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Abstract

This paper solves the irreversible investment decision problem under uncertainty by a

new real options method. It yields a Shadow Net Present Value rule such that the invest-

ment is triggered only when the shadow revenue of the investment reaches the investment

cost. This paper hence corrects and extends the conventional Net Present Value (NPV)

rule by figuring out the proper NPV of the investment. Meanwhile, the investment policy

is shown to be correct and consistent with the real options theory since the shadow revenue

records the economic value of the investment by deducting the option premium of waiting

from the real revenue. This method allows for a generalization of the conventional analysis

to all semi-martingale processes with deterministic or stochastic discount rates. Especially,

we provide an explicit characterization of the threshold value when the uncertainty is spec-

ified as an exponential Lévy process. To highlight the significance of risk preferences on

the decision rule, this paper also addresses the utility-based extension of the standard real

option model. The investment policy in such a model is identified in the same form as

that in the profit-maximization problem but signalled by the shadow utility process. The

joint effect of risk aversion and jumps on the trigger value is analyzed through examples.
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1. Introduction

As an essential activity for firms and economic growth, investment has attracted a great

deal of academic attention for decades. Facing with an opportunity to invest, firms have

to make the decision whether to invest or not. Traditionally, the investment strategy is

determined by the Net Present Value (NPV) method: Investment is made if and only if

the discounted revenues are equal to or larger than the costs. As was widely acknowledged

(c.f. Dixit and Pindyck (1994) [13] and the literature therein), this conventional decision

rule considers the investment only as being now or never and neglects the stochastic na-

ture of the project values. Generally, investment is totally or at least partially irreversible.

Further due to the uncertainty in the future economic conditions, the investment is often

postponed to achieve better information on investment profits. To account for these two

effects, contemporary models regard an investment opportunity as a contingent claim on

the project value. Such claims are known as real options and are solved by two standard

methods, i.e., dynamic programming and contingent claim analysis, as presented in detail

by Dixit and Pindyck (1994) [13]. More importantly, the real options theory points out

that the NPV of an investment has to cover the option premium of waiting, or the oppor-

tunity cost of delaying the investment.

Although the real options approach has been viewed for long as a modern and correct

means in academics, it has yet to be popularly adapted by practitioners. According to

the 2002 survey of 205 Fortune 1000 CFOs by Patricia Ryan, merely 11.4% used the real

options idea, while the NPV method stayed at the top of the list with 96%. One of the

most important factors that lead to such a failure in practical application lies in the lack of

transparency and simplicity of the real options method (See Teach (2003) [19]). To many

managers, the framework is not easy enough to understand. Moreover, the mere concern of

shareholders is on the net profit or revenue of the new investment. In this sense, the NPV

is surely the most meaningful and straightforward measure of the investment performance.

It is however not really accounted for in the real options method. To promote the wide

application of the real options theory, this paper is first going to find an alternative method

which provides a correct and economically intuitive decision rule based on the NPV.

As a starting point, the NPV of the investment is formulated as the expected present

value (EPV) of all the operating profits after the optimal investment time less the invest-

ment cost. In contrast to the EPV that starts accruing at a deterministic time, it is rather

difficult to determine the EPV from the investment since the investment time is instead
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a stopping time when the project revenue comes to a satisfactory level. Thus, another

approach is required here in order to calculate or rewrite the EPV term. In this work, we

represent the expected discounted revenue in terms of the EPV of the running supremum

of another process. This process is extremely useful, signalling the investment in the de-

cision rule: The optimal investment time is identified as the first moment at which the

process reaches the investment cost. In this way, we derive the decision rule by solving

a representation problem rather than treating it as an optimal stopping problem. Espe-

cially, we define the signalling process as shadow revenue process. The key reformulation

procedure here is based on the stochastic representation method first proposed in Bank

and Föllmer (2003) [3] for various stochastic optimization problems.

By specifying the project’s NPV in terms of the EPV of the running supremum of another

process, this method gives some economic intuition as follows. First, it exactly coincides

with the fact that to maximize the investment profit, the investor is not concerned with

the instantaneous revenue of the investment at the moment when the investment is done,

but with the future profits it creates after the investment. Surely, it would be optimal

to invest at the moment when the project starts to create positive profits (net of all the

costs). More precisely, it is a Shadow NPV rule: The investment is undertaken if and only

if the shadow revenue rises up to the investment cost. Thus, we finally achieve a simple

optimal investment strategy based on the NPV as desired. Moreover, this method extends

and corrects the conventional NPV method by determining the proper NPV. Second, the

shadow value is defined in this work in the sense that it is the true or pure value of the

investment that the firm gains after compensating total costs. Moreover, we demonstrate

that the shadow revenue process is always lower than the expected revenue at any stop-

ping time. The value difference can be interpreted to account for the opportunity cost of

delaying the investment. In other words, the shadow revenue records the economic value

of the investment by deducting the option premium of waiting from the real revenue. In

this way, with the trick of reformulating the expected discounted revenue, the new method

derives an investment decision rule consistent with the standard real options theory: in

addition to the investment cost, the overall revenue has to cover the option premium of

waiting.

Another highlight of this method is its applicability to a wide class of general stochas-

tic processes. In this way, we extend the classical real options theory from a Geometric

Brownian motion (GBM) to a Lévy process and even all semi-martingale processes that
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are economically plausible. The decision problem on a GBM has been fully exploited as in

e.g. Dixit and Pindyck (1994) [13]. However, the lognormal distribution is contradictory

to the well-known empirical evidence (see, for instance, Yang and Brorsen (1992) [20] as

well as Deaton and Laroque (1992) [12]). Indeed, commodity prices and the project value

obtained on their basis exhibit significant skewness and kurtosis. More importantly, there

is a high probability of large random fluctuations such as crashes or sudden upsurges. As

a result, a Lévy process which combines a diffusion process and embedded jumps turns

out to be a more correct model description. Moreover, this method also works when the

discount rates are modelled as a strictly positive stochastic process.

More powerful than the standard real option pricing methods, this new approach pro-

vides explicit characterizations for the threshold value when the uncertainty is specified

as an exponential Lévy process. The exercise threshold is obtained as the investment

cost multiplied by a correction factor, in the same form as the standard result for the

GBM. Hence, this method generalizes the simple decision rule to general exponential Lévy

processes, providing a clear qualitative view of the investment strategy. The correction

factor is expressed in terms of the supremum process. This result coincides with those

of Mordecki (2002) [17] and Boyarchenko and Levendorskĭi (2002-2004) [7] [8] [9] [10].

Mordecki’s work is basically an extension of the discrete-time model on random walks by

Darling et al. (1972) [11] and applies well to the general Lévy process. While, Boyarchenko

and Levendorskĭi’s method is based on reducing the optimal stopping problem to a free

boundary problem for the generalized Black-Scholes (1973) equation [5] in form of pseudo-

differential operators.

