V0 = E[Xt]

as the sample diverges, T ! 1.

To prove the consistency of the two-step estimation procedure, we reparameterize the model

using the fact that ⌃ = LV A
�1
k L

>
V , where LV is the (unique) Cholesky decomposition of

V . We define p̃FRI as the reparameterized density function which takes V rather than ⌃

as an argument, i.e., p̃FRI ( · ;V ,µ,⌫) ⌘ pFRI ( · ;LV A
�1
k L

>
V ,µ,⌫).

Theorem 15 below establishes the strong set-consistency of the two-step MLE as T ! 1.

Note that in this two-step estimator (µ̂T , ⌫̂T ) depends on the first-step estimator for

V0. Specifically, we define the MLE (µ̂T , ⌫̂T ) as the maximizer of the plug-in estimates

log p̃FRI (Xt; V̂T ,µ,⌫),

(µ̂T , ⌫̂T ) = arg max
(µ,⌫)2U⇥V

1

T

TX

t=1

log p̃FRI (Xt; V̂T ,µ,⌫), (18)

rather than of the true log-likelihood contributions log p̃FRI (Xt;V0,µ,⌫). We build

on Wald’s consistency and follow Theorem 5.14 in van der Vaart (2000) to obtain the

consistency of our MLE to the set of parameters U0 ⇥V0 ✓ R2k that maximize the limit log
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likelihood. In the case this set collapses to a singleton, we obtain the standard consistency

result to the (pseudo) true parameter value. The theorem is as follows.

Theorem 15. Let assumptions 12 and 13 hold. Then the MLE (µ̂T , ⌫̂T ) defined in (18)

satisfies

lim
T!1

P0

�
dT � " ^ (µ0,⌫0) 2 U ⇥ V

�
= 0,

for every " > 0 and every compact subset Ũ ⇥ Ṽ ✓ U ⇥ V, where dT denotes the standard

set distance between the vector (µ0,⌫0) and U0 ⇥ V0,

dT := inf
n

d
�
(µ̂T , ⌫̂T ) , (µ,⌫)

�
: (µ,⌫) 2 U0 ⇥ V0

o
.

Let (U0,V0) = (µ0,⌫0) 2 R2k be a singleton. Then the MLE (µ̂T , ⌫̂T ) satisfies (µ̂T , ⌫̂T )
p!

(µ0,⌫0) as T ! 1.

Corollary 16 builds on the strong consistency of V̂T from Proposition 14 and the weak

consistency of (µ̂T , ⌫̂T ) from Theorem 15 to obtain the consistency of the estimator ⌃̂T

towards ⌃0.

Corollary 16. Let assumptions 12 and 13 hold. Then ⌃̂T
p! ⌃0 as T ! 1.

4.2 Consistency results for the conditional autoregressive F -Riesz

model

We now turn to the consistency of the MLE for the unknown static parameter of the

conditional autoregressive F -Riesz model. Assumption 17 below defines the conditional

autoregressive F -Riesz model in (15)-(17) as the data generating process. Assumption 18

imposes the finiteness of the true intercept parameter ⌦0 = E[Vt] and the compactness of

the parameter space of the remaining parameters. Additionally, Assumption 19 imposes

conditions on the parameters A0 and B0 which ensure positivity and contracting or stable

stochastic behavior for the data generated by our dynamic model in (15)–(17).

Assumption 17. The sequence {Xt}t=1,...,T is generated by (15)-(17) under some

(⌦0, A0, B0,µ0,⌫0) for every t = 1, ..., T .
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Assumption 18. ⌦0 is positive definite and (A0, B0,µ0,⌫0) lies in a compact parameter

space ⇥ ensuring that ⌃̂t is positive definite almost surely, uniformly over ⇥, where

⌫i > i+ 1 8 i, and µj > K + 1 8 j.

Assumption 19. A0 � 0, B0 � 0 and |A0 +B0| < 1.

Under the conditions laid down in assumptions 17-19, we can obtain the strong consistency

of the sample average ⌦̂ = n
�1

Pn
t=1 Xt with respect to ⌦0 by application of the ergodic

theorem.

Proposition 20. Let assumptions 17-19 hold. Then ⌦̂ = n
�1

Pn
t=1 Xt

a.s.! ⌦0 as T ! 1.

We now turn to the invertibility of the filtering equation (17). Following the literature

(e.g. Straumann and Mikosch (2006) and Wintenberger (2013)), invertibility ensures that

the filter ‘forgets’ the incorrect initialization; i.e. the filtered sequence {V̂t}t2N initialized at

some point V̂1 converges pathwise and exponentially fast to a unique stationary and ergodic

limit sequence {Vt}t2N. This means that c
tkV̂t � Vtk

a.s.! 0 as t ! 1 for some c > 1,

regardless of the fact that the initialization V̂1 is almost surely incorrect (as the true V1 is

an unobserved continuous random variable).

In the current setting, filter invertibility can be obtained by ensuring that the following

conditions hold:

(i) stationarity of the data {Xt}t2Z;

(ii) a logarithmic bounded moment for Xt 8 t;

(iii) a contraction condition for the filtering equation.

