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Abstract

A dynamic semi-parametric framework is proposed to study time variation in tail fat-

ness of sovereign bond yield changes during the 2010–2012 euro area sovereign debt cri-

sis measured at a high (15-minute) frequency. The framework builds on the Generalized

Pareto Distribution (GPD) for modeling peaks over thresholds as in Extreme Value

Theory, but casts the model in a conditional framework to allow for time-variation

in the tail shape parameters. The score-driven updates used improve the expected

Kullback-Leibler divergence between the model and the true data generating process

on every step even if the GPD only fits approximately and the model is mis-sepcified,

as will be the case in any finite sample. This is confirmed in simulations. Using the

model, we find the ECB program had a beneficial impact on extreme upper tail quan-

tiles, leaning against the risk of extremely adverse market outcomes while active.
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1 Introduction

This paper proposes a novel semi-parametric framework to study time variation in tail fatness

for long univariate time series, applied to high-frequency government bond returns during

times of unconventional central bank policies. The new method builds on ideas from Ex-

treme Value Theory (EVT) by using a conditional Generalized Pareto Distribution (GPD)

to approximate the tail beyond a given threshold, and endowing this conditional GPD dis-

tribution with time-varying parameters. The GPD is an appropriate tail approximation for

most heavy-tailed densities used in econometrics and actuarial sciences; see, for example,

Davidson and Smith (1990), Embrechts et al. (1997), and McNeil et al. (2010, Chapter 7).

As a result, the GPD plays a central role in the study of extremes, comparable to the role

the normal distribution plays when studying observations in the center of the distribution.

Our framework allows us to study the time-variation in tail index parameters associated with

time series observations from a wide class of heavy-tailed distributions; see Rocco (2014) for

a recent survey of extreme value theory (EVT) methods. We discuss the handling of non-tail

time series observations, inference on deterministic and time-varying parameters, and ways

to relate time-varying parameters to observed covariates. In this context we also study the

e↵ect of time-varying pre-filtering methods possibly applied to the data before the dynamic

GPD model is fitted.

In our model, the time-varying tail shape and tail scale parameters of the GPD are driven

by the score of the local (time t) objective function; see e.g. Creal et al. (2013) and Harvey

(2013). In this approach, the time-varying parameters are perfectly predictable one step

ahead. This makes the model observation-driven in the terminology of Cox (1981). The

log-likelihood is known in closed form, facilitating parameter estimation and inference via

standard maximum likelihood methods. Simulation evidence reveals that our model and

estimation approach is able to recover the time-varying tail shape and tail scale parameters

su�ciently accurately, as well as EVT-based market risk measures such as Value-at-Risk

(VaR) and Expected Shortfall (ES) at high confidence levels (say, 99%). This is the case

even if the model is misspecified or the GPD approximation is not exact. The latter is
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particularly important in our finite sample setting, where the limiting result of the GPD can

only hold approximately given the choice of a finite exceedance threshold in any particular

sample.

We apply our modeling framework to study the location, scale, and upper tail impact of

bond purchases undertaken by the Eurosystem – the European Central Bank (ECB) and its

17 national central banks at the time – during the euro area sovereign debt crisis between

2010 and 2012. We focus on bond purchases within the Eurosystem’s Securities Markets

Programme (SMP), which targeted sovereign bonds of five euro area countries: Greece,

Ireland, Italy, Portugal, and Spain. Based on high-frequency data for five-year benchmark

bonds, and explicitly accounting for time-variation in fat tails, we find that purchases lowered

the conditional location (mean) of future bond yields by up to -2.9 basis points (bps) per e1

bn of purchases. The impact estimates for the two largest SMP countries, Italy and Spain,

are -1.5 bps and -2.6 bps per e1 bn of purchases, respectively. These impact estimates are

approximately in line with earlier estimates; see e.g. Eser and Schwaab (2016), Ghysels et al.

(2017), and Pooter et al. (2018).

In addition, we find that SMP purchases had a beneficial impact on the extreme upper

tail quantiles of yield changes. This suggests that central bank bond purchases lean against

the risk of extremely adverse market outcomes while they are active. The beneficial impact is

mostly explained by moving the center of the predictive distribution to the left and narrowing

it. Beneficial secondary e↵ects come about via the SMP’s e↵ect on tail shape and tail scale

for large economies such as Spain and Italy. The impact of purchases on tail quantiles is

larger than their impact on the conditional location (mean). We estimate that the 97.5%

VaR was reduced by 3.8, 6.0, 5.9, 2.1, and 6.9 bps per e1 bn Eurosystem intervention

in Spanish, Greek, Irish, Italian, and Portuguese five-year benchmark bonds, respectively.

The impact grows with the extremeness of the VaR. We estimate that the 99.5% VaR was

reduced, respectively, by 5.1, 10.1, 12.5, 2.9, and 15.4 bps per e1 bn of Eurosystem purchases

in the above bonds. The tail impact of the SMP purchases is economically relevant because

extreme tail risks alone can force dealer banks and market makers to retreat from supplying

liquidity to important segments of the sovereign bond market, particularly when their own
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VaR constraints are binding; see Vayanos and Vila (2009) and Adrian and Shin (2010). In

turn, malfunctioning sovereign bond markets can impair the transmission of the common

monetary policy to all parts of the euro area. Pelizzon et al. (2016) provide evidence that

market makers withdrew from trading Italian debt securities in 2011.

Our paper is related to at least two strands of literature. First, several papers propose

methodology to study time variation in the tail index. Quintos et al. (2001), Einmahl et al.

(2016), and Hoga (2017) derive formal tests for a structural break in the tail index. A number

of subsequent studies applied such tests to financial time series data. Werner and Upper

(2004) identify a break in the tail behavior of high-frequency German Bund future returns.

Galbraith and Zernov (2004) argues that certain regulatory changes in U.S. equity markets

have altered the tail index dynamics of equities returns, and Wagner (2005) demonstrates

that changes in government bond yields appear to exhibit time-variation in the tail shape

for both the U.S. and the euro area. de Haan and Zhou (2020) propose a non-parametric

approach to estimating the extreme value index locally. Our paper adds to this strand of

conditional EVT literature by proposing a model that allows us to study both the tail shape

and tail scale dynamics directly in a semi-parametric way. Explanatory covariates can be

included in the dynamics of both parameters, and likelihood ratio tests are available to test

economically relevant hypotheses. Finally, unlike Patton et al. (2019), our tail VaR and ES

dynamics explicitly account for fat tail shape beyond a treshold as emerging from EVT. The

dynamics based on the score for the GPD contain weights for extreme observations. Such

weights are absent in the elicitable score functions of Patton et al.. The resulting dynamics

in our model are, as a result, more robust, particularly for the ES.

A second strand of literature assesses the impact of central bank asset purchases on bond

yields and yield volatility. For example, Ghysels et al. (2017) study the yield impact of SMP

bond purchases by considering bond yields and purchases at 15-minute intervals. In this way

they mitigate a bias that unobserved factors could have introduced. The authors estimate

that SMP interventions had an impact on the conditional mean of 10-year maturity bonds

of between -0.2 and -4.2 bps per e1 bn of purchases. Eser and Schwaab (2016) study yield

impact based on daily data. In their framework, identification is based on a panel model

3



that exploits the cross-sectional dimension of the data. They find that, in addition to large

announcement e↵ects, purchases of 1/1000 of the respective outstanding debt had an impact

of approximately -3 bps at the five-year maturity. Pooter et al. (2018) use the published

weekly data of aggregate SMP purchases to test for an impact on country-specific sovereign

bond liquidity premia. The authors find an average impact of -2.3 bps for purchases of 1/1000

of the outstanding debt. Our paper adds to the growing literature on impact identification

of central bank asset purchase programs by developing methodology to study their impact

on the extreme tail of the distribution.

Whereas de Haan and Zhou (2020) take a non-parametric perspective, the methodologi-

cal part of this paper is closest to Massacci (2017), who also proposes a dynamic parametric

model for the GPD parameters. Our framework is di↵erent in that we specify both param-

eters as functions of their respective scores, and adopt a non-diagonal scaling function. We

cover inference on both deterministic and time-varying parameters, explain how to intro-

duce additional conditioning variables, and provide Monte Carlo evidence. Owing to a novel

autoregressive specification of the EVT threshold following Patton et al. (2019), our model

can be fitted to both prefiltered and non-prefiltered time series data.

We proceed as follows. Section 2 presents our statistical model. Section 3 discusses our

simulation results. Section 4 studies the tail impact of Eurosystem asset purchases. Section

5 concludes. A Web Appendix derives the score and scaling function for the tail shape model

and provides further technical and empirical results.

2 Statistical model

2.1 Time-varying tail shape and scale

This section introduces our model with time-varying tail shape and tail scale for a univariate

time series yt, t = 1, . . . , T , where T denotes the number of observations. We assume

yt = µt + �t "t, (1)
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where g("t | Ft�1) is the conditional probability density function (pdf) of "t, µt and �t are the

conditional location and scale of yt, and Ft�1 = {yt�1, yt�2, . . . , y1} denotes the information

set. The parameters µt and �t can take on many forms ranging from constant values to

specifications with autoregressive and conditional volatility dynamics. Key, however, is that

these parameters are typically mainly used to describe well the center of the distribution.

In this paper, by contrast, we concentrate on the tail of the distribution using a dynamic

extension of arguments from extreme value theory, similar to Patton’s (2006) extension of

copula theory to the dynamic, observation driven setting.

We assume the conditional pdf g("t | Ft�1) has heavy tails with time-varying tail index

↵t > 0. A prime example is the univariate Student’s t distribution with ⌫t = ↵t degrees

of freedom. Other examples include the Pareto, inverse gamma, loggamma, log-logistic, F ,

Fréchet, and Burr distribution with one or more time-varying shape parameters. Rather,

however, than modeling the (dynamic) tail shape by an arbitrarily chosen parametric family

of distributions, we appeal to well-known results from the extreme value theory (EVT)

literature. From EVT, we know that the conditional cumulative distribution function (cdf)

G("t | Ft�1) of "t can under very general conditions be approximated by G("t | Ft�1) =

G(⌧ | Ft�1) + (1 � G(⌧ | Ft�1))P (xt; �t, ⇠t) with xt = "t � ⌧ for su�ciently high thresholds

⌧ 2 R+, or more precisely,

lim
⌧!1

sup
et�⌧

|P ["t  et + ⌧ | "t > ⌧, Ft�1]� P⇠t,�t(et � ⌧)|

= lim
⌧!1

sup
et�⌧

����
G(et + ⌧ | Ft�1)�G(et | Ft�1)

1�G(et | Ft�1)
� P⇠t,�t(et � ⌧)

���� = 0, (2)

for parameters ⇠t = ↵
�1
t and �t, both possibly depending on ⌧ . Here, P (xt; �t, ⇠t) denotes

the cdf of the Generalized Pareto Distribution (GPD), with cdf and pdf given by

P (xt; �t, ⇠t) = 1�
✓
1 + ⇠t

xt

�t

◆�⇠�1
t

, p(xt; �t, ⇠t) = �
�1
t ·

✓
1 + ⇠t

xt

�t

◆�⇠�1
t �1

, (3)

respectively (see, for example, McNeil et al., 2010). The quantity xt = "t � ⌧ > 0 is

the so-called peak-over-threshold (POT), or exceedance, of heavy-tailed data "t over a pre-
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determined threshold ⌧ , and �t > 0 and ⇠t > 0 are the scale and tail shape parameter of

the GPD, respectively. Most continuous distributions used in statistics and the actuarial

sciences lie in the Maximum Domain of Attraction (MDA) of the GPD (see McNeil et al.,

2010, Chapter 7.1), meaning that they allow for the above tail shape approximation. By

focusing on the tail area directly using EVT arguments, we avoid having to make more

ad-hoc assumptions on the parametric form of the tail.

