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Abstract 
 
We employ a new macro-epidemiological agent based model to evaluate the “lives vs 
livelihoods” trade-off brought to the fore by Covid-19. The disease spreads across the networks 
of agents’ social and economic contacts and feeds back on the economic dimension of the model 
through various channels such as employment and consumption demand. We show that under a 
lockdown scenario the model is able to closely reproduce the epidemiological dynamics of the 
first wave of the coronavirus epidemic in Lombardy. We then explore the efficacy of the fiscal 
response to Covid-19 which may take different routes: income support, liquidity provision, 
credit guarantees. In an agent based setting we gain additional insights on the way in which 
fiscal measures impact not only on GDP but also on the defaults of firms and the allocation of 
inputs. We find that liquidity support for firms, a short-time working scheme with compensation 
for workers, and direct transfer payments to households are effective policy tools to alleviate the 
economic impact of the epidemic and the lockdown. 
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1 Introduction

The impact of Covid-19 on every aspect of economic life is at the centre of the interest of

the profession since the outbreak of the epidemic. The literature has grown exponentially

– becoming huge in a matter of weeks – in tandem with the progression of the contagion

and does not show any tendency to level off.

A substantial part of this literature focuses on the intertwined health and macroeconomic

effects of the epidemic. There is a clear pattern in the consensus approach to this issue:

either a macroeconomic model is augmented with a health sub-model or an epidemio-

logical model is augmented with a macroeconomic sub-model. Some authors place the

emphasis on the macroeconomic component, some others on the epidemiological compo-

nent but in both cases the end result is a macro-epidemiological model which captures the

two-way feedback between the health condition of the population on one hand and the

macroeconomy on the other. Such models are then put to work to assess the combined

macroeconomic and health effects of (public health) mitigation policies – primarily the

lockdown – and of (macroeconomic) stabilization policies, mainly demand management.

This modelling strategy is certainly fruitful – as shown by the proliferation of papers

and models – and has provided important insights into the pervasive effects of Covid-19

and the relative efficacy of mitigation and stabilization policy. While the epidemiological

sub-models are typically variants of the SIR framework, the macroeconomic sub-models

spring from different theoretical approaches, so that architectures and behavioural rules

differ from one model to the other. So far, however, most of the macro-epidemiological

models are characterized by canonical (new classical or new Keynesian) microeconomic

foundations and design of the macroecomic structure.

In time of Covid, however, the granularity and flexibility of the agent based approach to

modelling the macroeconomy can be particularly useful. As Paul Gourinchas put it “A

modern economy is a complex web of interconnected parties: employees, firms, suppliers,

consumers, banks and financial intermediaries. . . Everyone is someone else’s employee,

customer, lender, etc. A sudden stop [such as Covid-19] can easily trigger a cascading

chain of events, fueled by individually rational, but collectively catastrophic, decisions.”
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(Gourinchas, 2020, p. 33).

Exciting new research to assess the economic consequences of Covid-19 using a granular

approach is in full swing, in particular within the GROWINPRO project funded by the

European Commission, at Eurace@Unibi, at INET-Oxford and at IIASA. There are very

few attempts, however, to provide an integrated agent-based macro-epidemiological model.

This is surely a gap in the literature.

We contribute to filling the gap by proposing a new agent based macro - epidemiological

model of Covid-19 – hence the ABC label – based on the CATS framework presented by

Assenza et al. (2015).1 We adopt the strategy of integrating an agent based macroeco-

nomic sub-model and an epidemiological sub-model. Our strategy is similar to that of

Basurto et al. (2020) who integrate a SIR epidemiological component into an adapted

Eurace@Unibi framework. Their model is fairly large in terms of the number of agents –

the initial population consisting of 100 thousand households and around 4 thousand firms

– so that some of the features of Eurace@Unibi have been shut off. We opted for a much

smaller scale – ABC features 2800 households and 300 firms – to make the computational

burden less heavy, allowing us to retain all features of the original CATS framework and

add some suitable extensions.2

In both sub-models we exploit the granularity and flexibility of the agent-based approach.

Granularity is a foundational feature of the macroeconomic component of ABC, which

is a version of Assenza et al. (2015) extended and modified to enable the analysis of the

economic effects of an epidemic disease.

We also apply the granular approach to the epidemiological component. The canonical

SIR model is essentially a system of differential equations describing the laws of motions

of aggregates, i.e., the epidemiological groups – Susceptibles, Infected, Removed (dead

or recovered). In a sense, therefore, it is an aggregative model: it is not grounded in

the actions of the individual agents but captures the dynamics of the aggregates. Our

1See also Assenza et al. (2018) and Delli Gatti and Grazzini (2020).
2There is clearly a trade-off involved in this choice. A smaller population of agents allows us to

consider a fairly rich macroeconomic and epidemiological environment. At the same time, as will become
clear below, the reduced dimensionality – relative to Basurto et al. (2020) – makes it difficult to reproduce
certain characteristics of the epidemic, particularly the (delayed) emergence of second waves following
strict lockdowns during the first wave.
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starting point in describing the transmission of contagion is the observation that the

disease spreads through the agents’ interactions in social and economic networks. The

evolution of the disease both influences and depends on the behaviour of individual agents

along the ramifications of these networks. Hence, also in the epidemiological submodel

of ABC we start from a population of heterogenous agents. We track agents’ interactions

along the networks of their contacts both in the workplace and at home, i.e., during

leisure time. The dynamics of each epidemiological group therefore can be reconstructed

“from the bottom up” by summing across individuals who happen to be in the same

health condition. The epidemiological sub-model of ABC, therefore can be characterized

as a network-based SIR model.

While contagion may spread very quickly, making it important to depict epidemiologi-

cal phenomena at a relatively high frequency, macroeconomic phenomena are typically

modelled at lower frequencies. We exploit the flexibility of the agent-based approach

which allows models to encompass processes that run at different time frequencies. In

ABC, the basic unit of time of the epidemiological sub-model is one week and that of the

macroeconomic submodel is one month.

Ours is not just a modelling exercise. We put the model to test to face two research

issues:

� (A) First we want to assess the trade off (if any) between “saving lives” and sta-

bilizing GDP – “lives vs livelihood” – by replicating epidemic curves and recession

profiles with and without mitigation measures, primarily the lockdown. In an agent

based setting we gain additional insights on the change of relative prices, defaults

and the reallocation of inputs, as well as fiscal conditions (when only automatic

stabilizers are endogenously activated).

� (B) Second we want to assess the relative efficacy of stabilizaton policies adopted to

cope with the downturn created by the epidemic and exacerbated by the lockdown.

We will focus on the fiscal response to Covid-19 which may take different routes:

income support of one sort or another, liquidity provision, credit guarantees and

so on. In an agent based setting we gain additional insights on the way in which
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discretionary fiscal policies impact not only on GDP but also on the defaults and

the allocation of inputs.

We tackle issue (A) by carrying out a number of experiments to assess the effect of

mitigation policies – primarily the lockdown – on the trade off between saving lives and

saving GDP.

To carry out this task we calibrate the model to reproduce moments drawn from macroe-

conomic data for the Lombardy region and use ABC to simulate alternative epidemio-

logical scenarios. We characterize the baseline scenario as Normal Times. In normal

times people get sick because they can be hit by a normal (non-infectious and non-lethal)

disease. In this scenario, therefore, the epidemiological component of the model is shut

off: (i) sick people do not transmit their disease to the others and (ii) they always recover

(i.e., they do not die and total population does not change). The baseline simulations

are characterized by irregular fluctuations around a long run mean (a quasi-steady state)

of the most important macroeconomic variables. They replicate fairly closely the styl-

ized macroeconomic facts of business fluctuations in Lombardy. In the baseline scenario,

ABC also generates a “normal” demand for healthcare services and a “normal” level of

health-motivated Government outlays (expenditure for the public provision of healthcare

services and sick-pay transfers to households).

We then consider different epidemiological scenarios and compare the simulated time

series under each scenario with the corresponding time series in normal times. In each

scenario, people can catch an infectious and potentially lethal disease. Hence, over the

“long run” – i.e., when the flow of newly infected people tends to zero and the stock of

infected people reaches a plateau – a fraction of the population is permanently “removed”

because of death.

First we simulate the Uncontained Epidemic scenario. It turns out that, if uncon-

tained, the epidemic not only has a huge death toll but it also carries a significant output

loss over an extended time horizon. The level of GDP goes down – albeit slowly – at the

outbreak of the epidemic (short run) and stabilizes over time around a quasi-steady state

permanently below the level of normal aggregate activity (long run).
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The death toll is due to a large extent to the pressure of exponentially increasing demand

for healthcare on the public health system. The macroeconomic loss (decline of GDP)

is due to the supply and demand effects of the epidemic. Workers get sick and become

inactive, employment goes down and firms cut production. Therefore, even in the absence

of mitigation measures, the epidemic represents a non-negligible and lasting negative

supply shock. In addition, there is also a negative demand shock : Firstly, people who

get sick or become unemployed suffer a significant curtailment of their incomes (as they

will receive sick-pay or unemployment benefits instead of wages) and their consumption

contracts. Secondly, the consumption expenditure of people who die from the disease is

permanently “removed” from the macroeconomy, hence aggregate consumption falls. If

the model provides any indication, it suggests that just letting the epidemic run to avoid

closures of economic activity does not benefit the macroeconomy (as it does not avoid a

contraction of aggregate output) especially over the long run (as the economy stabilizes

in a lower quasi-steady state).

The second scenario we consider is characterized by (endogenous) Social Distancing.

As the label suggests, in this scenario the contagion is endogenously restrained by the

(voluntary) social distancing behaviour that agents adopt when the epidemic gets “out of

control”, i.e., when the number of infected people overcomes a “psychological” threshold.

Voluntary social distancing substantially reduces the death toll. Moreover, the conver-

gence to the plateau occurs in an oscillatory fashion, meaning that endogenous social

distancing gives rise to multiple waves of the epidemic disease. After the first wave, as

the number of infections becomes smaller people relax and cease to engage in social dis-

tancing but this relaxation boosts the number of infections. Here comes the second wave,

which leads to infections overcoming the threshold again and makes people re-enter the

social distancing mood. The macroeconomic loss in this case is bigger than in the uncon-

tained epidemic case in the short run – immediately after the outbreak of the epidemic –

but becomes smaller over a longer horizon as the death toll is considerably smaller.

Finally we explore the Lockdown scenario. In this case a relevant fraction of firms

is shut down. The lockdown has a remarkable mitigating effect on the lethality of the
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disease: the death toll is one order of magnitude smaller than in the uncontained epidemic

case. In the short run the macroeconomic loss is dramatic but GDP bounces back over

a longer horizon. The trade off between lives and livelihood is remarkable in the early

stage of the lockdown but fades away in the long run. Having calibrated the model on

the case of Lombardy, we show that ABC under lockdown is able to closely reproduce

the infection and fatality numbers for Lombardy where the lockdown was activated fairly

soon (first week of March). Using these simulations, we could infer that in the absence of

a lockdown, the number of fatalities in Lombardy could have been 20 times bigger than

the actual figure.

We tackle issue (B) by carrying out a number of policy experiments to assess the efficacy

of macroeconomic stabilization policies in counteracting the epidemic- and lockdown-

induced downturns. We consider different measures – ranging from income and em-

ployment support to liquidity provision and credit guarantees for firms – and in each

experiment we compare the simulated time series generated by a specific measure with

the corresponding time series under the lockdown scenario. In the simulations, the most

effective policy measures appear to be income support for households as well as a combina-

tion of employment support for workers (in the form of a ban on layoffs and a redundancy

fund) and temporary liquidity support for firms. These policies significantly speed up

recovery and strongly reduce the output loss relative to the lockdown scenario without

any stabilisation policy.

The paper is structured as follows. After a brief review of the literature (section 2),

sections 3 to 5 provide a detailed description of the ABC model, including the epidemi-

ological component. Section 6 discusses the calibration and validation of the baseline

scenario (normal times). Section 7 presents the epidemic curves under different epidemi-

ological scenarios while section 8 focuses on the macroeconomic effects of these scenarios.

Macroeconomic stabilization measures to counter the fallout from the epidemic and the

lockdown are discussed in section 9. Section 10 concludes.
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2 A concise review of the literature

The literature on the effects of Covid-19 and on the policies to cointain the epidemic

and reduce the economic damage is already huge. In this section we focus only on

the macroeconomic consequences of Covid-19, and only on some of the more significant

contributions in this field.