The stationarity of the data in (i), and the logarithmic moment in (ii), follow from

assumptions 17-19. The contraction condition for the filtering equation, however, requires

additional restrictions on the parameter space. Assumption 21 ensures that the filtered V̂t

is positive definite and the contracting behavior of the stochastic sequence {V̂t}t2N.

Assumption 21. The parameter space A⇥B is such that A � 0, B � 0 and supB2B |B| < 1.

Proposition 22 now establishes the invertibility of the filter V̂t for Vt, and opens the door

to the consistency of the MLE.
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Proposition 22. Let assumptions 17-21 hold. Then the filter {V̂t}t2N is invertible.

We are now ready to formulate our consistency result of the MLE (ÂT , B̂T , µ̂T , ⌫̂T ) for the

vector (A0, B0,µ0,⌫0). Again, this MLE takes the form of a targeted two-step estimator

as it depends on the first-step estimator for ⌦0. Additionally, as is common for filtering

models, the log-likelihood depends directly on the properties of the filter V̂t, which is itself

a function of the estimated ⌦̂T , the parameters A and B, and the initialization V̂1 as

noted above. Specifically, we define the MLE as the maximizer of the plug-in loglikelihood

log p̃FRI (Xt; V̂t(⌦̂T , A,B),µ,⌫),

(ÂT , B̂T , µ̂T , ⌫̂T ) = arg max
(A,B,µ,⌫)

TX

t=1

log p̃FRI (Xt; V̂t(⌦̂T , A,B),µ,⌫). (19)

Just as for the i.i.d. case, we build on Wald’s consistency proof and follow Theorem

5.14 in van der Vaart (2000) to establish the set-consistency of the MLE towards the set

A0 ⇥ B0 ⇥ U0 ⇥ V0 of optimizers of the limit log-likelihood function.

Theorem 23. Let assumptions 17-21 hold. Then the targeted MLE (ÂT , B̂T , µ̂T , ⌫̂T ) defined

in (19) satisfies

lim
T!1

P0

⇣
dT � " ^ (A0, B0,µ0,⌫0) 2 Ã⇥ B̃ ⇥ Ũ ⇥ Ṽ

⌘
= 0,

for every " > 0 and every compact subset Ã⇥ B̃⇥ Ũ⇥ Ṽ ✓ A⇥B⇥U⇥V, where dT denotes

the standard set distance between the vector (A0, B0,µ0,⌫0) and A0 ⇥ B0 ⇥ U0 ⇥ V0,

dT := inf
n ��(ÂT , B̂T , µ̂T , ⌫̂T )� (A,B,µ,⌫)

�� : (A,B,µ,⌫) 2 A0 ⇥ B0 ⇥ U0 ⇥ V0

o
.

As in the i.i.d. case, if (A0, B0,µ0,⌫0) is identified so that it uniquely maximizes the

limit criterion E[log p̃FRI (Xt;Vt(⌦0, A,B),µ,⌫)], the set A0 ⇥ B0 ⇥ U0 ⇥ V0 collapses to a

singleton and we recover the standard consistency result to the unique true parameters.
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5 Simulation experiment

This section shows results of a Monte Carlo study which investigates the statistical properties

of the maximum likelihood estimator of the parameters corresponding with the newly

developed distributions. We perform five simulation experiments.

The first experiment aims to assess the small sample properties of the MLE for all

degrees-of-freedom (DoF) parameters plus the parameters from the covariance matrix in a

static model setting (A = B = 0). We simulate covariance matrices Xt of dimension 2 from

the Riesz, inverse Riesz and F -Riesz distributions respectively. We set V = LL
> = UU

>

with L (U ) the lower (upper) Cholesky matrix with elements L11 = 2.752, L21 = 2.125,

L22 = 3.006 and U11 = 2.247, U21 = 1.588, U22 = 3.682. We set ⌫ = (10, 20) for the

Riesz, as well as for the inverse Riesz distribution. For the F -Riesz distribution, we set

µ = (10, 15) and ⌫ = (15, 10).

The second experiment focuses on the estimation of the DoF parameters in a 5-variate

case, where now the elements of V are estimated using a targeting approach as explained

in Section 3.2. We set ⌫ = (10, 15, 20, 14, 12) for the (inverse) Riesz distribution, while

µ = (10, 15, 20, 14, 12) and ⌫ = (10, 15, 20, 12, 14) for the F -Riesz distribution.

Both simulation experiments are based on samples of 1000 observations from the three

distributions. We then use Maximum Likelihood to estimate the parameters of interest.

In addition, we estimate their standard errors by computing the inverse of the (negative)

Hessian at the optimum. We replicate each experiment 1000 times.

Table 1 presents the results of the first two simulation experiments. Panels A and B

correspond to the type I distributions, while Panels C and D show results for the type II

distributions. In all panels, we find that all parameters are estimated near their true values.

Comparing the Monte-Carlo standard error of the estimates (std column in Table 1) with

the mean of the estimated standard error over all replications (mean(s.e.) column), we

find that our computed standard errors fairly reflect estimation uncertainty. Only the true

variability of the ⌫ parameters for the inverse Riesz and F -Riesz appears slightly higher

than estimated by the usual standard errors, but the di↵erence is minor.