The result in (2) is a limiting result. In any finite sample, the threshold ⌧t has to be

set to a specific, finite value, such that the GPD approximation will be inexact and the

distribution is in that sense misspecified. This will also be the case in our setting. The

score-driven updates that we define later on for ⇠t and �t, however, still ensure that the

expected Kullback-Leibler divergence between the approximate GPD model and the true,

unknown conditional distribution P ["t  et + ⌧ | "t > ⌧, Ft�1] is improved every time for

su�ciently small steps, even if the GPD model is misspecified; see Blasques et al. (2015).

The choice of the threshold ⌧ is subject to a well-known bias-e�ciency tradeo↵; see, for

instance, McNeil and Frey (2000). In theory, the GPD tail approximation only becomes

exact for ⌧ ! +1. A high threshold, however, also implies a smaller number of exceedances

"t > ⌧ , and more estimation error for the parameters of the GPD. Common choices for ⌧ from

the literature are the 90%, 95%, and 99% empirical quantiles of "t; see Chavez-Demoulin

et al. (2014). We return to the choice, and modeling, of the threshold further below.

A key step in (3) is that we use the conditional probabilities based on the information

set Ft�1. As a result, the tail shape parameters become time-varying. To capture this time-

variation, we model (⇠t, �t)0 using the score-driven (GAS) dynamics introduced by Creal et al.

(2013) and Harvey (2013). In our time series setting, that implies that both �t and ⇠t are

measurable with respect to Ft�1. We ensure positivity of �t and ⇠t by using an (element-wise)

exponential link function (⇠t, �t)0 = exp(ft) for ft = (f ⇠
t , f

�
t )

0 2 R2.The transition dynamics
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for ft are given by so-called GAS(p, q)-dynamics as

ft+1 = ! +
p�1X

i=0

Aist�i +
q�1X

j=0

Bjft�j, (4)

st = Strt, rt = @ ln p(xt | Ft�1; ft, ✓)/@ft,

where vector ! = (!⇠
,!

�)0 = !(✓) and matrices Ai = Ai(✓) and Bj = Bj(✓) depend on the

deterministic parameter vector ✓, which needs to be estimated. The scaling matrix St may

depend both on ✓, ft, and Ft�1. E↵ectively, the recursion (4) updates ft at every time point

in time via a scaled steepest ascent step to improve the fit to the GPD. The score of (3)

required in (4) is given by

rt =

2

66664

⇠
�1
t · log

�
1 + ⇠t �

�1
t xt

�
�

�
1 + ⇠

�1
t

� ⇠txt

�t + ⇠txt

xt � �t

�t + ⇠txt

3

77775
, (5)

where log(·) denotes the natural logarithm; see Appendix A.1 for a derivation. We take Ai

and Bj as diagonal matrices.

Following Creal et al. (2014) we select the square-root inverse conditional Fisher infor-

mation of the conditional observation density to scale (5), i.e., St = L
0
t, with Lt the choleski

decomposition of the inverse conditional Fisher information matrix It = (LtL
0
t)

�1 = E[rtr0
t |

Ft�1; ft, ✓] = E[�@rt/@f
0
t | Ft�1; ft, ✓], such that the conditional variance of st is equal to

the unit matrix. For the GPD, we have

Lt =

2

41 + ⇠
�1
t 0

�1
p
1 + 2⇠t

3

5 , (6)
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Figure 1: News impact curves

The first element (left panel) and second element (right panel) of st in (7) is plotted against xt for di↵erent
values of ⇠t and �t.

see Appendix A.2 for a derivation. Combining terms yields the scaled score as

st = L
0
trt =

2

66664

⇠
�2
t (1 + ⇠t) · log

�
1 + ⇠t �

�1
t xt

�
+

�t � (⇠t + 3 + ⇠
�1
t ) · xt

�t + ⇠txt

p
1 + 2⇠t

xt � �t

�t + ⇠txt

3

77775
. (7)

Though the scaled score in (7) seems unstable at first sight for ⇠t near zero, the expression

actually has a finite limit equal to lim⇠t#0 s1,t = 1� 2��1
t xt +

1
2�

�2
t x

2
t .

Figure 1 plots the two elements of (7) as a function of xt for di↵erent values of ⇠t and �t.

The behavior of the scaled score is intuitive: Large xt imply that ft is adjusted upwards. For

high realization of xt the adjustments are greatest when the current tail shape and tail scale

are low. The function shapes become increasingly concave as x ! 1 in line with robust

updates of the time-varying parameters. This distinguishes our current set-up sharply from

an approach directly based on quantile functions; see Patton et al. (2019) and Catania and

Luati (2019), in particular for risk measures such as ES. In Patton et al. (2019), ES reacts

linearly to the VaR exceedance.This can result in noisy or unstable ES estimates. Using the

GPD shape as emanating from EVT, Figure 1 shows that ⇠t and �t react more modestly to

large POT observations. This makes sense, as we expect such ‘outliers’ to occur more often
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for higher values of ⇠t. For extremely high ⇠t � 1, the ES even ceases to exist. We also note

that small realizations of xt imply downward adjustments of both elements of ft, up to the

point where xt becomes very small. In that case f ⇠
t is adjusted upward, as observations near

the center of a fat-tailed distribution signal increased peakedness (=leptokurtosis); see also

Lucas and Zhang (2016). The score-driven steps in (7) can thus result in more stable and

interpretable parameter paths due to the concavity of the news impact curves.

When there is no tail observation, i.e. xt = "t � ⌧  0, then the new observation carries

no information about ⇠t and �t, and the score is zero as a result. Long consecutive stretches

of zero scores can lead to erratic paths for ft and thus (⇠t, �t). In addition, such stretches of

zero scores can be problematic for inference on ✓; see Blasques et al. (2018). Both issues can

be addressed by taking into account lagged values of the scaled score via the exponentially-

weighted moving average specification

ft+1 = ! + As̃t +Bft, (8)

where s̃t = (1 � �)st + �s̃t�1, � 2 (0, 1) is an additional parameter to be estimated, and st

is given by (7). While st is most often zero, s̃t is not. Clearly, (4) is a special case of (8) for

� ! 0. Specification (8) leads to a GAS(1,2) specification for ft,

�
I2 � B L

�
(1� �)�1

�
1� �L

�
ft+1 = ! + Ast,

where L is the lag operator. To see this, first rewrite (8) to (I2 � B L)ft+1 = ! + As̃t, and

then multiply both sides by (1� �L)/(1� �), using (1� �L)s̃t = (1� �)st. The smoothing

approach in (8) is similar to the approach in Patton (2006) that uses up to ten lags of the

driver (in our case the score) to smoothen the dynamics of the time-varying parameter.

The transition equation for ft can be extended further if additional conditioning variables

are available. For example, central bank sovereign bond purchases may help explain the time-

variation in the tail shape and tail scale parameters associated with changes in sovereign bond

yields; see Section 4. Such additional variables can be taken into account in a straightforward
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way via the modified transition equation,

ft+1 = ! + As̃t +Bft + C · zt, (9)

where all explanatory variables are stacked into vector zt, and C is a conformable matrix of

impact coe�cients that needs to be estimated.

We consider three di↵erent ways to set the relevant thresholds. The thresholds can

be either time-invariant (⌧) or time-varying (⌧t). The construction of the thresholds can be

important in practice because ⌧t determines whether an observation lies in the tail, and, if so,

what is the magnitude of the exceedance xt = "t� ⌧t > 0. The -quantile Q
1:T ({"1, . . . , "T})

associated with the full sample is an obvious first candidate,  2 (0, 1). In this case, ⌧ =

Q

1:T ({"1, . . . , "T}) is time-invariant. Alternatively, we can compute the quantile recursively

up to time t and set ⌧t = Q

1:t ({"1, . . . , "t}), such that ⌧t is time-varying. Finally, we consider

a dynamic specification as suggested by Patton et al. (2019), according to which

⌧t+1 = ⌧t + a
⌧ · (1{"t > ⌧t}� (1� )) , (10)

where a
⌧ is a parameter to be estimated, and ⌧1 = Q


1:T is used to initialize the process.

The recursive specification (10) is a martingale since E[1{"t > ⌧t} | Ft�1, ✓] = (1� ). The

threshold ⌧t can now respond to changes in the underlying location, scale, and higher-order

moments of "t in a straightforward way. This is particularly relevant if the data yt is not

pre-filtered based on an appropriate location–scale model in a first step, for instance if we

set µt = 0 and �t = 1 in (1), thus modeling the conditional extreme tail shape of yt directly.

We close this section with a brief comment on parameter interpretability. The tail shape

parameter ⇠t can always be interpretated as observation yt’s contemporaneous inverse tail

index ↵
�1
t . By contrast, the estimated scale parameter �t need not have a straightforward

interpretation in terms of yt’s conditional variance. For example, assume that yt were GPD

distributed with time-varying tail shape parameter ↵�1
t and scale �t. We can then show that

the derived POT xt also has an exact GPD-distribution, with the same tail shape parameter

10



⇠t = ↵
�1
t , but a di↵erent scale parameter �t,⌧ = �t + ↵

�1
t · ⌧ ; see Web Appendix B.1 for

details. As a result, �t,⌧ increases with the threshold, varies positively with the tail shape

parameter ⇠t, and, importantly, should not be expected to provide a consistent estimate of

�t. A similar result can be derived if the time series data yt were Student’s t-distributed with

scale �t and tail index ↵t; see Web Appendix B.2. We return to this issue in our simulation

Section 3, where we consider pseudo-true values of both parameters to benchmark how well

the model can estimates these.

2.2 Confidence bands for tail shape and scale

Confidence (or standard error) bands allow us to visualize the impact of estimation uncer-

tainty associated with the maximum likelihood estimate ✓̂ on the filtered estimates f̂t(✓̂),

and, by extension, also (⇠̂t, �̂t)0 = exp(f̂t(✓̂)). Quantifying the uncertainty about these param-

eter paths is important, as classical EVT estimators of time-invariant tail shape parameters

are already typically associated with sizeable standard errors; see e.g. Hill (1975) and Huis-

man et al. (2001). Our confidence bands are based on the variance of f̂t, which we denote

Vt = Var(f̂t). There exist two possible ways to construct these bands. Delta-method-based

bands can be devised using a linear approximation of the non-linear transition function for

ft, thus extending Blasques et al. (2016, Section 3.2) to the case of multiple lags. We provide

the equations in Web Appendix C. In our empirical application below, however, the linear

approximations are typically insu�cient to capture the uncertainty in the highly non-linear

dynamics for some countries. As a result, delta-method-based bands can become unstable.

