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Abstract

We propose a dynamic factor model which we use to analyze the relationship between education

participation and national unemployment, as well as to forecast the number of students across

the many different types of education. By clustering the factor loadings associated with the

dynamic macroeconomic factor, we can measure to what extent the different types of education

exhibit similarities in their relationship with macroeconomic cycles. To utilize the feature that

unemployment data is available for a longer time period than our detailed education panel data,

we propose a two-step procedure. First, we consider a score-driven model which filters the

conditional expectation of the unemployment rate. Second, we consider a multivariate model in

which we regress the number of students on the dynamic macroeconomic factor, and we further

apply the k-means method to estimate the clustered loading matrix. In a Monte Carlo study, we

analyze the performance of the proposed procedure in its ability to accurately capture clusters

and preserve or enhance forecasting accuracy. For a high-dimensional, nation-wide data set

from the Netherlands, we empirically investigate the impact of the rate of unemployment on

choices in education over time. Our analysis confirms that the number of students in part-time

education covaries more strongly with unemployment than those in full-time education.
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1 Introduction

Quality education is one of the Sustainable Development Goals of the United Nations. For example,

the Dutch government has allocated roughly 11% of its total expenditures in the national budget

of 2019 towards education1,2. It illustrates the importance of education to our society. To secure a

reliable budgetary policy, the Dutch government forecasts the numbers of students in each type of

education on a nation-wide level. Although education systems are complex, dynamic and evolving,

accurate forecasts are of key importance for the overall operational and financial planning, but also

for providing insights into what drives participation in education. For the purpose of fiscal policy,

it is valuable to understand the interaction between education participation and macroeconomic

circumstances.

Although Spijkerman (2006) did not find a strong relation between macroeconomic indicators

and the total number of students, macroeconomic circumstances do seem to affect the demand

for certain types of education. In particular, the share of part-time education appears to be

inversely related with unemployment rates, especially in vocational education. This analysis is

relevant because educational institutions receive less funding for part-time students compared to

full-time students. However, whether or not distinct groups react differently to macroeconomic

circumstances has not been studied in full. The more recent availability of low-level data allows

us to revisit this research question. Our data set for vocational and higher education is high-

dimensional on the cross-section but low-dimensional on the time series. The models for such panel

data sets typically strike a balance between interpretability and performance. However, to policy

makers in government and educational institutions, both interpretability and performance are of

interest.

In this paper we develop a dynamic factor model where unemployment rates and education

participation are modeled simultaneously. The model consists of two components. First, we focus on

the time series dimension and model the historical unemployment rates through a score-driven local

level model as proposed by Creal, Koopman, and Lucas (2013). By using all available observations

of the unemployment rate, we get more reliable results when filtering the factor than when we

would use the few observations that correspond to the same years as that the education data

is also available. Second, in the cross-section dimension of our methodology, we anticipate that

1https://www.rijksfinancien.nl/visuele-begroting/2018/owb/u (visual in Dutch), last accessed 2020-04-30.
2https://www.rijksoverheid.nl/onderwerpen/financiering-onderwijs/overheidsfinanciering-onderwijs

(in Dutch), last accessed 2020-04-30.
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many education flows respond in a similar way to changes in the unemployment rate. We take

the extracted dynamic economic factor as given and model the education data set effectively as

a multivariate regression model. We also propose to cluster their dependence on the dynamic

economic factor through the parameters of the loading matrix. It imposes a structure on the model

that benefits interpretation. Moreover, since we represent many education series by a couple of

cluster centroids, it is also more efficient with respect to forecasting education participation.

In accordance with these two components of our dynamic factor model, we propose a two-step

estimation procedure. First, in the score-driven local level model for the unemployment rates, we

estimate the static parameters by maximum likelihood and extract the dynamic economic factor.

This step is important to filter out the noise and preserve the signal in economic data such as

the unemployment rate. Second, given the extracted dynamic economic factor, we estimate the

multivariate regression model of the education data by the method of least squares. To gain insights

into what types of education respond similarly to changes in unemployment rates, we perform a

cluster analysis. By using the k-means method, we are able to represent all loading matrix elements

by a few cluster centroids. This ability implies that cluster analysis can support the testing of joint

significance for a group of variables without pre-imposition of group compositions. At the same

time, we avoid the possible insignificance of individual variables, given that the education data for

each variable is limited as the time series dimension is small. Once the clusters are identified, we

can provide accurate forecasts for all series in the panel.

Dynamic factor models are well-suited to extract common factors from large data sets, see Stock

and Watson (2002), Bai and Ng (2002) and Jungbacker and Koopman (2015) amongst others. It

has become more prevalent to estimate the parameters in dynamic factor models using a step-wise

approach. For example, Doz, Giannone, and Reichlin (2011) first proxy the factors by principal

components to estimate the static parameters and then use Kalman filter techniques for signal

extraction and forecasting. Bräuning and Koopman (2014) take a slightly different approach, they

also first use a principal component analysis to obtain a dimension reduction, but then model

all relevant variables jointly in a state space framework such that parameter estimation, signal

extraction and forecasting are done by Kalman filter methods. The approaches in both papers are

parameter-driven in which the stochastic processes of the factors have their own sources of error.

Our procedure differs in adopting an observation-driven approach: we allow the factors to

evolve as dynamic processes which are formulated as functions of past data. In particular, we

adopt the approach taken by Creal et al. (2013) and Harvey (2013) where the dynamic specification
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is based on autoregressive processes with the innovations defined as score functions with respect

to the predictive likelihood function. We first model the unemployment rate data as a score-

driven model to filter the dynamic factor, which we then consider as given in the second step of

our proposed estimation procedure to estimate the model for the education data. Unrestricted

parameter estimates of the loading matrix will then be clustered to cluster types of education

according to their dependence on the unemployment rate. Just as Stock and Watson (2008) do,

we use the k-means algorithm in the cluster analysis, although their approach differs in that they

base it on the residuals of the dynamic factor model. In our case, we represent the large vector of

unrestricted loading estimates by a much smaller vector of cluster centroids. The introduction of

clustering within a dynamic factor model has more recently also been explored by Hallin and Lĩska

(2011), Barnichon and Mesters (2018) and Alonso, Galeano, and Peña (2020). Similarly, Ando

and Bai (2016) incorporate the k-means procedure within the dynamic factor model and they also

adopt an estimation procedure that consists of several steps.

In an extensive simulation study we assess the overall performane of our proposed estimation

procedure and the accuracy of the forecasts. We discuss the most important insights from this study.

First of all, the estimation of the parameters in our dynamic factor model show very small biases

while the clustered pattern in the loading matrix is correctly identified. Secondly, we can report

high levels of forecast accuracy. We also find that the forecasts based on the clusters perform are at

least as good as the unrestricted forecasts. Indeed, we present improvements in forecast accuracy

when a clear clustered structure is present in the data. Even for cases where clusters are less present

in the data, we do not lose much on forecasting accuracy while we gain much on interpretation.