The descriptive literature and the public debate3 have revolved around two major ques-

tions:

1. What kind of shocks hit the macroeconomy following the outbreak of an epidemic?

What are the channels of transmission of these shocks?

2. Is there a trade off between “lives” and “livelihoods”? Do public health measures

aimed at containing the death toll have small and rapidly disappearing or sizable

and prolonged effects on aggregate economic activity?

As to the first question, a consensus has rapidly emerged: the epidemic (and the associ-

ated public health containment measures) generates both a demand and a supply shock

with profound contractionary consequences (Baldwin and Weder di Mauro (2020a)). The

most intriguing characterization of this double shock has been put forward, in our view,

by Guerrieri et al. (2020), who characterize Covid-19 as a Keynesian supply shock, i.e. a

supply shock capable of causing movements in aggregate demand of even greater magni-

tude.

In order to provide answers to the the second question, i.e., to assess the lives versus

livelihoods tradeoff, the prevailing modelling strategy consists in incorporating a SIR-

type epidemiological model into a pre-existing macroeconomic framework, obtaining a

macro-epidemiological model. Macro-epi models differ in terms of granularity and focus.

In this context, it is generally recognized that the decentralized (competitive) equilibrium

is not Pareto optimal: albeit individuals engage in endogenous social distancing to protect

themselves from the risk of being infected, they do not fully internalize the infection

3See, for example, the huge number of columns at vox.eu and the books by Baldwin and Weder di
Mauro (2020a) and Baldwin and Weder di Mauro (2020b).
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externality, i.e. the effect of their socializing on the risk of infection for their contacts. In

other words, endogenous or voluntary social distancing is not effective enough in terms of

epidemic containment. This premise makes room for forced social distancing, i.e., public

health measures such as the lockdown.

Eichenbaum et al. (2020) build a SIR-RBC model and show that containment policies are

optimal when they are fine tuned to the magnitude of the infection. Acemoglu et al. (2020)

adopt a more granular approach introducing age heterogeneity. In this case, optimal

containment policies take the form of age-targeted quarantines, more stringent for the old,

milder for the young. Optimal epidemic containment policies are studied also by Alvarez

et al. (2020). Bodenstein et al. (2020) and Krueger et al. (2020) focus on the effects of

Covid-19 on the supply side and in particular on the role of the industrial structure in

the transmission of the shock. Bodenstein et al. (2020) distinguish between core and non-

core industries: firms in the core industries produce final goods using intermediate inputs

purchaed at firms in the non-core industries. An uncontained epidemic has a huge impact

on labour supply and a disportionate impact on core industries. Forced social distancing

not only saves lives but it also slows down the contraction of labour supply and mitigates

the negative impact on core industries. Krueger et al. (2020) adopt a more granular

approach considering a multi-sector economy. In their setting, households spontaneously

reallocate consumption from sectors more exposed to the infection to sectors less exposed.

Hence endogenous social distancing is effective and this reduces the need to resort to

stringent containment policies. The role of optimal policies in economies affected by the

pandemic is explored in depth in Assenza et al. (2020).

As we anticipated in the introduction, there is a growing body of literature which employes

granular tools (e.g., very detailed input-output models, production networks, agent based

models) to answer Covid-related research questions. For example Bellomo et al. (2020)

build a very detailed multi-scale model of the interactions of different “entities” (viruses,

humans, populations) that make the disease pervasive. del Rio-Chanona et al. (2020)

employ detailed input-output production networks to evaluate the trickling down pattern

of demand and supply shocks in the USA. The agent based model built by Poledna et al.
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(2020) has been used to assess the effects of Covid-19 in Austria. Basurto et al. (2020)

provide an AB macro-epidemiological model based on the Eurace@Unibi framework and

calibrated on German data.

3 Environment

The model economy we construct for our analysis is populated by firms, households, the

banking system and the public sector. There are NF firms which fall in three categories:

Nk
F producers of capital goods (K-firms), N b

F producers of basic (or essential) consumption

goods (B-firms) and N l
F producers of non essential consumption goods or luxury goods (L-

firms). In the following we will consider also the set of all consumption goods producers

(C-firms) which is the union of the sets of B-firms and L-firms. Hence the cardinality

of the set of C-firms is N c
F = N b

F + N l
F . K-firms use labor to produce capital goods

which are sold to C-firms. C-firms employ labour and capital to produce consumption

goods which are sold to households. Firms exit the economy when their equity becomes

negative. Exiting firms are replaced by entrants so that the total population of firms

(and the composition of the corporate sector) is constant.

There are NH households which fall into two categories: NW workers and NF firm owners.

Since the number of firms is constant, also the number of firm owners is constant. In

normal times also the population of workers is constant. We characterize the scenario of

Normal Times (NT) as a setting in which people can get sick but the (non-infectious)

disease is non-lethal.4 Therefore all the sick will eventually recover and the total popu-

lation is constant.

During an epidemic, on the contrary, population may decline because the (infectious)

disease is potentially lethal. For simplicity we assume that the epidemic spreads only

among workers, who represent the vast majority of the population of households. During

an epidemic, therefore, the number of workers will decrease because of deaths. Since, due

to the time-scale of the simulations we consider, we have ruled out the entry of newly

4As outlined below, the sole purpose of the ‘normal’ disease is to generate a baseline level of demand
on the healthcare system.
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born agents, the population will decline.5

Workers can be either active or inactive: NW = NA + NI . The population of active

workers is the labour force. The labour force, in turn, is the sum of employed (N) and

unemployed (U) workers: NA = N +U . The inactive population consists of old (retired)

workers and sick people. When a worker gets a disease (whether ‘normal’ or epidemic)

she becomes inactive and remains inactive until the end of the disease.6

Each active worker supplies labor on the labor market. The market for labour is charac-

terized by search and matching : unemployed workers search for a job and stop searching

when a match occurs with a vacancy posted by a firm. When employed, the worker earns

a wage. If unemployed, she will receive an unemployment subsidy. Workers (both em-

ployed and unemployed) who get sick receive sick-pay. Retired workers receive pensions.

There are NF firm owners.7 Firm owners earn dividends proportional to the firm’s profit

if the latter is positive. Wages as well as firm and bank profits are taxed. Unemployed,

sick and retired workers do not pay taxes.

Households (both workers and firm owners) are consumers, i.e., buyers on the market for

consumption goods (C-goods). The market for C-goods is characterized by search and

matching: households search for the goods they want at firms and stop searching when

a match occurs. Also the markets for capital goods (K-goods) is characterized by search

and matching: C-firms search for the machines they want at K-firms and stop searching

when a match occurs.

Households can also be savers, i.e., they may spend less than their income. Savings are

employed to accumulate financial wealth in the form of deposits at banks. By assumption

households do not borrow.

Firms register a financing gap when outlays (to pay wages and K-goods) are greater than

liquidity.8 By assumption the only source of external finance are bank loans. Hence firms

which cannot self-finance their outlays demand bank loans.

5Of course also the composition of the population will change because, by assumption, firm-owners
do no catch the disease.

6In normal times the disease ends with recovery, during an epidemic it may end either with recovery
or with death.

7By assumption, there is one owner per firm.
8By assumption firms hold liquidity in the form of deposits at banks.
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For simplicity, the banking sector is assimilated into a single bank. Households and firms

hold deposits at the bank. The interest rate on deposits is a fraction of the risk free

interest rate (i.e., the interest rate on Government bonds). The bank extends loans to

firms which need to fill the financing gap. The bank sets the interest rate on loans and the

quantity of credit supplied to firms. The decision of the bank is based on the assessment

of the borrowing firm’ s financial fragility, which is a proxy of the credit risk run by the

bank. The interest rate on loans is set adding a mark up (external finance premium) on

the risk free interest rate. The external finance premium, in turn, is increasing with the

borrower’s leverage. Moreover, a firm may face a limit on the total amount of credit it

can receive (credit rationing).

The public sector collects taxes on wage income and profits and provides transfers in

the form of unemployment subsidies, sick-pay and pensions. Government expenditure

consists of public provision of healthcare services. In case of a public sector deficit, the

Government issues bonds and sells them to the bank. The interest rate on Government

bonds is the risk free rate. Figure 1 depicts agents’ interactions on six markets: deposits,

credit, labor, K-goods, consumption goods (L-goods and B-goods).

In the following, undated letters will denote exogenous variables or parameters. Dated

letters will denote time-varying variables. In the macroeconomic sub-model, the time

unit is a month: all decisions and market interactions take place at monthly frequency.

The epidemiological sub-model runs at the basic frequency of one week, with every month

in the model containing exactly four weeks. In the macroeconomic submodel, therefore,

the time subscript t indicates a month while the epidemiological sub-model, the time

subscript τ indicates a week.

4 The macroeconomic sub-model

4.1 Households

Households (workers and firm owners) will be indexed by h = 1, 2...NW , NW + 1, ..., NH

where, of course, NH − NW = NF . In words: the first NW households are workers, the
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Banks

Households

LabourConsumption goods

Deposits

K-firms

L-firmsB-firms
Credit

Public sector

Healthcare

K-goods

Figure 1: Agents and markets

last NF households are firm owners.

4.1.1 Workers

The h-th household is a worker if h ∈ (1, NW ). Workers can be employed, unemployed,

sick or retired. Each active worker supplies 1 unit of labour inelastically. If employed,

she receives the uniform nominal wage wt and pays a fraction tw (the tax rate on wages)

of this wage to the Government.

If unemployed, the worker searches for a job visiting a subset ze of firms chosen at

random among the population of firms. Since the wage is uniform across firms and

labour is homogeneous, the worker may be employed in any of the B, L and K firms.

Once an unemployed worker finds a firm with an unfilled vacancy she stops searching

and the match occurs. Unemployed workers who have not succeeded in finding a job

(because firms in their subset did not post vacancies or because they had already filled
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all the vacancies), receive an unemployment subsidy from the Government equal to a

fraction of the wage: suwt. A sick worker receives a sick-pay sswt. Each inactive worker

receives a pension spwt. The parameters su, ss, sp are the replacement rates in the case

of unemployment subsidy, sick-pay and pension.

4.1.2 Firm owners

Let’s index all the firms with f = 1, 2, ...N b
F , N

b
F + 1, ...N c

F , N
c
F + 1, ....NF where N c

F =

N b
F +N l

F and NF = N c
F +Nk

F . In words: firms indexed with f ∈ (1, N b
F ) produce B-goods;

firms indexed with f ∈ (N b
F+1, N c

F ) produce L-goods; firms indexed with f ∈ (N c
F+1, NF )

produce K-goods. The h-th household is a firm owner if h ∈ (NW + 1, NH) where

NH = NW +NF . The household indexed with h = NW + f is the owner of the f -th firm.

The income of this household consists in dividends paid by the firm it owns. Dividends,

in turn, are equal to a fraction ω (the pay-out ratio) of the after-tax profit (1− tπ)πf,t−1

where tπ is the tax rate on profit and πf,t−1 is profit generated in the previous period.

The firm pays out dividends only if πf,t−1 > 0. If a firm faces a loss, its net worth will

go down correspondingly and the firm will not distribute dividends. Moreover, the firm

owners are assumed to jointly own the representative bank and consequently each firm

owner receives an equal share of the dividends distributed by the bank. Whenever a firm’s

equity becomes negative, it is assumed to exit the economy and another one will replace

it. We assume that the initial equity of the entrant firm is provided by the household that

owned the exiting firm. The owner’s wealth, therefore, will be reduced correspondingly.

4.1.3 Households as consumers

In order to understand households’ consumption behaviour we must start from the defi-

nition of disposable income. Each household receives income and interest payments. For

simplicity only the income of employed workers and firm owners is taxed. Income sources

differ from one set of households to another. Let’s focus first on workers. Employed

workers earn the wage wt taxed at the rate tw. Unemployed, sick and inactive (retired)

workers receive a subsidy snwt, equal to a fraction (the replacement rate) 0 < sn < 1

14



(n = u, s, p) of the current wage. Interest payment accruing to the household in t are

computed appying the interest rate on deposits rd to deposits accumulated until the end

of the previous month: rdDt−1. Hence the current disposable income of the h-th worker

– i.e., household h ∈ (1, NW ) – is:

Yh,t =



(1− tw)wt + rdDh,t−1 if h is employed,

suwt + rdDh,t−1 if h is unemployed,

sswt + rdDh,t−1 if h is sick (but not retired),

spwt + rdDh,t−1 if h is retired

(1)

Finally, firm owners receive income as dividends from the firm they own and a fraction of

the dividends paid out by the bank. Dividends are a fraction of after-tax profits. Hence

the disposable income of the h-th firm-owner – i.e., household h ∈ (NW + 1, NH) – is

Yh,t = (1− tπ)ω

(
πh,t−1 +

1

NF

πb,t−1

)
+ rdDh,t−1 (2)

To decide how much to consume of each C-good, the household proceeds in four steps.