The management objective of the investment decision problem is the maximization of

the expected profit of the project as in the model considered above. This model is stan-

dard and can be easily validated in a complete financial market: The cash flow of the

investment can be spanned by those products traded in the market such that the value

of the project is exactly the EPV of those cash flows under the unique risk neutral mea-

sure. Surely, the stochastic representation method is not restricted to those assumptions

of market completeness and risk neutrality. However, investors hold in general different

attitudes to risk and hence have different preferences for an investment. Consequently,

another motivation of the work is to incorporate subjective risk preferences in the irre-

versible investment valuation. To this end, the standard decision problem is combined
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with utility functions which are usually used in economics to define and measure risk pref-

erences. This concept has once been mentioned in Dixit and Pindyck (1994) [13] and

developed by Hugonnier and Morellec (2005) [15] for risk aversion and GBM1. We also ap-

ply the stochastic representation method to this utility-based decision problem and derive

the optimal investment rule in an analytical form for the case where the decision maker

is risk averse with constant relative risk aversion and facing uncertainty modelled by an

exponential Lévy process. Similar to the value-maximization decision rule, the shadow

utility process is obtained such that the investment is initiated whenever the net utility

from the investment becomes non-negative. Due to risk aversion, the firm has a relatively

high incentive to delay the investment, which in turn leads to a higher threshold compared

to risk neutrality. Especially, we study through an example the combined effect of utility

consideration and jumps on the trigger value. We demonstrate that under risk aversion

and negative jumps, the critical price can be higher or lower than that under the GBM

modification. It is argued in the paper that it is not counter-intuitive. Given a certain

estimated variance, there are two opposite effects of jumps on the threshold value: on

one hand the trigger value rises as a response to possible negative jumps; on the other

hand the trigger value declines with the jump coefficients due to the decrease in diffusion

uncertainty. The first increasing effect is nevertheless greatly magnified by risk aversion.

The remainder of this paper is organized as follows. Section 2 sets up the model of

irreversible investment under uncertainty, analyzes the profit-maximization problem by

the stochastic representation method and discusses the inherent economic implications.

Particularly, an explicit characterization of the solution is given in Section 3 when the

output price is modelled by an exponential Lévy process. Section 4 solves the utility-based

problem and derives the optimal decision rule in an analytical form when the firm is subject

to a power utility function and an exponential Lévy process modelled uncertainty. Finally,

Section 5 concludes with a short summary and remark. Technical details are presented in

the Appendix.

2. Real Options and the New Evaluation Method

This paper solves the irreversible investment decision problem with a new method in the

real options literature. In order to facilitate the derivation and interpretation, we consider

the well-established irreversible investment model (Pindyck (1988) [18], McDonald and

Siegel (1986) [16] and also presented in Dixit and Pindyck (1994) [13]). In this framework,

1Henderson and Hobson (2002) address also utility maximization model but focus on the pricing and

hedging of a non-traded asset.
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the resemblance between investment decision problems and perpetual American options

can be easily recognized. The new evaluation approach, stochastic representation method,

is then introduced and interpreted afterwards in detail.

2.1. Irreversible Investment Decision Problem. Consider a firm who has an oppor-

tunity to invest in a project with a fixed scale, infinite life and no marginal cost. This

project requires only an initial investment cost I which is supposed to be constant over

time. The investment is irreversible in the sense that the investment cost is sunk. The

project generates then a continuous stream of cash flows by producing a commodity good

of quantity Q ever after the investment date τ . The spot price of the firm’s output P

evolves stochastically conditional on the economic situation. For convenience, Q is fixed

to be 1, i.e., the project yields a unit flow of output forever. Given these assumptions, the

firm has to decide whether to take project or not and most importantly it has to decide

on the time to invest, i.e., the time which maximizes the expected profit. Formally, the

firm faces the problem

F = max
τ∈T ([0,∞))

IE

[
e−ρτ

(∫ ∞

τ

e−ρ(s−τ)Ps ds− I

)+
]

(1)

= max
τ∈T ([0,∞))

IE
[
e−ρτ (Vτ − I)

]
,(2)

where ρ is the constant discount factor measured in the physical measure P on the prob-

ability space (Ω,F ,F = (Ft)t≥0, P), the expected value is taken with respect to P, Vt =

IE
[∫∞

t
e−ρ(s−t)Ps ds |Ft

]
represents the expected overall revenue or operating profit from

the investment at time t and the maximization is taken over T ([0,∞)), the class of all

stopping times. In addition, we assume that

(3) IE

[∫ ∞

0

e−ρtPt dt

]
< ∞ ,

and the filtration is quasi-left-continuous, i.e.,

(4) Fτ = Fτ−

for any predictable stopping time τ ∈ T ([0,∞)).

Obviously, the profit maximization problem is in structure analogous to a perpetual

American call option which is written on the future revenue of the investment. That is

why an opportunity to invest is usually referred to as a real option, an option contingent

on real assets. In this context, the firm has an optimal stopping problem at hand. The

standard real options theory offers two solution methods: dynamic programming and

contingent claim analysis. Both methods are relevant to solving a stochastic differential
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equation. In this paper, the optimal stopping problem is solved by an alternative stochastic

representation method as fully explained in the next subsection.

2.2. Stochastic Representation Approach and Shadow NPV Rule. The EPV of

a perpetual cash flow accumulated from a deterministic point in time is clear and can be

easily obtained. The difficulty of our problem lies in the fact that the EPV begins at a

stopping time when the project value reaches a satisfactory level. In order to derive a

decision rule based on this essential and straightforward concept of NPV, we rewrite the

EPV of the project revenue in terms of the EPV of the running supremum of another

process. More explicitly, the EPV of the operating profit from investment at time τ ,

e−ρτVτ , is represented in form of

(5) e−ρτVτ = IE

[∫ ∞

τ

ρe−ρt sup
τ≤v≤t

ξv dt
∣∣∣Fτ

]
by some progressively measurable process (ξt)t∈[0,∞) with upper-right continuous paths.

This representation then allows for a characterization of the optimal stopping time as the

first moment at which the obtained exercise signal process ξt hits the investment cost, I.

Theorem 2.1. Suppose that the decision problem of an irreversible investment specified

as (1) admits the stochastic representation (5) in terms of the shadow revenue process

(ξt)t∈[0,∞) which is progressively measurable with upper-right continuous paths. Then, the

level passage time when the process ξ rises up to the investment cost, i.e.,

τ ∗ = inf{t ≥ 0 | ξt ≥ I}

maximizes the investment value over all stopping times T ([0,∞)).

Proof. Bank and El Karoui (2004) [2] give a detailed technical analysis of the representation

form (5). In particular, they show that the representation form is valid whenever e−ρτVτ

is uniformly integrable and upper-semicontinuous in expectation2. Hence, we have to

show first whether the regularity conditions are satisfied in our construction or not. As

assumed in conditions (3) and (4), we have an upper-bounded expected discounted revenue

and a quasi-left-continuous filtration. Clearly, the uniform integrability is guaranteed by

2The uniform integrability is a basic condition in the optimal stopping problem to guarantee the

existence of a finite solution. Upper-semicontinuity in expectation is precisely stated as follows:

lim
n

sup IE[Xτn ] ≤ IE[Xτ ] for any monotone sequence of stopping times τn (n = 1, 2, · · · ) converging

to some stopping time τ ∈ T almost surely.
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condition (3). According to the definition, the discounted revenue is

e−rtVt = IE

[∫ ∞

t

e−ρsPsds
∣∣∣Ft

]
= IE

[∫ ∞

0

e−ρsPsds
∣∣∣Ft

]
︸ ︷︷ ︸

:=Mt

−
∫ t

0

e−ρsPsds︸ ︷︷ ︸
:=At

,

where At is predictable and absolutely continuous. Moreover, we can show that Mt is a

martingale as follows: for any u < t

IE[Mt|Fu] = IE

[
IE

[∫ ∞

0

e−ρsPsds
∣∣Ft

]∣∣∣Fu

]
= IE

[∫ ∞

0

e−ρsPsds
∣∣∣Fu

]
= Mu .