The remainder of this paper is organized as follows. We describe the education data and un-

employment rate data in Section 2. In Section 3 we introduce the dynamic factor model and we

discuss the features of the model, the two-step estimation procedure and the clustering method for

forecasting. Section 4 describes the design and results of our Monte Carlo study. We apply the

methodology to our education participation data in Section 5 and show that the proposed method-

ology can capture important clusters in the flows across the Dutch education system. Section 6

concludes and reviews the most important findings of our study.
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2 Data

In 2019, 3.7 million students are registered at a Dutch educational institution: around 1.5 million

(40.2%) of which in primary education, 960 thousand (25.6%) in secundary education, 500 thousand

(13.4%) in vocational education, 460 thousand (12.4%) in higher vocational education (university

of applied sciences), and 300 thousand (8.2%) in university. For this study, we use data from

DUO, the executive agency for the Dutch Ministry of Education, Culture and Science. Student

registrations are observed on October 1st each year (reference date). The primary use of this data

set is the Dutch student forecasts (Ministry of Education, Culture and Science, 2020) that feed

the governmental education budget. Everyone in the Dutch population not in education, is labeled

‘outside education’. Using information from two consecutive reference dates, flows through the

educational system are constructed. The educational data set lists the number of people in each

flow from one state to another, by age and sex, in a given year. Between these dates, people might

obtain a diploma. Those people are said to transition from an origin state to a diploma state, and

then from this diploma state to a destination state in or outside of education. Each state (one of

820 education types, 173 diploma types or no education) has up to 5 descriptive labels: a sector

(such as vocational education, university), type (such as on-the-job training, full-time), level (such

as bachelor, master), direction (such as health care, economics), and grade. Not all flows between

the states are viable (for example, one cannot move from university to primary education) or have

not been observed. 326,000 unique transitions from origin to destination have been observed since

2005. Data from 2006 to 2019 is used.

Flows at the lowest level are filtered, aggregated and transformed to form the data set for this

study. We are interested in the short-term relation between unemployment rates and inflow into

first year of vocational and higher education. We include all inflow from no education and diploma

categories. The origin states are aggregated by sector, category, and type. Furthermore, to reduce

noise, some ages (those that contain fewer first-year students) are combined as follows: <17, 23-25,

26-30, 31-40, >40. In 2019, each age bin contains a total of between 6,900 and 60,600 students.

This leaves N = 1, 155 time series. This is a short, wide panel (large N , and small T ), implying

that many series have to be forecasted while limited data on the time dimension is available.

The average level of the 1,155 time series is 240 persons per year, with a minimum of 14.9 (22 year

old males moving from no education to fulltime school-based level 2 vocational education direction

technics/science) and a maximum of 5,658 (<17 year old females moving from prepratory vocational

education diploma to fulltime school-based level 4 vocational education direction healthcare). 50%
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count 1155
mean 239.6
std 487.3
min 14.9
25% 38.3
50% 82.8
75% 206.8
max 5658.0

Table 1: Descriptive statistics of average level of 1,155 time series.

Figure 1: Sample of 20 time series. Left: levels (log-scaled vertical axis), right transformed variable.

of the time series contain on average between 38.3 and 206.8 persons per year (see Table 1). To

illustrate, a random sample of 20 time series is plotted in Figure 1. The left panel presents the

actual time series (on a log-scale) which may not be all stationary, some may be subject to trend

behaviour. Transitions with a higher number of students on average have a higher variance. To

normalize, each cross-sectional unit is divided by its average level: ỹit = ∆yit/ȳi, with yit the number

of people in transition i at time t. We assume that the transformed variables are stationary. Using

the KPSS test we find that only the null hypothesis of mean stationarity can be rejected (p < .05)

for only 15 (1.2%) time series. These are still included, since one expects some rejections under the

null when many tests are conducted. Most series show positive autocorrelation at lag the first lags

(Figure 2). This fits the autoregressive model that will be developed in section 3.

We enrich the data by including historical macro-level data on the Dutch economy. Yearly

unemployment rates (operationalized as unemployed labor force divided by total labor force, ages

15-74) are obtained from 1970 to 2019 (Bureau for Economic Policy Analysis, 2019). In our model-

ing, we will make use of the fact that the macroeconomic data is available for a much longer period

than the education data. Figure 3 provides the instigation for this particular research. Spijkerman
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Figure 2: Histogram of autocorrelations for all time series at first three lags. At lag 1, most time
series show positive autocorrelation. At higher lags, the estmates spread out more evenly and the
mean decreases.

(2006) did not find a strong correlation between unemployment and nationwide educational enrol-

ment, but he did show that the share of full-time education covaries positively with unemployment,

especially in vocational studies. The left panel shows that peaks and valleys in the share of full

time in vocational studies indeed correspond with the labor market cycle. The right-side panel

suggests a linear relationship in first differences.

(a) Share of full-time in vocational education and
unemployment rate (indexed at 1984=1)

(b) Increase in unemployment (x-axis) vs. share of
full time in vocational education (y-axis)

Figure 3

In accordance with the scatterplot in Figure 3 the first differences of both datasets are calcu-

lated. This also prevents regressing possibly (co)integrated time series. Our macro-economic time

series has dimension Tx = 49, and the education panel has dimension Ty = 13, where the last Ty

observations of both series refer to the same years.
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3 Methodology for Modeling and Forecasting

Our education panel data set consists of many possible education flows which can be selected on the

basis of gender and age groups. We want to understand to which extent a macroeconomic variable

(the unemployment rate) can help us to forecast the number of students for each category, for a

number of years ahead, despite that we only have data available for the last thirteen years. The

forecasting method is oftentimes regarded as more convincing when the model preserves a level of

interpretability for policy purposes. We therefore develop a dynamic factor model where types of

education are clustered based on their dependence on changes in the unemployment rate.

3.1 The Dynamic Factor Modeling Framework

Let yt be the N -dimensional series of education flows in year t. The basic dynamic factor model is

given by

yt = Λft + εt, t = 1, . . . , Ty, (1)

where Λ is a N×` loading matrix, `×1 vector ft an unobserved factor and the sequence ε1, . . . , εTy is

independent and identically Gaussian distributed with mean zero and variance matrix σ2
εIN . Since

the unobserved factor in our model is a proxy for the macroeconomic circumstances (measured by

the unemployment rates), we have ` = 1, implying that the loading matrix Λ is effectively a vector

and ft a scalar. A vector of unit-specific intercepts µ = (µ1, . . . , µN )′ can be added to the model,

we then have yt = µ+ Λft + εt, but to facilitate the clustered forecasting method in our analysis,

we assume that the data is demeaned and we have µ = 0 without loss of generality.

To emphasize that the education and macroeconomic data have different time series dimen-

sions, we introduce the following notation. The index t and time series dimension Ty correspond

to the education data denoted by yt, while index t̄ and time series dimension Tx correspond to

the unemployment rate data denoted by xt̄. More specifically, the macroeconomic data xt̄ is

available at t̄ ∈ {1970, . . . , 2019} (so Tx = 49 years) while the education data yt is available at

t ∈ {2006, . . . , 2019} (so Ty = 13 years). The macroeconomic data is available over a longer

time-span so that only its last Ty time periods coincide with the availability of the education data.

We let xt̄ be the growth in the unemployment rate in year t̄; this time series of yearly observations
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has dimension Tx. The location model is given by

xt̄ = ft̄ + ξt̄, t̄ = 1, . . . , Tx, (2)

where the signal ft̄ can be regarded as the time-varying mean of the observed time series xt̄, and

where ξ1, . . . , ξTx is assumed to be an independent and identically distributed Gaussian sequence

with mean zero and variance σ2
ξ .

In our analysis, we take xt̄ as the yearly unemployment rate, which we consider to be a proxy

of general macroeconomic circumstances. However, we note that we could generalize the model by

allowing for multiple economic indicators (multivariate xt̄) and then still easily filter ` ≥ 1 factors

ft from it. This imposes extra structure on the model that requires extra assumptions to identify

ft. We leave this extension for future research.

Equation (2) enables us to estimate the signal ft̄ in our modeling framework. We use the

extracted signal for the estimation of loading parameters in Λ of equation (1) and for the forecasting

of time series variables in yt of equation (1). For the filtering of the factor, we adopt the score-driven

model as introduced by Creal et al. (2013) and Harvey (2013). In an observation-driven approach,

we introduce

Xt̄−1 = {x1, . . . , xt̄−1} = {{x1, . . . , xt̄−1}, {f1, . . . , ft̄−1}},

so that the information set at time t̄ is generated by {ft̄,Xt̄−1}. Since the location model for xt̄ in

equation (2) is linear Gaussian, we have xt̄ ∼ p(xt̄|ft̄,Xt̄−1; θ), where p(· |ft̄,Xt̄−1; θ) is the univariate

Gaussian density with mean ft̄, variance σ2
ξ , and parameter vector θ. The unknown variance σ2

ξ is

placed in the parameter vector θ, together with the unknown coefficients that we introduce below.