First, the household estimates human wealth Y h,t using an adaptive mechanism: Y h,t =

ξY Y h,t−1 + (1 − ξY )Yh,t where ξY ∈ (0, 1) is a memory parameter and Yh,t is current

disposable income. Human wealth is a weighted average of past disposable incomes with

exponentially decaying weights.

Second, the household determines the desired budget allocated to consumption: Ch,t =

Y h,t+χDh,t−1 whereDh,t−1 is the household’s non-human (i.e. financial) wealth (deposited

at the bank) and χ ∈ (0, 1) is the fraction of wealth devoted to consumption. If the

consumer does not receive income - for instance because a firm owner does not receive

dividends - she will de-cumulate her financial wealth to form a consumption budget.

Third, the consumer allocates a fraction cb of the consumption budget to the consumption

of basic goods (B-goods hereafter). Hence the fraction (1 − cb) of the budget will be

allocate to luxury goods (L-goods). We assume that cb is a decreasing function of the
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price of B-goods relative to L-goods. In symbols: cb =
N b
F

N c
F

P l
t−1

P b
t−1

where P b (resp: P l)

is an aggregator of the individual B-prices (L-prices).9 There may be periods in which

the household’s consumption budget is larger than available liquidity (i.e., deposits plus

current income). In this case, the consumer is liquidity constrained; she will first spend

on basic goods and then allocate any remaining funds beyond the desired consumption

of basic goods to the consumption of luxury goods.

Fourth, the consumer visits C-firms in order to purchase goods. C-firms will be indexed

by i = 1, 2...N b
F , N

b
F + 1, ..., N c

F where, of course, N c
F − N b

F = N l
F . In words: the first

N b
F firms are B-firms, the last N l

F firms are L-firms. In the following we will deal with

B-firms but exactly the same market protocol is applied to L-firms.

On the market for B-goods there are N b
F firms indexed with i ∈ (1, N b

F ). The h-th

consumer visits zc B-firms, ranks them in ascending order of posted price and demands

consumption goods starting from the firm charging the lowest price. If she does not ex-

haust the consumption budget devoted to B-goods (cbCh,t) at the first firm, the consumer

will move up to the second firm in the ranking and so on. This implies that there is an

implicit negative elasticity of the demand for the good produced by the i-th B-firm to the

relative price
P b
i,t

P b
t

where P b
i,t is the price charged by the i-th B-firm and P b

t is the average

price of B-firms.

Contrary to Assenza et al. (2015) and similar previous models, in this paper we assume

that the consumer keeps memory of the firms she visited in the past. We assume that

in period t the set of visited firms consists of the firm the consumer visited in t − 1 at

which she purchased the largest amount of goods, and of zc − 1 firms selected randomly.

In this way, current demand for a firm’s output becomes a more reliable signal of future

demand.

If, at the end of her visits to B-firms, the household has not spent the consumption budget

allocated to B-goods, she will save involuntarily. Denoting with Cb
h,t actual expenditure

9If the relative price is 1, i.e., if on average B-firms charge the same price as L-firms, the fraction

of the consumption budget allocated to B-firms is
Nb

F

Nc
F

, i.e., it is equal to the fraction of B-firms in the

population of C-firms. Ideally, if every C-firm sets the same price, it should be entitled to the same
fraction of the consumption budget.
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on B-goods, involuntary saving will be S ′b = cbCh,t−Cb
h,t. The search and matching mech-

anism leads to the coexistence of queues of unsatisfied consumers (involuntary savers) at

some firms and involuntary inventories of unsold goods at some other firms.

The market protocol for L-goods is the same. The consumer visits a subset zc of L-firms

and starts purchasing goods from the firm which posts the lowest price. If the budget

allocated to L-goods (1− cb)Ch,t has not been entirely spent, she will add the residual to

her savings. Denoting with C l
h,t actual expenditure on L-goods, involuntary saving will

be S ′l = (1− cb)Ch,t − C l
h,t.

Total saving is equal to the sum of voluntary or desired saving (i.e., the difference between

disposable income and the budget allocated to consumption) and involuntary saving.

This is tantamount to saying that actual saving is equal to the difference between current

income and actual consumption on B-good and L-goods:

Sh,t = Yh,t − Ch,t + S ′b + S ′l = Yh,t − Cb
h,t − C l

h,t (3)

Savings are used to accumulate financial wealth in the form of deposits. The law of

motion of financial wealth for the h-th household therefore is Dh,t = (1 + rd)Dh,t−1 +Sh,t.

By assumption consumers do not hold Government bonds.

4.2 Firms

4.2.1 C-Firms

B-firms and L-firms are consumption goods producers (C-firms for short) and follow the

same behavioural rules. In this section we will describe the behaviour of a generic C-firm.

The firm has some market power on its own local market (i.e., there are as many local

markets as there are firms). It has to set individual price and quantity under uncertainty.

It knows from experience that if it charges higher prices it will get smaller demand but

it does not know the actual demand schedule (i.e., how much the consumers would buy

at any given price). Hence the firm is unable to maximize profits since the marginal

revenue is unknown. The best the firm can do in this setting consists in charging a price
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as close as possible to the average price and producing a quantity as close as possible

to (expected) demand. In this way the firm minimizes overproduction (in case of excess

supply) or the queue of unsatisfied customers (in case of excess demand).

The i-th C-firm, i = 1, 2...N b
F , N

b
F +1, ..., N c

F must choose in t the price and desired output

for t + 1, i.e., the pair
(
Pit+1, Y

∗
it+1

)
. Desired output is determined by expected demand

Y ∗it+1 = Y e
it+1. The firm’s information set in t consists of (i) the relative price

Pi,t
Pt

– where

Pit is the price of the i-th good and Pt is the average price level – and (ii) excess demand

∆it := Y d
it − Yit (4)

where Y d
it is the demand for the i-th good and Yit is actual output. ∆it shows up as a

queue of unsatisfied customers if positive; as an inventory of unsold goods if negative.

By assumption C-goods are not storable. Therefore involuntary inventories cannot be

employed to satisfy future demand.

A firm can decide either to update the current price or to vary the quantity to be produced.

The decision process is based on two rules of thumb which govern price changes and

quantity changes respectively.

The price adjustment rule is:

Pi,t+1 =


Pi,t(1 + 1uρp) if ∆i,t > 0

Pi,t(1− 1oρp) if ∆i,t ≤ 0

(5)

where ρp is a random positive number, ρp ∼ U(0, 1). 1u is an indicator function which

takes value equal to 1 if the firm has underpriced the good (i.e., if Pit
Pt
< 1), 0 otherwise.

Analogously 1o is equal to 1 if the firm has overpriced (i.e., if Pit
Pt
> 1), 0 otherwise.

Excess demand ∆it and the relative price
Pi,t
Pt

dictate the direction of price adjustment:

the firm will increase (reduce) the price next period if it has registered excess demand

(supply) and has underpriced (overpriced) the good in the current period. The magnitude

of the adjustment is stochastic. The upper bound of the support of ρp limits the admissible

price change. We also assume that the firm will never set a price lower than the average
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cost.

Since the quantity to be produced is equal to expected demand, the quantity adjustment

rule takes the form of an updating rule for expected demand:

Y ∗it+1 = Y e
it+1 =


Yi,t + 1oρq∆i,t if ∆i,t > 0

Yi,t + 1uρq∆i,t if ∆i,t ≤ 0

(6)

where ρq is a positive parameter, smaller than one. 1o and 1u are the indicator functions

define above. Both the direction and the magnitude of quantity adjustment are deter-

mined by excess demand. The firm will increase (reduce) the quantity produced in t+ 1

if it has overpriced (underpriced) the good and experienced excess demand (supply).

Technology is represented by a Leontief production function: Yi,t = min(αNi,t, κxi,tKi,t)

where α and κ represent labor and capital productivity respectively and xi,t ∈ [0, 1] is

the rate of capacity utilization at firm i. When capital is employed at full capacity – i.e.

when xi,t = 1 – output will be Ŷi,t = κKi,t. This is “full capacity” output. Given a stock

of undepreciated capital, actual capital in t + 1, Kit+1 is given – being determined by

investment carried out in t, Iit (to be discussed momentarily) – and cannot be modified

in t+ 1. Hence in period t+ 1 the maximum attainable output is Ŷit+1.

Once a decision has been taken on desired output in t + 1, the firm retrieves from the

production function how much capital it needs in t+1 to reach that level of activity

(capital requirement): K∗it+1 = Y ∗it+1/κ. If actual capital is greater than the capital

requirement, the desired rate of capacity utilization will be smaller than one. If actual

capital is smaller than the capital requirement, the former will be utilized at full capacity

(the rate of capacity utilization will be one) but desired output will not be reached.

Whatever the scenario, if actual employment in t Nit is smaller than labor required to

reach the feasible level of activity in t + 1, the firm will post vacancies. If the opposite

holds true the firm will fire workers.

The uniform nominal wage is set on the basis of labour market conditions captured by

the distance between the current unemployment rate ut and a threshold uT . Whenever

the unemployment rate is above (below) the threshold the wage will decrease (increase).
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The wage updating mechanism therefore is:

wt+1 =


wt
[
1 + uup

(
uT − ut

)]
; ut − uT > 0

wt
[
1 + udown

(
uT − ut

)]
ut − uT < 0

(7)

where uup and udown are positive parameters. We will assume that uup > udown to capture

the downward stickiness of nominal wages.

As mentioned above, the firm determines in t the capital stock which will be available

for use in production in t + 1 by means of investment Iit. By assumption, in planning

investment, the firm sets a benchmark equal to the capital stock used in production “on

average” since the beginning of activity Kit. This, in turn, is computed by means of an

adaptive algorithm, i.e., the weighted average of past utilized capital from the beginning

of activity until t− 1 with exponentially decreasing weights. In computing this weighted

average, the firm employs a memory parameter ξK ∈ (0, 1). Capital depreciates at the

rate δ. Moreover we assume that C-firms may invest in each period with a probability γ.

Hence investment necessary “on average” to replace worn out capital is δ
γ
Kit.

We assume, moreover, that the firm plans to maintain, in the long run, a capital stock

buffer. Therefore the target capital stock is equal to KT
it+1 = 1

x̄
K̄it where x̄ ∈ (0, 1) is

the desired long run capacity utilization rate. Net investment is KT
it+1−Kit−1. Therefore

gross investment in t is:

Iit =

(
1

x̄
+
δ

γ

)
Kit −Kit−1 (8)

Once investment has been determined, the i-th C-firm visits a subset zk of K-firms.

As on the market for consumption goods, this subset of K-firms always includes the

previously visited K-firm from which i bought the largest amount, with the rest chosen

at random. Visited K-firms are ranked in ascending order of price and the C-firm starts

buying capital goods from the K-firm which has posted the lowest price. If this purchase

does not exhaust planned investment, the C-firm will purchase capital goods also at

the second firm in the ranking and so on. If the C-firm’s demand for K-goods has not

been completely satisfied after zk visits, it is forced to “save” the unspent portion of the
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investment budget. Therefore actual investment may turn out to be lower than planned

investment.

4.2.2 K-firms

In setting the price of capital goods, K-firms follow the same heuristic adopted by C-firms

(see equation (5)). Denoting with Pjt the individual price and P k
t the average price of

capital goods, we define the indicator functions. 1o is equal to 1 if the firm has overpriced

the good in t (i.e., if
Pjt
Pkt

> 1), 0 otherwise. Analogously, 1u takes value equal to 1 if the

firm has underpriced the good (i.e., if
Pjt
Pkt

< 1), 0 otherwise. The price adjustment rule

therefore is

Pj,t+1 =


Pj,t(1 + 1uρp) if ∆j,t > 0

Pj,t(1− 1oρp) if ∆j,t ≤ 0

(9)

where ρp is a random positive number.

The quantity adjustment rule departs from the one adopted by C- firms (see equation (6))

to take into account the fact that K-goods are durable and therefore storable: inventories

of capital goods can be carried on from one period to another and sold in the future. The

quantity adjustment rule of the j-th K-firm, j = 1, 2, ..., Nk
F therefore is:

Y ∗jt+1 = Y e
jt+1 − Y k

jt =


Yjt + ρq1o∆jt − Y k

jt if ∆jt > 0

Yjt + ρq1u∆jt − Y k
jt if ∆jt < 0

(10)

where Y ∗jt+1 is the desired scale of activity, Y e
jt+1 is expected demand, Y k

jt is the fraction of

the inventory of capital goods held by firm j at time t which can be used to face demand

in t+ 1, ∆jt is excess demand.