This martingale is cadlag, quasi-left-continuous if the filtration is quasi-left-continuous. As

the sum of Mt and At, e−rtVt is then always quasi-left-continuous, i.e.,

lim
n

sup e−rτn

Vτn = e−rτVτ a.s.

for any monotone sequence of stopping times τn (n = 1, 2, · · · ) converging to some stop-

ping time τ ∈ T , whenever condition (4) is fulfilled. It hence yields the required upper-

semicontinuity in expectation of e−rtVt.

In the following, we are going to prove that the project gives a positive net profit at

the optimal investment time and some loss would be created for any earlier and later

investment. Following the optimal investment policy, the investment is undertaken at the

first time when ξ reaches I. It gives then the project in value

F = IE
[
e−ρτ∗Vτ∗ − e−ρτ∗I

]
= IE

[
IE

[∫ ∞

τ∗
ρe−ρt sup

τ∗≤v≤t
ξv dt

∣∣∣Fτ∗

]
− e−ρτ∗I

]
≥ IE

[
IE

[∫ ∞

τ∗
ρe−ρtI dt

∣∣∣Fτ

]
− e−ρτ∗I

]
= 0 .

This shows that the investment at τ ∗ always brings about a non-negative profit. Suppose

that the investment is initiated earlier at time point τ̂ < τ ∗. The net profit at that moment
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is obtained as

F̂ = IE

[
IE

[∫ ∞

τ̂

ρe−ρt sup
τ̂≤v≤t

ξv dt
∣∣∣Fτ̂

]
− e−ρτ̂I

]
= IE

[∫ ∞

τ∗
ρe−ρt sup

τ̂≤v≤t
ξv dt− e−ρτ∗I

]
+ IE

[∫ τ∗

τ̂

ρe−ρt sup
τ̂≤v≤t

ξv dt− e−ρτ̂I + e−ρτ∗I

]
,

where the second step is achieved by splitting the integral into two parts. Because ξτ∗ ≥
I > ξt whenever t ∈ [0, τ ∗), we can easily derive

(6) sup
τ̂≤v≤t

ξv < I for t ∈ [τ̂ , τ ∗)

and

sup
τ̂≤v≤t

ξv = sup
τ∗≤v≤t

ξv for t ∈ [τ ∗,∞) .

On this basis, F̂ can be further reduced as

F̂ = IE

[∫ ∞

τ∗
ρe−ρt sup

τ∗≤v≤t
ξv dt− e−ρτ∗I

]
+ IE

[∫ τ∗

τ̂

ρe−ρt( sup
τ̂≤v≤t

ξv − I) dt

]
= F + IE

[∫ τ∗

τ̂

ρe−ρt( sup
τ̂≤v≤t

ξv − I) dt

]
.

That is, F̂ is a sum of F , the net profit of the project invested at the optimal time τ ∗,

and another term which is definitely negative due to (6). Therefore, an earlier investment

yields a lower project value.

Consider a later investment at time τ ′ > τ . We check in this case the difference in the

project value at the optimal time and the moment τ ′:

F − F ′ = IE

[∫ ∞

τ∗
ρe−ρt sup

τ∗≤v≤t
ξv dt− e−ρτ∗I

]
− IE

[∫ ∞

τ ′
ρe−ρt sup

τ ′≤v≤t
ξv dt− e−ρτ ′I

]

= IE

[∫ τ ′

τ∗
ρe−ρt sup

τ∗≤v≤t
ξv dt +

∫ ∞

τ ′
ρe−ρt max{ sup

τ∗≤v<τ ′
ξv, sup

τ ′≤v≤t
ξv} dt− e−ρτ∗I

]

−IE

[∫ ∞

τ ′
ρe−ρt sup

τ ′≤v≤t
ξv dt− e−ρτ ′I

]
= IE

[∫ ∞

τ ′
ρe−ρt

(
max{ sup

τ∗≤v<τ ′
ξv, sup

τ ′≤v≤t
ξv} − sup

τ ′≤v≤t
ξv

)
dt

]

+IE

[∫ τ ′

τ∗
ρe−ρt

(
sup

τ∗≤v≤t
ξv − I

)
dt

]
,

where we write the running supremum in F into the maximum of the two running supre-

mum before and after τ ′ in the second step. Obviously, the first term is always nonnegative

no matter a new all time high is achieved before or after time τ ′. Furthermore, the second
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term is also shown to be non-negative since sup
τ∗≤v≤t

ξv ≥ ξτ∗ ≥ I for any t ∈ [τ ∗,∞). In all,

we have F ≥ F ′. This completes the proof that τ ∗ is the optimal investment time for the

firm to maximize the project value. �

In this way, the optimal stopping problem is reduced to a representation problem based

on the stochastic representation method first proposed by Bank and Föllmer (2003) [3] for

various stochastic optimization problems. The representation form (5) is valid whenever

the two regularity conditions (3) and (4) are satisfied. In general, there always exists a

unique solution of ξt to this problem.

Remark 2.2. In general, the regularity conditions (3) and (4) are relatively weak and

well satisfied. First, the investment decision problem is well-posed or makes economically

sense only when (3) is true. Moreover, for a semi-martingale process (Xt)t∈[0,∞) and its

generated filtration F ,

Xτ = Xτ− for any predictable stopping time τ ∈ T ([0,∞))

is the only requirement to achieve the quasi-left-continuity of the filtration. Intuitively

speaking, one cannot tell in advance when the jumps of X will take place. For instance,

the filtration generated by a Brownian motion (BM) or a Lévy process is always quasi-

left-continuous as the σ−field of a BM is absolutely continuous and for the latter case the

stopping time at which a jump occurs is never predictable (see Protter (1988) [18] Chapter

3 p.p. 105).

The intuition behind this method is as follows. The holder of a real option would like to

maximize the EPV of the net profit from the investment. That means, the investor does

not care about the instantaneous value of the project at the investment time, but about

its future proceeds after the investment. By means of this method, the EPV of all future

revenues is then specified by the running supremum of the process ξt. Formally, it can be

expressed as:

IE
[
e−ρτ (Vτ − I)+

]
= IE

[
IE

[∫ +∞

τ

ρe−ρt sup
τ≤v≤t

ξv dt
∣∣∣Fτ

]
− e−ρτI

]
= IE

[∫ +∞

τ

ρe−ρt sup
τ≤v≤t

ξv dt− e−ρτI

]
.

Obviously, the trick of this method is to represent the EPV of the project revenue in terms

of the supremum of another process.
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According to the optimal investment policy, the investment is undertaken if and only

if ξt becomes equal to or greater than the investment cost. Otherwise, some positive rev-

enues are lost. Earlier exercise, i.e. when ξt < I, is also not optimal since the investment

at such a time yields only negative payoff. Although ξt is not the real revenue from the

investment, it takes the role of initiating the investment. Especially, we define ξt as the

shadow revenue process and the decision rule on this basis as the Shadow NPV rule. It

states that the investment is taken if and only if the shadow revenue rises up to cover the

investment cost. In this sense, this method indeed extends and corrects the conventional

NPV method by identifying the proper net present value.

Shadow value is defined in this work as the value of the investment that the firm really

gains from the project after compensating all the costs incurred. Thus, the final obtained

Shadow NPV measures exactly the willingness of the decision maker to give up money

and also time for the investment opportunity. Therefore, it is not only the market value

or the real revenue from the investment less the initial investment cost. Additionally,

subjective valuation of the investment should be considered. Under uncertainty, investors

are reluctant to invest and may be waiting for better information. During the waiting

process, the firm may be losing other opportunities to gain profit, hence increasing the

opportunity cost of undertaking the investment. Therefore, we argue that the shadow value

records the true or pure expected benefit embedded in the real revenue of the investment

after deducting the full opportunity cost. In other words, the shadow NPV accurately

captures the expected economic value of the investment in an uncertain environment.