The third and fourth simulation experiments are designed to address the di↵erent

possible orderings of the variables in the system that make up the covariance matrix Xt.
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Table 1: Parameter estimations of (inverse) Riesz and the F -Riesz distributions

This table shows Monte Carlo averages and standard deviations (in parentheses) of parameter estimates of
simulated covariance matrices from the Riesz, inverse Riesz and F -Riesz distributions of dimension two and
five. Panel A and B show results of the type I distributions, while panels C and D list results of the type
II distributions. Panels A and C correspond to the bivariate case, where both the (Cholesky elements L11

(U11), L21 (U21) and L22 (U22) of) Vt as well as the degrees of freedom (DoF) parameters ⌫ and µ are
estimated. Panels B and D shows results of the five-variate case, where the elements of V are estimated by
targeting in a first step, and the DoF parameters are estimated in a second step by maximum likelihood.
The table reports the true values, the mean and standard deviation of the estimated coe�cients, as well as
the mean of the computed standard error. Results are based on 1000 Monte Carlo replications.

Panel A: dimension 2 Panel B: dimension 5 (targeting)

Distribution Coef. True mean std mean(s.e.) Coef. True mean std mean(s.e.)
Riesz I L11 2.752 2.752 0.019 0.019 ⌫1 10 10.02 0.43 0.43

L21 2.125 2.126 0.025 0.026 ⌫2 20 20.03 0.61 0.60
L22 3.006 3.006 0.015 0.015 ⌫3 15 15.02 0.35 0.35

⌫4 18 18.01 0.37 0.36
⌫1 10 10.03 0.43 0.43 ⌫5 12 12.01 0.18 0.19
⌫2 20 20.01 0.60 0.60

Inv Riesz I L11 2.752 2.752 0.019 0.020 ⌫1 10 10.05 0.42 0.35
L21 2.125 2.126 0.027 0.027 ⌫2 20 20.01 0.61 0.54
L22 3.006 3.006 0.018 0.018 ⌫3 15 15.03 0.33 0.28

⌫4 18 18.02 0.33 0.29
⌫1 10 10.03 0.41 0.44 ⌫5 12 12.00 0.18 0.11
⌫2 20 20.04 0.61 0.61

F -Riesz I L11 2.752 2.752 0.028 0.028 µ1 10 10.02 0.57 0.55
L21 2.125 2.126 0.038 0.037 µ2 15 15.03 0.64 0.62
L22 3.006 3.006 0.036 0.036 µ3 20 20.05 0.73 0.72

µ4 14 14.01 0.40 0.40
µ1 10 10.08 0.87 0.86 µ5 12 12.00 0.28 0.27
µ2 15 15.16 1.17 1.12
⌫1 15 15.23 1.85 1.87 ⌫1 10 10.06 0.54 0.47
⌫2 10 10.06 0.72 0.69 ⌫2 15 15.06 0.73 0.66

⌫3 20 20.10 0.96 0.93
⌫4 12 12.05 0.43 0.39
⌫5 14 14.12 0.75 0.69

To investigate this sensitivity in experiment three, we study the full enumeration approach

for all available orderings in a low-dimensional setting. We simulate 1000 matrices Xt from

a 5-variate RI(⌃,⌫) distribution with ⌫ = (10, 20, 15, 18, 12)> and an arbitrarily chosen

matrix ⌃. In each simulation run, we consider all 120 possible orderings of the variables

in the system and estimate ⌃ and ⌫ using the targeting approach. We retain the ordering

that has the highest maximized log-likelihood. We obtain such a final, optimal ordering

o
(opt) for each simulation run. To check whether the optimally estimated order coincides
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(continued from previous page)

Panel C: dimension 2 Panel D: dimension 5 (targeting)

Distribution Coef. True mean std mean(s.e.) Coef. True mean std mean(s.e.)
Riesz II U11 2.247 2.248 0.016 0.016 ⌫1 10 10.01 0.15 0.14

U21 1.588 1.589 0.023 0.024 ⌫2 20 20.01 0.39 0.40
U22 3.682 3.681 0.019 0.018 ⌫3 15 15.02 0.36 0.35

⌫4 18 18.03 0.53 0.54
⌫1 10 10.02 0.28 0.29 ⌫5 12 12.02 0.53 0.52
⌫2 20 20.07 0.87 0.88

Inv Riesz II U11 2.247 2.247 0.020 0.020 ⌫1 10 10.01 0.15 0.07
U21 1.588 1.589 0.028 0.029 ⌫2 20 20.00 0.42 0.34
U22 3.682 3.682 0.027 0.028 ⌫3 15 15.02 0.35 0.28

⌫4 18 17.98 0.58 0.47
⌫1 10 10.02 0.29 0.29 ⌫5 12 12.03 0.53 0.44
⌫2 20 20.05 0.89 0.89

F -Riesz II U11 2.247 2.247 0.025 0.025 µ1 10 9.99 0.21 0.20
U21 1.588 1.588 0.039 0.039 µ2 15 14.97 0.44 0.44
U22 3.682 3.682 0.043 0.041 µ3 20 20.00 0.74 0.72