Y k
jt is computed applying a rate of depreciation δk to the stock of unsold machine tools

accumulated until t. In contrast to the quantity decision-rule, K-firms’ price-adjustment

rule is exactly equivalent to that of C-firms. As with C-firms, K-firms are allowed to up-

date their price-quantity decision once per month on average. Since K-firms are endowed

with a linear production function whose only input is labour, once the price-quantity
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configuration has been set, a K-firm may post vacancies or fire workers in order to fulfill

labor requirements.

4.3 The banking system

Once the quantity to be produced has been set and the cost of inputs determined, the

firm has to deal with financing. Consider a generic firm, indexed by f = 1, 2..., NF . If the

firm’s internal liquidity (i.e., the current deposits held at the bank) Dft−1 is “abundant”,

i.e., greater than the costs to be incurred, the firm can finance production and investment

(if any) internally. If, on the other hand, liquidity is not sufficient to carry out production

and investment up to the desired level, the firm applies for a loan to fill its financing gap

which is given by

Fft = wNft + 1cP
k
t−1Ift −Dft−1 (11)

where 1c is an indicator function which assigns value 1 to C-firms and 0 to K-firms (since

only C-firms purchase capital goods). We assume that the firm assesses the financing

gap (and the demand for loans) before accessing the market for capital goods. Hence

machinery and equipment to be bought in t are priced with the “average” price of capital

goods P k
t−1.

For simplicity we assume there is only one bank which collects deposits from firms and

households, supplies credit to firms and purchases Government bonds. The bank decides

(i) the interest rate to be charged to each borrower and (ii) the size of the loan (which

may be different from the borrower’s financing gap). As we will see momentarily, both

decisions will be affected by the borrower’s leverage λft:

λft =
Lft

Eft + Lft
(12)

where Lft is the firm’s debt and Eft is equity or net worth.

The interest rate charged by the bank to each firm is determined as a mark up µ on the

risk free interest rate r. Adopting the expression pioneered by Bernanke et al. (1996), the

firm is charged an external finance premium increasing with the probability of default
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which in turn is (non-linearly) increasing with leverage. The bank makes an assessment

of probability of default for the i-th C-firm, which is given by:

p(λit) =
eb0c+b1cλit

1 + eb0c+b1cλit
(13)

Analogously, the assessed probability of deafult for the j-th K-firm is:

p(λjt) =
eb0k+b1kλjt

1 + eb0k+b1kλjt
(14)

In the end, therefore the interest rate charged to the generic f -th firm is a function of

the risk-free interest rate and of the firm’s leverage:

rft = µf(r, λft) (15)

where the function f(.) is increasing with all the arguments.10

In order to determine the size of the loan, the bank first sets a tolerance level for the

potential loss Γb on credit extended (to any borrower) as a fraction φ of its net worth:

Γb = φEbt. The borrower’s total debt in t will be Φft + Lft−1 where Φft is the new

credit line to be supplied in t. We assume the bank sets the new credit line in order

to equate the expected loss on loans extended to the f -th firm to the tolerance level:

(Φft + Lft−1)p(λft) = φEbt. Therefore the new credit line is:

Φft =
φ

p(λft)
Ebt − Lft−1 (16)

Given the current exposure of the bank to the firm, the new credit line is increasing

with the bank’s net worth and decreasing with the firm’s leverage. The size of the loan

actually granted to firm f at time t will be

L̇ft = min(Φft;Fft) (17)

10For the specification of f(.) see Assenza et al. (2015).
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i.e., the minimum between the new credit line and the financing gap, which is equal to

the demand for loans. If the latter is greater than the former the firm will be rationed on

the credit market and therefore forced to scale down production. Finally, firms in each

period repay a fraction ζ of the total debt to the bank.

4.4 Net worth updating

In every period, each firm’s net worth Ef is updated by means of retained profits:

Eft+1 = Eft + (1− tπ)(1− ω)πft (18)

where tπ is the tax rate on profits, ω is the dividend payout ratio and πft is the firm’s

profit. Whenever the firm’s equity turns negative, the firm exits the economy and is

replaced by a new firm. The owner of the exiting firm confers the initial net worth of

the entrant firm (out of her own private wealth). Hence, the population of firms is kept

constant. If a firm’s liquidity (its deposits) are smaller than zero at the end of the period,

it receives a transfer from the firm owner to make up the negative balance. If, after the

transfer, the firm’s liquidity is still negative, the bank takes a loss equal to the negative

balance and the firm’s deposits become zero, but the firm does not exit the economy

unless its equity is also negative.

Also the bank’s net worth is updated by means of retained profits:

Ebt+1 = Ebt + (1− tπ)(1− ω)πbt −BDt (19)

where πbt is the bank’s profit and BDt is bad debt, i.e., the book value of non-performing

loans. We assume that the bank remunerates deposits and earns interests on loans (if bor-

rowers are solvent) and on Government bonds. The interest rate on deposits is detemined

by marking down the risk-free interest rate.
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4.5 The Public Sector

The public sector raises tax revenues on wage income and profits TAt = twwtNt +

tπ

(∑NF
f=1 πf,t−1 + πb,t−1

)
. The Government extends unemployment subsidies, sick-pay

and pensions to workers and makes interest payments on outstanding Government bonds

to the bank. Total transfers therefore are TRt = (suUt + spNI,t + ssIt)wt + rBt−1 where

It denotes the number of sick people (who receive sick-pay) in month t 11 and Bt−1 is

the outstanding public debt at the end of period t-1. Government expenditure consists

in providing of health care services to each citizen. This expenditure is assumed to be a

constant fraction of full employment output, taking the initial population of active agents

as a basis for calculation. In symbols:

Gh = ghαNA,0 (20)

This amount is spent on the output of both K-firms and C-firms and may be taken to

represent both the purchase of equipment necessary for healthcare provision and con-

sumption of medical workers (who are not explicitly modelled here). The expenditure is

in the first instance allocated to firms according to their relative revenue in the previous

period: the firm f-th firm receives demand from the public sector equal to the fraction

Rf∑NF
f=1Rf

where Rf represents total revenue. If, after the first round of expenditure distri-

bution, the government has been unable to spend the entire amount Gh (because some

of the firms did not produce sufficient output), the remaining demand is redistributed

between those firms which still have goods available until the exact amount Gh has been

spent. It is assumed that this expenditure is directly converted into a capacity of the

healthcare system to provide services, i.e., a supply of healthcare equal to Gh.

A public sector deficit occurs when taxes turn out to be lower than the sum of transfers

and government expenditure. In this case, the government will issue new bonds. For

simplicity, we assume that the Government sells its bonds only to the bank. We assume

moreover that regulation (a portfolio constraint) forces the bank to purchase government

11During an epidemic only infected people who are tested and detected will become inactive and
receive sick-pay.
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bonds.

4.6 Demand and supply of healthcare

As mentioned in the introduction, one of the strengths of the AB approach is the ca-

pability of encompassing processes that run at different time frequency. We exploit this

property to capture an important real world feature: diseases (and especially epidemics)

evolve at a much higher frequency than the macroeconomy. We assume that economic

decisions are taken every month while the health component of the model runs at a weekly

frequency. We will indicate the current week with the subscript τ .

First we define a benchmark case, the Normal Times (NT) scenario. We assume that

during normal times, in any given week, a healthy agent may catch a “normal” – i.e.,

non-infectious and non-lethal – disease with a certain probability. The presence of this

disease in turn generates a demand for healthcare services. This “normal” demand will

provide the baseline against which we will evaluate the effects on the healthcare system

of the additional pressure generated by the epidemic.

For simplicity we assume that only workers (both active and inactive) may get sick. Since

the normal disease is non-infectious, the sick cannot infect the healthy: in normal times

there are no spillover effects of the disease.12 The i-th sick agent generates a demand of

healthcare in week τ – denoted with hii,τ – (hence a pressure on the healthcare system)

which is increasing with age (agei) and affected by an idiosyncratic shock:

hdi,τ = h1agei,τ + h2ui,τ (21)

where ui ∼ U(0, 1). We have divided the population in three segments, the young (15%

of the population), the middle-aged (65%) and the old (20%). These numbers roughly

capture the current composition by age of the population of Lombardy. The variable agei

assumes values 1 if the agent is young, 2 if middle-aged and 3 if old. The total demand

for healthcare is Hd
τ =

∑Iτ
i hdi,τ where Iτ is the number of sick people in week τ . The

12The “normal disease” is not intended to depict any actually existing illness; its purpose is solely to
create a baseline level of demand on the healthcare system.
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healthcare services actually provided Hτ is the minimum between the demand and the

supply Gh (see equation (20)):

Hτ = min(Hd
τ , G

h) (22)

Hence the demand for healthcare may be rationed. If an agent becomes sick and enters

the healthcare system to receive treatment, its demand is added to that of those already

receiving healthcare, and if that agent’s demand exceeds the remaining supply, the agent

is rationed and receives only a fraction of the desired supply of healthcare (or, in the

extreme case, none at all).

Sick agents who were previously economically active become inactive and receive sick-pay.

Retired agents who become sick will continue to receive pension payments. The normal

disease is not lethal: after a fixed number of weeks (4 in the present calibration) the sick

recover. In the case of the normal disease, recovery does not imply immunity: recovered

agents may randomly become susceptible again in the future. This assumption implies

that the normal disease will not die out.

5 The epidemiological sub-model

In this section we describe the dynamics of an epidemic, i.e., aninfectious disease. The

epidemic differs from the normal disease because of the transmission from one subject to

the others through contagion.

5.1 The beginning: what happens to Patient Zero?

In this section we describe the initial step of the contagion with the help of figure 2.
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Figure 2: The initial stage of the epidemic

At a certain point in time (say week zero), a (small) number of workers 13 get the infectious

disease. These people are the initial infected (and infectious) and will be denoted with

I0.14 The (healthy and) susceptible agents after the appearance of the infected are

S0 = NW,0−I0 where NW,0 is the initial population (of workers). In figure 2 we represent

the initial infected and susceptibles as two branches of the tree originating from the initial

population.

Some infected agents develop mild symptoms or do not develop symptoms at all (non-

symptomatic for short). The cardinality of this set of agents is In0 . In this case the

infection can be detected only if the agent is subjected to a test. We assume that in

each week the infection of non-symptomatic agents will be detected with a (small and

13For simplicity, firm owners are not involved in the epidemics.
14In the simulations, we set I0 = 5. The fraction of the infected in the initial population therefore is

5/2500 = 2/1000. Since, as outlined below, the spread of the disease is partly stochastic, this was found
to be the minimum number of initial infected necessary to generate a simulated epidemic which does not
die out immediately given the present configuration of numerical parameters.
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constant) probability πr.15 We will denote the number of detected non-symptomatic

agents with Ind,0. These agents are quarantined and therefore cannot spread the disease.

Non-symptomatic and un-detected infected people (whose number is Inu,0) can still spread

the disease.

People who develop serious symptoms (Is0) are detected with certainty. The probability

for an agent to develop serious symptoms is increasing with age.16 All agents whose

infection is detected (both non-symptomatic and seriously ill) – which we denote with

Id0 = Ind,0 +Is0 – will be inactive (and receive sick pay if they are not retired) and will not

have social contacts for the entire duration of the disease. Only people developing serious

symptoms require hospitalisation and therefore express demand for healthcare services

according to equation (21). For simplicity, we assume that people who are quarantined

at home do not need healthcare. People quarantined at home in week zero will recover

(with certainty) in one of the following weeks which we denote with 0 +Dd where Dd is

the duration of the disease (we will be more precise momentarily). Also non-symptomatic

undetected agents (not quarantined) eventually recover following the same pattern. The

only agents who may die from the disease are hence those who develop serious symptoms.

5.2 The contagion spreads through networks

At the end of the initial week, there are Inu,0 people still capable of spreading the disease

in week 1. In period 1 therefore there will be new infected people.

The infected remain ill for a (small) number of weeks.17 During the infectious period18, if

undetected, the infected can spread the disease either in the workplace or during leisure

time. Instead of postulating the law of motion of the number of infected people as in

SIR models, we adopt a granular approach to contagion focusing on networks in order

15In the present calibration πr = 1%, i.e. in every week during which an agent is infected, they are
detected with probability 0.01. In fact, the detection procedure in the case of mild or no symptoms may
not be effective and in any case, not all infected may be tested.