Furthermore, we show (in Appendix 1) that the shadow revenue is always smaller than or

at least equal to the created operating profit at any stopping time, i.e., Vτ ≥ ξτ for all the

stopping times τ ∈ T ([0,∞)). The discrepancy between these two values accounts exactly

for the opportunity cost of delaying the investment. In this sense, the shadow revenue

measures the expected economic value of the investment which is the real revenue less the

option premium of waiting. Thus, it becomes optimal to invest when the correct NPV

becomes non-zero. Clearly, the investment rule obtained by this method is fully consistent

with the established result in the real options theory.

Remark 2.3.

(a) The same argument can be applied to the so-called exit problem. Consider the same

firm who has already invested and produced a unit output at price Pt. The firm

contemplates scrapping the investment for a value C, once the price declines and

results in loss. In this context, the firm would like to maximize the payoff of the
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investment abandonment

max
τ∈T ([0,∞))

IE

[
e−ρτ

(
C −

∫ ∞

τ

e−ρ(s−τ)Ps ds

)+
]

.

That is, the firm has a put on the investment at hand. By means of this method, the

EPV of the future revenues that would be lost after exit is reduced to a representation

in terms of the infimum process of the shadow revenue process ξ as

e−ρτVτ = IE

[∫ ∞

τ

ρe−ρt inf
τ≤v≤t

ξv dt
∣∣∣Fτ

]
,

where Vt = IE

[∫ ∞

t

e−ρ(s−t)Ps ds

∣∣∣∣Ft

]
. The optimal investment time is then charac-

terized as the first time when the shadow revenue process becomes equal to or

lower than the gain of exit C, namely,

τ ∗∗ = inf{t ≥ 0 | ξt ≤ C} .

(b) This method works also when the discount rate is not constant but stochastic with

strictly positive values.

As a short summary, the irreversible investment decision problem is solved by finding the

solution of a stochastic representation problem in terms of the running supremum/infimum

process of the shadow revenue process. Obviously, the shadow revenue process, ξt, is the

key process in this method, signalling the optimal exercise rule. In particular, this exercise

signal process is universal in the sense that it is the single reference process determin-

ing optimal investment times for any possible investment costs. This property would be

favorable in more complicated investment decision problems, for instance, sequential in-

vestments as well as capital expansion programs.

This approach fits all semi-martingale processes which are economically plausible and

hence often used in finance, provided that the mild regularity condition is satisfied. Gen-

erally, numerical methods have to be used to specify the universal exercise signal process.

To some cases, e.g., exponential Lévy processes, explicit formulae are already available.

Particularly, the solution is in a simple and intuitive form such that the expected future

operating profit from the investment has to cover not only the investment cost but also the

opportunity cost of delaying the investment. Thus, in this sense, this method generalizes

the solution of real options in the GBM model and provides additional interpretations even

within the GBM model framework.
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3. Explicit Solution Formulae for Irreversible Investment Problems

One outstanding advantage of this method is the capability of providing an explicit for-

mula of the critical investment value for an exponential Lévy process. Lévy processes are

a general class of Markov processes with independent identically distributed increments

and can be decomposed into a continuous Gaussian process and a pure jump process (see,

for example,Bertoin (1996) [4]). Hence, it is frequently used to capture the significant

skewness and kurtosis of commodity prices as empirically observed in for instance Yang

and Brorsen (1992) [20] as well as Deaton and Laroque (1992) [12]. In this section, a thor-

ough analysis is provided to characterize analytical solutions to the irreversible investment

decision problem where the underlying uncertainty is modelled by a general exponential

Lévy process.

To put it in a formal way, assume that the exogenous output price is generated by the

following stochastic process

(7) Pt = P0e
Yt ,

where P0 > 0 is the initial price and Y = (Yt)t≥0 is a Lévy process defined on the probability

space (Ω,F ,F = (Ft)t≥0,P) with initial value Y0 = 0. Before moving on to derive the

solution, a short excursion for Lévy processes is provided3. The Lévy-Laplace exponent

Ψ(z) of the Lévy process Y is defined via

IE[ezYt ] = etΨ(z) .

Ψ(z) = ρ is the corresponding characteristic equation of Yt for ρ > 0. Define Y t = sup
0≤s≤t

Yt

and Y t = inf
0≤s≤t

Yt as the running supremum and infimum of Yt. The main technique for

solving the problem in this paper is the Wiener-Hopf factorization

ρ

ρ−Ψ(z)
= IE

[∫ ∞

0

ρe−ρtezY tdt

]
IE

[∫ ∞

0

ρe−ρtezY tdt

]
= Ψ+

ρ (z)Ψ−
ρ (z) .

It is possible to obtain analytical forms of the Wiener-Hopf left and right factors Ψ+
ρ (z)

and Ψ−
ρ (z) respectively as the factorization is unique. For instance, for the case of a GBM,

the characteristic equation has one positive and one negative root as β+ and β−. Then

the two factors are given by

Ψ+
ρ (z) =

β+

β+ − z
and Ψ−

ρ (z) =
β−

β− − z
.

3More details on Lévy processes and their properties are found in Bertoin (1996) [4] and literature cited

therein.
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Furthermore, Boyarchenko and Levendorskĭi (2002a) [7] derive a general solution form to

regular Lévy processes of exponential type as we assume here.

The Investment Threshold and Project Value. In this context, a closed-form char-

acterization can be found for the critical shadow revenue process identifying the investment

initiating time:

Theorem 3.1. Under assumption of (7), the solution of representation problem (5), namely,

the shadow revenue process is obtained as ξv = Pv/κ with

κ = (ρ−Ψ(1)) IE
[
eY τ(ρ)

]
,

where τ(ρ) is an independent exponentially distributed time with parameter ρ.

Proof. The proof is given in Appendix 2. �

According to the above theorem, the shadow revenue of the investment is determined

to be the revenue of the investment divided by a constant factor. The optimal investment

time can be then rewritten as

τ ∗ = inf{t ≥ 0 | Pt ≥ κI}.

It suggests that

Vτ∗ ≥ IE
[
eY τ(ρ)

]
I ,

where the expectation term is always larger than 1 as eY t ≥ eY0 = 1 for all t ∈ [0,∞).

Thus, it gives the following investment rule: an investor undertakes the investment at the

first time when the expected revenue reaches or exceeds the investment cost multiplied by

a correction factor4. Indeed, it gives the same form of the trigger value as in Dixit and

Pindyck (1994) [13]. In this sense, this new method is more favorable because it general-

izes explicit formulae to an exponential Lévy process. This will be addressed below further

with specific examples.

The remaining problem is how to solve κ and the value of the option to invest

F = IE
[
e−ρτ∗(Vτ∗ − I)+

]
.

4Alternatively, we can obtain Pτ∗ ≥ ρI/IE
[
eY τ(ρ)

]
after applying the Wiener-Hopf formula. It is a

modified Jorgensonian trigger value which includes a risk premium for the marginal revenue product

above the Jorgensonian user cost of capital, ρI, due to the irreversibility and uncertainty.
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Thanks to some mathematical properties of Lévy processes, they can be obtained in ana-

lytical form. Moreover, simple explicit formulae are possible for those Lévy processes with

only negative jumps, as stated in the following theorem and shown in Appendix 3.

Theorem 3.2. κ in the threshold value Pτ∗ = κI is calculated in explicit and simple form

for some special cases:

(a) In general, κ = (ρ−Ψ(1)) Ψ+
ρ (1).