µ4 14 13.98 0.61 0.57
µ1 10 10.06 0.71 0.69 µ5 12 12.00 0.67 0.67
µ2 15 15.14 1.39 1.40
⌫1 15 15.29 1.87 1.82 ⌫1 10 10.06 0.43 0.29
⌫2 10 10.08 0.70 0.69 ⌫2 15 15.11 0.70 0.63

⌫3 20 20.17 1.04 0.94
⌫4 12 12.05 0.53 0.46
⌫5 14 14.14 0.89 0.78

with the true DGP ordering, we compute the rank correlation between o
(opt) and o

(dgp) in

each simulation run, and average across simulation runs. We also compute the di↵erence

between the maximum value of the optimized log-likelihood and the log-likelihood of the

DGP for each simulation run. Finally, we apply Algorithm 11 on 20 randomly chosen orders

o
j and report the final order oopt with the associated maximized log-likelihood.

Results of the third experiment are shown in Panel A of Table 2. The average rank

correlation between the ordering with the highest log-likelihood and the true ordering is

almost 1. Moreover, in more than 99% of the cases we are able to find the true ordering

using the full set of 120 enumerated di↵erent orderings. Interestingly, applying the Heuristic

gives exactly the same results, indicating that it works well in this simulation exercise. Panel

A.2 shows that the average di↵erence in log-likelihood between the highest and the DGP

log-likelihood equals 2.6 points on average across all simulations, which is very low.

In the fourth experiment, we test the performance of Algorithm 11 in improving the
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Table 2: Simulation results on the ordering of variables
This table shows Monte Carlo results of two simulation experiments. Panels A.1 and A.2 present results
for estimating parameters of a 5-dimensional RI(⌃,⌫) distribution across 120 possible orderings of X.
In addition, it lists results of applying Heuristic I with 20 randomly chosen orders oj . Panel A.1 shows
the average rank correlation between the true ordering and 1) the ordering with the highest maximized
log-likelihood, or 2) the final order oopt in case of the Heuristic. Also the percentage of cases that this
ordering matches the ordering of the DGP exactly is shown. Panel A.2 shows summary statistics of the
range of the highest minus the log-likelihood of the DGP across all 120 possible orderings, summarized
over simulation replications. Moreover, we also report the di↵erence between the associated maximized
log-likelihood of the final order of the Heuristic and the DGP. Panel B lists results of applying the Heuristic
to a 15-variate RI distribution with ordering 1, . . . , 15, using p = 50 randomly chosen initial orderings,
labeled as Heu(1). Having obtained the final order and associated maximized log-likelihood, we repeat the
Heuristic with the final order as the starting order. We label this as Heu(2). Panel B.1 shows the average
rank correlation between the true ordering and the optimal ordering estimated using our algorithm once and
twice. In addition, it presents the rank correlation between o(opt) for a pair of two random initial orderings,
averaged across all pairs, and across all simulations. Finally, it lists the percentage of cases that part of
the optimal ordering (1-5), (1-10) and the full ordering (1-15) matches exactly (part of the) ordering of
the DGP. Panel B.2 reports summary statistics of the di↵erence between the optimized log likelihood after
applying Algorithm 11 and the log likelihood from the correct DGP. We run 1000 Monte Carlo replications
for Panel A, while 500 Monte Carlo replications are used for panel B.

Panel A.1: Rank correlations
FE Heu

average rank corr (o(opt), o(dgp)) 0.999 0.999
perc correct rank (o(opt) = o(dgp)) 0.994 0.994

Panel A.2: Summary statistics on logLmax � logLDGP

mean sd min max
Full Enumeration 2.6 1.6 0.1 10.7
Heuristic 2.6 1.6 0.1 10.7

Panel B.1: Testing Heuristic I on k = 15: rank correlations

Heu(1) Heu(2)
average rank corr (o(opt), o(dgp)) 0.982 0.989
average rank corr of o(opt) across 0.807 0.951

simulation pairs
perc correct rank (o(opt) = o(dgp))(1-5) 0.944 0.966
perc correct rank (o(opt) = o(dgp))(1-10) 0.676 0.784
perc correct rank (o(opt) = o(dgp))(1-15) 0.348 0.510

Panel B.2: Summary statistics on logLopt � logLDGP

mean sd min max
Heuristic(1) 7.10 3.85 -9.53 15.63
Heuristic(2) 8.37 3.05 1.05 16.38

likelihood and in finding the true variable ordering. In each replication in this experiment,

we simulate 1000 matrices Xt from a 15-variate RI(⌃,⌫) distribution with ordering

oDGP = (1, . . . , 15) for a given ⌃ and ⌫. Note that for 15 variables there are more than 1.3

trilion possible orderings, such that trying all of them becomes impractical to impossible. We

apply our algorithm for p = 50 di↵erent randomly chosen initial orderings. After obtaining
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the optimal order o(opt) from the Heuristic, we apply the Heuristic again using this order as

the starting ordering. The final outcome is labeled as Heuristic(2). We report the average

(across replications) of the rank correlation between o
(opt) and o

(dgp). In addition, we list

the percentage of cases where (part of) the optimal ordering exactly matches (part of) the

ordering of the DGP. Moreover, to check the sensitivity of the algorithm to the p random

initial orderings, we also compute the rank correlation of o(opt) for all pairs of two simulation

replications, and then average over all pairs. The closer this number is to one, the smaller

is the dependence on the precise initial random orderings. Also this fourth experiment is

replicated 1000 times.