We follow Creal et al. (2013) in their formulation of the filtering or updating equations for ft̄;

these are referred to as the generalized autoregressive score (GAS) model and are given by

ft̄+1 = ω +

p∑
i=1

φift̄+1−i +

q∑
j=1

αjst̄+1−j , (3)

st̄ = St̄ · Ot̄, St̄ = S(t̄, ft̄,Xt̄), Ot̄ =
∂ log p(xt̄|ft̄,Xt̄−1; θ)

∂ft̄
,

where ω is the intercept, φ1, . . . , φp and α1, . . . , αq are the weight coefficients for the updating

mechanism of ft̄+1, and st̄ is the scaled score with local score function Ot̄ and scaling term St̄.

Typically, we base the scaling on a variance measure of the score function. We refer to this score-
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driven model by GAS(p, q), where the integers p ≥ 0 and q ≥ 0 can be chosen on the basis of fit,

residual diagnostics and forecast performance considerations. In many cases, it is sufficient to take

p = q = 1 and we have the GAS(1,1) model.

Given that p(·|ft̄,Xt̄−1; θ) is the univariate Gaussian density with the time-varying mean (or

location) ft̄, we have that

log p(xt̄|ft̄,Xt̄−1; θ) = −1
2 log 2π − 1

2 log σ2
ξ − 1

2(xt̄ − ft̄)2/σ2
ξ ,

Ot̄ = (xt̄ − ft̄)/σ2
ξ ,

St̄ = I−1
t̄

=

(
−∂

2 log p(xt̄|ft̄,Xt̄−1; θ)

∂f2
t̄

)−1

= σ2
ξ ,

st̄ = σ2
ξ · (xt̄ − ft̄)/σ2

ξ = xt̄ − ft̄,

with parameter vector θ =
(
ω , φ1 , . . . , φp , α1 , . . . , αq , σ

2
ξ

)′
. By placing the above elements in

the filtering equation (3), it becomes apparent that the factor ft depends on previous years of

unemployment. It is further implied by the observation equation (1) that education participation

is allowed to depend on past unemployment rates through the factor ft. An alternative approach is

to model these dynamics explicitly by allowing lags of the factor in the observation equation, but

we leave this extension for future research.

Our dynamic factor modeling framework is represented by the equations (1), (2) and (3). It

facilitates the linkage of the two available data sets (the education panel data yt and the unemploy-

ment rate time series xt̄) and it provides feasible methods for parameter estimation and forecasting.

3.2 The Two-Step Estimation Procedure

We propose a two-step estimation procedure for our dynamic factor modeling framework given by

equations (1), (2) and (3). In the first step, we focus on the time series component and use the

unemployment rate time series to estimate the score-driven model of equations (2) and (3) using

the method of maximum likelihood. The static parameters in θ = (ω , φ1, . . . , φp , α1 , . . . , αq , σ
2
ξ )
′

are estimated via the maximization of the loglikelihood function as given by

θ̂ = arg max
θ

T−1
x

Tx∑
t̄=1

(
−1

2 log 2π − 1
2 log σ2

ξ − 1
2(xt̄ − ft̄)2/σ2

ξ

)
,
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where f1̄ is initialized by setting it equal to the unconditional mean ω/(1−
∑p

i=1 φi), and where ft̄

is obtained from the GAS filter (3), for a given θ and t̄ = 1, . . . , Tx. When the maximum likelihood

estimate θ̂ is obtained, we denote the factors obtained from the GAS filter (3) with θ = θ̂ by f̂t̄,

with t̄ as before. We consider f̂t̄ as a proxy of macroeconomic circumstances.

In the second step we consider the education data, focus on the cross-section component, and

view equation (1) as a multivariate regression model. We recall that the time series dimension of

the unemployment data xt̄ is longer than of the education data yt, so we replace the factors ft by

those estimated in the first step and only keep the last Ty periods such that f̂t ≡ f̂t̄. The loadings in

equation (1) are estimated by the method of least squares. In this way we obtain an estimate of the

variance σ2
ε and the unrestricted estimate of the loading matrix as denoted by Λ̃ = (λ̃1, . . . , λ̃N )′.

Next we carry out a cluster analysis on the estimated column representing the loading matrix.

Cluster analysis is often used in statistics and machine learning to partition many individuals,

cities or products into groups. As part of the second step in our estimation procedure, we are

proposing to cluster the elements of the loading matrix Λ such that it does not consist of N different

elements, but of K << N cluster centroids instead. It implies that we can analyze the similarities

and differences between many types of education in their dependence on the macroeconomic data

as measured by the dynamic factor. In addition, it also implies that the number of unique forecasts

decreases considerably.

There are several possibilities to proceed with a cluster analysis. We have opted for the k-means

algorithm because it provides clear interpretation and it is computationally simple. The clustering

method limits the number of forecasts that needs to be produced, because we let a cluster of similar

education flows be represented by one centroid. In case of the k-means algorithm, we cluster the

N different and unrestricted values of column Λ̃ into K cluster centroids for Λ̂ by conducting the

following steps:

1. Initialize the cluster centroids randomly from the data range: draw centroids δ1, . . . , δK from

U(Λ̃min, Λ̃max), where U(·) is the uniform distribution

2. Obtain distances between data points and cluster centroids and add cluster labels to the data

points: label c(i) = arg mink ||λ̃i − δk||2, ∀i

3. For each cluster, assign new centroids δk =
∑N

i=1 1{c(i) = k}λ̃i /
∑N

i=1 1{c(i) = k}, ∀k

4. Verify whether the cluster centroids changed

11



5. Repeat steps 2-4 until convergence

6. Replicate steps 1-5 for R = 15 different random seeds

7. Keep clustered loading matrix Λ̂ with shortest total distance to the cluster centroids

In our empirical study, the number of clusters is not known beforehand. We therefore run this

algorithm for several values of K and proceed heuristically by using the simple elbow method.

The elbow method is a graphical representation of plotting the performance against several cluster

sizes, where performance is usually measured as a distance metric. The typical pattern is a sharp

decreasing distance for cluster sizes 1, . . . ,K, with K small. For cluster sizes K + 1,K + 2, . . ., the

returns diminish. One then selects the kink or elbow in the graph as optimal cluster size, because

decreasing it would lead to a big performance loss while increasing it would lead to a negligible

improvement.

The resulting small vector of cluster centroids facilitates interpretation for policy makers. It

gives insights on which education flows covary similarly with changes in the unemployment rate.

We want to emphasize that we do not attach any causal interpretation to it because the regressor

might be endogenous because of reverse causality. If we assume a simple labor supply model, then

people spend time in either education or employment. So, it might well be that more education

participation leads to higher unemployment rates. This is the reverse relationship as in our model

where we try to explain education by unemployment, so we emphasize that we measure associations

in our current study.

To show the properties of the estimators, we need to take into account that we follow a two-

step estimation approach. In the first step, we estimate the factor ft by maximum likelihood,

using a standard score-driven filter for the conditional expectation. Consequently, the asymptotic

properties follow the usual results covered in the score-driven literature; see, for example, Blasques,

Koopman, and Lucas (2014a) and Blasques, Gorgi, Koopman, and Wintenberger (2018). In the

second step, we take the filtered ft as given and attempt to estimate the unrestricted loadings

in a simple linear regression model where the filtered ft is already observed. The asymptotics of

the second step estimator then follow standard regression conditions. The estimated unrestricted

loadings are then clustered using the k-means algorithm. In Appendix A, we discuss the asymptotic

properties in more detail. The finite-sample performance of the k-means clustering is analyzed by

the Monte Carlo study below. We leave the theoretical characterization of the estimators in our

two-step method for future research.
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3.3 The Clustered Forecasting Method

After the two-step estimation procedure, we use the estimated static parameters and filtered time-

varying factor of the score-driven model to forecast future values of the factor in a recursive manner

from equation (3). Next, together with the estimated clustered loading matrix, we forecast future

education participation. Since the clustered loading matrix Λ̂ consists of K distinct values only,

we just need to forecast K << N series. This leads to computation time savings because we have

thousands of education flows for each combination of age and gender.