(b) For a Lévy process with no positive jumps, κ = (ρ−Ψ(1)) β+

β+−1
where β+ is the

unique positive root of the characteristic equation of Yt.

With the knowledge of κ, the value of the option to invest is given

(a) F = I

[
IE

[
eY τ(ρ)

]
IE

[
e−ρτ∗+(Yτ∗−y∗)

]
− IE

[
e−ρτ∗

]]
,

where y∗ is the value of Y at the time point τ ∗ and the Laplace transforms of the

two expectations are obtained as follows:∫ ∞

0

e−qyIE
[
e−ρτ∗+ (Yτ∗−y)

]
dy =

1

q + 1

(
1−

Ψ+
ρ (−q)

Ψ+
ρ (1)

)
and ∫ ∞

0

e−qyIE
[
e−ρτ∗

]
dy =

1−Ψ+
ρ (−q)

q
.

(b) In particular, F =
(
IE

[
eY τ(ρ)

]
− 1

) (
P0

κ

)β+

I1−β+
for a Yt with no positive jumps.

It is worth noting that κ > 0 should be always true to make economic sense. It is

satisfied whenever

IE

[∫ ∞

0

e−ρtPt dt

]
< ∞ ,

which is exactly the condition required for uniform integrability. In particular, it is valid

for the GBM case if and only if β+ > 1, i.e., µ + 1
2
σ2 < ρ where µ and σ are the drift

and volatility of the GBM. Intuitively, the expected growth rate of the revenue is bounded

from above by the time cost, namely, the discount factor ρ. Otherwise, the discounted

payoff is a submartingale and goes to infinity with increasing time. In this sense, the

regularity condition coincides with that in Dixit and Pindyck (1994) [13] and with that

in Boyarchenko and Levendorskĭi (2004a) [9] to guarantee that the EPV of the project is

finite as time goes to infinity.

Case Studies. Two specific examples of the irreversible investment model are provided

in this subsection in order to well illustrate this method.
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Case I. Geometric Brownian Motion: A GBM is most often used in the irreversible

investment model to characterize the uncertainty. Assume that the output price follows a

GBM with constant drift µ and volatility σ:

(8) Pt = P0e
Yt and Yt = µt + σBt,

where (Bt)t≥0 is the standard Wiener process defined on a probability space (Ω,F ,F =

(Ft)t≥0,P). As is well known, a Lévy process pins down to a GBM when the jump

component is absent. In this case, a simple and well-known analytical solution for the

investment threshold can be easily achieved to be

Pτ∗ = κI = (ρ− µ− 1

2
σ2)

β+

β+ − 1
I,

where β+ is the positive root of the characteristic equation 1
2
σ2z2 + µz − ρ = 0.

Referring back to the basic model in Dixit and Pindyck (1994) [13], the trigger value of

the investment is the investment cost multiplied by a correction factor β
β−1

, where β > 1

is the positive root of the fundamental quadratic equation which coincides with the char-

acteristic equation. Thus, this new method recovers the standard result for the simplest

case of GBM.

Case II. GBM Combined with a Compound Poisson Process: The dynamics of the price

is in this case modelled by a combination of a GBM and a jump component characterized

by a compound Poisson process with random jump sizes. The randomness from the jump

component causes complicated computations. As pointed out by Dixit and Pindyck (1994)

[13], numerical methods to such cases have to be used. However, explicit formulae can even

be found by means of this new method.

Consider the model

(9) Pt = P0e
Yt and Yt = µt + σBt +

Nt∑
k=1

Jk,

where (Nt)t≥0 is a Poisson process of intensity λ and J = (Jk)k∈IIN is a sequence of inde-

pendent identically distributed random variables with density

f(j) =

pc+e−c+j j ≥ 0,

(1− p)c−ec−j j < 0.

where the parameters c± > 0 and 0 ≤ p ≤ 1. Under this assumption, the project value at

time t has in all Nt possible upward and downward jumps which occur with probability p
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and 1− p, respectively. Each positive/negative jump is exponentially distributed with the

parameter c+/c−. This specific model has the Lévy-Laplace exponent

Ψ(z) = µz +
1

2
σ2z2 + λp

z

c+ − z
− λ(1− p)

z

c− + z
.

Accordingly, the optimal investment threshold is determined by solving κ

κ =

(
ρ− µ− 1

2
σ2 − λp

c+ − 1
+

λ(1− p)

c− + 1

)
Ψ+

ρ (1) ,

where the left Wiener-Hopf factor is found to be

Ψ+
ρ (1) =

β+
1

β+
1 − 1

β+
2

β+
2 − 1

c+ − 1

c+

given the two positive roots β+
1/2 of the characteristic equation of Ψ(z) = ρ.

4. Real Options with Subjective Risk Preferences

Profit-maximization is the standard model in real options literature based on the as-

sumption that the financial market is complete and the cash flows of the project can be

spanned by those existing products in the market. In this setup, risk neutrality is pre-

sumed such that the risk-free interest rate is the correct discount factor. However, these

assumptions are not relevant to the real world with different risk preferences and typically

an incomplete market. Undoubtedly, the irreversible investment problem can be though

properly dealt with by the dynamic programming method and also by our new method,

both of which do not require such strict conditions. Nevertheless, decision related parame-

ters and hence the investment policy are greatly affected by the risk attitude of investors.

For instance, discounted rates are subjective assessments of investors based on trading

prices and their own outlook for future prospects. As a result, it is necessary to incorpo-

rate subjective risk preferences when evaluating investment value.

Typically, risk preferences are fully characterized by the utility function which in turn

determines the decision maker’s subjective valuation for the project. Following this idea,

we consider a utility-based real options problem and deal with it also by applying the

stochastic representation method. Our new method works well for a general class of in-

creasing and concave utility function which accounts for risk aversion, provided that the

objective maximization function is bounded to be finite. An analytically tractable and

intuitive solution is obtained when the decision maker has a constant relative risk aversion

(CRRA) and the uncertainty is modelled by an exponential Lévy process.
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4.1. Utility-Based Irreversible Investment Decision Problem. Consider again the

model in Section 2. In addition, we define an expected utility function to represent the

risk aversion of the decision maker

p 7−→ IE

[∫ ∞

0

e−ρtU(pt)dt

]
,

where the utility function U(·) is supposed to be increasing, concave and continuously

differentiable. In this case, the firm maximizes the expected utility of the investment

(10) F = max
τ∈T ([0,∞))

IE

[
e−ρτ

(∫ ∞

τ

e−ρ(t−τ)(U(Pt)− U(rI))dt

)+
]

,

where U(rI) is the utility lost which could be otherwise gained by investing risk-free cash

flow stream rI.

To guarantee the well-posedness of the problem, the expected utility of the future revenue

of the investment has to be finite, namely, IE
[∫∞

0
e−ρtU(Pt)dt

]
< ∞. This condition is also

required to maintain the regularity condition. The optimal strategy of the utility-based

irreversible investment is then figured out by the following theorem.

Theorem 4.1. A risk averse investor who has to decide on the investment timing in the

problem (10) will undertake the investment at time

τ ∗ = inf

{
t ≥ 0

∣∣∣ ξt ≥
U(rI)

ρ

}
,

where ξt is the solution to the representation of the form

(11) IE

[∫ ∞

τ

e−ρtU(Pt) dt
∣∣∣Fτ

]
= IE

[∫ ∞

τ

ρe−ρt sup
τ≤v≤t

ξv dt
∣∣∣Fτ

]
.

This result can be easily obtained by the same argument as for Theorem (2.1). In this

model, ξt can be interpreted as the shadow utility that the firm gains from the investment.