Panel B of Table 2 shows the results. Again, we find a very high rank correlation of

0.982 between the true order of the variables and the optimal estimated order. This implies

that the algorithm works adequately. Second, the average (across all pairs) rank correlation

for any combination of o(opt) based on two di↵erent initial random orderings is 0.802. This

is high, and indicates that there is limited dependence of the final optimal ordering o
(opt) on

the p = 50 random initial orderings. Applying the Heuristic again increases this number to

0.951, hence the influence of the random initial ordering becomes very small. Furthermore,

panel B.1 also indicates that repeating the Heuristic considerably improves the optimal

ordering in the middle and in the end of the DGP ordering vector, as the percentages

of correct rank increases from 0.676 (0.348) to 0.784 (0.510) respectively. As long as p

is not chosen too small, the algorithm typically produces substantial likelihood increases.

This pattern is corroborated by the di↵erence between the maximized likelihood for all 50

di↵erent initial orderings and the maximized likelihood based on the DGP ordering (logLdgp.

The range of likelihoods is only 25 points wide (di↵erences ranging form -9.63 to 15.63),

and decreases if we repeat the Heuristic.

This is also illustrated by Figure 2, which shows a histogram of log likelihoods of the RI

distribution. The blue bars show logL of the Riesz distribution of 50 randomly chosen initial

orderings. These exhibit substantial dispersion, and are clearly inferior to the maximized

likelihood value for the DGP ordering (red bar). However, after applying Algorithm 11 to

the 50 initial random orderings twice, we obtain twice 50 optimal orderings o(opt). The latter

are plotted with the green and yellow bars and are clearly much more concentrated, and close

to the maximized log-likelihood value corresponding to the DGP ordering. The algorithm
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Figure 2: Heuristic I: log-likelihood values of the RI distribution
This figure shows a histogram of logL values of the 15-variate RI distribution. The blue bars correspond
to the likelihood values of 50 randomly chosen order before applying Heuristic I, while the green (yellow)
bars show logL values after applying the heuristic (twice). The red bar denotes the log-likelihood with the
correct ordering from the DGP.

thus succeeds very well in eliminating much of the randomness of the initial orderings, and

getting close to the optimal ordering.

The last simulation experiment investigates the statistical gain of the F -Riesz

distribution over the matrix F distribution. Guided by the empirical application,

we focus on a 5-variate F -Riesz I distribution with degrees of freedom vectors µ =

(18.7, 35.8, 58.2, 89.4, 143.9)> and ⌫ = (22.8, 24.3, 28.6, 22.3, 18.2)>. We define µ̄ = 69.2

and ⌫̄ = 23.3 as the average values of the vectors µ and ⌫ respectively and µrange = µ� µ̄◆k

and ⌫range = ⌫ � ⌫̄◆k. The simulation experiment now consists of the following steps.

First, we simulate 1000 matrices Xt from a FRI(⌃, µ̃, ⌫̃) with µ̃ = µ̄◆k + �µrange and

⌫̃ = ⌫̄◆k + �⌫range for � = (0, 0.02, . . . , 0.08, 0.10). Note that if � = 0, the FRI distribution

collapses to a matrix-F distribution with µ̄ and ⌫̄ degrees of freedom. Second, we estimate

⌃ (using the targeting approach) and the degrees of freedom parameters assuming a matrix

F or FRI distribution. For each � we test the null-hypotheses µ = µ̄◆k and ⌫ = ⌫̄◆k. This

boils down to Likelihood-Ratio test with 2⇤k�2 degrees of freedom. We repeat this exercise

1000 times.

Table 3 shows the results. In Panel A, we see that if we simulate from a matrix-F

distribution (i.e. � = 0), the likelihood ratio test has been rejected in 8.4 % of all cases.
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Table 3: The matrix F vs the F -Riesz distributions
This table shows Monte Carlo results on the di↵erence between the F -Riesz and the matrix-F distribution.
Panel A lists results on simulating 1000 matrices from a FRI(⌃, µ̃, ⌫̃) distribution with µ̃ = µ̄◆k +�µrange

and ⌫̃ = ⌫̄◆k + �⌫range for � = (0, 0.02, . . . , 0.08, 0.10) with µ̄ = 69.2, ⌫̄ = 23.3, µrange = µ � µ̄◆k and
⌫range = ⌫ � ⌫̄◆k and µ = (18.7, 35.8, 58.2, 89.4, 143.9)> and ⌫ = (22.8, 24.3, 28.6, 22.3, 18.2)>. We estimate
the parameters assuming a matrix-F or FRI distribution. For each value of � we perform a likelihood ratio
test on the null-hypothesis µ = µ̄◆k and ⌫ = ⌫̄◆k. Panel A lists the percentage rejections of this hypothesis
for di↵erent values of �. Further, Panel B reports results on the estimated degrees-of-freedom parameters
of the matrix- F and/or F -Riesz I distribution for the case � = 0. The panel reports the true values,
the mean and standard deviation of the estimated coe�cients. All results are based on 1000 Monte Carlo
replications.