16In the simulations we assume that this probability is 1% for the young, 2.5% for the middle aged
and 20% for the old.

17In the present calibration, the duration of the disease for each infected agent – denoted with Dd –
is drawn from a uniform distribution whose support is the interval 4 ≤ Dd ≤ 6 rounded to the closest
integer.

18In our calibration, the infectious period consists of the initial three weeks of illness.
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to depict the transmission of the epidemic among agents. Contagion spreads in two

networks: the employment network and the network of social contacts. Workers are

nodes in the employment network. Each worker is linked to all her co-workers in the firm

she works for. If a worker is infective, she can spread the contagion to her (susceptible)

co-workers.

Contagion occurs also during leisure time. To capture this process we build a network

of social contacts. Connections in this network can be either permanent or temporary.

Each worker has a set of permanent connections consisting of family and close friends.

The total number of permanent connections is a (very small) fraction of the maximum

number of possible undirected connections between workers,
NW,τ (NW,τ−1)

2
.19 Moreover,

each agent has a set of temporary connections (e.g., acquaintances and people occasion-

ally encountered outside the workplace). Temporary relationships are represented by a

network of contacts which is re-set every week. For this purpose, each week a random

number is drawn from a normal distribution and rounded to the closest integer to set the

total number of temporary connections. Pairs of agents are then drawn at random and a

temporary connection is formed between them (if previously unconnected), for that week.

We assume that each infected agent meets all the agents she is connected to (both at the

workplace and during leisure time) in every week. Let Eτ denote the set of connections

in week τ which involves exactly one infected and one susceptible agent. We will denote

the cardinality of this set with NEτ . We assume that only a fraction (the contagion rate)

of these connections may lead to a new infection. In other words, there is a maximum

number of potential new infections in week τ given by

İτ = ρcN
E
τ (23)

where ρc is the (exogenous) transmission (or contagion) rate.20 We then take a sample

of size İτ from the set Eτ . In sampling, we assure that the likelihood of being drawn is

highest for permanent connections, second-highest for workplace connections and lowest

19In the present calibration, the number of total permanent connections is 1/750 of all possible
connections. We also ensure that each agent has at least one permanent connection.

20In the simulations we set this parameter to ρc = 0.185.
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for random connections.21

Each of these potential new infected leads to an actual new infected (i) with certainty in

the scenario of Uncontained Epidemic (UE), (ii) with a probability that may be smaller

than one in the scenario of (endogenous or spontaneous) Social Distancing (SD), i.e., a

setting in which people voluntarily give up social interaction, or at least are more cautious

in their interactions, when they feel the risk of being infected is too high (we will be more

precise momentarily).

Since the different types of connections have different probabilities of being drawn in the

sampling process, the infection rate (i.e., the ratio of the new infected to the number of

connections between one infected and one susceptible) differs across types of connections,

being highest for permanent connections, second highest for workplace connections and

lowest for random connections.

5.3 The progression of the epidemic

Let’s consider a generic week τ . The flow of new infected in this week will be İτ = ρcN
E
τ .

Hence the cumulative number of infections at the end of the week will be Iτ = Iτ−1 + İτ

where Iτ−1 are cumulated infections between week zero and week τ − 1. New non -

symptomatic agents will be İnτ , of which İnd,τ will be detected and quarantined. Non-

symptomatic and un-detected new infected people (İnu,τ ) still populate the networks of

employment and social contacts and can spread the disease. Non-symptomatic agents

recover (with certainty) “during the disease”, i.e., in one of the weeks between τ +Dmin

and τ + Dmax where Dmin and Dmax are the minimum and maximum duration of the

disease.22 We will denote the number of non-symptomatic agents who got sick in previous

weeks and recovered in τ with ṘC
n

τ .

Sick people with serious symptoms in week τ will either die during the disease or recover

at the end of the disease, i.e., in τ+Dmax. In each week during the disease, the i-th agent

with serious symptoms will face a probability of death which is increasing with age and

21In the simulations, the number corresponding to NE
τ is rounded to the closest integer. The number

of potential new infected may be smaller than İτ because the sample taken from Eτ may contain multiple
connections involving the same susceptible agent.

22As mentioned above, the duration of the disease ranges between Dmin = 4 and Dmax = 6 weeks.
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with excess demand for health care. The i-th agent who developed serious symptoms in

one of the weeks before τ may die in week τ with probability

πmi,τ = πmagei + h3(hdi,τ − hsi,τ ) (24)

where πm and h3 are positive parameters. The demand for health of agent i, hdi,τ , is defined

by equation (21) while the amount of healthcare they actually receive, hsi,τ , depends on

whether or not the healthcare system has sufficient free capacity.23 We will denote the flow

of deceased in week τ with ḊEτ . By assumption the dead will not be replaced by newly

born, hence there will be no bequests. When people die, their assets are simply written

off. The aggregate of dead people at the end of week τ will be DEτ = DEτ−1 + ḊEτ .

If an agent with serious symptoms has not died after the maximum duration of the disease,

she will recover. We will denote the flow of agents hospitalized in previous weeks and

recovered in τ with ṘC
s

τ . Overall, the flow of recovered agents will be ṘCτ = ṘC
s

τ+ṘC
n

τ .

The aggregate of recovered people at the end of week τ will be RCτ = RCτ−1 + ṘCτ .

Total population will decline because of the mortality of the disease: NW,τ = NW,τ−1 −

ḊEτ . The set of susceptibles will decrease because of the “removed” agents and because

of new infections: Sτ = Sτ−1 − İτ − ṘCτ − ḊEτ . Hence NW,τ = Sτ + Iτ +RCτ .

In order to contain the epidemic, the government may implement lockdown measures

which are described in the simulation experiments shown below. Moreover, we introduce

the possibility for agents to endogenously engage in social distancing. This experiment

is also described below. If she was previously active, the recovered agent will re-enter

the labour force as an unemployed agent and begin to look for a job. In contrast to the

normal times scenario, we assume that, once recovered, agents become immune to the

infectious disease: they do not become susceptible again for the rest of the simulation.

23When an agent develops serious symptoms she joins a randomised queue of agents who have an
excess individual demand for healthcare, i.e., for whom hdi,τ > hsi,τ .
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6 Calibration and baseline simulation: Normal Times

We set a bechmark by constructing a baseline simulation of the model depicting Normal

Times, that is, a simulation in which there is a normal disease but no epidemic, hence

no lockdown or any extraordinary policy measures.

In order to calibrate the model for this baseline, we draw on macroeconomic data for the

Lombardy region of Italy. For this purpose, we obtain data for real GDP, consumption,

gross fixed capital formation and employment for Lombardy from the website of the

Istituto Nazionale di Statistica (Istat).

At the regional level, data for GDP and its components are available only at annual

frequency, with our time-series ranging from 1995 to 2017. Moments and statistics cal-

culated from these data are used to calibrate and validate the model. We apply the HP

filter to the empirical time series and then calculate the standard deviations (relative

to the trend component) and autocorrelations of the filtered series. Table 1 shows the

empirical statistics obtained in this fashion, together with confidence intervals generated

by means of bootstrapping.

Table 1: Empirical evidence for Lombardy (1995-2017): Descriptive statistics

Statistic GDP Consumption Investment Employment rate
Std.
deviation

0.012047
(0.011986; 0.012109)

0.010384
(0.010347; 0.010420 )

0.030953
(0.030920; 0.03099)

0.00397
(0.003963; 0.003982)

1st order
autocorr.

-0.045594
(-0.050028; -0.041160)

0.320343
(0.317856; 0.322830)

0.100968
(0.09894; 0.102992)

0.280675
(0.278249; 0.283102)

2nd order
autocorr.

-0.123542
(-0.128026; -0.119058)

-0.39909
(-0.40286; -0.39532)

-0.170864
(-0.173760; -0.167969)

-0.258511
(-0.26116; -0.255863)

The starting point of the calibration procedure is the set of parameters presented by

Delli Gatti and Grazzini (2020) who provide a Bayesian estimation of the model dis-

cussed in Assenza et al. (2015, 2018) using quarterly data for the United States. Since

the (macroeconomic component of) the present model runs at a monthly frequency, the

numerical values of several parameters such as the risk-free interest rate or the rate of

capital depreciation have been divided by three to reflect the interpretation of one period

as one month. Several parameters are fine-tuned in order to replicate with the simulated

time series the moments and statistics shown in table 1. The full set of parameters is

shown in table 6 in appendix A.
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We run the model 100 times with different random seeds. For each individual run we then

construct annual time series from the simulated monthly time-series, apply a HP filter to

the simulated data and subsequently calculate the simulated equivalents of the statistics.

The means and confidence intervals of the resulting statistics are shown in table 2. The

model does a fairly good job at reproducing the empirical standard deviations of GDP and

consumption. Simulated investment, on the other hand, is more volatile than GDP but

also significantly more volatile than empirical investment. This is due, to a large extent,

to the nature of our framework. Since we use a “closed economy” model, simulated GDP

only consists of private consumption and investment (along with public consumption for

healthcare which, as outlined above, is constant). Lombardy, on the contrary, is open to

trade with other regions and the rest of the world. Hence the actual volatility of GDP

and consumption in Lombardy can be jointly reproduced only if simulated investment is

more volatile than empirical investment.

Similarly, the simulated employment rate is much more volatile than its empirical coun-

terpart. The higher volatility of the employment rate is explained by the fact that in our

model, employment is tied to current production more closely than in reality.

Table 2: Simulated data: Descriptive statistics

Statistic GDP Consumption Investment Employment rate
Std.
deviation

0.013514
(0.013038; 0.013991)

0.010837
(0.010382; 0.011292)

0.079079
(0.076476; 0.081682)

0.012510
(0.012048; 0.012971)

1st order
autocorr.

-0.003124
(-0.041005; 0.034757)

0.328187
(0.298211; 0.358162)

-0.193938
(-0.229883; -0.157992)

-0.014004
(-0.052676; 0.024669)

2nd order
autocorr.

-0.274447
(-0.306511; -0.242384)

-0.292141
(-0.324140; -0.260143)

-0.266254
(-0.301892; -0.230617)

-0.266772
(-0.299029; -0.234516)

The model performs fairly well at reproducing most of the autocorrelations we consider

but the first order autocorrelations of simulated employment and of simulated investment

have a negative sign, contrary to the corresponding empirical autocorrelations. In the

case of employment, this is due to employment being closely tied to GDP in the model.

Hence the sign of the first autocorrelation of employment in simulated data is the same as

that of GDP. In the real world, employment and GDP of Lombardy are less synchronized

so that the first order autocorrelations of the two variables have opposite sign.

As to investment, in the model the investment decisions of firms are partly stochastic
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which makes it difficult to produce positive autocorrelations at the annual frequency in

a model running at a monthly frequency. However, a side effect of the negative auto-

correlation of investment is that GDP is slightly negatively autocorrelated at the first

lag (in line with the empirical evidence). Figure 3 shows the autocorrelations of output,

consumption, investment and the employment rate up to lag 6 while figure 4 shows the

cross-correlations of output, consumption, investment and the employment rate with out-

put. Overall, the fit is comparable to that presented by Assenza et al. (2015) who work

with quarterly data.

Figure 3: Empirical and simulated autocorrelations
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Figure 4: Empirical and simulated cross-correlations

7 Epidemic curves: three scenarios

Having constructed and validated the baseline in which only the normal disease exists,

we move on to introducing the epidemic disease and consider first the epidemic variables.

We simulate three scenarios.

The Uncontained Epidemic scenario (UE) involves an outbreak of the infectious

disease without (i) any change in the behaviour of individual agents and (ii) any coun-

termeasures taken by the government (e.g., prohibitions of social gatherings, closures of

businesses etc.). Under these circumstances, the disease can spread freely throughout the

population.

It appears somewhat implausible to assume that in the wake of a serious epidemic, agents

would not change their behaviour even in the absence of measures mandated by the gov-

ernment. For this reason, we will consider also the (voluntary) Social Distancing

scenario (SD) in which agents spontaneously adopt “social distancing” during the epi-

demic. Similarly to the approach employed by Baskozos et al. (2020), this is modelled as
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a discrete choice at the individual level. First we compute a distancing index dτ governed

by the following law of motion:

dτ = ιdτ−1 + (1− ι)N×Dτ , (25)

where N is a row vector containing three parameters describing the intensity of choice

and Dτ is a column vector containing three indicators influencing agents’ decision to

distance. The first is a measure of the severity of the epidemic, given by Idτ − ISD

where Idτ is the number of currently infected and detected individuals and ISD is a fixed

threshold value.24 The second depicts social influence and is given by wd − wnd , that

is the difference between the share of agents which are already socially distancing (wd )

and those who are not (wnd ). The third is a perceived cost of social distancing (i.e., the

inconvenience or disutility the agent is subject to when engaging in social distancing),

denoted by cd. We define the probability of socially distancing πdτ as follows:

πdτ =
1

1 + e−dτ
. (26)

The probability to engage in social distancing is increasing in the index d. Intuitively,

an agent is more likely to distance if (i) the number of detected cases goes up (because

they perceive a higher probability of becoming infected), (ii) the share of agents already

distancing goes up (because of the increasing social pressure), and (iii) the perceived cost

of distancing goes down.