That is, by investing the firm gives up some utility while postponing the project as the

investment is irreversible. The obtained shadow utility measures then the direct utility

of the project deducted by the utility which is lost while waiting for better information.

In this way, investment occurs only when the subjective valuation of the project amounts

high enough to cover the full investment cost which takes the subjective valuation of the

real option into account.

The theorem provides the utility-maximizing investment rule for any increasing and

concave utility function. To derive a specific investment decision and to examine the

impact of risk aversion on the decision, the model has to be further specified. In the
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following, we consider the case of CRRA with uncertainty modelled by an exponential

Lévy process.

4.2. Explicit Solutions for a CRRA Utility Function and an Exponential Lévy

Process. A power utility function

(12) U(x) =
1

1− α
x1−α

is the typical modification to account for CRRA, where the parameter α > 0, α 6= 1 is the

coefficient of relative risk aversion. The higher it is, the more risk averse the firm is. In

particular, it is risk neutral when α = 0, which is exactly the original profit-maximization

problem. The price of the produced good follows the specification of an exponential Lévy

process as given in (7). Under this construction, a simple application of the result above

yields the following Theorem.

Theorem 4.2. Suppose that the decision maker takes the power utility (12) and faces

uncertainty modelled by an exponential Lévy process. Whenever the exponential growth

rate of the utility is bounded from above by the discount factor, i.e., ρ > Ψ(1 − α), the

utility-based irreversible investment model is well defined and the shadow utility process ξt

is obtained as

ξt =
θ

1− α
P 1−α

t ,

where θ = 1
ρ
IE

[
e(1−α)Y τ(ρ)

]
. The expected utility under the optimal investment rule is given

by

F =
IE

[
e−ρτ∗+(1−α)Yτ∗

]
ρ

IE
[
U(Pτ(ρ))

]
− IE

[
e−ρτ∗

] U(rI)

ρ
.

Proof. Following the line of the idea of Theorem (2.1), the solution to the representation

form (11) is easily obtained by constructing ξt = θ
1−α

P 1−α
t and by applying the strong

Markov property of Lévy processes. With the value of θ, the expected utility of the in-

vestment becomes trivial after some computation. Hence, it is not addressed any more in

the paper.

The utility maximization problem is well-posed if and only if

IE
[ ∫ ∞

0

e−ρsU(Ps)ds
]

< ∞ ,

or equivalently

IE
[ ∫ ∞

0

e−ρs+(1−α)Ysds
]

< ∞ .
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Using Fubini’s theorem and Lévy-Laplace exponent Ψ(z) yields

IE
[ ∫ ∞

0

e−ρs+(1−α)Ysds
]

=

∫ ∞

0

e−ρsIE
[
e(1−α)Ys

]
ds

=

∫ ∞

0

e−ρsesΨ(1−α)ds .

Clearly, ρ > Ψ(1−α) is the necessary condition for the well-posedness of the problem. �

4.3. Effect of Risk Aversion on the Decision. The critical expected utility from the

project for issuing the investment is identified as

IE

[∫ ∞

τ∗
e−ρtU(Pt) dt

∣∣∣Fτ∗

]
≥ γ · U(rI)

ρ
,

where γ = IE
[
e(1−α)Y τ(ρ)

]
. At first glance, this result gives an image that the investment

rule is almost the same as that of the profit-maximization problem but in terms of utility.

Despite in the similar form, utility-maximization highlights the risk attitude of investors

and its effect on the decision, compared to the profit-maximization problem. The first

influence of maximizing the utility is the occurrence of investment even when the project

revenue (before netting of the cost) creates a negative utility. In case of slight risk aversion

(0 ≤ α < 1), the threshold utility is always positive and the multiplicative factor γ always

larger than 1. While, the expected utility turns out to be negative, when investors are

more risk averse with α > 1. The net utility is nevertheless positive as γ < 1. Intuitively,

investment gives higher utility than merely holding the money I, although the cash flow

from the project is too risky according to their subjective judgement. As a result, the firm

in both cases would like to invest if and only if the utility from the project covers both the

utility of the investment cost and the lost utility due to the delay in investment.

Furthermore as argued by Hugonnier and Morellec (2005) [15], in the GBM model, the

critical investment level is quite high relative to the profit-maximization threshold and it

increases monotonically with the relative risk aversion coefficient α. The intuition behind

is clear: the decision maker is risk averse and would prefer the project with less risk.

Hence, when facing uncertainty in the future revenue, he has a strong incentive to delay

the investment. This is also true when extending the model to more general processes,

e.g., a Lévy process with possible unexpected shocks.

Theorem 4.3 (Comparative statics analysis of the risk aversion). The threshold value is

obtained as P ∗ = η−
1

1−α rI with η = IE
[
e(1−α)Y τ(ρ)

]
for any exponential Lévy process utility

maximization model. It is monotonically decreasing in the risk aversion coefficient α.
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Proof. The proof is provided in Appendix 4. �

Nevertheless, how do jumps affect the threshold value combined with risk aversion? In

order to answer this question, we provide a specific example where a firm has to make an

investment decision for a project. Assume that the output log-price has the first two central

moments m1 = −0.03 and m2 = 0.04. In addition, the discount rate is supposed to be

ρ = 15%5. Clearly, the decision rule is dependent on the model he chooses: the estimated

moments have to be fitted to the model and hence may result in different trigger values.

Suppose that the firm mainly focuses on 4 investment scenarios:

I . The project value is Gaussian distributed; and profit is the correct measure.

II . The project value is Gaussian distributed; managers are nevertheless risk averse

and choose to check the utility that the project creates.

III . The project value is specified by a jump-diffusion process with negative jumps

since e.g., more competitors may come into the market in the future and the price is

greatly influenced by another product’s price etc.; and profit is the correct measure.

IV . Project value is specified by a jump-diffusion process; and managers are also risk

averse.

If the project value is normally distributed, the stochastic process of Pt is simply a

GBM as described in Equation (8) and the drift and volatility are completely determined by

µ = m1 and σ2 = m2. The jump-diffusion process with negative jumps is then characterized

as a special case of (9) with p = 0. In this case, the first two moments are obtained as

m1 = Ψ′(0) and m2 = Ψ′′(0).

It helps to uniquely determine the drift and volatility term by the values of m1, m2, c and λ.

Figure 1 gives the critical price value for the four different scenarios. Profit maximization

is one special case of utility-based model. Thus, the investment thresholds for Scenario I

and III are the two red circles corresponding to α = 0. The trigger values of Scenario II

and IV are as expected heavily dependent on the relative risk aversion coefficient α. It is

shown in the figure that Pτ∗ in both cases increases monotonically with α, confirming and

generalizing Hugonnier and Morellec’s result (2005) [15]. In other words, risk aversion in-

creases firms’ initiative to postpone the investment. Consequently, the profit-maximization

model in general gives a wrong investment decision when the investor is indeed risk averse.

5A relatively low expectation of the log-price and a high discount factor are assumed in order to draw a

picture for a certain interval of α which is large enough for illustration. Such a seemingly unreal assumption

is required to make all the chosen parameters economically sensible.
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Figure 1. Investment Thresholds of Four Models with Parameters

c = 7.5 and λ = 1.0

Moreover, with the same first two moments, it is the Non-Gaussian model whose invest-

ment trigger value is more affected by α.