4 Monte Carlo Study

We carry out a Monte Carlo study to verify the performance of our estimation and measurement

methodology. For this study, we consider the dynamic factor model as given by the equations (1),

(2) and (3) with the GAS updating orders p = 1 and q = 1, that is, the GAS(1,1) specification. The

dimensions in our simulation design are motivated by the empirical problem at hand. Hence we set

the cross-section dimension of yt to be relatively large and the time series dimension to be relatively

small. In particular, we have N = 500 and Ty ∈ {10, 20}. We set the time series dimension of xt̄

to be moderate, with Tx ∈ {50, 100}. The last Ty time units of xt̄ are equal to the Ty time units of

yt. To verify the forecasting performance, we set the forecast horizon to be F = 3 periods ahead.

Moreover, we take the static parameters in the score-driven model as σξ = 1, ω = 0.3, φ = 0.95

and α = 0.1, making the unconditional mean of the process for the stationary factors equal to

ω/(1−φ) = 6. The five equally-sized clusters of the loading matrix have centroids 4, 11, 19, 23 and

35. This implies that the observations roughly vary between 4× 6 = 24 and 35× 6 = 210. Finally,

we set the error variance to follow from σε = 20. The reported Monte Carlo results in our study

are based on M = 1, 000 simulations, for the different model specifications and data dimensions.

The specific choices of the static parameters and cluster centroids are for illustrative purposes.

We do need to assume that there is some underlying form of clustering in the data present and we

can visualize that by taking a non-zero unconditional mean of the factors and distinct choices of

the centroids. However, the behavior over time can vary between the series within a cluster. To

visualize that, we present a couple of example time series with varying variance σ2
ε in Figure 4 for

Tx = 100, Ty = 10, two clusters with loadings 23 and 35 and remaining settings as above.

In these plots we see the trade-off when clustering is beneficial and when not. For a very small

variance, such as the σ2
ε = 10 in the top-left plot, there is no real need for imposing the cluster
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Figure 4: Example time series yt plotted against time. The same five time series from two clusters
with loadings 23 and 35 are given in all plots. Only the variance σ2

ε differs over the plots, the other
simulation settings are kept fixed (Tx = 100, Ty = 10, N = 500, σξ = 1, ω = 0.3, φ = 0.95, α = 0.1).

analysis. By basically scanning over such data plots, one gains already the knowledge on patterns in

the data. But also practically, as there is basically no variation over time, the unrestricted estimate

will be as good as the clustered one. In the other extreme, where the variance is very large as in

the bottom-right plot with σ2
ε = 1, 000, clustering is also not useful because there are no clusters

to really distinguish. The large variation over time will make getting an unrestricted estimate

already challenging and the cluster classification is therefore also difficult. More reasonable values

in-between, such as the plots with σ2
ε ∈ {60, 400}, show where extracting the clustered pattern can

be of added value. With some variation over time, the unrestricted estimates may be a bit too far

off in either direction for each of the series within a cluster, however, this is offset by using clustered

estimates. In such cases, one might think that the unrestricted estimates are very different, but

the clustered estimate clearly shows that their behavior is actually similar. In the discussion of the

full simulation study next, we will continue with σ2
ε = 400.
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4.1 Parameter Estimation Results

The performance of the two-step estimation procedure will be visualized by densities of the esti-

mated parameters and cluster centroids. We will judge the clustering classification by confusion

matrices3. Furthermore, we give in-sample statistics to compare the fit of the unrestricted and

clustered models.

Figures 5 and 6 give the density plots of the estimated static parameters and cluster centroids.

For both figures we take Ty = 10 fixed and first consider Tx = 50 and then Tx = 100. We also

obtained these results for Ty = 20 with Tx ∈ {50, 100}, but since the results are very similar, we

refer to the Appendix for these figures. In each figure, the plotted densities of the estimated static

parameters are given in the first set of results and the plotted densities of the cluster centroids in

the loading matrix in the second set of results, all based on M = 1, 000 simulations.

(a) Densities of estimated static parameters. (b) Densities of estimated cluster centroids.

Figure 5: Parameter estimation results of M = 1, 000 simulations for N = 500, Ty = 10, Tx = 50.
Vertical lines represent true values.

If we focus on the first step of our proposed estimation procedure, then we consider the static

parameter vector (σξ, ω, φ, α)′. Only the time series dimension Tx is of importance for these pa-

rameters of the score-driven model. Comparing the corresponding densities in Figures 5 and 6 (or

similarly comparing Figures B.1 and B.2 in the Appendix, since the varying time series dimension

Ty is not relevant in this step) clearly shows that the parameter estimates become much more

precise as the time series dimension Tx increases. We obtain more improvements when we take Tx

even larger, but such cases do not match our empirical study, so we do not consider this further.

3A confusion matrix gives insight on the correct assignment to the clusters instead of the specific values of the
centroids. It gives the counts of correct and incorrect assignments to the clusters with smallest, second-to-smallest,
. . . , largest centroid. Perfect classification would give a diagonal matrix.
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It is apparent from the density plots for Tx = 50, but also for Tx = 100 to some extent, that

the densities of ω and φ appear to be bimodal. Since the density plot of the unconditional mean

ω/(1− φ) is unimodal around the true value, it suggests that in small samples it is challenging to

empirically separate the two parameters ω and φ. When the time series dimension increases, our

results show that the bimodality vanishes and we get the more unimodal results as expected. In

both cases, the filtered factors are well estimated. Hence, there are no further consequences for our

parameters of interest such as the cluster centroids. All estimated cluster centroids are centered

around their true values with just small deviations.

(a) Densities of estimated static parameters. (b) Densities of estimated cluster centroids.

Figure 6: Parameter estimation results of M = 1, 000 simulations for N = 500, Ty = 10, Tx = 100.
Vertical lines represent true values.

Besides the estimated values of the cluster centroids, the assignment to the correct cluster is

also of importance. For this purpose we present confusion matrices in Table 2. In the columns we

vary time series dimension Ty ∈ {10, 20}, while in the rows Tx ∈ {50, 100} varies. First, we recall

at this point that the results of the first step of the estimation procedure are taken as given and

the time series dimension of the second step, denoted by Ty, is now of interest. For the case of

Ty = 10, the confusion matrices are already very satisfactory, with lower boundaries of 96.9% being

correctly assigned; for the case of Ty = 20, the lower boundaries are even as high as 99.6%. This

confirms our earlier finding that even though it might be empirically challenging to separate some

of the score-driven model parameters, it does not lead to any problem in identifying the clusters

and cluster centroids in the second step. Hence we can correctly identify the structure in the data.

The estimated cluster centroids and confusion matrices are rather precise. However, our key

interest is the comparison between the unrestricted model and the clustered model. For that matter,

we present in-sample statistics in Table 3 for time series dimension Ty = 10. We again found very

16



Ty = 10,Tx = 50 Ty = 20,Tx = 50

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

C1 99.960 0.040 0 0 0 100 0 0 0 0
C2 0.057 99.931 0.012 0 0 0.001 99.999 0 0 0
C3 0 0.009 96.938 3.053 0 0 0 99.574 0.426 0
C4 0 0 2.954 97.046 0 0 0 0.378 99.622 0
C5 0 0 0 0 100 0 0 0 0 100

Ty = 10,Tx = 100 Ty = 20,Tx = 100

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

C1 99.952 0.048 0 0 0 100 0 0 0 0
C2 0.043 99.945 0.012 0 0 0 100 0 0 0
C3 0 0.010 96.925 3.065 0 0 0 99.602 0.398 0
C4 0 0 2.996 97.004 0 0 0 0.383 99.617 0
C5 0 0 0 0 100 0 0 0 0 100

Table 2: Confusion matrices of estimated cluster centroids. All results are based on M = 1, 000
simulations with N = 500. The top panels have Tx = 50 while Ty ∈ {10, 20} varies and the bottom
panels have Tx = 100 fixed while Ty ∈ {10, 20} varies. In each panel, the row labels indicate the
true clusters and the columns labels to the assigned clusters in estimation. Frequencies are given
(here also equal to percentages), perfect classification would be 100I5. From smallest to largest,
the true values are 4, 11, 19, 23 and 35.

similar results for Ty = 20, so we refer to Table B.1 in the Appendix for the corresponding tables.