Consider agent i. To assess whether they actually distances we draw a random number

xi from a uniform distribution U(0, 1). The i-th agent engages in social distancing if

πdτ > xi.

Social distancing has three distinct impacts on model dynamics. Firstly, it reduces the

number of temporary connections. Without social distancing, if two agents are drawn

randomly to form a transitory connection, this connection is generated with probability 1.

If, on the other hand, at least one of the two agents is socially distancing, the connection

is instead formed with probability πc < 1.25 As a consequence social distancing makes

24Therefore Idτ = Iτ − Inu,τ . In the simulations we set ISD = 1.
25In the simulations, we have set this parameter to πc = 0.5.
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the network of social interactions more sparse. Agents who socially distance however still

attend their workplace (if employed) and also encounter their permanent connections.

Secondly, when an infectious agent i meets a susceptible agent j, social distancing reduces

the probability that an infection will result from this meeting. As we stated above, the

i-th agent socially distances if πdτ > xi. The same procedure applies to agent j, i.e., she

distances if πdτ > xj. We assume that, with social distancing, the meeting between these

agents generates an infection with probability πdi,j = 1 − β1πdτ>xi − β1πdτ>xj where 1 is

an indicator function which takes value 1 if the condition is fulfilled (i.e., if the agent in

question is socially distancing) and 0 otherwise.

Thirdly, social distancing affects agents’ demand for consumption goods. We assume

that if an agent engages in social distancing, she partly shifts her demand from luxury to

basic goods. The first time any agent socially distances, their demand for luxury goods

is hit by a negative shock while their demand for basic goods receives a positive shock.

The magnitude of these shocks declines over time during social distancing. The shocks

are calibrated such that in percentage terms, the demand for luxury goods declines more

strongly than that for basic goods increases.

In addition to voluntary social distancing, the epidemic can be contained by means of

(government mandated) lockdowns. We charaterize the Lockdown scenario (LD) as

follows:

� A fraction of firms producing luxury goods (L-firms) are shut down completely

(and their production is halted) while the rest move into “smart working” with all

employees working from home. Hence the lockdown first and foremost eliminates

part of the connections at the workplace, making the employment network disappear

at L-firms (both shut down and still active). Firms producing basic goods and

capital goods (B-firms and K-firms respectively) are not shut down.

� We also assume that smart working negatively impacts the productivity of em-

ployees, so that that the maximum output that (still active) L-firms can get by

switching to smart work is a fraction of the production they could obtain in normal
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times.26 We similarly assume that the productivity of employees at K-firms goes

down during the lockdown (even though they are not shut down). This assumption

allows to replicate in our model the reduced availability of durable inputs into the

production of final goods which follows from the disruption of supply chains, a well

know stylized facts characterizing the LD scenario.

� The lockdown limits social gatherings, eliminating connections in the network of

social contacts. Hence the number of both permanent and temporary connections

in the LD scenario is a fraction of the corresponding number in normal times.27

� The lockdown is also associated with an increased effort to detect asymptomatic

cases. The detection probability (which is exogenous in the UE and SD scenarios)

becomes endogenous and time varying during the lockdown. Suppose that the

lockdown starts in week τ0 of the simulation. The detection probability in week

τ > τ0 is given by πrτ = πr + ψ(τ − τ0) where ψ is a positive parameter. The

expression in parentheses is the interval (in weeks) which has passed since the

beginning of the lockdown. We assume that the probability of detection has an

upper bound: πrτ ≤ πrmax. The detection probability only ceases to increase once

the upper bound has been reached, even if the lockdown has ended in the meantime.

� Finally, the lockdown lowers agents’ perceived cost of social distancing, making it

more likely that they will choose to distance endogenously.

The effects of the lockdown on the network can be gauged by comparing figures 5 and

6 which give an example of the networks of agents (encompassing all three types of

connections, i.e., workplace, random and permanent) during one period in normal times

and one in lockdown. The reduction of connectivity under lockdown looks dramatic even

to the naked eye.

26In the simulations we assume that one third of L-firms are shut down during the lockdown. The
maximum output the remaining L-firms can get by switching to smart work is 90% of the production in
normal times.

27In the simulations we assume that only one fourth of connections survives during the lockdown.
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Figure 5: Network of agents during normal times

Figure 6: Network of agents under lockdown

The actual duration of the LD depends on the epidemiological situation. The LD is

triggered automatically in period τ0 if the number of cumulative detected cases reaches an

(exogenous) ceiling ILDmax. If the situation does not improve, the LD ends after a maximum

duration of DLD
max weeks. If the situation improves, i.e., the average of new detected cases

over the previous 2 weeks falls below a floor ILDmin, the LD will be interrupted.28

28In our simulations DLD
max = 12, i.e., 3 months. The lockdown is activated if there are more than

ILDmax = 5 cumulative detected cases. The lockdown is lifted if the average of new detected cases over

the previous 2 weeks falls below ILDmin = 1 .
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Once the lockdown has ended, previously closed firms are re-opened but remain in smart

working mode. Newly reopened L-firms set their initial level of production equal to

the average level of demand prevailing among the L-firms which were allowed to remain

open. After the lockdown, each firm which has implemented home office returns to normal

operations after a stochastic number of periods. Encounters between agents slowly adjust

back to their previous level, as does the perceived cost of social distancing.

In figure 7 we show the simulated epidemic curves. We run the model 100 times with

different random seeds and compute the mean of the simulated data for each period (a

week). The time series of the generic (simulated) epidemic variable therefore is Eτ =∑100
σ=1 Eσ,τ
100

, with τ = 1, 2, ...TE where TE is the time horizon of the simulation in weeks.

The top left panel shows the number of cumulative infections Iτ for τ = 1, 2, ...200 (i.e.,

almost 4 years) while the top right panel shows the flow of new infections (per week), i.e.

the first difference of the cumulative infections, which we have denoted above with İτ .

The bottom panels show the same curves for detected cases, Idτ and İdτ . The shaded area

around each line represents the 95% confidence interval.

Figure 7: Comparing the epidemic scenarios (weekly)
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Figure 8: Comparing the epidemic scenarios (weekly)

In the uncontained epidemic (UE) scenario, cumulative infections grow exponentially

for around 8 weeks and reach a plateau after around 8 additional weeks. Overall, in 4

months, 90% of the population will be infected (with the Lombardy numbers in mind,

this means that if there were no lockdown, at the end of June roughly 9 million people

would have been infected). The flow of new infections reaches a peak (at week 8, i.e.

after two months from the outbreak of the epidemic) of close to 20% of the population.

In the social distancing (SD) scenario, the initial phase of exponential growth is similar

to that of UE, but (i) it takes much longer for the number of cumulative infections to

reach a plateau (approximately three years) and (ii) the fraction of the population which

would be infected at the plateau is much lower (50%). The flow of new infections reaches

a peak earlier than in the UE case but (iii) the maximum weekly increase of infections

is much lower (around 4%) and (iv) the flow converges to zero with damped oscillations.

The oscillatory pattern of convergence – which is absent in the UE scenario – is due to

the law of motion of the distancing index. As soon as infections become smaller than the

threshold ISD, people relax and no longer socially distance, but this relaxation boosts

the number of infections (here comes the second wave) which overcomes the threshold

again and induces people to re-enter the SD mood and so on. This (damped) cycle of

relaxation and tightening of SD is the root of the waves in this scenario. These waves,

however, are smaller and smaller in amplitude. The dampening factor is simply the fact

that the population of susceptibles is shrinking over time.

The lockdown scenario (LD)“looks like” the uncontained epidemic case, but on a much
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smaller scale. The number of cumulative infections grows exponentially for around 4

weeks and reaches a plateau after about 8 additional weeks. Overall, in 3 months, less than

10% of the population will be infected (against 90% in the uncontained scenario). If the

model were a reliable description of the Lombardy case, from this scenario we could infer

that at the end of May approximately 1 million people would have been infected. Notice

that this number is one order of magnitude bigger than the official number for Lombardy

(100 thousand) in that period. It is well known, however, that during the first wave of

the pandemic only a (very small) fraction of the infected were detected. In fact, in the

bottom left panel, the cumulative detected cases generated by the model reach a plateau

of 1% of the population, in line with the official numbers. This is not a surprise since the

model has been calibrated to replicate the Lombardy numbers. What the model predicts

– hence its usefulness – is that the undetected cases were around 10 times the detected

cases. This is in line with the rough estimate (unofficially coming from epidemiologists)

circulating in the press according to which for each detected (symptomatic) case there

were around 10 undetected (and mostly asymptomatic) cases.

In the LD scenario, the flow of new infections reaches a peak of 2% of the population for

the total cases (top right panel) and 0.1% for the detected cases (bottom right panel),

even earlier than with SD. With the lockdown, convergence to the plateau is accelerated

(compared to the uncontained case). Moreover the flow of total cases converges to zero

monotonically. A mild oscillatory behavior is still emerging for detected cases due to the

increasing probability of infections being detected. The dynamics of fatalities emerging

from simulations, shown in figure 8 are qualitatively similar to those of actual and detected

infections though of course the numbers are much lower.

Figure 9 compares the empirical epidemic curves of (cumulative and new) detected infec-

tions in Lombardy (first wave) to the simulated epidemic curves from the LD scenario,

where the simulated numbers have been scaled to make the absolute numbers compa-

rable. Overall, the model does a good job at reproducing both cumulative and newly

detected cases although it (i) slightly overestimates the peak of newly detected infections

and (ii) underestimates the number of cases at the end of the simulation. The reason for
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this is the small size of the population in the model relative to the size of the population

which it supposedly represents. With only 2500 agents in the model, each artificial agent

represents 4000 of the 10 million residents of Lombardy. One infected agent in the model,

therefore, corresponds to 4000 infected people in Lombardy. Given this ratio, the model

has considerable trouble in jointly reproducing the empirical numbers of the first wave and

the subsequent pattern of steady (if low) infections for an extended period, which was the

pattern observed empirically after the first wave. In the simulations, the epidemic disease

almost always dies out following a lockdown strict enough to produce empirically plausi-

ble numbers for the first wave.29 From a computational perspective, however, increasing

the number of households beyond the current 2500 would be extremely burdensome and

at a certain point a further increase would become practically infeasible. Basurto et al.

(2020) address this problem by considering a model which is more strongly simplified in

both the economic and epidemiological dimension.

Figure 9: Comparing empirical and simulated infection data (weekly)

Table 3 compares the actual number of (cumulative) deaths in Lombardy at the end of

the first wave (third week of June) – when the flow of new deaths went down almost

to zero and the aggregate stabilized – with the number of deaths (DE) at the plateau

in each of the scenarios generated by the simulations (we also provide the endpoints of

29A second wave in this scenario could only spring from a newly injected initial population of infected
individuals and/or from recovered agents becoming susceptible again.
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the confidence interval). The lockdown scenario comes very close to reproducing the

empirical number and very strongly reduces the number of fatalities compared to the UE

and SD scenarios. Based on the model simulations, from the UE scenario we infer that

in the absence of mitigation factors (lockdown or social distancing) at the end of the first

wave approximately 370 thousand people would have died in Lombardy, a number more

than 20 times bigger than actual deaths. This is in particular due to the reduced strain

on the healthcare system under lockdown, which is illustrated in figure 10.

Table 3: Empirical and simulated cumulated fatalities at the end of the first wave

Empirical 16570 - -
Simulated Mean Lower Upper
Uncontained
E.

368560 360947.21 376172.79

S. Distanc-
ing

129960 121374.23 138545.77

Lockdown 18360 16523.26 20196.74

Figure 10: Demand for healthcare (weekly)

The bold flat line is the supply of healthcare as determined in section 4.6. The uncon-

tained epidemic generates a huge and persistent excess demand for healthcare. At the

peak, demand is almost 5 times the supply and excess supply lasts for 15 weeks, i.e.

almost 4 months (the entire duration of the first wave). SD and the LD dramatically

reduce the need for healthcare. With LD demand peaks at a much lower level and excess

demand lasts for 10 weeks. Under SD the demand for healthcare also peaks at a much

lower level but since SD increases the overall duration of the epidemic, the period of excess
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demand lasts almost as long as in the UE scenario. Moreover, the oscillatory dynamic is

also present in the demand for healthcare under SD, meaning that the healthcare system

also reaches full capacity during the second wave.