Therefore, we instead use simulation-based bands as in Blasques et al. (2016, Section 3.3).

Simulation-based confidence bands build on the asymptotic normality of ✓̂. In particular,

we draw S parameter values ✓̂s, s = 1, . . . , S from the distribution N(✓̂, Ŵ ), where Ŵ is the

estimated covariance matrix of ✓̂, e.g., a sandwich covariance matrix estimator. If the finite-

sample distribution of ✓̂ were known, that could be used instead. For each draw ✓̂
s we now

run the filter for ft from t = 1 to t = T , thus obtaining S paths f̂
s
t , for s = 1, . . . , S and

t = 1, . . . , T . These paths account automatically for all non-linearities in the dynamics for ft.

The simulated bands can now be obtained directly by calculating the appropriate percentiles
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for each t over the S draws of the paths f̂ s
t for s = 1, . . . , S.

2.3 Parameter estimation

Parameter estimates can be obtained in a standard way by numerically maximizing the log-

likelihood function. Observation-driven time series models such as (3) – (10) are attractive

because the log-likelihood is known in closed form. For a given set of time series observations

x1, . . . , xT , the vector of unknown parameters ✓ can be estimated by maximizing the log-

likelihood function with respect to ✓. The average log-likelihood function is given by

L (✓|FT ) = (T ⇤)�1
TX

t=1

1{xt > 0} · ln p(xt; �t, ⇠t)

= (T ⇤)�1
TX

t=1

1{xt > 0} ·

� ln(�t)�

✓
1 +

1

⇠t

◆
ln

✓
1 + ⇠t

xt

�t

◆�
, (11)

where T
⇤ =

PT
t=1 1{xt > 0} is the number of POT values in the sample. Maximization of

(11) can be carried out using a conveniently chosen quasi-Newton optimization method.

Blasques et al. (2020) provide conditions under which the maximum likelihood estimator

of ✓ is consistent and asymptotically normally distributed within the class of correctly-

specified score-driven models. They also prove that (quasi-)maximum likelihood estimation

of ✓ can remain consistent (to pseudo-true values) and asymptotically normal even if the

score-driven model is misspecified in terms of ln p(xt; ft). This is reassuring since the GPD is

never exact for any finite value of ⌧ < 1. In the presence of misspecification, score updates

continue to minimize the local Kullback-Leibler divergence between the true conditional

density and the model-implied conditional density, and remain optimal in this sense; see

Blasques et al. (2015). The asymptotic covariance matrix W = Var(✓̂) then takes its usual

sandwich form; see e.g. Davidson and MacKinnon (2004, Ch. 10) and Blasques et al. (2020).

The autoregressive parameter a⌧ in (10) cannot be estimated using (11). Another objec-

tive function is needed in this case. We suggest using the average quantile regression check
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function of Koenker (2005, Ch. 3). The optimization problem can be formulated as

min
{a⌧}

T
�1

TX

t=1

⇢ (✏t � ⌧t) () min
{a⌧}

T
�1

TX

t=1

(✏t � ⌧t) (� 1{✏t < ⌧t})

() max
{a⌧}

T
�1

TX

t=1

(✏t � ⌧t) ((1� )� 1{✏t > ⌧t}) , (12)

where ⇢(ut) = ut (� 1{ut < 0}), and ⌧t evolves as in (10). See also Engle and Manganelli

(2004) and Catania and Luati (2019) for the use of this objective function in a di↵erent

dynamic context. In practice, we estimate all thresholds ⌧t via (12) before maximizing (11).1

2.4 A conditional location–scale–df model

This section introduces a score-driven location–scale–df model that can be used to pre-filter

univariate time series data yt that is arbitrarily fat-tailed, where df denotes the degrees of

freedom. The model modifies the setting of Lucas and Zhang (2016) with a Student’s t

distribution with time-varying volatility and degrees of freedom parameters to a setting that

also allows for a time-varying location µt parameter and to more extreme tails (⌫t < 2), in

which case the volatility no longer exists, but a time varying scale parameter �t > 0 does

exist. Since all parameters are time-varying, using this model minimizes the risk of mistaking

time-variation in the center of the distribution for time-variation in the tail, and vice versa.

The restriction ⌫t > 0 aligns closely with the assumption ↵t > 0 and ⇠t > 0 in Section 2.1.

For the purposes of pre-filtering, in this section yt is assumed to be generated by

yt ⇠ t(yt;µt, �t, ⌫t), (13)

1Numerical gradient-based optimizers, such as e.g. MaxBFGS, may only indicate weak convergence at
the optimum of (12). This is due to the piecewise linear objective function. The optimizer at hand may
not be suited for such a function, and will end up in a kink. This is not a problem, assuming we are not
interested in standard errors for a⌧ . Alternatively the interior point algorithm of Koenker and Park (1996)
could be used.
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where µt = E[yt | Ft�1] if ⌫t > 1, and
p
⌫t/(⌫t � 2) �t is the conditional volatility of yt if

⌫t > 2. All time-varying parameters are modeled in a score-driven way as

µt+1 = !
µ + a

µ
s
µ
t + b

µ
µt + c

µ
zt + d

µ
yt, (14)

ln �t+1 = !
� + a

�
s
�
t + b

� ln �t + c
�
zt + d

�1{yt > µt}sLevt , (15)

⌫t+1 = !
⌫ + a

⌫
s
⌫
t + b

⌫
⌫t + c

⌫
zt, (16)

where !
(·), a(·), b(·), c(·), and d

(·) are scalar parameters to be estimated, and zt is a vector of

additional conditioning variables which may be available. The required scaled scores are

s
µ
t =

(⌫t + 3)(yt � µt)

⌫t + �
�2
t (yt � µt)2

, (17)

s
�
t =

⌫t + 3

2⌫t
·
✓
(⌫t + 1)(yt � µt)2

⌫t�
2
t + (yt � µt)2

� 1

◆
, (18)

s
⌫
t =

1

2


⌫t

4
�
00
✓
⌫t + 1

2

◆
� ⌫t

4
�
00
⇣
⌫t

2

⌘
+

1

2

⌫t + 5

(⌫t + 1)(⌫t + 3)

��1


1

⌫t
+ �

0
⇣
⌫t

2

⌘
� �

0
✓
⌫t + 1

2

◆
+ ln

✓
1 +

(yt � µt)2

⌫t�
2
t

◆
� ⌫t + 1

⌫t

(yt � µt)2

⌫t�
2
t + (yt � µt)2

�
, (19)

where the functions �0 (x) and �
00 (x) are the first and second derivatives of the log-gamma

function. We refer to Web Appendix D for a derivation of (17) – (19).

The “leverage” term d
� · 1{yt > µt}sLevt in (15) allows ln �t+1 to be higher (or lower,

depending on the sign of d�) when yt is above its location µt. The term s
Lev
t = s

�
t (yt)�s

�
t (µt)

is constructed such that the score is continuous at µt. Leverage specifications are often

found to be valuable in many empirical applications; see e.g. Engle and Patton (2001). The

deterministic parameters in (14) – (16) can be estimated by (quasi-)maximum likelihood

methods in line with the discussion in Section 2.3.

2.5 Market risk measures

Market risk measurement is a major application of EVT methods in practice; see Manganelli

and Engle (2004) and McNeil et al. (2010). We consider the conditional VaR and conditional

ES as measures of one-step-ahead market risk. The GPD approximation (2) – (3) yields
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useful closed-form estimators of the VaR and ES for high upper quantiles � > G(⌧ | Ft�1);

see McNeil and Frey (2000) and Rocco (2014). We can estimate the 1� � tail probability of

yt based on the GPD cdf for xt, obtaining

VaR�(✏t | Ft�1, ✓) = ⌧t + �t⇠
�1
t

"✓
1� �

t⇤/t

◆�⇠t

� 1

#
,

VaR�(yt | Ft�1, ✓) = µt + �tVaR
�(✏t | Ft�1, ✓), (20)

where µt and �t are defined below (1), and t
⇤ is the number of observations of xt > 0 up to

time t, i.e., the number of observations ys for s = 1, . . . , t for which ys > ⌧s. Put di↵erently,

t
⇤
/t is an estimator of the tail probability t = G(⌧t | Ft�1).

The conditional ES is the average conditional VaR in the tail across all quantiles � (see

McNeil et al., 2010, Chapter 2), provided ⇠t < 1. The closed-form expressions are

ES�(✏t | Ft�1, ✓) =
1

1� �

Z 1

�

VaR�̃(✏t | Ft�1, ✓)d�̃

=
VaR�(✏t | Ft�1, ✓)

1� ⇠t
+

�t � ⇠t⌧t

1� ⇠t
,

ES�(yt | Ft�1, ✓) = µt + �tES
�(✏t | Ft�1, ✓); (21)

see Web Appendix E for a derivation of (20) – (21). The ES�(yt| · ) is strictly higher than the

VaR�(yt| · ) at the same confidence level, as it “looks further into the tail.” It can be shown

that the ratio ES�(yt| · )/VaR�(yt| · ) increases monotonically in ⇠t for � ! 1, indicating

that expected losses beyond the VaR become increasingly worse for heavier-tailed (higher

⇠t) distributions. Maximum likelihood estimators of the conditional VaR and conditional ES

can be obtained by inserting filtered estimates of µt, �t, ⇠t and �t into (20) and (21).

For later reference, the sensitivity of VaR�(yt) to bond purchases zt�1 is given by

dVaR�(yt)

dzt�1
=

@VaR

@µt

dµt

dzt�1
+

@VaR

@�t

d�t

d ln �t

d ln �t

dzt�1
+

@VaR

@�t

d�t
df �

t

df �
t

dzt�1
+

@VaR

@⇠t

d⇠t

df ⇠
t

df ⇠
t

dzt�1
.

The expression is intuitive: extreme upper quantiles can change if bond purchases zt�1 a↵ect
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the conditional location µt, the conditional scale �t, the tail scale �t, or the tail shape ⇠t.

The derivative is given by

dVaR�(yt)

dzt�1
=c

µ + �tVaR
�(✏t)c

� + �t (VaR
�(✏t)� ⌧t) c

�

��t

(
VaR�(✏t)� ⌧t + �t

✓
1� �

t⇤/t

◆�⇠t

ln

✓
1� �

t⇤/t

◆)
c
⇠
, (22)

where µt and �t are given by (14) and (15), f ⇠
t and f

�
t are given by (9) with C = (c�, c⇠)0.

3 Simulation study

This section studies the question whether our score-driven modeling approach can reliably

recover the time series variation in tail shape and tail scale in a variety of potentially chal-

lenging settings. In addition, we are interested in how to best choose the thresholds ⌧t, as

well as the accuracy of EVT-based market risk measures when used in combination with our

modeling approach.