It is well acknowledged that in the profit maximizing model a GBM gives a higher

threshold value than a jump-diffusion process with negative jumps. It is in fact one essen-

tial argument in the literature, recommending the introduction of jumps. However, this

property is not maintained when we include additionally utility in the model. A jump-

diffusion process gives a lower critical value only when α is small. With a large α, utility

consideration may give a higher value than that for a GBM. We found this fact in many

numerical analysis even for a jump-diffusion process with positive jumps.

To get more insights on the impact of jumps, we plot in Figure 2 investment trigger

values for a family of jump-diffusion processes with various jump coefficients and two dif-

ferent relative risk aversion coefficients of α = 0 and α = 1.75. In the profit-maximization

model (α = 0), Pτ∗ always decreases with λ and c. That is, given certain fixed estimates

on the log-price’s mean and variance, the risk neutral decision maker is less hesitant to

invest when he expects either higher negative jumps or negative jumps with a larger prob-

ability. It is because the addition of jump terms decreases the diffusion uncertainty which

is in effect the biggest “lost of information” and hence involves the highest uncertainty in

comparison to other processes with the same instantaneous volatility. To clarify it, the
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Brownian motion (BM) is standard normally distributed and could be obtained as the limit

of the average sum of a large number of i.i.d. random variables with finite variance. The

larger the number is, the closer their distributions are and thus the more the information

is missing! In this sense, the BM modification follows the principle of maximum entropy or

minimum information while remaining consistent with the given knowledge—the estimated

variance (see Boyarchenko and Levendorskii (2004) [9] and also the detailed mathematical

argument in Bouchaud and Potters (2000) [6]). Consequently, the decision maker is better

informed of the future profits of the investment or equivalently faces less uncertainty by

increasing the relevant parameters of negative jumps. It in turn decreases the threshold

value.

However, an increase in jumps has an ambiguous effect on the trigger value when con-

sidering utility maximization or risk aversion. As observed in the right plot of Figure 2

for α = 1.75, Pτ∗ rises with λ when c = 5 but decreases when c = 7.5. To our knowledge,

there are two opposite effects of jumps on the trigger value for the case of a fixed estimate

on variance: It decreases on one hand the diffusion volatility of the project which in turn

lowers the threshold value; on the other hand (negative) jumps increase the trigger value

as a response to the expectation of gloomy economic conditions. In case of risk aversion,

the second effect of jumps is greatly exaggerated, as risk averse investors would prefer to

a larger extent waiting in order to avoid a great loss. Therefore, the critical price value

turns out to be much higher than that in the profit-maximization model although with the

same jump coefficients. Moreover, Pτ∗ even increases with λ when c = 5. The declining

relationship is recovered only when the jump term is high enough (as in the case of c = 7.5)

to overcome the second effect additionally driven by the risk aversion.

5. Conclusion

The literature treats the irreversible investment decision problem under uncertainty as

an option on real assets and solves the optimal stopping problem by means of contingent

claim analysis or dynamic programming method. In this paper, we analyze the same real

options model but with an alternative approach – the stochastic representation method.

This method starts with the EPV of the project, the natural and meaningful definition

in economics and represents it in a form of the EPV of the running supremum of another

process. By solving the representation problem, the investment decision rule is identified

in terms of the shadow revenue process such that the investment is initiated at the first

moment at which the shadow net present value becomes non-negative. The obtained rule
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Figure 2. Investment Trigger Value vs. Jump Coefficients

for α = 0 (left) and α = 1.75 (right) with Estimates m1 = −0.06 and m2 = 0.16

is demonstrated to be consistent to that given by the standard real options theory: The

critical investment revenue has to cover not only the investment cost but also the oppor-

tunity cost of delaying the investment. More importantly, our new method extends and

corrects the conventional NPV method by figuring out the proper net present value. This

formulation in terms of EPV gives a clear and intuitive understanding of the investment

strategy and then enables a wide application of real options theory in reality.

Compared to the existing standard approaches, this method is advantageous for the ap-

plicability to a large class of stochastic processes (all semi-martingale processes) as well as

the feasibility of giving an explicit characterization of the solution for an exponential Lévy

process. It is demonstrated in the paper that the closed-form characterization for expo-

nential Lévy processes is obtained almost as easily as in the Gaussian case by solving the

fundamental characteristic equations. Moreover, the result defines the optimal investment

timing as the first moment when the underlying project value rises to or exceeds κ times

the investment cost, which confirms and generalizes the well-known result in the literature

for the case of a GBM.

The technique is also applied to the utility-maximizing real options problem. In this

model, the utility function is incorporated to measure the risk preferences of the deci-

sion maker such that the strict assumptions of the standard real options theory, market

completeness and risk neutrality, are not necessarily required. The utility maximization

problem is similarly reduced into a representation problem but in terms of the running
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supremum of the shadow utility process. In particular, when the firm is risk averse with

constant relative aversion and faces an exponential Lévy process modelled uncertainty,

the investment rule is obtained in an analytically tractable form. Due to risk aversion,

the firm has more incentive to delay the investment, which results in a higher threshold.

In this sense, the standard real options decision rule may be wrong by assuming a risk

preference free framework. With fixed estimates of the first two central moments of the

underlying log-price processes, the threshold value under the Gaussian modification can

be lower or higher than that under the jump-diffusion process modification with negative

jumps, heavily depending on the constant risk aversion coefficient and jump component

parameters. We argue that this is not a counter-intuitive result: Given the estimated vari-

ance, the increasing effect of negative jumps on the trigger value is greatly magnified by

the risk aversion even if the jump term simultaneously lowers the trigger value by means

of decreasing diffusion uncertainty.
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Appendix 1: Proof of e−ρτVτ ≥ e−ρτξτ at Any Stopping Time τ ∈ T ([0,∞)).

e−ρτVτ = IE

[∫ ∞

τ

ρe−ρt sup
τ≤v≤t

ξv dt
∣∣∣ Fτ

]
≥ IE

[∫ ∞

τ

ρe−ρtξτ dt
∣∣∣ Fτ

]
= e−ρτξτ .

Appendix 2: Proof of Theorem (3.1).

Proof. Based on the specification of Pt, the left-hand side of Equation (5) is first calculated

as

e−ρτVτ = e−ρτ P0e
Yτ

ρ− log IE[eY1 ]
,

where log IE[eY1 ] records the time increasing rate of the price process and is as defined

equal to Ψ(1).

Construct the shadow revenue process in form of ξv = Pv/κ. Then by substituting the

general exercise signal, the representation equation is reduced into

e−ρτ P0e
Yτ

ρ−Ψ(1)
= IE

[∫ ∞

τ

ρe−ρt sup
τ≤v≤t

P0
exp (Yv)

κ
dt

∣∣∣ Fτ

]
= e−ρτP0e

Yτ IE

[∫ ∞

τ

ρe−ρ(t−τ) sup
τ≤v≤t

eYv−Yτ dt
∣∣∣ Fτ

]
/κ .

This can be further simplified by using the property of Lévy processes that Yv − Yτ has

the same distribution as Yv−τ and is independent of the σ-field Fτ

e−ρτ P0e
Yτ

ρ−Ψ(1)
= e−ρτP0e

Yτ IE

[∫ ∞

0

ρe−ρt sup
0≤v≤t

eYv dt

]
/κ

= e−ρτP0e
Yτ IE

[
eY τ(ρ)

]
/κ ,

where Y t = sup
s≤t

Ys and τ(ρ) is an independent exponentially distributed time with para-

meter ρ. Clearly, ξv = Pv/κ provides the solution to the representation problem (5) if and

only if κ = (ρ−Ψ(1)) IE
[
eY τ(ρ)

]
. �



Appendix 3: Proof of Theorem (3.2).