8 The macroeconomic effects of the epidemic

The discussions above focused purely on the epidemiological effects of the disease. In

this section we explore the macroeconomic effects of the epidemic under the scenarios

presented above.

In each panel of figure 11 we represent the departures of the most important macroeco-

nomic variables from the baseline (i.e. Normal Times) under the scenarios of uncontained

epidemic (UE), social distancing (SD) and lockdown (LD). The time unit is a month. For

each macroeconomic variable (with the exception of the default rate), in the correspond-

ing panel we report the time series of the relative change mt :=
MS
t

MN
t
−1, S = UE, SD,LD,

t = 1, 2, ...120 where MS
t is the value of the variable M in scenario S in month t. Sim-

ilarly MN
t is the value of the same variable in Normal times in the same period. The

only exception to this way of representing the departure from the baseline is the default

rate. We define the default rate (DR) as the ratio of defaulting loans to average GDP

during the pre-epidemic periods. In the corresponding panel we report the series of the

absolute change drt := DRS
t −DRN

t since there are some individual periods in some runs

in which DRN
t = 0 (i.e. no defaults). Since the resulting series is quite noisy, we applied

a 4-period moving average filter.

Each value of the generic macroeconomic variable (and of the default rate) is the mean of

100 simulated data points generated by different random seeds: Mt =

∑100
σ=1 Mσ,t

100
, with

t = 0, 1, 2, ...TM . The time horizon of the simulations goes from from the outbreak of

the epidemic (month zero) to TM = 120 months but we will focus essentially on the first

24 months (the “short run”). Beyond the short run, the departure generally stabilizes

around a “long run” mean.

The patterns of GDP, employment, consumption and investment are qualitatively very
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similar within each scenario. In the UE scenario, GDP declines “slowly” due to the

mere effects of the epidemic. Active people get sick and become inactive, employment

and production shrink and firms cannot supply the same amount of goods as before.

Therefore, even in the absence of containment measures, the epidemic inflicts a sizable

negative supply shock to the macroeconomy impairing the production capability of firms.

On top of the supply shock, the macroeconomy experiences a negative demand shock,

which comes from two sources.

First, people who get sick or are laid off experience a significant contraction of income as

they receive sick-pay and unemployment subsidies instead of wages and consume out of

this reduced income.

Second, in the simulation, the consumption expenditure coming from the people who die

from the disease is permanently “removed” from aggregate demand as the deceased are

not replaced by newly born by assumption.30 Hence production declines further.

The negative demand shock is at the root of the drop of consumption (relative to the

baseline) at the beginning of the simulation horizon, sharper than the drop of GDP.

Over an extended period consumption falls again but gently. In the long run GDP and

consumption stabilize at a level approximately equal to 95% of the corresponding value

in Normal Times, i.e., around 5% below the baseline.

In our model, by construction, investment is closely associated to production plans. Hence

it is highly correlated with consumption and GDP. As expected it falls below the baseline

and oscillates irregularly but shows a modest tendency to go up towards the end of the

simulation horizon.

The aggregate leverage ratio increases above the baseline but shows a tendency to decline

towards the end of the simulation horizon. Loan defaults as a share of GDP appear largely

unaffected.

The price level declines and shows ample and persistent fluctuations below the baseline.

The relative price of luxury goods in terms of consumption goods, however does not

change with respect to Normal times.

30The majority of deceased people consists of inactive agents who were receiving pension payments.
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As to public finances, while transfers to households for income support increase, transfers

for pensions decline. With unchanged tax rates, also tax revenue declines. The decline of

pension outlays, however, more than offsets the increase of sick-pay and unemployment

benefits and the reduction of tax revenues. Hence, government debt declines. In the long

run it will stabilize around 5% below the baseline. However, since GDP also declined, the

debt over GDP ratio will not depart significantly from the corresponding value in normal

times.

Social Distancing magnifies the short-term negative effect on consumption and GDP.

Under this scenario, in fact, agents switch from luxury to basic goods and the demand

for luxury goods declines more rapidly than that for basic goods increases. This is

reflected in the huge early drop of consumption. With SD, consumption decreases by

15% (with respect to Normal Times) at the very beginning of the simulation horizon

(first 6 months), a phenomenon which does not occur under UE. This drop also translates

into early declines in output and investment more pronounced than in the UE scenario.

Moreover, the relative price of luxury goods declines strongly – due to the shock to the

composition of demand for consumption goods – leading to a decrease in the overall price

level. Loan defaults increase strongly as the sudden shift in consumption induced by

social distancing causes many firms to over-produce and subsequently go bankrupt.

As the share of agents who die is much smaller under SD, however, consumption and GDP

rebound in the second semester of the horizon and eventually regain their pre-epidemic

level. Also the relative price of luxury goods bounces back. Investment eventually over-

comes the Normal Times level for a while.

With SD the sizable decline of pension outlays which occurs in UE does not materialize

for the obvious reason that people do not die at the same rate. However transfers to

households for income support increase and tax revenues decline so that government

debt increases “in the short run” (around two years). Afterwards, debt decreases because

GDP bounces back leading to a decrease of transfers and an increase of tax revenues.

Over the long run the debt/GDP ratio will stabilize slightly above the value it reaches in

Normal Times.
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The LD scenario brings about stark and dramatic macroeconomic consequences. We

assume that during the lockdown, one third of L-firms are shut down and cease to produce

any output. The supply shock is therefore much bigger than in UE and SD. In the absence

of policy interventions, the firms which are closed down lay off their entire workforce.

The unemployed will experience a severe reduction of income, which is now limited to

the unemployment subsidy. Together with (voluntary) social distancing, the massive

increase of unemployment (as well as the drastically reduced supply of L-goods) makes

a dent in consumption, which shrinks by 15% relative to the baseline in the first quarter

of the simulation horizon. Since C-firms downsize, also investment and the production of

K-goods goes down. Investment drops around 30% in the same time period. Hence GDP

shrinks by 20% due to the intertwined supply and demand shocks. There is also a large

spike in loan defaults. These dramatic effects, however, are reabsorbed over the medium

run.

During the LD, due to the drop in supply, the price of luxury goods initially jumps up,

driving the aggregate price level up 2% above the baseline. After the lockdown, once

all K-firms are again allowed to produce, the relative price of luxury goods declines as

demand for them is still relatively low due to social distancing.

After the initial contraction, GDP bounces back. It then experiences another, smaller

decline as newly reopened firms adjust their production to the new environment. The

pattern of recession and recovery in the first two years after the outbreak of the epidemic

hence looks somewhat W-shaped. What’s more important, however, is the fact that it

takes two years for GDP to return to normal. The post-lockdown recovery therefore is

immediate but partial: catching up with the baseline is a lengthy process. Over a longer

horizon, it is worth noting that GDP overcomes the baseline for a long period (a few

years), which is due to a combination of the adaptive process of firms in forming demand

expectations and a ‘backlog’ in consumption demand which built up during the early

stage of the lockdown. A similar pattern of W-shaped recovery and lengthy catching

up can be detected also for employment, consumption and investment. After the end of

the LD the price level declines and stays below the baseline for some time. Government
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debt keeps rising until GDP has recovered and then decreases due to the overshooting of

output.
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Figure 11: Economic impact of the disease under different scenarios

Figure 12 gives a sense of the short-run tradeoff between the infection rate and the

magnitude of the recession implied by the different scenarios described above. For each

scenario we report in the same picture the share of new infections per month in total

population and the relative departure of GDP from the baseline in each scenario. The
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scenario of UE is characterized by the maximum impact on infections and the minimum

short-term impact on GDP. Social distancing implies a drastic reduction in the initial

severity of the epidemic relative to the UE scenario at a small initial economic cost, but

as described above, it also strongly increases the length of the epidemic such that at the

end of the day, the reduction in terms of total infections (and also fatalities) is not as

large as it appears in the initial stage. The LD scenario, on the other hand, is successful

at quickly and decisively getting the epidemic under control but implies an enormous

economic loss, at least in the short run. This gives an idea of the basic tradeoffs involved

in reacting to the epidemic, and by varying parameters relating to the ‘intensity’ of

social distancing and the severity of the lockdown, various intermediate scenarios could

be constructed.

Figure 12: Epidemiological and economic impacts under different scenarios
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9 The effects of stabilization policies

In this section we will consider the effects of stabilization policies aimed at mitigating the

deleterious effects of the epidemic and of the lockdown on the macroeconomy. As we have

seen above, even if the epidemic were not addressed by means of a lockdown, it would

generate a recession. The lockdown, however, dramatically exacerbates the magnitude

of the contraction in aggregate activity. Hence it makes stabilization policies absolutely

necessary. Moreover most of the countries hit by the epidemic have adopted containment

measures of the lockdown type so that this scenario is the closest to reality. In this section,

therefore, we will compare the LD scenario with a number of scenarios characterized by

different macroeconomic stabilization measures. Due to the nature of our model, we focus

on short-term policy measures ultimately aimed at boosting demand and employment

rather than on longer-term ones addressing the structural changes which may be necessary

to face the supply disruptions induced by the epidemic and the lockdown. The range of

measures we consider qualitatively replicates the provisions actually undertaken by many

Governments. Since we calibrate the model on Lombardy, we will design each scenario

having in mind in particular the measures taken by the Italian government. We will

consider the following policies:

Layoff ban and redundancy fund (RF): The government (i) prohibits firms from

firing those workers they do not need due to the LD and (ii) takes over the wage payments

to these workers.31 Hence workers retain their jobs and the government pays their wages.

In the RF scenario we assume that the policy has a duration of 12 months and that

workers are paid their full wage under the programme.

Liquidity support (LS): The government subsidizes firms in order to improve their

liquidity positions. We consider two scenarios. In the first one – which we will refer to

as LS(1) – all firms receive a one-off transfer of equal size. In the second one – denoted

with LS(2) – only firms which experience a liquidity shortfall32 after having visited the

31Policies of this type go under the name of Cassa Integrazione Guadagni (CIG) in Italy and Kurzarbeit
in Germany.

32We define the liquidity shortfall as the difference between the sum of wage payments and planned
investment on the one hand, and available liquidity on the other hand.
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credit market receive such a transfer, equal to the size of the liquidity gap. In this second

case the policy lasts 12 months.

Credit guarantee (CG): Instead of injecting liquidity through transfers, the govern-

ment provides guarantees on bank loans beyond those which firms are able to obtain on

the regular credit market. With a government guarantee, the bank has an incentive to

fill the firm’s liquidity shortfall at the risk-free interest rate. If the firm defaults on this

loan, the loss is taken by the government rather than the bank. This policy remains in

place for 12 months.

Equity injections (EI): The government provides support by injecting equity into firms

with negative equity. In this case the government becomes a part-owner of that firm and

receives a share of its dividend payments. We assume that the this policy lasts for a

period of 12 months.

Income support (IS): The government supports workers directly by making transfer

payments. We assume that for 6 months, the government makes a monthly payment of

half the unemployment benefit to each worker (in addition to all other transfers already

existing in the model)

Each of the following 6 figures illustrates one of the policy scenarios listed above. Each

figure consists of four panels. In each panel we show the time series of the relative

departure from the baseline of a macroeconomic variable (i) under LD in the absence of

policy (dashed line) and (ii) under LD cum policy (solid line).

Let’s start from RF, shown in figure 13. When the Government adopts RF, the most

striking difference with respect to the LD scenario concerns the employment rate, which

does not decrease relative to the baseline (as it did in LD) and – for the duration of the

policy – even increases. This is due to the fact that the policy (as in the real world)

forbids firms from firing workers in the face of a drop in demand. Since changes in

production are the only reason for firing or hiring workers in our simplified setting, in

the RF scenario all redundancies are actually banned for a certain period. This in turn

implies that employment is not only higher than in LD without policy but also higher

than in the baseline. As to GDP, with RF the recession generated by the epidemic and
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the lockdown is slightly less dramatic and the recovery more pronounced. This is due

to the fact that workers retain all the purchasing power of an active worker even if they

stay home during the lockdown. In the LD scenario without policy, unemployed workers

receive only a subsidy equal to a fraction of the real wage, whereas under RF workers keep

their job and receive their full wage. Hence consumption falls less than in the absence

of intervention. RF leads also to a slightly stronger initial increase in government debt

relative to LD. Since the policy does not impact directly on the net worth of firms in our

model (to a firm in our model it makes no difference from a balance sheet perspective

whether it fires a worker it does not need or if it keeps the worker and the government

pays their wage), the policy has no significant impact on loan defaults
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Figure 13: Impact of the Redundancy Fund (RF)

The impact of liquidity support (LS) differs strongly depending on the type of subsidy.