In the simulation study, we used five equally-sized clusters with centroids 4, 11, 19, 23 and 35 as

loading matrix. We report for each of the clusters, and the full sample, the mean squared error and

mean absolute error of the unrestricted estimates and estimated cluster centroids compared to the

true values and the difference between the two estimates. Overall, the estimated cluster centroids

always outperform the unrestricted estimates. Furthermore, we also report the contribution of each

cluster to the log likelihood. We can then compare the models by the AIC and, since the clustered

model is a restricted version of the unrestricted model, the LR-test. In all cases, the LR-test

provides evidence that there is no significant difference between the log likelihood values. However,

taking into account that the clustered model has much less parameters than the unrestricted model,

the AIC shows that the clustered model should be preferred. For each combination of time series

dimensions, the differences between the clusters are small because the clusters are here chosen to

be the same in size and without deviation around the cluster centroid, but in empirical studies such

statistics will give insight on the homogeneity of the different clusters.
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Ty = 10,Tx = 50

MSE MAE Unrestricted Clustered

Unr. Cl. Diff. Unr. Cl. Diff. LL AIC LL AIC LR

C1 1.134 0.047 1.106 0.849 0.127 0.839 -4,324 8,850 -4,375 8,754 102
C2 1.234 0.150 1.117 0.884 0.267 0.842 -4,325 8,852 -4,376 8,756 102
C3 1.432 0.827 1.015 0.948 0.538 0.817 -4,332 8,866 -4,378 8,760 92
C4 1.575 0.929 1.008 0.992 0.623 0.813 -4,335 8,872 -4,381 8,766 92
C5 2.168 1.053 1.115 1.157 0.786 0.839 -4,350 8,902 -4,399 8,802 98
Full 1.508 0.601 1.072 0.966 0.468 0.830 -21,884 44,770 -22,130 44,272 492

Ty = 10,Tx = 100

MSE MAE Unrestricted Clustered

Unr. Cl. Diff. Unr. Cl. Diff. LL AIC LL AIC LR

C1 1.137 0.047 1.111 0.849 0.121 0.840 -4,323 8,848 -4,374 8,752 102
C2 1.216 0.134 1.109 0.876 0.243 0.839 -4,323 8,848 -4,374 8,752 102
C3 1.408 0.802 1.010 0.937 0.508 0.814 -4,326 8,854 -4,373 8,750 94
C4 1.519 0.888 1.004 0.971 0.575 0.811 -4,328 8,858 -4,375 8,754 94
C5 2.054 0.950 1.104 1.114 0.705 0.837 -4,338 8,878 -4,388 8,780 100
Full 1.467 0.564 1.067 0.949 0.430 0.828 -21,856 44,714 -22,105 44,222 498

Table 3: Model fit for unrestricted and clustered model. All results are based on M = 1, 000
simulations with N = 500 and Ty = 10, with Tx = 50 in the top panel and Tx = 100 in the
bottom panel. Each row in a panel represents a cluster and the last row is the full sample. In the
columns are loss functions given of the unrestricted loadings compared to the true ones (“Unr.”),
the clustered centroids compared to the true ones (“Cl.”) and the unrestricted loadings minus
the clustered centroids (“Diff.”). The first three columns have the MSE as loss function and the
last three columns the MAE. For both models, the log likelihood and AIC are given and they are
compared via the LR-statistic in the last column. For the latter, the critical values are 123 for each
cluster (100-1 degrees of freedom) and 548 overall (500-5 degrees of freedom), at the 5% significance
level.

4.2 Forecasting Results

By enforcing the clustered structure in our modeling framework, we do not want to compromise

on the forecasting performance. To judge the accuracy of clustered forecasting, we compute loss

functions of forecasting with and without clustering. We then consider the fraction of the two loss

functions and prefer clustered forecasting if

Relative Accuracy = M−1
M∑
m=1

(
LF clusteredm

LF unrestrictedm

)
< 1,
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where the numerator reflects clustered forecasting (with Λ̂ after running k-means) and the de-

nominator reflects unrestricted forecasting (with Λ̃ directly after least squares) for loss function

LF ∈ {MSE,MAE}. We use M = 1, 000 simulations to obtain the Relative Accuracy.

Table 4 reports these average fractions; in the columns we vary time series dimension Ty ∈

{10, 20}, while in the rows we vary Tx ∈ {50, 100}. Furthermore, row f in any cell of Table 4

reports the performance for forecasting f ∈ {1, 2, 3} steps ahead.

We saw before that the time series dimension Tx of the first step in our proposed estimation

procedure does not have a big impact on the estimation results of the second step, this is also

confirmed by the forecasting results. An improvement of more than 4% in the mean squared error

is obtained if Ty = 20. This becomes 7% if Ty is only half of it. This reveals the strength of our

proposed procedure: for data sets where forecasting is of interest but the time series dimension is

small although the cross-section dimension is large, it is beneficial to exploit the clustered nature

of the data. As the time series dimension Ty increases, clustered forecasting goes to unrestricted

forecasting because the unrestricted estimates of the loadings become less biased in the second

step. For small time series dimension Ty, the clustering averages out these biases such that the

forecasting performance improves.

Ty = 10 Ty = 20

MSE-
ratio

MAE-
ratio

MSE-
ratio

MAE-
ratio

Tx = 50
f = 1
f = 2
f = 3

0.930
0.929
0.929

0.963
0.963
0.963

0.957
0.957
0.958

0.978
0.978
0.978

Tx = 100
f = 1
f = 2
f = 3

0.928
0.928
0.930

0.962
0.962
0.963

0.956
0.956
0.958

0.978
0.977
0.978

Table 4: Forecasting performance of clustered forecasting versus unrestricted forecasting. All
results are based on M = 1, 000 simulations with N = 500. The top panel has Tx = 50 while
Ty ∈ {10, 20} varies and the bottom panel has Tx = 100 fixed while Ty ∈ {10, 20} varies. Clustered

forecasting is preferred if M−1
∑M

m=1

(
LF clustered

LFunrestricted

)
m
< 1, where the numerator reflects clustered

forecasting (with Λ̂ after running k-means) and the denominator reflects unrestricted forecasting
(with Λ̃ directly after least squares) for loss function LF ∈ {MSE,MAE}. The first row in each
cell represents one-step ahead forecasting, the second row two steps ahead and the last row three
steps ahead.
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4.3 Sensitivity Analysis

In the Monte Carlo study we have assumed the number of clusters as known while this is not the

case in an empirical study. To learn about the sensitivity of assuming the number of clusters as

known, we present results for cases where we deviate from the true number of clusters. We remain

simulating data from our model with five clusters, but now we also let the k-means algorithm use

another number of clusters. We present summary statistics of the model performance in Table 5 for

N = 500, Tx = 50, Ty = 10 and static parameters as before. The table reports the average cluster

centroid values, its average MSE, the log likelihood of the clusterd model and the MSE-ratio of

forecasting f = 1 step ahead, all based on M = 1, 000 simulations. The true number of clusters is

five and we show results based on three to seven clusters.