3.1 Simulation design

Our simulation design considers D = 2 di↵erent densities (GPD and t), P = 4 di↵erent

parameter paths for tail shape and tail scale, and H = 3 di↵erent ways to obtain the

appropriate thresholds ⌧t. This yields 2 ⇥ 4 ⇥ 3 = 24 simulation experiments. In each

experiment, we draw S = 100 univariate simulation samples of length T = 25, 000. We focus

on the upper 1�  = 5% tail. As a result, approximately 25, 000 · 0.05 = 1, 250 observations

are available in each simulation to compute informative POTs xt > 0. The time series

dimension T is chosen to resemble that of the empirical data considered in Section 4.

GPD and t-densities: We first simulate yt from a GPD distribution with time-varying tail

shape ↵�1
t and tail scale �t, yt ⇠ GPD(↵�1

t , �t). We then consider a Student’s t distribution

with time-varying scale �t and degrees of freedom ↵t, yt ⇠t(0, �t,↵t). POT values xt are

obtained as xt = yt � ⌧t.
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Parameter paths: We consider four di↵erent paths for the tail shape ↵�1
t and tail scale �t

parameters. For both GPD and t densities we consider

(1) Constant: ↵�1
t = 0.5, �t = 1;

(2) Sine and constant: ↵�1
t = 0.5 + 0.3 sin(4⇡t/T ), �t = 1;

(3) Slow sine and frequent sine: ↵�1
t = 0.5 + 0.3 sin(4⇡t/T ), �t = 1 + 0.5 sin(16⇡t/T );

(4) Synchronized sines: ↵�1
t = 0.5 + 0.3 sin(4⇡t/T ), �t = 1 + 0.5 sin(4⇡t/T ).

Path (1) considers the special case of time-invariant tail shape and scale parameters. Natu-

rally, we would want our dynamic framework to cover constant parameters as a special case.

Path (2) allows the tail shape to vary considerably between 0.2 and 0.8, while keeping the

scale (volatility) of the data constant. This parameter path corresponds to the empirical

practice of working with volatility pre-filtered data. Path (3) stipulates that both parame-

ters vary over time. Finally, Path (4) considers the case of synchronized variation in both

parameters. This setting may be particularly challenging for two reasons. First, the tail

observations occur most frequently when both tail shape and scale are high, making it po-

tentially di�cult to disentangle the two e↵ects. Second, less information about the tail is

available when both parameters are low simultaneously.

Di↵erent thresholds: We consider three thresholds ⌧t. First, we use the true time-varying

95%–quantile based on our knowledge of the true density and of ↵t and �t. This constitutes

an infeasible best benchmark. Second, we construct ⌧t as the 95%–quantile of the expanding

window of data up to time t, i.e. ⌧t = Q
0.95
1:t ({"1, . . . , "t}). Finally, we use the recursive

specification (10), with a
⌧ fixed at 0.25, and initialized at ⌧1 = Q

0.95
1:T .

Evaluation metrics: Our main metric for evaluating model performance is the root

mean squared error RMSE = 1
S

PS
s=1

q
1
T

PT
t=1(⇠̂st � ⇠̄st)2, where ⇠̂st is the estimated tail

shape parameter in simulation s, ⇠̄st is the corresponding (pseudo-)true tail shape, s =

1, . . . , S denotes the simulation run, and t = 1, . . . , T is the number of observations in

each draw. The RMSE for the tail scale parameter �t is obtained analogously, RMSE =

1
S

PS
s=1

q
1
T

PT
t=1(�̂st � �̄st)2, where �̄st denotes the pseudo-true value of �st. The pseudo-true
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Figure 2: Simulation results: a representative example

Time series data is here generated as yt ⇠t(0,�t,↵t), where ↵�1
t = 0.5 + 0.3 sin(4⇡t/T ) and �t = 1 +

0.5 sin(16⇡t/T ). This is Path 3 in Section 3.1. Pseudo-true parameter values are reported in solid red. The
four panels report estimates of ⇠t, �t, VaRt, and ESt, respectively. Median filtered values are plotted in solid
black. The first two panels also indicate the lower 5% and upper 95% quantiles of the estimates (black dots).
The time-varying threshold ⌧̂t is estimated based on the recursive specification (10) in conjunction with the
objective function (12).
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values ⇠̄st and �̄st are obtained by numerically minimizing the Kullback-Leibler divergence

between the GPD and the data generating process beyond the true time-varying 95% quan-

tile ⌧t. As the true conditional density is known at all times in a simulation setting, these

pseudo-true benchmarks are easily computed. We note that particularly the GPD scale pa-

rameter �̄t may have very di↵erent dynamics from �t, as it combines dynamics in ↵t and �t

via the EVT limiting expression in (2).

3.2 Simulation results

Table 1 presents root mean squared error (RMSE) statistics for tail shape ⇠̂s,t, tail scale �̂s,t,

and Value-at-Risk dVaRs,t estimates. Figures F.1 and F.2 in Web Appendix F.1 compare

median estimated parameter paths for ⇠̂t, ⇠̂t, dVaR
0.99

, and cES
0.99

to their (pseudo-)true

values. Figure 2 is a representative example of the simulation outcomes when yt is generated

by a Student’s t distribution.

We focus on three main findings. First, all models seem to work well in recovering the

true underlying ⇠t and �t dynamics. The median estimates in Figures F.1 and F.2 tend to

be close to their (pseudo-)true values. Particularly the sometimes highly non-linear patters
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Table 1: Simulation RMSE results

Root mean squared error (RMSE) statistics for two di↵erent distributions (GPD and t, in columns) and
for four di↵erent parameter paths for tail shape ⇠t and tail scale �t (paths (1) – (4), in rows). Thresholds
⌧t, ⌧̂t, and ⌧̂⇤t denote i) the infeasible true time-varying threshold, ii) the empirical quantile associated
with an expanding window of observations y1, . . . , yt, and iii) the estimated conditional quantile using
(12) with a⌧ = 0.25, respectively. We consider 100 simulations for each DGP, and a time series of 25, 000
observations in each simulation. Model performance is measured by the RMSE from the true ⇠̄t and �̄t in
each draw. For VaR, model performance is measured in relative terms as RMSE rescaled by the squared VaRt.

Model GPD(⌧t) GPD(⌧̂t) GPD(⌧̂⇤t ) t(⌧t) t(⌧̂t) t(⌧̂⇤t )
(infeasible) (infeasible)

RMSE ⇠̂s,t
(1) 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
(2) 0.171 0.177 0.178 0.182 0.188 0.189

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
(3) 0.182 0.188 0.189 0.190 0.197 0.197

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
(4) 0.177 0.186 0.183 0.188 0.195 0.192

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

RMSE �̂s,t
(1) 0.005 0.014 0.068 0.005 0.010 0.034

(0.003) (0.006) (0.013) (0.002) (0.004) (0.006)
(2) 1.646 1.774 1.753 0.580 0.589 0.588

(0.034) (0.040) (0.036) (0.013) (0.012) (0.013)
(3) 2.421 2.913 2.813 0.836 0.960 0.924

(0.054) (0.054) (0.049) (0.015) (0.020) (0.017)
(4) 2.608 2.904 2.844 0.925 0.970 0.964

(0.057) (0.059) (0.059) (0.020) (0.020) (0.022)

RMSE dVaRs,t

(1) 0.001 0.003 0.016 0.124 0.124 0.149
(0.001) (0.002) (0.003) (0.001) (0.001) (0.002)

(2) 0.924 0.987 0.964 0.249 0.243 0.257
(0.027) (0.032) (0.031) (0.003) (0.003) (0.003)

(3) 1.063 1.304 1.209 0.322 0.344 0.349
(0.025) (0.041) (0.033) (0.004) (0.005) (0.004)

(4) 1.020 1.120 1.083 0.302 0.297 0.319
(0.027) (0.028) (0.028) (0.003) (0.003) (0.003)

of �t are recovered well. The model also captures well the peaks of ⇠t, so the fattest tails.

The model needs some time to recognize that the extreme tail has become more benign, i.e.,

that ⇠t has gone down. The good fit is corroborated by Table 1. Both estimation methods

for ⌧t only loose about 10% RMSE for ⇠t and �t compared to the use of the true (infeasible)

⌧t.

Second, when comparing the recursive estimate ⌧̂t versus the dynamic ⌧ ⇤t of Patton et al.
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(2019) in Table 1, di↵erences are mostly small and insignificant. If there is no time-variation

(path (1)), the recursive estimate does slightly better, as expected. The converse is true for

�t if the true parameters vary over time.

Third, Figure 2 as well as Figures F.1 and F.2 in Web Appendix F.1 corroborate that our

EVT-based market risk measures, such as VaR and ES at a high confidence level � = 0.99,

tend to be estimated su�ciently accurately when used in combination with our modeling

approach. The low and high frequency dynamics of the VaR and ES are both captured

well. There only appears some under-estimation of the ES at its very peak where tails

are extremely fat. Overall, we conclude that the model captures well the dynamics of the

tails, even if the model does not coincide with the data generating process and is therefore

misspecified.

4 The tail impact of Eurosystem asset purchases

4.1 Data

4.1.1 High-frequency data on bond yields

We obtain high-frequency data on changes in euro area sovereign bond yields from Thomson

Reuters/Datastream, focusing on Spanish (EN), Greek (GR), Irish (IE), Italian (IT), and

Portuguese (PT) five-year sovereign benchmark bonds. These market segments were among

the most a↵ected by the euro area debt crisis; see e.g. ECB (2014). SMP bond purchases

undertaken during the debt crisis predominantly targeted the two- to ten-year maturity

bracket, with the five-year maturity approximately in the middle of that spectrum. We

focus on the impact on five-year benchmark bonds for this reason. We model the midpoint

between ask and bid prices. Bond prices are expressed in yields-to-maturity and are obtained

from continuous dealer quotes.

Our sample ranges from 04 January 2010 to 31 December 2012, covering the most in-

tense phase of the euro area sovereign debt crisis. The bond yields are sampled at the

15-minute frequency between 8AM and 6PM. Following Ghysels et al. (2017) we do not
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consider overnight changes in yield, such that the first 15-minute interval covers 8AM to

8:15AM. This yields 40 intra-daily observations per trading day. This yields 40 intra-daily

observations per day, with T ⇡ 3⇥ 260⇥ 40 ⇡ 31, 000 observations per country.

The Greek data are an exception. Greek bonds experienced a credit event on 09 March

2012. In January and February 2012 the five-year benchmark bond continued trading, infre-

quently and at low prices, until approximately one week before the credit event. Our Greek

data sample ends on 02 March 2012 for this reason. We include the Greek pre-default data

as a truly extreme case, allowing us to “stress-test” our EVT estimation methodology.

Figure F.3 in the Web Appendix F.2 plots the yield-to-maturity of our five benchmark

bond yields in levels and in first di↵erences. All five yields exhibited large and sudden moves,

leading to volatility clustering and extreme realizations of yield changes during the euro area

sovereign debt crisis.