Proof. (i) The solution for κ: By the definition of the Wiener-Hopf factorization, it is easy

to observe that the expectation form in κ is indeed the left Wiener-Hopf factor Ψ+
ρ (1) of

the Lévy process Yt. Thus, κ is obtained as

κ = (ρ−Ψ(1))IE
[
eY τ(ρ)

]
= (ρ−Ψ(1))Ψ+

ρ (1) .

The left Wiener-Hopf factor is readily recognized for the defined Lévy process Yt. For

a Lévy process with no positive jumps, it is more simple to solve by using the well-known

exponential distribution of the supremum process Y τ(ρ) (Bertoin (1996) [4], Chapter VII).

More precisely, the running supremum at an exponentially distributed time with parameter

ρ has an exponential distribution with parameter β+, the unique positive root of the

characteristic equation. In this way,

κ = (ρ−Ψ(1))IE
[
eY τ(ρ)

]
= (ρ−Ψ(1))

∫ ∞

0

−β+eye−β+ydy

= (ρ−Ψ(1))

[
− β+

β+ − 1
e−(β+−1)y

∣∣∣∞
0

]
= (ρ−Ψ(1))

β+

β+ − 1
.

(ii) The value of the option to invest: The option value is trivial for the case of Lévy

processes with no positive jumps. In this case, there is no upward discontinuity due to the

lack of upward jumps, hence zero overshoots over the critical level. Therefore, the project

expected value at the optimal investment time is exactly Pτ∗ = κI. Substituting I = Pτ∗
κ

and the trigger level of the Lévy process y∗ = Yτ∗ = ln κI
P0

yields the real option value

F = IE
[
e−ρτ∗(Vτ∗ − I)+

]
= IE

[
e−ρτ∗

(
Pτ∗

ρ−Ψ(1)
− Pτ∗

κ

)]
= IE

[
e−ρτ∗

] (
IE

[
eY τ(ρ)

]
− 1

)Pτ∗

κ
.



Then according to the Laplace transform of the hitting time IE[e−ρτy1[τy<∞]] = e−yβ+

where τy = inf{t ≥ 0 |Yt ≥ y} (Bertoin (1996) [4]), this can be further reduced to

F = e−y∗β+
(
IE

[
eY τ(ρ)

]
− 1

)Pτ∗

κ

=

(
κI

P0

)−β+ (
IE

[
eY τ(ρ)

]
− 1

)
I

=
(
IE

[
eY τ(ρ)

]
− 1

) (
P0

κ

)β+

I1−β+

.

However, such a nice form is not possible for a general Lévy process since continuity at

the level y∗ is not guaranteed any more. Thus, a possible overshoot has to be considered

in this context. As

F = IE
[
e−ρτ∗Vτ∗

]
− IE

[
e−ρτ∗I

]
= I

[
IE

[
e−ρτ∗ Pτ∗

I (ρ− log IE [eYt ])

]
− IE

[
e−ρτ∗

]]
= I

[
IE

[
e−ρτ∗ κPτ∗

P ∗ (ρ− log IE [eYt ])

]
− IE

[
e−ρτ∗

]]
= I

[
IE

[
e−ρτ∗IE

[
eY τ(ρ)

]
eYτ∗−y∗

]
− IE

[
e−ρτ∗

]]
= I

[
IE

[
eY τ(ρ)

]
IE

[
e−ρτ∗+(Yτ∗−y∗)

]
− IE

[
e−ρτ∗

]]
with P ∗ = P0e

y∗ = κI, the option value is known by calculating the two expectations.

Based on the Pecherskii-Rogozin identity6, their Laplace transforms are obtained in form

of ∫ ∞

0

e−qyIE
[
e−ρτ∗+ (Yτ∗−y)

]
dy =

1

q + 1

(
1−

Ψ+
ρ (−q)

Ψ+
ρ (1)

)
and ∫ ∞

0

e−qyIE
[
e−ρτ∗

]
dy =

1−Ψ+
ρ (−q)

q
.

Thus, simple analytical formulae are only possible for some specific cases. In general,

numerical methods have to be used to get the final solution. �

6The Pecherskii-Rogozin identity expresses the double Laplace transform of the joint distribution of the

first passage time of the level y, τy = inf{t > 0 | Yt ≥ y}, and the overshoot above the level Yτy
− y:∫ ∞

0

e−qyIE[e−ατy−β(Yτy−y)]dy =
1

q − β

(
1− Ψ+

α (−q)
Ψ+

α (−β)

)
,

where α > 0, β ≥ 0 and q > 0. For a more technical proof the reader is referred to Alili and Kyprianou

(2005) [1]



Appendix 4: Proof of Theorem (4.3).

Proof. Denote the critical price of the output P ∗. Based on Theorem 4.1 and 4.2, it should

be identified as

θ

1− α
(P ∗)1−α =

U(rI)

ρ
.

Further simplification yields then

P ∗ =

(
1

ρθ

) 1
1−α

rI = η−
1

1−α rI ,

where η = ρθ = IE
[
e(1−α)Y τ(ρ)

]
.

To get the comparative statics result wrt. the risk aversion coefficient, we need to

calculate ∂P ∗

∂α
:

∂P ∗(α)

∂α
= η−

1
1−α

[(
− 1

1− α

)′

ln η +

(
− 1

1− α

)
η′(α)

η

]
rI

= η−
1

1−α

[
− 1

(1− α)2
ln η +

(
− 1

1− α

)
η′(α)

η

]
rI

= − 1

1− α
η−

1
1−α

[
1

1− α
ln η +

η′(α)

η

]
︸ ︷︷ ︸

:=C

rI ,(13)

where η′(α) = ∂
∂α

IE
[
e(1−α)Y τ(ρ)

]
= IE

[
e(1−α)Y τ(ρ)(−Y τ(ρ))

]
by using the Fubini’s theorem

and we define especially the term in bracket as C for convenience. Note that Y τ(ρ) is always

negative as Y0 = 0. Therefore, we have always η > 0 and η′ > 0. Again by applying the

Fubini’s theorem and assuming that the distribution of Y τ(ρ) is F (Y τ(ρ)) in the interval

(−∞, 0], we find first that

1

1− α
ln η =

1

1− α
ln IE

[
e(1−α)Y τ(ρ)

]
=

1

1− α
ln

∫ 0

−∞
e(1−α)Y τ(ρ)dF (Y τ(ρ))

=

∫ 0

−∞

1

1− α
ln e(1−α)Y τ(ρ)dF (Y τ(ρ))

=

∫ 0

−∞
Y τ(ρ)dF (Y τ(ρ))

= IE
[
Y τ(ρ)

]
.



In this way, we have C further reduced as

C = IE
[
Y τ(ρ)

]
+

IE
[
e(1−α)Y τ(ρ)(−Y τ(ρ))

]
IE

[
e(1−α)Y τ(ρ)

]
=

IE
[
e(1−α)Y τ(ρ)(−Y τ(ρ))

]
− IE

[
e(1−α)Y τ(ρ)

]
IE

[
−Y τ(ρ)

]
IE

[
e(1−α)Y τ(ρ)

]
=

Cov[e(1−α)Y τ(ρ) ,−Y τ(ρ)]

IE
[
e(1−α)Y τ(ρ)

] .

Clearly, the sign of the covariance and hence C is heavily dependent on α. For Y τ(ρ) ∈
(−∞, 0] always, one can easily find that C turns out to be negative for 0 < α < 1 and

positive for α > 1. Taking it back to (13) gives then the final result that ∂P ∗

∂α
is always

positive for any value of α ∈ [0, 1) and (1,∞).
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