K Average clustered centroids MSE LL f = 1

3 7.495 21.001 35.000 6.905 -23,273 1.437
4 4.002 11.010 21.012 35.000 2.032 -22,470 1.045
5 4.002 10.998 18.974 23.032 35.000 0.601 -22,130 0.930
6 3.860 9.948 16.479 20.642 24.612 35.111 0.797 -22,091 0.946
7 3.657 8.315 13.110 18.928 21.760 27.276 35.323 0.960 -22,055 0.958

Table 5: Estimation and forecasting results of using 3, . . . , 7 clusters in the k-means algorithm,
while the data is simulated using five equally-sized clusters with loadings 4, 11, 19, 23 and 35. All
results are based on M = 1, 000 simulations with N = 500, Tx = 50, Ty = 10. The first column gives
the number of clusters used in the algorithm, where the row of 5 clusters in italic indicates the true
number of clusters. The average estimated cluster centroids are given in the second column and
the average MSE in the third column. The log likelihood (LL) is given in the fourth column and
the Relative Accuracy (the MSE-ratio) for forecasting one-step ahead is given in the last column.

The simulations are done with cluster centroids 4, 11, 19, 23 and 35, and with equally-sized

clusters, such that the average value of the loadings is 18.4. When using less clusters than five, we

find that the average means are on the higher side, implying a high MSE and low log likelihood

values. When using three clusters instead of five, the forecasting performance decreases consider-

ably (MSE-ratio of 1.437). However, when using four instead of five clusters, the performance of

clustered forecasting is as good as for unrestricted forecasting (MSE-ratio ≈ 1). It implies that

the accuracy loss is small when imposing more structure while computational efficiency is higher

and interpretation remains. The overall performance is higher when using more clusters than five

rather than using less clusters than five, both for in-sample (lower MSE of the clustered centroids)

and out-of-sample (MSE-ratios < 1) criteria. Given that more clusters can embed a structure with

less clusters, we can expect that the latter case shows better results. Of course, using the true
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number of five clusters remains optimal and using too many clusters will lead to overfitting.

Finally, in our main Monte Carlo study, the time series dimensions Tx and Ty and the cross-

section dimension N were chosen in line with the empirical study. However, the static parameters

and loadings were chosen under the assumption that the data consists of clearly identifiable clusters.

In practice, this might be less the case. For example, in our empirical study, we will find ω ≈ 0, φ ≈

0.35, α ≈ 0.9 and the cluster centroids are smaller and also zero or negative. To verify whether

such other settings alter the performance of our proposed methodology, we redo the analysis with

parameters (σξ, ω, φ, α, σε)
′ = (1, 0, 0.35, 0.9, 1)′ and with cluster centroids −4,−2, 0, 3 and 5. We

present these results in the Appendix; they do not lead to very different conclusions regarding the

performance of our proposed methodology. Figures B.3 to B.6 show the densities of the estimated

parameters and Table B.2 summarizes the forecasting performance.

For this other set of parameter values and cluster centroids, the estimation results are even more

precise than those for the original set, even for the smaller time series dimensions. The forecasting

results are somewhat less strong (MSE-ratios→ 1), but with clustered forecasting we still don’t lose

on accuracy compared to unrestricted forecasting. This would mean that unrestricted and clustered

forecasting should be equally preferred if one is only interested in forecasting. However, in the policy

relevant context of our empirical study, we are especially interested in the interpretation. By the

structure that we put on the model, we gain a lot on interpretation while we don’t pay for forecasting

performance. This in combination with the decent improvements in forecasting performance that

we found in the main simulation study above gives enough evidence that our methodology can also

be generalized and applied in different contexts in future research. All Monte Carlo study results

together give sufficient evidence that we can rely on the results from our empirical study.

5 Empirical Study

In a study on education enrollment in the Netherlands, Spijkerman (2006) found that educational

choices are related to unemployment rates, in particular in part-time and on-the-job education.

In the literature, proposed causal relations usually concern demand for education vis-a-vis supply

of labor. Economists typically assume substitution: people allocate their time towards education

and the labor market. In this line of thought, enrollment is understood as an investment decision

(Clark, 2011, pp. 524-525). Labor market characteristics such as vacancies, unemployment rates,

and wages, influence the choice made at any given moment. For example, higher demand for
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GAS(1,1) w/o ω GAS(1,1) GAS(2,1) w/o ω GAS(1,2) w/o ω

σ̂2
ξ 0.005 0.005 0.005 0.005

ω̂ - -0.000 - -

φ̂1 0.365 0.365 0.355 0.329

φ̂2 - - -0.117 -
α̂1 0.933 0.937 0.956 0.936
α̂2 - - - 0.039

logL -181.90 -181.06 -181.35 -181.01
AIC 369.80 370.12 370.70 370.02

Table 6: Parameter estimates and metrics for several GAS specifications.

labor increases the opportunity costs of education, decreasing its relative preference. Conversely,

when confronted with a weak labor market, young students are more likely to remain in education;

see Lamb, Walstab, Teese, Vickers, and Rumberger (2004), Clark (2011, p. 523). For post-initial

education, a tight labor market might induce to re-educate, looking for better job prospects or to

protect their position (Groenez, Desmedt, & Nicaise, 2007). There are effects on the supply-side

of education as well, especially in on-the-job learning. When demand for labor is high, employers

are more likely to provide apprenticeships opportunities. This relationship is assumed to have

multiple causes: apprenticeships can be a substitute for hard to find workers (especially for middle-

skill vacancies), or they are a way to attract talent. This is the reasoning behind the correction for

unemployment vocational education in the Dutch student forecasts (Ministry of Education, Culture

and Science, 2020).

There is limited recognition of issues related to the non-stationarity in the regressed time series

(participation in education and economic indicators) in this literature; see, for example, Lamb et al.

(2004, pp. 126-132). As a result, regressions might be spurious. It is further suggested that causal

relations are based on cross-country comparative analysis in which participation choices of individ-

uals cannot be distinguished from the varying institutional landscapes; see, for example, (Groenez

et al., 2007, p. 2). We use data from the Netherlands only, and increase N by lowering the level

of analysis. In particular, we study transitions from one type of education to another. The change

in unemployment rate is regressed on the changes in transitions into first grade studies in Dutch

vocational and higher education. Figure 3 suggests a linear relation in differenced unemployment

rates and differenced share of full-time students in vocational education. We will not test causal

claims, for which a structural causal model should be developed.
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Figure 7: Unemployment rate and estimated factor. Left: unemployment rate at from 1970 to 2019.
Right: differenced unemployment rate and estimated factor f̂t from 1971 to 2019 (t = 1, 2, . . . , Tx,
Tx = 49).

Transitions with a higher number of students on average have a higher variance. To normalize,

each cross-sectional unit is divided by its average level: ỹit = ∆yit/ȳi, with yit the number of people

in transition i at time t = 1, ..., Ty. Several specifications of the GAS model have been tested; see

Table 6. Based on the AIC, for our yearly observed macroeconomic time series, the GAS(1,1) with-

out intercept seems to be most suitable. The filter is initialized using the unconditional mean (0).

The right panel in Figure 7 presents the differenced unemployment rate (solid) and the estimated

common factor (dashed) over time.

With φ̂1 = 0.365, extrapolating from this filter results in rapid regression towards the zero mean.

Comparing clustered and unclustered loadings will not be very meaningful when the forecasted

factor is close to zero. Moreover, the model with one factor is sensitive to variance in the forecast

of xt. Since we have a short panel and have not much space to vary Tx when forecasting many

steps ahead, the out-of-sample tests are somewhat less reliable4. Instead, we will rely on in-sample

metrics to compare the clustered and unrestricted models.