Table 2 provides summary statistics for changes in our five benchmark bond yields sam-

pled at the 15-minute frequency. All time series have significant non-Gaussian features under

standard tests and significance levels. In particular, we note the non-zero skewness and large

values of kurtosis for almost all time series in the sample. Yield changes are covariance sta-

tionary according to standard unit root (ADF) tests. Most yield changes are below one bps

in absolute value. This suggests that the data are not only heavy-tailed, but also extremely

peaked around zero in the center. The pronounced non-Gaussian data features strongly

suggest a non-Gaussian empirical framework for modeling conditional location, dispersion,

and higher-order moments.

4.1.2 High–frequency data on Eurosystem bond purchases

We study the impact of SMP bond purchases between 2010 and 2012 for five euro area coun-

tries: Greece, Ireland, Italy, Portugal, and Spain. At the end of our sample, the Eurosystem

held e99.0 bn in Italian sovereign bonds, e30.8 bn in Greek debt, e43.7 bn in Spanish debt,

e21.6 bn in Portuguese debt, and e13.6 bn in Irish bonds; see the ECB (2013)’s Annual

Report. The SMP’s daily cross-country breakdown of the purchase data is still confidential

at the time of writing. We use the country-specific data on SMP purchases when studying
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Table 2: Data descriptive statistics

Summary statistics for changes in five-year sovereign benchmark bond yields measured in percentage points.
Columns labeled EN, GR, IE, IT, and PT refer to Spanish, Greek, Irish, Italian, and Portuguese five-year
benchmark bond yields. The sample ranges from 04 January 2010 to 28 December 2012. The Greek
sample ends on 02 March 2012. Reported p-values for skewness and kurtosis refer to D’Agostino et al.
(1990)’s test. The last row reports the fraction of yield changes smaller than one basis point in absolute value.

EN GR IE IT PT
Median 0.00 0.00 0.00 0.00 0.00
Std. dev. 0.02 0.46 0.06 0.03 0.08
Minimum -0.74 -20.73 -0.91 -0.39 -1.15
Maximum 0.47 14.77 1.45 0.43 1.20
Skewness -42.29 -104.76 34.11 14.91 12.40
Skew. p-value 0.00 0.00 0.00 0.00 0.00
Kurtosis 357.94 195.05 301.26 293.40 279.44
Kurt. p-value 0.00 0.00 0.00 0.00 0.00
Fraction yt < 1 bp 81% 77% 81% 81% 77%

the impact of the program.

The SMP had the objective of helping to restore the monetary policy transmission mech-

anism by addressing the malfunctioning of certain government bond markets. The SMP

consisted of interventions in the form of outright secondary market purchases. Implicit in

the concept of malfunctioning markets is the notion that government bond yields can be

unjustifiably high and volatile.

Figure 3 plots weekly total SMP purchases across countries as well as their accumulated

book value over time. Approximately e214 billion (bn) of bonds were acquired within

the SMP between 2010 and early 2012. The SMP was announced on 10 May 2010 and

initially focused on Greek, Irish, and Portuguese debt securities. The program was extended

to include Italian and Spanish bonds on 8 August 2011. The SMP was replaced by the

Outright Monetary Transactions (OMTs) program on 6 September 2012; see Cœuré (2013).

Visibly, the purchase data are unevenly spread over time. Between 10 May 2010 and Spring

2012 there are long periods during which the SMP was open but inactive.

The SMP purchase data are time-stamped, allowing us to construct time series data

zt of country-specific SMP purchases at the high (15-minute) frequency. The 15-minute

frequency is chosen because 15 minutes is the regulatory limit for the recording of trades
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Figure 3: Weekly and total SMP purchase amounts.

The figure plots the book value of settled SMP purchases as of the end of a given week. We report weekly
purchases across countries (left panel) as well as the cumulative amounts (right panel). Maturing amounts
are excluded.
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by the Eurosystem. Observations zt contain all sovereign bond purchases at par (nominal)

value between t � 1 and t for the respective country, not only purchases of the five-year

benchmark bond.

4.2 Location–scale–df model estimates

This section applies the location–scale–df model of Section 2.4 to study changes in the yield-

to-maturity of five-year sovereign benchmark bonds as discussed in Section 4.1.1. We are

particularly interested in each series’ location, scale, and degrees of freedom, and how these

respond to Eurosystem bond purchases.

We apply the model to the raw data series after removing a (negligible) intra-daily pattern

via dummy variable regression. We introduce two simplifications to the general specification.

First, preliminary analyses suggest that the location parameters are approximately time-

invariant, such that a
µ and b

µ are close to zero. We proceed by imposing this restriction.

Note that the specification for the mean still includes dµ · yt�1 to accommodate a potentially

negative serial correlation at the 15-minute frequency; see e.g. Roll (1984). Second, we find

that the persistence (b� and b
⌫) in volatility and degrees of freedom parameters is very high.

We therefore set !� = !
⌫ = 0 and b

� = b
⌫ = 1, thus adopting the EWMA restricted score
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Table 3: Parameter estimates for the location–scale–df model

Parameter estimates for the univariate location–scale–df model (13). Rows labeled EN, GR, IE, IT, and
PT refer to Spanish, Greek, Irish, Italian, and Portuguese five-year benchmark bond yields. The estimation
sample ranges from 04 January 2010 to 28 December 2012 for all countries except Greece. Standard error
estimates are in round brackets and are taken from a sandwich covariance matrix. P-values are provided in
square brackets.

EN GR IE IT PT
!µ 0.013 -0.038 0.003 -0.003 -0.016

(0.007) (0.024) (0.005) (0.007) (0.006)
[0.046] [0.108] [0.641] [0.618] [0.004]

cµ -2.623 -2.856 0.017 -1.479 -0.053
(SMP) (0.941) (2.483) (1.594) (0.552) (2.068)

[0.005] [0.250] [0.992] [0.007] [0.980]
dµ -0.039 -0.000 -0.010 -0.029 -0.004
(AR1) (0.007) (0.000) (0.002) (0.010) (0.001)

[0.000] [0.200] [0.000] [0.004] [0.003]
a� 0.107 0.141 0.135 0.124 0.089

(0.015) (0.011) (0.012) (0.013) (0.011)
[0.000] [0.000] [0.000] [0.000] [0.000]

c� -0.126 -0.055 -0.461 -0.049 -0.441
(SMP) (0.089) (0.115) (0.324) (0.050) (0.228)

[0.158] [0.635] [0.155] [0.325] [0.053]
d� 0.004 -0.004 -0.000 0.005 -0.000
(LEV) (0.001) (0.001) (0.001) (0.002) (0.001)

[0.006] [0.001] [0.885] [0.002] [0.641]
a⌫ 0.004 0.018 0.007 0.006 0.008

(0.001) (0.002) (0.001) (0.001) (0.001)
[0.000] [0.000] [0.000] [0.000] [0.000]

c⌫ 0.031 0.042 0.022 0.013 0.000
(SMP) (0.014) (0.027) (0.035) (0.007) (0.028)

[0.033] [0.122] [0.530] [0.052] [0.993]
loglik -56226.2 -68788.4 -68584.7 -56218.6 -78164.0
AIC 112468.4 137592.9 137185.4 112453.2 156343.9
BIC 112534.9 137656.8 137252.0 112519.8 156410.6

dynamics of Lucas and Zhang (2016) for the scale and df parameters. A comparison of model

selection criteria (AIC, BIC) across model specifications confirms these choices. With these

simplifications in place, Table 3 now presents the parameter estimates.

We focus on three findings in Table 3. First, SMP bond purchases tended to lower the

conditional location of future bond yields for most countries. The estimate of cµ is negative

for four out of five countries, and is statistically significantly negative for two of them. The

estimated impacts for the two largest SMP countries, Italy and Spain, are -1.5 bps and -2.6

bps per e1 bn of purchases, respectively. The highest impact per e1 bn is observed for
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Greek bonds, at -2.9 bps per e1 bn of purchases. Greek bonds were the most illiquid at the

time. The estimates of cµ for IE and PT are smaller in magnitude and not significant. Since

the yields are modeled in first di↵erences and a
µ = b

µ = 0, these impacts are associated

with long-lasting (permanent) changes in yield levels. Overall, our cµ estimates are in line

with those obtained by Eser and Schwaab (2016) based on daily data and factor modeling

techniques, and approximately similar but less dispersed than those obtained by Ghysels

et al. (2017) based on high-frequency data and VAR/GARCH modeling techniques.

Second, our parameter estimates for c� suggest a reduction in scale (volatility) following

SMP bond purchases. The point estimates are all negative, although none are statistically

significant at a 5% confidence level. Sizeable standard error estimates for c
� are intuitive

because the SMP intervention data is scarce even at the 15-minute frequency and the log-

scale is subject to pronounced time series variation.

Third, the point estimates of c⌫ are all positive, and statistically significant in one case

(EN, with IT a borderline case). As a result, the time-varying degrees of freedom ⌫t tend

to increase following SMP bond purchases, suggesting an increasingly “Gaussian” tail shape

when the central bank is active as a buyer-of-last-resort. Taken together, the estimates of

c
µ
< 0, c� < 0, and c

⌫
> 0 suggest an overall beneficial, market–stabilizing impact of the

bond purchases on sovereign bond yields.

The remaining parameter estimates in Table 3 can be interpreted as follows. The autore-

gressive coe�cients dµ associated with lagged yt�1 are all negative. The negative autocorre-

lation is in line with severely illiquid markets for all five sovereign bonds during our sample;

see Roll (1984). The intercept terms !µ are small and statistically di↵erent from zero only

in two out of five cases (for EN and PT). The leverage terms d� are positive and statistically

significant for EN and IT. In these cases an increase in yield has a greater influence on future

log–scale than a decrease.

Figure 4.2 plots all time-varying parameters µt, �t, and ⌫t. The conditional location

parameters µt (left column) tend to be small and rarely exceed one bp in absolute value. The

observed time-variation is due to the inclusion of the lagged term yt�1 and bond purchases

zt�1. High values for the conditional scale �t (middle column) are visible for Greece, Ireland
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Figure 4: Filtered location, scale, and degrees of freedom parameters

Filtered location (first column), scale (second column) and degrees of freedom (third column) parameters
associated with the location–scale–df model introduced in Section 2.4. Rows labeled EN, GR, IE, IT, and
PT refer to Spanish, Greek, Irish, Italian, and Portuguese five-year benchmark bond yields. Greek bonds
discontinued trading after 02 March 2012, and experienced a credit event on 09 March 2012.
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and Portugal in 2010, and for Spain and Italy in late 2011. The conditional df parameters ⌫t

(right column) suggest that the conditional distribution is profoundly heavy-tailed, even after

allowing for time-variation in the location and scale parameters. The df parameter associated

with the Greek data declines almost monotonically until the credit event in March 2012.
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Table 4: Parameter estimates

Parameter estimates for the extended (with SMP purchases zt) tail shape model. Columns labeled EN, GR,
IE, IT, and PT refer to Spanish, Greek, Irish, Italian, and Portuguese five-year benchmark bond yields.
The estimation sample ranges from 04 January 2010 to 28 December 2012 for all countries except Greece.
Standard error estimates are in round brackets and are constructed from a sandwich covariance matrix.
P-values are in square brackets.