Panel A: Matrix F vs F -Riesz I
� 0 0.02 0.04 0.06 0.08 0.10
rejection rate 0.084 0.126 0.311 0.594 0.839 0.980

Panel B: DoF parameters when � = 0
matrix-F µ̄ ⌫̄

true 69.20 23.25
mean 69.25 23.33
sd 5.72 0.63

F -Riesz I µ1 µ2 µ3 µ4 µ5

true 69.20 69.20 69.20 69.20 69.20
mean 69.60 69.47 69.54 69.44 69.42
sd 7.26 6.52 6.29 6.05 5.83

⌫1 ⌫2 ⌫3 ⌫4 ⌫5

true 23.25 23.25 23.25 23.25 23.25
mean 23.36 23.32 23.34 23.40 23.42
sd 0.99 0.91 0.99 1.17 1.52

Further, when we deviate slightly from the matrix-F setting, we immediately reject the

null-hypothesis of a scalar µ and ⌫ in all cases. Panel B lists that the correct matrix-F

parameters are indeed estimated back on average. Also the average parameter estimates of

the F -Riesz I corresponds to the simulated values of 69.2 and 23.25.

6 Empirical application

In this section, we apply the F -Riesz distribution to an empirical data set of 30 U.S. equities

from the S&P 500 index over the period January 2, 2001, until July 31, 2014, a total of 3415

trading days. We extract transaction prices from the Trade and Quote (TAQ) database and

clean the high-frequency data in line with Brownlees and Gallo (2006) and Barndor↵-Nielsen

et al. (2009). After this cleaning procedure we construct realized covariance matrices Xt

using 5 minute returns with subsampling.
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We consider six di↵erent matrix distributions with a time-varying mean Vt for the

realized covariance matrices: the Wishart, the Riesz, the inverse Wishart, the inverse Riesz,

the Matrix-F , and the F -Riesz distribution. For the Riesz related distributions, we only

consider the type I version. The type II versions of these distributions yield very similar

results. The dynamic specification is as in (15)–(17), with only equation (15) modified for the

distribution at hand. We use the two-step targeting approach from Section 3.2 to estimate

⌦, and the algorithm from Section 3.3 with p = 50 on the CAFr model to determine the

order of the di↵erent stocks in the system. In order to e↵ectively compare the likelihoods,

we use the same optimal order from this model to the conditional autoregressive Wishart

(CAW) and inverse Wishart (CAiW) models. Table 4 reports the results for full-sample

estimation.

The table shows three main results. First, the maximized log-likelihood shows that the

model with the F -Riesz distribution is superior against the other specifications. The gain

increases with the dimension of the system. For example the di↵erence between the F -Riesz

and the matrix-F distribution equals 5000, 30,000 and 90,000 for dimension 5, 15 and 30

respectively. This result is striking and suggests substantial heterogeneity in the tails. The

AIC values further support the usefulness of the F -Riesz distribution: the large di↵erences

in likelihoods persist if we correct for the number of estimated parameters.

Second, tail heterogeneity plays an important role at all levels of the analysis. When

relaxing the Wishart to the Riesz specification, the likelihood increases substantially for all

dimensions considered. The same holds when relaxing the inverse Wishart to the inverse

Riesz. Interestingly, it seems that both e↵ects more than accumulate when generalizing

the matrix-F to the F -Riesz distribution: the jump in likelihood from the matrix-F to the

F -Riesz is in all cases more than the jump from the Wishart to the Riesz plus that of the

inverse Wishart to the inverse Riesz. This is the more interesting result given that the

matrix-F already heavily outperforms the Wishart, inverse Wishart, Riesz, and to a lesser

extent also the inverse Riesz distributions. The F -Riesz distribution thus seems a major

step forward in capturing the empirical features of realized covariance matrices.

Third, the importance of allowing for tail heterogeneity is confirmed by looking at the

estimates of the degrees of freedom parameters. For conciseness, the table only reports the

minima and maxima of the elements of µ and ⌫. Still, the picture is clear. For example,
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Table 4: Parameter estimates, likelihoods and information criteria
This table reports maximum likelihood parameter estimates of the conditional autoregressive model (15)–
(17), assuming a Wishart, Riesz I, Inverse Wishart, Inverse Riesz I, matrix-F , or F -Riesz I distribution in
(15). Data consist of realized covariance matrices observed over the period January 2, 2001 until July 31,
2014 (T = 3415 trading days). Panels A and B list results for a randomly chosen subset of 5 and 15 di↵erent
assets, respectively. Panel C shows the results for the full set of 30 assets. Standard errors are provided in
parentheses. We report the likelihood L, the AIC and the number of estimated parameters.