The unrestricted model reveals that the unemployment rate explains about 7.7% of the total

variation in the education flows of yt. This low number is to be expected since unemployment is a

relevant factor for only a part of the transitions into education. The R2 of the restricted model is

naturally lower, but it converges to this rate of 7.7% as the number of clusters increases. Similarly,

the MSE- and MAE-ratios in the right panel converge to 1, see Figure 8. We aim for a relatively

small number of centroids since the predictive performance worsens when increasing the number

4In an exploration of forecasting performance on random subsets of the data, we found the clustered model did
not underperform for the unrestricted one. MSE-ratios center closely around 1.0. More research is needed to draw
conclusions.
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Figure 8: Various metrics (R2, R̄2, MSE-ratio and MAE-ratio) for K = 2, · · · , 50 (with R = 1,000
repetitions using different centroid seeds)

of clusters. To find the optimal number of clusters, the adjusted R2 (R̄2) can be used which has

its maximum value at K = 19. The MSE-ratio is 1.001, meaning that the predictive performance

of the clustered model is almost on par with the unrestricted one. Thus, clustering the loading

matrix is an effective way to reduce the number of parameters in the model. We can refer to this

procedure as the “elbow method”, see section 3.2. Alternatively, other criteria to select the optimal

number of clusters can be adopted such as the information criterion AIC.

Figure 9 presents the estimated loading coefficients. It shows a density of unrestricted loadings

and a step-wise cumulative distribution of clustered loadings. The estimated unrestricted loadings

have sample average -2.67 (std.dev. 13.95), the clustered loadings have average -2.68 (std. dev.

13.89). The smallest and largest loadings are -60.58 and 47.32, respectively, meaning that for these

transitions 1% change in the unemployment factor corresponds to a ¿40% change (relative to a

transition’s sample average) in student counts. The unrestricted loading coefficients do not reveal

obvious clusters (multimodal distribution). This is possibly due to high variances of the estimates

(small sample) and to model misspecification. We have considered a simple linear model with

constant loadings. In reality, the student’s decision depends on more than only the unemployment

rate. This model therefore is at present not suitable for structural or causal interpretation.

24



Figure 9: Distribution of loadings. Up with OLS, down with ridge regression (α = 0.01). Left:
cumulative distribution. The stepwise line indicates the position of clusters and distribution of
clustered loadings. Right: density. The vertical lines indicate estimated cluster positions.

The main advantage of this model is that decreasing the number of estimated coefficients reduces

model complexity, without losing notable explanatory performance. Clustering might be helpful

when model simplicity is considered attractive. In the context of the governmental student forecasts,

model interpretability is highly valued (Ministry of Education, Culture and Science, 2018, p. 67).

Since the governmental student forecasts feed the education budget, and thus the allocation of

scarce, public resources, transparency and explainability are key. We argue that a clustered model

is easier to convey, especially if the clusters themselves are meaningfully presented. Both the

linear model and the k-means clustering are transparent and widely known. Litle explanatory

performance is traded in for gains in model simplicity. Restricting the model does not lead to

notable performance loss.

Figure 10 presents the R2 per cluster. As one would expect, the common factor is most relevant

for clusters with larger loadings. In one cluster, 32.1% of variance is explained by the filtered

unemployment factor. In the left tail we find transitions into vocational education, which seem to be

negatively related to unemployment rates. It supports the hypotheses that participation in on-the-

job learning depends on the availability of apprenticeships position and/or that low unemployment

induces people to learn market-oriented skills. Similarly, the right tail of the distribution contains

many transitions into school-based vocational education, moving pro-cyclical with unemployment.
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Figure 10: R2 per cluster

Across the panel, we find that part-time/on-the-job education tends to covary negatively with

unemployment; see Table C.1. Similarly, the results indicate that unemployment rates affects

people aged 31 and above most; see Figure 11. Also, those not in education are less likely to

study with increasing unemployment, whereas transitions from diploma origins do not show a

strong covariance. Thus, the results do not suggest that a weak labor market induces people to

reorient. Instead, the results favor the notion that people are more likely to participate in post-

initial education when having better job prospects. Alternatively, post-initial education depends

on the availability of apprenticeship positions. Although clustering strongly reduces the number

of parameters, Figure 11 indicates that the structure of the loading matrix stays intact. Loadings

also vary to some extent across directions in education, but these results do not provide enough

basis to make conclusions.

Figure 11: Average loadings in unrestricted and clustered model (weighted by average level of the
transition ȳ) for age (groups) and directions
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A drawback of the linear regression model on the short panel is that estimated parameter

coefficients are largely affected by random noise. One way to reduce model variance is to include

a penalty in the objective criterion. For an illustration, see the right panel of Figure 9 for the

distribution of estimated loadings using ridge regression with α = 0.001). Model variance might

also be reduced by using the descriptive labels of the educational time series. The categories could

be included in a k-means type algorithm; see Huang (1998) for an extension to cluster in a setting

with mixed categorical and numerical data.

To complete the empirical analysis, we present impulse response functions (IRFs) as produced

by a unit shock in the differenced unemployment rate xt at time t = 0 (ξ0 = 1). Figure 12

plots these IRFs which show the dynamic impact of the unemployment shock in education flows.

Through the updating equation, the common factor ft responds with 1 step delay. Additionally,

the education flows predicted by the linear regression model covary synchronously with ft. Some

of the clusters covary positively and some negatively. The right panel shows the effects on the

differenced transitions into education for the 19 clusters.

Figure 12: Impulse response functions for unit shock in differenced unemployment rate xt on (from
left to right) xt, common factor ft and differenced transitions into education ỹt

6 Conclusion

In this paper we have introduced a novel dynamic factor model that is capable of forecasting the

number of students across the many different types of education. The model can also be used

to analyze the relationship between education participation and relevant macroeconomic variables

such as the unemployment rate. We further have proposed an econometric treatment for this flexible

modeling framework. The empirical analysis is carried out for a large dataset for the educational
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system in the Netherlands. In this study we have found that, overall, changes in the unemployment

rate account for approximately 7.7% of the changes in the flows across the educational system.

Given that the panel data dimension is huge, we have allowed for clustering in the factor loadings

that are associated with the dynamic macroeconomic factor. As a result we have been able to

measure the extent in which the different types of education exhibit similarities in their relationship

with macroeconomic cycles. In the empirical study we have highlighted the practical feasibility and

good forecasting performance of our modeling framework. In future research, we plan to generalize

the methodology further and verify its theoretical properties.
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A P P E N D I C E S

A Assumptions for Asymptotic Properties

In this Appendix we provide and discuss the assumptions that are needed to have consistency of

the maximum likelihood estimates in our two-step method for the factor model. In the first step,

the consistency of the MLE θ̂Tx for the parameters θ of the score filter of ft relies on the following

assumptions:

(i.a) the sequence {xt̄}t̄∈Z is strictly stationary and ergodic, with one bounded moment E|xt̄| <∞;

(ii) the filter is invertible (ensured by |β − α| < 1);

(iii) when θ0 is the identifiably unique maximizer of the limit log likelihood function.

If the score filter is assumed to be correctly specified, then condition (i.a) above is ensured as long

as |β| < 1 and the innovations ξt̄ are iid with a bounded moment; see Blasques et al. (2014a) or

Blasques, Koopman, and Lucas (2014b) for stationarity and moment conditions for score models,

which build on Pötscher and Prucha (1997) and Straumann and Mikosch (2006), among others. The

invertibility condition in (ii) follows from the contraction theory in Bougerol (1993) and Straumann

and Mikosch (2006), and is discussed in more detail in Blasques et al. (2014a) and Blasques (2019).

Additionally, condition (iii) is ensured under appropriate regularity conditions stated in Blasques

et al. (2014a) and Blasques (2019), among others. The same references provide the proofs of

consistency for both correctly specified and misspecified score models.

In the second step, the consistency of the MLE for the regression coefficients Λ can be ensured

using standard regularity conditions for consistency of MLE in linear regressions. Since the MLE

estimator Λ̂Ty depends on the MLE for the score parameters θ̂Tx , the consistency of Λ̂Ty is obtained

in the context of a plug-in estimator. Λ̂Ty(θ̂Tx). Naturally, if Tx → ∞ and Ty → ∞ sequentially,

then the proof is trivial since Λ̂Ty(θ0) no longer relies on θ̂Tx , in the second step. If Tx and Ty are

taken to infinity jointly, then the consistency of the plug-in estimator. Λ̂Ty(θ̂Tx) follows naturally

by the consistency of θ̂Tx and the continuity of Λ̂Ty(·) on θ̂Tx , which holds naturally as Λ̂Ty(·) is

continuous on the filter f̂t, and the filter f̂t is continuous on θ. In the present context, we can thus

ensure consistency of Λ̂Ty as long as:

(iv) the sequence {yt}t∈Z is strictly stationary and ergodic, with two bounded moments E|yt|2 <∞
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(v) the filtered ft is asymptotically stationary with two bounded moments.