EN GR IE IT PT
↵⇠ 0.006 0.032 0.021 0.055 0.026

(0.006) (0.006) (0.007) (0.012) (0.011)
[0.291] [0.000] [0.005] [0.000] [0.023]

↵� 0.027 0.144 0.078 0.027 0.103
(0.007) (0.026) (0.014) (0.006) (0.015)
[0.000] [0.000] [0.000] [0.000] [0.000]

c⇠ 0.001 0.005 0.033 -0.009 -0.033
(0.006) (0.014) (0.045) (0.010) (0.029)
[0.847] [0.705] [0.467] [0.376] [0.258]

c� -0.013 -0.031 0.060 -0.011 0.107
(0.014) (0.034) (0.077) (0.005) (0.083)
[0.344] [0.362] [0.433] [0.036] [0.196]

a⌧ 0.010 0.312 0.143 0.027 0.263
T 30279 21839 30799 30519 30719
T ⇤ 3003 2223 3093 3041 3084
loglik -102027.1 -152861.1 -226080.5 -103050.5 -306523.8
AIC 204062.1 305730.2 452168.9 206109.0 613055.7
BIC 204095.4 305762.2 452202.3 206142.3 613089.0

4.3 Tail shape and tail scale estimates

This section discusses our time-varying tail shape (⇠t) and tail scale (�t) estimates. We focus

on results obtained from pre-filtered data, where we used the fitted location–scale–df model

from Section 4.2 to clean yt from location and scale e↵ects. Web Appendix G presents the

analogous tail shape and scale estimates from raw bond yield data, allowing us to compare

the two approaches; see Section 4.4. Our main results are based on POT observations

xt = (yt � µ̂t)/�̂t � ⌧̂t if (yt � µ̂t)/�̂t > ⌧̂t and xt = missing otherwise, where µ̂t and �̂t are

the location and scale estimates as reported in Figure 4.2, and where ⌧̂t was obtained using

the autoregressive specification (10) in conjunction with the objective function (12).

Preliminary analyses suggest that changes in the tail shape and scale parameters are

highly persistent for our high-frequency data. We thus set !
⇠ = !

� = 0 and b
⇠ = b

� = 1

to simplify the model, again adopting the EWMA restricted score dynamics of Lucas and
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Zhang (2016) for these parameters. We also set the smoothing parameter � = 0, see (7),

given the absence of mean reversion in ln ⇠t and ln �t at the 15-minute frequency.2 We allow

C 6= 0 such that SMP bond purchases zt�1 can impact both ln ⇠t and ln �t via their impact

coe�cients c⇠ and c
�. A comparison of unreported model selection criteria (AIC, BIC) across

di↵erent model specifications supports these choices.

Table 4 presents tail shape estimates based on pre-filtered data. Parameters a⇠ and a
� can

be interpreted as the standard deviations of the scores driving ln ⇠t and ln �t, respectively; see

the statements above (6). The associated estimates suggest pronounced time series variation

in both parameters. The SMP impact parameters c⇠ are estimated negatively in two out of

five cases, but are not statistically significant according to their t-values. Estimates of c�

are negative in three out of five cases, and are significantly negative in one case (IT). As a

result, most of the tail impact of SMP purchases appears to have come about through its

impact on the center of the distribution (µt, �t) and not on its tail shape (�t, ⇠t).

Figure 5 plots the corresponding filtered estimates for time-varying tail shape ⇠t and tail

scale �t. Blue bars indicate the approximate timing of SMP purchases in the respective

markets. Time series variation is present and pronounced in both tail shape and tail scale

parameters. The heaviest tail is estimated for Greek bonds during the weeks preceding the

credit event on 09 March 2012. The tail shape parameter can be above one, suggesting

that no conditional mean, variance, and ES exist at such times. The other estimates for ⇠t

typically vary between zero and one. Estimates above one can occur but are temporary and

rare. Time-variation in �t is pronounced as well.

Table 5 addresses the question how market risk measures responded on average to e1

bn of central bank bond purchases. The total impact is decomposed into the impact on the

conditional location, scale, tail scale, and tail shape by setting the non-active summands in

(22) to zero. The estimates corroborate that most of the SMP’s e↵ect on extreme market

risk came from its impact on location and scale, and thus from its impact on the center of the

distribution. We estimate that the 97.5% VaR was reduced by 3.8, 6.0, 5.9, 2.1, and 6.9 bps

2The smoothing parameter � is hard to estimate numerically given the absence of mean reversion in our
high-frequency data. Fixing it to reasonable alternative values has little e↵ect on our empirical findings.

28



Figure 5: Filtered tail shape and tail scale estimates

Filtered ⇠t and �t estimates for Spanish (EN), Greek (GR), Irish (IE), Italian (IT), and Portuguese (PT)
five-year sovereign benchmark bond yields between 2010 and 2012. The sample for Greek bonds is shorter
as these bonds discontinued trading on 02 March 2012 and experienced a credit event on 09 March 2012.
Standard error bands are simulated at a 95% confidence level. Blue bars indicate the approximate timing
of SMP purchases in the respective markets. The SMP amounts are first aggregated over all five SMP
countries, then smoothed using a centered one-week moving average. The resulting common time series is
reported in the respective panel if the SMP was active for the respective market segment at the time; see
Section 4.1.2 for the respective announcement days. The scaling of the purchase amounts is omitted and
di↵ers between left and right panels only for visibility.
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Table 5: Impact of e1 bn of SMP purchases on 97.5% VaR and 99.5% VaR

The table reports the impact of e1 bn of SMP bond purchases on the 97.5% and 99.5% VaR. The total

impact is estimated as (1/
PT

t zt)
PT

t (dVaR�(yt)/dzt�1) zt�1, where dVaR�(yt)/dzt�1 is given by (22).

The total impact is decomposed into the impact on the conditional location µt, scale �t, tail scale �t, and

tail shape ⇠t by setting the non-active summands in (22) to zero. Columns labeled EN, GR, IE, IT, and PT

refer to Spanish, Greek, Irish, Italian, and Portuguese five-year benchmark bond yields.

97.5% VaR
EN GR IE IT PT

µt -2.623 -2.856 0.017 -1.479 -0.053
�t -1.155 -2.439 -6.570 -0.537 -8.006
�t -0.068 -0.702 0.587 -0.042 1.216
⇠t 0.001 0.037 0.068 -0.013 -0.040
Total -3.845 -5.961 -5.899 -2.071 -6.883

99.5% VaR
EN GR IE IT PT

µt -2.623 -2.856 0.017 -1.479 -0.053
�t -2.302 -5.361 -14.604 -1.163 -18.578
�t -0.190 -2.120 1.638 -0.131 3.556
⇠t 0.009 0.260 0.443 -0.096 -0.278
Total -5.106 -10.077 -12.507 -2.870 -15.352

per e1 bn Eurosystem intervention in Spanish, Greek, Irish, Italian, and Portuguese five-year

benchmark bonds, respectively. The impact grows with the extremeness of the VaR. The

99.5% VaR estimate is reduced, respectively, by 5.1, 10.1, 12.5, 2.9, and 15.4 bps per e1 bn

of Eurosystem purchases in the above bonds. The table also shows that these improvements

were obtained without worsening the tail risk. If anything, additional beneficial secondary

e↵ects came about via the SMP’s e↵ect on tail shape and tail scale parameters for large

economies such as Spain and Italy.3

4.4 Tail shape and tail scale estimates from raw data

We conclude our empirical study with a discussion of tail shape and tail scale estimates

from raw (un-prefiltered) data yt. The dynamic tail shape and tail scale model of Section 2

3Additional, beneficial SMP announcement e↵ects are not taken into account in Table 5. This is because
both the 09 May 2010 and 08 August 2011 SMP announcements occurred when markets were closed, and
are therefore not part of our sample. The VaR impact estimates are conservative in this sense.
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could be robust to omitted variation in the center of the distribution g(yt | Ft�1). This is

because of two e↵ects. First, the autoregressive specification of ⌧t via (10) implies that ⌧t

can adjust to time variation in the center of the distribution. The resulting exceedances

x̃t = yt � ⌧̃t from unfiltered data can therefore in practice still be close to the exceedances

xt = (yt � µt)/�t � ⌧t from pre-filtered data. Second, the dynamic specification of �t via (7)

implies that the tail scale could mop up omitted time-variation in �t, leaving ⇠t free to fit

the time-variation in tail shape.

Web Appendix G discusses our tail shape and tail scale estimates obtained from POTs

x̃t = yt � ⌧̃t, along with the model’s deterministic parameters. The deterministic parameter

estimates a
⌧ and a

� are now uniformly higher than those reported in Table 4. This is

intuitive, as both ⌧t and �t need to adjust more strongly to also pick up omitted variation

from the center of the distribution. The estimates of c�, the SMP impact on tail scale, are

now all negative, and statistically significantly negative at a 5% confidence level in two cases

(IE, PT). This is intuitive, as �t now not only captures dispersion in the tail, but to some

extent also in the center. The point estimates of c⇠ are not statistically significant. This

is in line with our earlier conclusion that most of the SMP’s beneficial impact on extreme

tail quantiles (97.5% and 99.5% VaR) does not come via its impact on tail shape and tail

scale but instead via its impact on location and scale in the center of the distribution. The

estimates ⇠̂t and �̂t from un-prefiltered data are more volatile, and visibly di↵erent from the

estimates from pre-filtered data as reported in Figure 5. This suggests that the score-driven

updates of ⌧t and �t do not fully absorb all variation in µt and �t for our data at hand. We

therefore prefer the estimates based on appropriately prefiltered data.

5 Conclusion

We introduced a semi-parametric conditional extreme value theory (EVT) modeling frame-

work to study time variation in tail fatness for long univariate time series. To this end we

modeled the time variation in the shape and scale parameters of the Generalized Pareto Dis-

tribution, which approximates the tail of most heavy-tailed densities used in econometrics
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and the actuarial sciences. We discussed the handling of non-tail time series observations,

inference on deterministic and time-varying parameters, and how to relate tail variation to

observed covariates. The model therefore complements and extends recent work based on dif-

ferent methodologies, such as the non-parametric approach to tail index variation of de Haan

and Zhou (2020), the time-varying quantile (and ES) approaches of Patton et al. (2019) and

Catania and Luati (2019), and the parametric modeling approach of Massacci (2017). We

applied the model to study the impact of bond purchases within the Eurosystem’s SMP

between 2010 and 2012 on the extreme upper tail of sovereign bond yield changes measured

at a high frequency, concluding that the program had a beneficial impact on extreme tail

quantiles, leaning against the risk of extremely adverse market outcomes while active.
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A Appendix: GPD score and scaling functions

A.1 The GPD score function

This section derives the score (5). Recall the GPD pdf as

p(xt; �t, ⇠t) =
1

�t

✓
1 + ⇠t

xt

�t

◆� 1
⇠t
�1

.

with log-likelihood contribution

lt = ln p(xt; �t, ⇠t) = � ln(�t)�
✓
1 +

1

⇠t

◆
ln

✓
1 + ⇠t

xt

�t

◆
,

where �t > 0, ⇠t > 0, and xt > 0. Using ⇠t = exp (f1t), the first element of the score is obtained as

r1t =
@l(xt; �t, ⇠t)
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,

d⇠t
df1t

= exp (f1t) = ⇠t.