Distribution A B µmin µmax ⌫min ⌫max L AIC ]para
Panel A: AA/BA/CAT/GE/KO
Wishart 0.313 0.669 21.17 -20,508 41,022 3

(0.005) (0.005) (0.12)
Riesz I 0.294 0.686 7.87 27.25 -18,727 37,468 7

(0.005) (0.005) (0.18) (0.31)
iWishart 0.244 0.744 23.64 -17,164 34,335 3

(0.004) (0.004) (0.11)
iRiesz I 0.240 0.748 12.18 28.01 -16,320 32,654 7

(0.004) (0.004) (0.24) (0.28)
F 0.259 0.729 74.51 33.72 -16,461 32,930 4

(0.004) (0.005) (2.22) (0.45)
FRiesz I 0.205 0.783 16.94 143.23 15.26 32.61 -10,900 21,824 12

(0.004) (0.004) (0.62) (4.01) (0.24) (0.94)

Panel B: AA/AXP/BA/CAT/GE/HD/HON/IBM/JPM/KO/MCD/PFE/PG/WMT/XOM
Wishart 0.235 0.753 39.32 104,666 -209,327 3

(0.001) (0.001) (0.07)
Riesz I 0.209 0.777 7.46 53.60 122,079 -244,123 17

(0.001) (0.001) (0.17) (0.28)
iWishart 0.167 0.826 44.52 135,490 -270,974 3

(0.001) (0.001) (0.06)
iRiesz I 0.158 0.834 11.23 51.04 144,673 -289,313 17

(0.001) (0.001) (0.22) (0.30)
F 0.179 0.814 130.38 63.09 143,506 -287,004 4

(0.001) (0.001) (1.19) (0.26)
FRiesz I 0.132 0.862 15.36 223.15 14.35 57.89 176,713 -353,361 32

(0.001) (0.001) (0.39) (2.28) (0.32) (0.71)

Panel C: All equities (k = 30)
Wishart 0.173 0.821 57.04 725,787 -1,451,568 3

(0.001) (0.001) (0.05)
Riesz I 0.157 0.835 4.48 78.74 792,880 -1,585,696 32

(0.001) (0.001) (0.10) (0.28)
iWishart 0.117 0.880 66.35 871,345 -1,742,683 3

(0.000) (0.000) (0.04)
iRiesz I 0.107 0.888 7.35 76.06 912,590 -1,825,117 4

(0.000) (0.000) (0.12) (0.23)
F 0.123 0.875 180.14 92.405 912,732 -1,825,400 32

(0.000) (0.000) (0.72) (0.17)
FRiesz I 0.087 0.910 10.55 277.05 8.98 83.14 1,016,003 -2,031,882 62

(0.000) (0.000) (0.27) (1.41) (0.18) (0.67)
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the estimate of µ in Panel A for the matrix-F is around 75, while the elements of µ of the

F -Riesz distribution vary from around 17 to 144. The pattern persists for the other panels

in the table, as well as for the ⌫ parameters. The Riesz and F -Riesz distributions also solve

an empirical puzzle for the (inverse) Wishart and matrix-F distributions. As we can see in

the table, increasing the dimension of the system from 5 to 15 to 30 augments the estimated

degrees of freedom for the (inverse) Wishart and matrix-F . We can understand this by

looking at the spreads of µ and ⌫ for the F -Riesz distribution. These reveal that the tail

fatness (low µ and ⌫ values) persists across dimensions, as µmin and ⌫min remain relatively

constant across panels A, B, and C. By contrast, µmax and ⌫max increase if we consider more

stocks, indicating that some of the realized volatilities exhibit thinner tail behavior. As the

(inverse) Wishart and matrix-F because of their one and two parameter set-up can only

accommodate this by using some sort of average degrees of freedom value across assets, we

see the empirical increase in the degrees of freedom for these distributions. By contrast, the

F -Riesz (and also the (inverse) Riesz) distributions do not show this behavior.

Fourth, we see that the heterogeneity biases discussed in the previous point spill over

into biases in the estimated persistence of Xt. The B of the F -Riesz distribution is higher

across all dimensions than that of the other models, while its A parameter is lower. This

results in a much smoother pattern of Vt for the F -Riesz. Again, this is the accumulation

of two e↵ects: fat tails of Xt, and tail heterogeneity. Fatter tails for Xt in the model imply

the dynamics of Vt react less violently to incidental outliers in Xt, similar to the e↵ect of

using a Student’s t distribution in a GARCH model. This explains why the F -Riesz results

in more persistence than the Riesz or inverted Riesz, for instance. The second e↵ect is

that of tail heterogeneity. Because the (inverse) Wishart and matrix-F only have one or

two degrees of freedom parameters, they miss heavy-tailed behavior in part of the assets

(see also the previous point). This missed out tail-fatness in some dimension makes the

dynamics less persistent due to in increased sensitivity to outliers; compare for instance

for the univariate volatility setting. This explains why the F -Riesz and Riesz have higher

persistence compared to the matrix-F and Wishart, respectively.

Beyond a full-sample analysis, we also apply our newly developed distributions in an

out-of-sample exercise, by performing 1-step ahead density forecasts, using again the model

of (15). These density forecasts immediately depend on the 1-step ahead forecasts of Vt.
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We use a moving-window approach in the forecasting exercise with an in-sample period

of 1,000 observations. This corresponds roughly to four calendar years. The out-of-sample

period contains P = 2415 observations including the Great Financial Crisis, which therefore

constitutes an important test for the robustness of the model. We re-estimate our model

repeatedly after each 50 observations, which roughly corresponds to bi-monthly updating of

the parameters. In case of the (i)Riesz and F -Riesz I distributions, we apply Heuristic I once

on the first moving window to the CAFr model, and keep this ordering fixed throughout the

whole exercise and for all di↵erent distributions.