Condition (v) is easily ensured by the filter invertibility condition (ii) and as long as two bounded

moments are assumed in condition (i.a) rather than just one. Hence, in addition we assume:

(i.b) the sequence {xt̄}t̄∈Z is strictly stationary and ergodic, with one bounded moment E|xt̄|2 <∞;

If the filter is assumed to be correctly specified, condition (i.b) is ensured as long as |β| < 1 and the

innovations ξt̄ are iid with two bounded moments. If the regression model is also assumed correct,

then condition (iv) is ensured as long as the innovations εt are iid with two bounded moments and

independent of ft. Similar results can be found in Blasques (2019).
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B Additional Monte Carlo Results

(a) Densities of estimated static parameters. (b) Densities of estimated cluster centroids.

Figure B.1: Parameter estimation results of M = 1, 000 simulations for N = 500, Ty = 20, Tx = 50.
Vertical lines represent true values.

(a) Densities of estimated static parameters. (b) Densities of estimated cluster centroids.

Figure B.2: Parameter estimation results of M = 1, 000 simulations for N = 500, Ty = 20, Tx = 100.
Vertical lines represent true values.
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Ty = 20,Tx = 50

MSE MAE Unrestricted Clustered

Unr. Cl. Diff. Unr. Cl. Diff. LL AIC LL AIC LR

C1 0.570 0.016 0.555 0.602 0.097 0.594 -8,694 17,590 -8,745 17,494 102

C2 0.629 0.076 0.554 0.631 0.213 0.593 -8,702 17,606 -8,751 17,506 98

C3 0.769 0.284 0.548 0.697 0.375 0.592 -8,717 17,636 -8,765 17,534 96

C4 0.865 0.372 0.544 0.738 0.448 0.590 -8,727 17,656 -8,775 17,554 96

C5 1.277 0.722 0.555 0.891 0.657 0.593 -8,767 17,736 -8,814 17,632 94

Full 0.822 0.294 0.551 0.712 0.358 0.592 -44,048 89,098 -44,293 88,598 490

Ty = 20,Tx = 100

MSE MAE Unrestricted Clustered

Unr. Cl. Diff. Unr. Cl. Diff. LL AIC LL AIC LR

C1 0.571 0.014 0.557 0.603 0.093 0.595 -8,694 17,590 -8,745 17,494 102

C2 0.630 0.075 0.555 0.631 0.207 0.593 -8,697 17,596 -8,747 17,498 100

C3 0.765 0.276 0.547 0.691 0.361 0.590 -8,706 17,614 -8,755 17,514 98

C4 0.851 0.358 0.544 0.727 0.426 0.589 -8,709 17,620 -8,758 17,520 98

C5 1.240 0.686 0.554 0.869 0.623 0.592 -8,735 17,672 -8,784 17,572 98

Full 0.812 0.282 0.552 0.704 0.342 0.592 -43,982 88,966 -44,230 88,472 496

Table B.1: Model fit for unrestricted and clustered model. All results are based on M = 1, 000
simulations with N = 500 and Ty = 20, with Tx = 50 in the top panel and Tx = 100 in the
bottom panel. Each row in a panel represents a cluster and the last row is the full sample. In the
columns are loss functions given of the unrestricted loadings compared to the true ones (“Unr.”),
the clustered centroids compared to the true ones (“Cl.”) and the unrestricted loadings minus
the clustered centroids (“Diff.”). The first three columns have the MSE as loss function and the
last three columns the MAE. For both models, the log likelihood and AIC are given and they are
compared via the LR-statistic in the last column. For the latter, the critical values are 123 for each
cluster (100-1 degrees of freedom) and 548 overall (500-5 degrees of freedom), at the 5% significance
level.
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(a) Densities of estimated static parameters. (b) Densities of estimated cluster centroids.

Figure B.3: Parameter estimation results of M = 1, 000 simulations for N = 500, Ty = 10, Tx = 50
in sensitivity analysis of simulation study when parameter values and cluster centroids are more in
line with empirical study. Vertical lines represent true values.

(a) Densities of estimated static parameters. (b) Densities of estimated cluster centroids.

Figure B.4: Parameter estimation results of M = 1, 000 simulations for N = 500, Ty = 20, Tx = 50
in sensitivity analysis of simulation study when parameter values and cluster centroids are more in
line with empirical study. Vertical lines represent true values.
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(a) Densities of estimated static parameters. (b) Densities of estimated cluster centroids.

Figure B.5: Parameter estimation results of M = 1, 000 simulations for N = 500, Ty = 10, Tx = 100
in sensitivity analysis of simulation study when parameter values and cluster centroids are more in
line with empirical study. Vertical lines represent true values.

(a) Densities of estimated static parameters. (b) Densities of estimated cluster centroids.

Figure B.6: Parameter estimation results of M = 1, 000 simulations for N = 500, Ty = 20, Tx = 100
in sensitivity analysis of simulation study when parameter values and cluster centroids are more in
line with empirical study. Vertical lines represent true values.
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Ty = 10 Ty = 20

MSE-

ratio

MAE-

ratio

MSE-

ratio

MAE-

ratio

Tx = 50

f = 1

f = 2

f = 3

0.981

0.994

0.996

0.991

0.997

0.998

0.989

0.996

0.998

0.995

0.998

0.999

Tx = 100

f = 1

f = 2

f = 3

0.984

0.995

0.998

0.992

0.998

0.999

0.991

0.997

0.999

0.996

0.999

0.999

Table B.2: Forecasting performance of clustered forecasting versus unrestricted forecasting in sen-
sitivity analysis of simulation study when parameter values and cluster centroids are more in line
with empirical study. All results are based on M = 1, 000 simulations with N = 500. The top panel
has Tx = 50 while Ty ∈ {10, 20} varies and the bottom panel has Tx = 100 fixed while Ty ∈ {10, 20}
varies. Clustered forecasting is preferred if M−1

∑M
m=1

(
LF clustered

LFunrestricted

)
m
< 1, where the numerator

reflects clustered forecasting (with Λ̂ after running k-means) and the denominator reflects unre-
stricted forecasting (with Λ̃ directly after least squares) for loss function LF ∈ {MSE,MAE}.
The first row in each cell represents one-step ahead forecasting, the second row two steps ahead
and the last row three steps ahead.
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C Additional Empirical Results

-47.5 -35.0 -27.8 -22.1 -17.3 -13.5 -10.3 -7.7 -5.2

hbo fulltime 1 2 7 8 17 18 13 33 30

parttime 4 2 3 8 14 4 9 9 8

mbo school-based 0 2 1 4 1 6 5 4 11

on-the-job 6 13 17 18 16 14 11 12 8

wo fulltime 1 1 6 9 18 31 25 29 30

parttime 0 0 0 3 2 4 2 2 1

-2.6 0.0 2.8 5.8 9.7 13.0 17.3 21.8 27.5 39.2

hbo fulltime 32 33 40 36 20 10 9 3 2 0

parttime 10 2 5 4 3 3 0 0 2 2

mbo school-based 13 26 23 27 31 28 18 15 19 8

on-the-job 11 9 5 15 3 4 6 5 4 0

wo fulltime 37 47 36 18 10 3 3 1 1 0

parttime 1 4 1 3 0 0 0 0 0 1

Table C.1: Clusters (centroid position in column names) with composition of education types.
Translations: mbo: vocational education, hbo: hbo, wo: university
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