Similarly, for �t = exp (f2t), the second element of the score is obtained as

r2t =
@l(xt; �t, ⇠t)
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=
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Combining the two, the unscaled score vector is given by
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A.2 The GPD scaling matrix

This section derives the scaled score (7). To this end we require the [2 ⇥ 2] conditional Fisher

information matrix associated with (5),

It = E[rtr0
t | Ft�1; ft, ✓] =

2

4I
(11)
t I(12)

t

I(21)
t I(22)

t

3

5 . (A.1)

We derive each element in turn.

Element I(11)
t

We recall that the score is zero in expectation if the model is well-specified; see Creal et al. (2013).

This implies
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The top left element of the conditional Fisher information matrix is
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where the last equality uses the fact that ft is fixed for given Ft�1. The expected negative second

derivative is given by
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where we used (A.2) in the second line, and where the last equality comes from a change of variable

substituting ut = 1 + ⇠txt/�t.

It is straightforward to check that
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Combining terms yields
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The bottom right element of the conditional information matrix is given by
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The expectation term is given by
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such that
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Elements I(12)
t and I(21)

t

The top right and bottom left elements of the conditional information matrix are given by
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The derivation proceeds along similar lines as before,
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As a result,

I(12)
t = I(21)
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.

The scaling matrix

Collecting all elements I(11)
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t we obtain the conditional Fisher information matrix as
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B Tail approximation for heavy-tailed random vari-

ables

B.1 Tail approximation for GPD random variables

Let yt ⇠ GPD(↵�1
t ,�t) be the data generating process (DGP) with F (yt) = 1� (1 + yt/(↵t�t))�↵t

as its cdf. Let ⌧ be a threshold. We have

P [Yt  yt + ⌧ | Yt > ⌧ ] =
F (yt + ⌧)� F (⌧)

1� F (⌧)

= 1� (1 + (yt + ⌧)/(↵t�t))�↵t

(1 + ⌧/(↵t�t))�↵t

= 1� (1 + (yt + ⌧)/(↵t�t))�↵t

(1 + ⌧/(↵t�t))�↵t
(B.1)

We put the slope at yt = 0 for P [Yt  yt + ⌧ | Yt > ⌧ ] equal to that of G⇠t,�t,⌧ (yt), and also have

the rate of decline the same. The latter implies ⇠t = ↵
�1
t . The former implies

�
�1
t,⌧ = �

�1
t
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=
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, �t,⌧ = �t + ↵

�1
t ⌧. (B.2)

The EVT GPD fit now has a higher and higher scale. This is intuitive, as the DGP beyond the

threshold has a flat tail. The GPD approximating tail, on the other hand, has a strong convexity

near 0, where the convexity is larger for larger ��1
t,⌧ . As the DGP tail is fit, lower and lower values of

�
�1
t,⌧ are needed as we go farther into the tails in order to match the fit of the GPD approximation

to the flat tail. The resulting approximation is

G⇠t,�t,⌧ (yt) = 1�
�
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Equation (B.3) coincides with (B.1). We can thus approximate the GPD DGP (B.1) by a GPD

that has the same tail index, but a di↵erent scale parameter. The scale parameter �t,⌧ = �t+↵
�1
t ⌧

increases with the threshold ⌧ , varies positively with the tail shape parameter ↵�1, and, importantly,

should not be expected to provide a consistent estimate of �t. If �t were time-invariant, for example

because pre-volatility-filtered data were modeled empirically, then the estimate �t,⌧ may still vary

over time to reflect time-variation in ↵t.

B.2 Tail approximation for Student’s t random variables

Let yt ⇠ t(0,�2
t ,↵t) be the data generating process with f(yt) the pdf of a Student’s t distribution

with zero mean, scale �
2
t , and ↵t degrees of freedom. Let ⌧ 2 R be a threshold.

Using the same method to match the parameters as in the previous example, we have ⇠�1
t = ↵t.

For the scale, we equate the slopes and obtain

�
�1
t,⌧ =

f(⌧)
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⌧!1⇡ �f
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,
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2
t
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+

⌧

1 + ↵t
,

which again depends on ↵t and increases in ⌧ . For large ⌧ , �t,⌧ varies inversely with ↵t, or positively

with ⇠t = ↵
�1
t . Again, we should not expect �t to be constant (or near one) even when working

with volatility-filtered data.
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C Analytic in-sample confidence bands for ft

This section provides the expressions needed for the calculation of analytic in-sample confidence

bands around the filtered time-varying parameters f̂t (✓). Such bands visualize the impact of

estimation uncertainty associated with ✓̂ on the filtered estimates f̂t. Delta-method-based bands

are devised using a linear approximation of the non-linear transition function for ft. As a by-

product of our derivation we show how to extend Blasques et al. (2016, Section 3.2) to the case of

a multivariate ft with multiple lags.

If the linear approximation is not appropriate for a given dataset at hand, however, then delta-

method-based bands can become unstable. This happens in our empirical application. In such

cases we recommend using simulation-based bands; see Sections 2.2 and 4.

Recall that ft = (f ⇠
t , f

�
t )

0, where ⇠t = exp(f ⇠
t ), �t = exp(f �

t ), and the transition equations as

ft+1 = ! +As̃t +Bft, (C.1)

s̃t = (1� �)st + �s̃t,

where ! = (!⇠
,!

�)0, A = diag(a⇠, a�), B = diag(b⇠, b�), and st is given in (7).

In practice, some parameters may need to be restricted. Vector ✓̄ = (!⇠
,!

�
, a

⇠
, a

�
, b

⇠
, b

�
,�)0 2

R7⇥1 collects all deterministic parameters of the model, while ✓ = (!⇠
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�
,↵

⇠
,↵

�
,�

⇠
,�

�
,�

uc)0 col-

lects all unconstrained parameters. The two are related, for example, through a
⇠ = exp(↵⇠),

a
� = exp(↵�), b⇠ = ⇤(�⇠), b� = ⇤(��), � = ⇤(�uc), and where ⇤(x) = (1 + exp(�x))�1 is the

logistic function. In this way, a⇠, a� > 0 and 0 < b
⇠
, b

�
,� < 1. We proceed with these restrictions,

keeping in mind that some derivatives below would need to be adjusted when other restrictions

were chosen or some parameters were fixed (for example, !⇠ = !
� = 0 and b

⇠ = b
� = 1 ).

Pre-multiplying the factor updating equation (C.1) by (1� �L) yields

(1� �L) ft+1 = (1� �L)! + (1� �L)As̃t + (1� �L)Bft,

which implies

ft+1 = (1� �)! + (�I2 +B)ft � �Bft�1 + (1� �)Ast(xt, ft)

= '(ft, ft�1; ✓) ⌘ 't+1 2 R2⇥1
.
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We assume that ✓̂�✓0⇠̇N(0,W ), where W is the asymptotic covariance matrix associated with

✓̂. A first-order Taylor series expansion around ✓0 yields
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where we defined
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Interestingly, (C.3) is a recursion in Gt+1 for given @'t+1
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@f 0
t
, @'t+1

@f 0
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. Put di↵erently, (C.3)

can be written as
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which can be computed in parallel to the recursion for ft itself. We set G1 = G2 = 0 2 R2⇥7 (or to

other sensible values).

The derivative terms in recursion (C.4) can be derived as
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0
t
, (C.6)

@'t+1
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0
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= ��B,

where @st
@✓0 = 0 (see (7)).
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The derivative terms needed in (C.5) are
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where ⇤(x) = (1 + exp(�x))�1 remains the logistic function. Finally, the expression @st
@f 0

t
in (C.6)

can be derived as @st
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t
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The factor variance is given by Vt+1 = Var
⇣
f̂t+1|xt, ft, ✓

⌘
= Gt+1WG

0
t+1, evaluated at ✓ = ✓̂.

In a standard fashion we obtain a asymptotic 95% confidence interval for f̂k,t+1 as

h
f̂k,t+1 � 1.96

p
Vkk,t+1, f̂k,t+1 + 1.96

p
Vkk,t+1

i
,

where k = 1, 2 indexes the respective element of f̂t+1 and matrix Vt+1. Asymmetric confidence

bands for (⇠̂t, �̂t)0 = exp(f̂t) can be obtained from the confidence bands for f̂t by exponentiation.
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D Scaled scores for the location-scale-df model

This appendix derives the scaled scores of the univariate location–scale–df model presented in

Section 2.4. We first recall the non-standardized Student’s t log-density as
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⌫t + 1

2
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� 1
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�
, �t > 0 and ⌫t > 0.

D.1 Scaled score for the location parameter

The score is obtained as
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Taking the conditional expectation,
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see Lange et al. (1989, Appendix B). As a result,
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D.2 Scaled score for the log-scale parameter

The score is obtained as

r�
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@f
�
t

=
@ ln g(yt;µt,�t, ⌫t)

@�t
· d�t

d ln�t

=
(⌫t + 1)(yt � µt)2

⌫t�
2
t + (yt � µt)2

� 1.

The associated Hessian is given by

H
�
t =

@
2 ln g(yt;µt,�t, ⌫t)

(@f�
t )

2
=

@r�
t

@�t
· d�t

d ln�t

=
�2⌫t(⌫t + 1)��2

t (yt � µt)2⇥
⌫t + �

�2
t (yt � µt)2

⇤2 .

Taking the conditional expectation with the help of the Beta prime distribution,

E[�H
�
t | Ft�1] =

Z 1

�1

2⌫t(⌫t + 1)��2
t (yt � µt)2⇥

⌫t + �
�2
t (yt � µt)2

⇤2 · g(yt | Ft�1)dyt

=

Z 1

�1

2⌫t(⌫t + 1)��2
t (yt � µt)2⇥

⌫t + �
�2
t (yt � µt)2

⇤2 ·
�
�
⌫t+1
2

�

�
�
⌫t
2

�p
⌫t⇡�t


1 +

(yt � µt)2

⌫t�
2
t

�� ⌫t+1
2

dyt

=

Z 1

�1
2⌫�1

t (⌫t + 1)��2
t (yt � µt)

2 ·
�
�
⌫t+1
2

�

�
�
⌫t
2

�p
⌫t⇡�t


1 +

(yt � µt)2

⌫t�
2
t

�� ⌫t+5
2

dyt

= 2⌫�1
t (⌫t + 1)��2

t

�
�
⌫t+1
2

�

�
�
⌫t
2

�p
⌫t⇡�t

Z 1

�1
(yt � µt)

2 ·

1 +

(yt � µt)2

⌫t�
2
t

�� ⌫t+5
2

dyt

= 2⌫�1
t (⌫t + 1)��2

t

�
�
⌫t+1
2

�

�
�
⌫t
2

�p
⌫t⇡�t

�
⌫t�

2
t

� 3
2 B

✓
3

2
,
⌫t + 2

2

◆

= 2(⌫t + 1)B

✓
3

2
,
⌫t + 2

2

◆
B

✓
⌫t

2
,
1

2

◆�1

= 2(⌫t + 1)
⌫t

(⌫t + 1)(⌫t + 3)

=
2⌫t

⌫t + 3
.