Support in the form of a one-off injection to all firms (LS(1), figure 14) appears to have a

sizable positive effect while continuous support targeted to firms with liquidity shortfalls

(LS(2), figure 15) is essentially ineffective. In the latter case, in fact, the time series
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of each variable with and without policy overlap. In LS(2), liquidity support flows to

firms which are already fragile, and only in amounts just sufficient to cover the current

liquidity gaps. These firms tend to be relatively small, so that liquidity channelled to

them does little to boost aggregate output. In addition, the small liquidity injections

under this policy appear to be ineffective in preventing defaults. On the other hand,

the small size of these transfers does not impact greatly on government debt. The one-

off generalized support policy LS(1), on the other hand, has a strong effect on GDP,

significantly speeding up the recovery. The generalised liquidity support improves the

overall financial robustness of firms and, since it directly increases the net worth of firms,

prevents a large share of defaults which would otherwise occur. Moreover, it gives firms

liquid resources to service their debt and make dividend payments which in turns boosts

household income and consumption.
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Figure 14: Impact of one-off liquidity support (LS(1))
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Figure 15: Impact of continuous liquidity support (LS(2))

The impact of credit guarantees (CG) on the pattern of GDP, shown in figure 16, is very

similar to that of continuous liquidity support (LS(2)), with a marginal effect on the

speed and amplitude of the recovery. Unsurprisingly, compared to LS(2), the increase

in government debt is smaller since support takes the form of credit rather than direct

transfers: the Government takes a loss only if a firm receiving a loan guaranteed by the

government goes into default. Loan defaults increase somewhat relative to the case of

no policy intervention as some firms end up defaulting on the loans guaranteed by the

government.
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Figure 16: Impact of credit guarantees (CG)

At first sight, the macroeconomic effects of equity support policies (EI) are surprising

and somehow puzzling. As shown in figure 17, the macroeconomic outlook with equity

injections appears worse than in the LD scenario, at least in the short run (around 2

years). While, as shown by the strong decrease in loan defaults, EI does prevent firm

bankruptcies (at the cost of an increase in government debt), output losses are larger

than in LD. The root cause of this phenomenon is, once again, the prevailing size of the

firms targeted by the policy coupled with the entry mechanism embedded in the model.

By assumption, the firms which are “rescued” by the government would otherwise exit

the economy due to negative equity, and therefore tend to be small. In other words,

EI “artificially” keeps low-output firms alive. In the present model, an exiting firm is

replaced immediately by a new one whose desired output is equal to the mean output

currently prevailing in the respective segment of the corporate sector. Replacement firms

hence tend to be larger in terms of output than those which exit the economy. The

puzzle therefore is an artefact of the firm replacement mechanism incorporated in the
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model which, particularly when the model is simulated at monthly frequency, may be

viewed as somewhat unrealistic. Nevertheless the result emphasises an important point,

namely that rescuing failing firms alone may do little to promote recovery if those firms

are not given an incentive to expand their output.
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Figure 17: Impact of equity injection (EI)

Figure 18 shows that the income support (IS) scenario, whereby the government makes

transfer payments to all worker households for a limited number of periods. This policy is

highly effective at promoting a faster recovery from the epidemic and lockdown-induced

downturn. In addition to a much smaller decline in GDP and employment, the policy

counteracts the impact of the lockdown on loan defaults. It also amplifies the post-

recovery overshooting effect which is also present in the scenario without policy. The

faster recovery does however come at the price of a large increase in government debt

necessary to finance the additional transfer payments.
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Figure 18: Impact of income support (IS)

A similar degree of improvement in macroeconomic performance can be obtained by

combining the one-off liquidity injection to firms (LS(1)) with the redundancy fund (RF),

shown in figure 19. This policy, too, induces a large increase in government debt but

appears more successful at preventing loan defaults and also strongly reduces the loss of

employment particularly in the early phase of the epidemic period.
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Figure 19: Impact of combined redundancy fund and one-off liquidity support
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Figure 20: Cumulative output loss relative to baseline under different policies
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Figure 21: Time to recovery (months) under different policies

Figures 20 and 21 present a direct comparison of the policy measures considered above,

in terms of cumulative output loss relative to the baseline and time to complete recovery

(in months). Tables 4 and 5 present the same information in tabular form. It can

be seen that the most effective policy measures appear to be income support as well

as the combination of one-off liquidity support and the redundancy fund. Both of these

significantly speed up recovery and strongly reduce the output loss relative to the baseline

of no policy intervention. Equity support is clearly an inferior policy option in our model,

leading to additional output losses and significantly slowing down the recovery.

Table 4: Cumulative output loss relative to baseline

Policy Median Lower Upper
None -1.269208 -1.372594 -1.165822
Liquidity (1) -0.965633 -1.032171 -0.899094
Liquidity (2) -1.102897 -1.178526 -1.027268
Credit -1.103067 -1.175343 -1.030791
Equity -1.390574 -1.525336 -1.255812
RF -1.032810 -1.097128 -0.968492
Income -0.752603 -0.801588 -0.703618
RF + Liqu. -0.850535 -0.904418 -0.796652
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Table 5: Time to recovery (months)

Policy Median Lower Upper
None 21 19.07490 22.92510
Liquidity (1) 16 15.04722 16.95278
Liquidity (2) 19 17.73600 20.26400
Credit 18 16.64337 19.35663
Equity 26 23.89264 28.10736
RF 18 16.26200 19.73800
Income 13 11.89400 14.10600
RF + Liqu. (1) 15 14.21000 15.79000

10 Conclusion

In this paper we make three contributions.

First, we contribute to the macroeconomic-epidemiological literature by proposing a new

medium-sized Agent-Based macroeconomic-epidemiological model of Covid-19, which we

label ABC. The model consists of a macroeconomic and an epidemiological sub-model.

In both sub-models we exploit the granularity and flexibility of the agent-based approach.

We put the model to work to address key research challenges brought to the fore by the

widespread macroeconomic loss generated by the epidemic.

The second contribution of the paper consists in evaluating the effect of the lockdown on

the trade off between saving lives and avoiding contractions of GDP. From the simulations

we infer that, if uncontained, the epidemic not only has a huge death toll but it also carries

a significant output loss, both in the “short run” and over an extended time horizon. In

fact, after an initial mild drop GDP stabilizes around a quasi-steady state permanently

below the level of normal aggregate activity. The main takeaway message of this analysis

is that just letting the epidemic run to avoid sudden interruptions of economic activity

does not benefit the macroeconomy (as it does not avoid a contraction of aggregate

output) especially over the long run (as the economy stabilizes in a lower quasi-steady

state).

Voluntary social distancing allows to reduce the death toll to a large extent but it brings

about an oscillatory pattern of the epidemic curves. After the first wave, as the number

of infections becomes smaller than a given threshold, people relax and no longer engage

in social distancing, but this relaxation makes the number of infections grow again and
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leads to a second wave, which in turn makes people more cautious and re-enter the social

distancing mood. The macroeconomic loss in this case is bigger than in the uncontained

epidemic case in the short run, i.e., immediately after the outbreak of the epidemic, but

becomes smaller over a longer horizon.

The lockdown has a remarkable mitigating effect on the lethality of the disease. In

the short run the macroeconomic loss is dramatic but GDP bounces back over a longer

horizon. The trade off between lives and livelihoods is sizable in the early stage of the

lockdown but fades away in the long run. Having calibrated the model on the empirical

reality of Lombardy, ABC under lockdown is able to closely reproduce the number of

deaths for Lombardy during the first wave. Using these simulation, we could infer that

absent the lockdown, the number of fatalities in Lombardy could have been 20 times

bigger than the actual figure.

The third contribution of the paper consists in carrying out a number of policy experi-

ments to assess the efficacy of macroeconomic stabilization policies in counteracting the

lockdown-induced downturn. We consider measures ranging from income and employ-

ment support to liquidity provision and credit guarantees and assess their effect on the

dynamics of macroeconomic variables under the lockdown scenario. In the simulations,

the most effective policy measures appear to be transfer payments to households, as well

as a policy package consisting of employment support (in the form of a redundancy fund)

and temporary liquidity support for firms. These measures significantly speed up recovery

and reduce the output loss relative to the lockdown scenario.
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Appendix A Parameter values

Tables 6 and 7 below provide the lists of model parameters pertaining to the macroeco-

nomic sub-model and the epidemiological sub-model respectively.

Table 6: Macroeconomic sub-model parameters

Symbol Description Value

NW,0 Initial number of workers 2500
N b
F Number of B-firms 100

N l
F Number of L-firms 150

Nk
F Number of K-firms 50

zc Number of C-firms visited by consumers33 3
ze Number of Firms visited by unemployed 5
zk Number of K-firms visited by C-firms34 3
ξY Memory parameter for baseline human wealth 0.765
χ Propensity to consume out of wealth 0.00825
ρq Quantity adjustment parameter 0.2
ρp Price adjustment random parameter 0.07
µ Bank’s gross mark-up 1.007
δ Capital depreciation rate 0.01
γ Probability to invest 0.15
φ Bank’s leverage parameter 0.0025
ζ Debt repayment rate 0.01
ξK Memory parameter for capacity utilisation 0.2
α Labour productivity 2

9
κ Capital productivity 1

9
ω Dividend payout ratio 0.25
x Target capacity utilisation 0.85
δk Inventory depreciation 0.08
b0c Bank’s risk evaluation parameter (C-firms) -15
b1c Bank’s risk evaluation parameter (C-firms) 13
b0k Bank’s risk evaluation parameter (K-firms) -5
b1k Bank’s risk evaluation parameter (K-firms) 5
r Risk-free interest rate 0.01

3
rd Interest rate on deposits r

2
su Replacement rate (unemployment subsidy) 0.75
sp Replacement rate (pension) 0.9
ss Replacement rate (sick-pay) 0.75
tw Tax rate on wage income 0.275
tπ Tax rate on profits 0.3
uup Upward wage adjustment parameter 0.1

3
udown Downward wage adjustment parameter 0.01

3
uT Unemployment threshold 0.1
gh Ratio of healthcare expenditure to full employment

GDP
0.04

33Including largest firm visited previously
34Including largest firm visited previously
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Table 7: Epidemiological model parameters

Symbol Description Value

Share of young agents in the population 0.15
Share of middle-aged agents 0.65
Share of old agents 0.2
Probability of catching the normal disease 0.0012
Duration normal disease 4
Susceptibility probability normal disease 0.1
Shock to demand for luxury goods 2

3
Shock to demand for basic goods 1.2
Probability of serious symptoms (young, middle, old) 0.01, 0.025, 0.2
Total number of possible connections 3123750
Number of permanent connections 4165
Mean of random connections per period 1115.625
Standard deviation of random connections 124.95
Share of deactivated L-firms in lockdown 1

3
Constraint on production in lockdown 0.9
Lockdown minimum duration (months) 3
Lockdown activation threshold 5
Lockdown lifting threshold 1
Duration of epidemic disease (weeks) ‖U(4, 6)‖
Infectious period (weeks) 3
Post-lockdown adjustment parameter 1

3
Share of connections under lockdown 0.25

cd Cost of distancing 2
Cost of distancing (lockdown) -2

ι Persistence of distancing index 0.7
β Distancing effect on infection probability 0.4
ρc Transmission rate 0.185

ISD Distancing threshold 1
πc Connection probability with distancing 0.5
h1 Health demand parameter 0.55
h2 Health demand parameter 0.1
πm Baseline death probability 0.02
h3 Death probability parameter 0.06
πr Baseline detection probability 0.01
ψ Adjustment of detection probability 0.0003
πrmax Upper bound of detection probability 0.1
I0 Number of initially infected 5

Table 8 contains the parameters used in the policy experiments.

Table 8: Policy parameters

Description Value

Duration CIGS (months) 12
One-off liquidity injection (per firm) 10
Duration continuous liquidity support (months) 12
Duration credit guarantees (months) 12
Duration equity injections (months) 12
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Table 8 – continued from previous page

Description Value

Duration income support (months) 6
Size of income support (share of unemployment benefit) 0.5
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