We use the log scoring rule (see Mitchell and Hall, 2005; Amisano and Giacomini, 2007)

to di↵erentiate between the density forecasts of the models. Define the di↵erence in log

score between the two density forecasts M1 and M2 corresponding to the realized covariance

matrix Xt as

dls,t = Sls,t(Xt,M1)� Sls,t(Xt,M2), (20)

for t = R,R + 1, . . . T � 1 with R the length of the estimation window and Sls,t(Xt,Mj)

(j = 1, 2) the log score of the density forecast corresponding to model Mj at time t,

Sls,t(Xt,Mj) = log pt(Xt|Vt,Ft�1,Mj), (21)

where pt(·) is the probability distribution function of our six considered distributions. The

null hypothesis of equal predictive ability is given by H0 : E[dls] = 0 for all P out-of-sample

forecasts. This null can be tested by means of a Diebold and Mariano (1995) (DM) statistic

given by

DMls =
d̄p
�̂2/N

, (22)

with d̄ the out-of-sample average of the log score di↵erences and �̂
2 a HAC-consistent

variance estimator of the true variance �2 of dls,t. Under the assumptions of the framework of

Giacomini and White (2006), DMls asymptotically follows a standard normal distribution.

A significantly positive value means that model M1 has a superior forecast performance over

model M2.
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Table 5: Out-of-sample log-scores
This table shows the mean of log scores, defined in (21), based on 1-step ahead predictions of the covariance
matrix, according to the Conditional Autoregressive model, assuming a Wishart, Riesz I, Inverse Wishart,
Inverse Riesz I, matrix-F , or a F -Riesz I distribution. Panel A shows results of the model applied to five
assets, Panel B and C show results corresponding to 15 and to all 30 equities. The highest value of the
predictive log-score across the models are marked bold. In addition, we report HAC based test-statistics
on the di↵erence in predictive ability (DMDF ) between the CAFr model and the other considered models.
Positive statistics indicate that the CAFr model has superior density forecasts. The out-of-sample period
goes from January 2005 until July 2014 and contains 2514 observations.

Wishart Riesz I iWishart iRiesz I matrix-F Friesz I

Panel A: AA/BA/CAT/GE/KO
Sls(Xt) -4.324 -3.843 -3.083 -2.845 -2.921 -1.363
DMDF (13.22) (11.36) (23.36) (21.18) (25.44)

Panel B: k = 15
Sls(Xt) 49.38 54.33 59.75 62.28 61.42 71.01
DMDF (13.56) (13.14) (20.33) (17.91) (31.89)

Panel C: All equities (k = 30)
Sls(Xt) 277.4 297.1 325.6 337.8 334.8 366.2
DMDF (21.68) (20.11) (25.85) (22.66) (31.82)

Table 5 shows the average values of the log score over the out-of-sample period for a

set of five, 15, and the complete set of 30 assets. In addition, we provide corresponding

t-statistics for the di↵erence in the log predictive density scores of the realized covariance

matrix between the CAFr model and competing models. Positive values means that the

density forecasts of the former model is superior against its competitor. The results heavily

reinforce our earlier full-sample analysis as the F -Riesz distribution again clearly outperform

the other distributions, even at a 1% significance level. This result holds for all three

considered dimensions. The di↵erences in the mean log-score increases by dimension. In

sum, the F -Riesz distribution outperforms both in-sample and out-of-sample the other

competitors, indicating that it is able - in contrast to the (inverse) Riesz distributions -

to capture the tail heterogeneity of realized covariance matrices.

7 Conclusions

We introduce the new F -Riesz distributions for econometric modeling of matrix valued

random variables. The distribution is obtained by mixing the Riesz distribution (Hassairi
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and Lajmi, 2001) with an inverse Riesz distribution (Tounsi and Zine, 2012) and allows for

much more heterogeneity in tail behavior compared to well-known fat-tailed distributions

like the Wishart, inverse Wishart, or the matrix-F distribution. While the latter

distributions depend on one or two degrees-of-freedom parameters, our new distribution

allows the degrees of freedom parameters to be vectors. These parameters can easily be

estimated by a two-step targeted maximum likelihood approach, even in high dimensional

settings.

An empirical application to realized covariance matrices of 30 U.S. stocks over 14 years

shows a remarkably high increase of the likelihood of the developed F -Riesz distribution

compared to the (inverse) Riesz distributions. The degrees of freedom parameters are

significantly over the di↵erent coordinates. The new distribution even outperforms the fat-

tailed matrix-F distribution, applied in financial econometrics by Opschoor et al. (2018).

The margin of outperformance is as wide as that of switching from a Wishart to the matrix-

F , and therefore empirically highly significant, essentially doubling the gain already obtained

by using the fat-tailed matrix-F . Out-of-sample we confirm these results by means of one-

step ahead density forecasts of the time-varying realized covariance matrix. Again the

F -Riesz distribution is superior against the competitors by a very wide margin. Overall

these results show that there is strong heterogeneity of tail behavior of realized covariance

matrices, and that the F -Riesz distribution is a helpful vehicle to obtain better empirical

models.
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