As a result,

s
�
t = S

�
t r�

t =
⌫t + 3

2⌫t
·
✓
(⌫t + 1)(yt � µt)2

⌫t�
2
t + (yt � µt)2

� 1

◆
.

47



D.3 Scaled score for the degrees-of-freedom parameter

The score is obtained as
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�(x) is the polygamma function of order 0. Similarly, we will use
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We take the further derivatives and obtain

@
2 ln g(yt;µt,�t, ⌫t)

(@⌫t)2
=

1

4
�
00
✓
⌫t + 1

2

◆
� 1

4
�
00
⇣
⌫t

2

⌘
+

1

2⌫2t
+

⌫
�1
t (yt � µt)2

⌫t�
2
t + (yt � µt)2

� ⌫t + 1

2
· 2⌫

�3
t �

�2
t (yt � µt)2 + ⌫

�4
t �

�4
t (yt � µt)4⇥

1 + ⌫
�1
t �

�2
t (yt � µt)2

⇤2 .

From the equation E(r�
t ) = 0 1, we know

E

(⌫t + 1)(yt � µt)2

⌫t�
2
t + (yt � µt)2

�
= 1;

E


⌫
�1
t (yt � µt)2

⌫t�
2
t + (yt � µt)2

�
=

1

⌫t(⌫t + 1)
.

So we can compute the expectation

E

@
2 ln g(yt;µt,�t, ⌫t)

(@⌫t)2

�
=

1

4
�
00
✓
⌫t + 1

2

◆
� 1

4
�
00
⇣
⌫t

2

⌘
+

1

2⌫2t
+

1

⌫t(⌫t + 1)

� E
"
⌫t + 1

2
· 2⌫

�3
t �

�2
t (yt � µt)2 + ⌫

�4
t �

�4
t (yt � µt)4⇥

1 + ⌫
�1
t �

�2
t (yt � µt)2

⇤2

#
.

We employ a change of variable ỹt =
yt�µt
�t

, and use the properties of the Beta prime distribution

1We simplify the expression E(· | Ft�1) as E(·) in this subsection.
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in the following derivations.
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The scaled score is now given by
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E Derivation of EVT-based market risk measures

This section derives the conditional risk measures (20) – (21).

We recall that ✏t = (yt�µt)/�t, xt = ✏t� ⌧t, and the notation used in Section 2. Note first that
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where t
⇤
/t serves as an estimator of G(⌧t). Since yt = µt + �t✏t,
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which coincides with (20).

The Expected Shortfall ES�(✏t) is given by
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The Expected Shortfall (21) is given by
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F Additional figures

F.1 Simulation outcomes

Figures F.1 and F.2 compare median estimated parameter paths for ⇠̂t, ⇠̂t, dVaR
0.99

, and cES
0.99

to

their true values. The simulated data are obtained from the GPD and Student’s t distributions,

respectively.

Our EVT-based market risk measures, such as VaR and ES at a high confidence level � = 0.99,

tend to be estimated su�ciently accurately when used in combination with our modeling approach.

The low and high frequency dynamics of the VaR and ES are both captured well. There only

appears some under-estimation of the ES at its very peak where tails are extremely fat. Overall,

the model captures well the dynamics of the tails, even if the model does not coincide with the

data generating process.
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Figure F.1: Simulation results for GPD parameters and risk measures

Rows refer to the di↵erent parameter paths (1) – (4) for GPD-distributed observations yt. Columns refer
to filtered estimates of ⇠t, �t, VaRt, and ESt, respectively. Pseudo-true values are reported in solid red.
Median filtered values are reported in solid black. The first two columns also indicate the lower 5% and
upper 95% quantiles of filtered tail shape and tail scale estimates. All panels use the time-varying empirical
quantile ⌧̂t as the tail threshold.
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Figure F.2: Simulation results for Student’s t distribution

Rows refer to the di↵erent parameter paths (1) – (4) for Student’s t-distributed observations yt. Columns
report filtered estimates of ⇠t, �t, VaRt, and ESt, respectively. Pseudo-true values are reported in solid red.
Median filtered values are reported in solid black. The first two columns also indicate the lower 5% and upper
95% quantiles of filtered estimates. All panels use the time-varying empirical quantile ⌧̂t as the tail threshold.
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F.2 Plot of sovereign bond yields

Figure F.3 plots the yield-to-maturity of our five benchmark bond yields in levels (left panel) and

in first di↵erences (middle panels). A non-parametric Epanechnikov kernel and Gaussian density

estimate are fitted to the histogram of yield changes over time (right panels). All five yields

exhibited large and sudden moves, leading to volatility clustering and extreme realizations of yield

changes during the euro area sovereign debt crisis. The Gaussian approximation in the right panels

is a visibly bad fit.

Figure F.3: Five-year sovereign benchmark bond yields

Five-year sovereign benchmark bond yields in levels (left column), in first di↵erences (middle column), and
as a histogram with a non-parametric Epanechnikov kernel and Gaussian density estimate fitted to first
di↵erences (right column). Rows refer to Spanish (EN), Greek (GR), Irish (IE), Italian (IT), and Portuguese
(PT) bond yields. Yields and yield changes are in percentage points and are sampled at 15-minute intervals.
Greek benchmark bonds discontinued trading after 02 March 2012, and experienced a credit event on 09
March 2012.
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G Tail shape and scale estimates from unfiltered data

This Web Appendix presents our tail shape and scale from unfiltered bond yield data. This means

that data yt are not pre-filtered to remove a time-varying location and scale. Instead, we rely on

the time-variation in thresholds ⌧t to accommodate these e↵ects. The thresholds evolve over time

according to (10), and are initialized at the 90% empirical quantile of the respective full sample of

yield changes.

Table G.1 presents the parameter estimates associated with the tail shape model. Not surpris-

ingly, both ⌧t and �t need to adapt more vigorously to reflect more pronounced variation in yt.

Both a
⌧ and a

� have increased compared to their values in Table 4. The SMP impact estimates

c
� are negative in all five cases, and significantly negative in two cases (EN, IT). This suggests

that �t now proxies for �t to some extent, and that the threshold (10) does not entirely succeed in

absorbing all variation from the center of the distribution for our data at hand. The c
⇠ estimates

are negative in two out of five cases, and not statistically significant according to their t-values.

The log-likelihood values reported in Table G.1 are lower than those reported in Table 4 in three

out of five cases. A meaningful comparison of these log-likelihood values is di�cult, however, as

each log-likelihood refers to a di↵erent set of POTs xt.

Figure G.1 plots the filtered estimates of ⇠t and �t associated with deterministic parameter

estimates as reported in Table G.1. Both tail shape and tail scale vary strongly over time, and

more strongly than the estimates from the prefiltered (devolatized) data. The time-variation in �t

is particularly pronounced as it needs to accommodate the pronounced time-variation in �t. The

two estimates of ⇠t are visibly di↵erent.

Figure G.2 presents VaR estimates at a 97.5% (left column) and 99.5% (right column) confidence

level. The VaR estimates are obtained from pre-filtered data using (20) evaluated at filtered

estimates of µt, �t, ⇠t and �t (green lines), or alternatively obtained from raw data using (20),

evaluated at µt = 0 and �t = 1, in conjunction with (10) and (12) and filtered estimates of ⇠t and �t

(red lines). Overall, both VaR estimates capture the same salient trends. The di↵erence between

the two VaR estimates is most pronounced for Greek bonds before the credit event in March 2012

when ⇠̂t >> 1. The VaR estimate from pre-filtered data is less smooth, owing to pronounced

variation in the estimated log-scale �t.
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Table G.1: Parameter estimates for the tail shape model
Parameter estimates for the extended (with SMP purchases zt) tail shape model. Columns labeled EN,
GR, IE, IT, and PT refer to Spanish, Greek, Irish, Italian, and Portuguese five-year benchmark bond
yields. The estimation sample ranges from 04 January 2010 to 28 December 2012 for all countries except
Greece. Standard error estimates are in round brackets and are constructed from a sandwich covariance
matrix. P-values are in square brackets. The estimation sample is not pre-filtered in terms of location or scale.

EN GR IE IT PT
↵
⇠ 0.021 0.019 0.069 0.030 0.012

(0.007) (0.003) (0.017) (0.010) (0.008)
[0.005] [0.000] [0.000] [0.003] [0.151]

↵
� 0.040 0.125 0.092 0.067 0.083

(0.008) (0.030) (0.015) (0.012) (0.013)
[0.000] [0.000] [0.000] [0.000] [0.000]

c
⇠ -0.008 0.008 0.271 0.000 -0.022

(0.021) (0.011) (0.212) (0.007) (0.022)
[0.707] [0.500] [0.201] [0.994] [0.319]

c
� -0.009 -0.044 -0.277 -0.004 -0.124

(0.021) (0.033) (0.116) (0.012) (0.061)
[0.647] [0.188] [0.017] [0.729] [0.043]

a
⌧ 0.210 0.995 0.451 0.282 0.871

T 30279 21839 30799 30519 30719
T
⇤ 3017 2230 3073 3044 3071

loglik -110914.7 -327866.9 -212679.0 -114753.6 -274260.9
AIC 221837.4 655741.8 425366.1 229515.1 548529.8
BIC 221870.7 655773.7 425399.4 229548.5 548563.2
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Figure G.1: Tail shape and tail scale estimates from raw data

Estimated tail shape ⇠t and tail shape �t parameters for Spanish (EN), Greek (GR), Irish (IE), Italian
(IT), and Portuguese (PT) five-year benchmark bond yields between 2010 and 2012. The data were not
pre-filtered based on the location–scale–df model introduced in Section 2.4 (red lines). The associated
standard error bands are simulated and reported at a 95% confidence level (black dotted lines). The
parameter estimates based on prefiltered data are plotted for comparison (green lines).
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Figure G.2: Comparison of VaR estimates from prefiltered and raw data

Left panel: Value-at-Risk at a 97.5% confidence level for changes in Spanish (EN), Greek (GR), Irish (IE),
Italian (IT), and Portuguese (PT) five-year benchmark bond yields between 2010 and 2012. Right panel:
Value-at-Risk estimates at a 99.5% confidence level. The VaR estimates are obtained either from pre-filtered
data using (20) evaluated at filtered estimates of µt, �t, ⇠t and �t (green lines), or alternatively from raw
data using (20) evaluated at µt = 0 and �t = 1, in conjunction with (10) and (12) and filtered estimates of
⇠t and �t (red lines). Greek bonds discontinued trading after 02 March 2012.
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