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1 Introduction

A tournament is a type of multi-battle contest game, which is commonly used in

sports, labor markets, politics, and so on (see Lazear and Rosen, 1981; Rosen, 1986;

Prendergast, 1999; Szymanski, 2003; Harbaugh and Klumpp, 2005). Two well-known

examples are round-robin tournaments and Swiss tournaments. In a round-robin

tournament, players are pairwise matched in each round to compete in two-player

component battles. It is an all-play-all tournament in that each player competes

with all other players in turn. The schedule (i.e., who is matched with whom in

which round) is exogenously given and common knowledge among all players. In a

Swiss tournament, as in a round-robin tournament, players are pairwise matched in

each round to compete in two-player component battles. However, a player does not

necessarily compete with all other players, but competes with a selection of them,

which is determined based on their performances in previous rounds. The latter

property can be referred to as endogenous scheduling. Finally, although it cannot

be classified as a tournament model, a property of another well-known multi-battle

contest is worth mentioning here. In a race, multiple players compete in a component

battle in each round and a player who reaches a certain number of battle victories

(i.e., winning threshold) wins the race (see Klumpp and Polborn, 2006; Konrad and

Kovenock, 2009, and Doğan et al., 2018).

In this paper we propose a novel tournament design with four symmetric play-

ers, which incorporates the main properties of a round-robin tournament, a Swiss

tournament, and a race. In each round, players are pairwise matched to compete

in two-player component battles. The winner of each battle is determined by a

Tullock contest success function. The aim is to win a total of three component bat-

tles, before another player achieves the same (similar to a race). A player competes

against each of the other players, and in the first-three rounds, no player competes

against the same opponent twice (similar to a round-robin tournament). Moreover,

we implement endogenous scheduling, which means that the order of games depends

on the outcomes of the earlier component battles (similar to a Swiss tournament).

With endogenous scheduling, considering different possibilities for second-round and
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fourth-round match-ups, we obtain 36 different tournament structures.

Our tournament model is inspired by the following observations: In round-robin

tournaments, the winning players are relatively more successful than the losing play-

ers. However, this does not necessarily mean that the winning players are sufficiently

successful in absolute terms. For instance, in a four-player tournament, three players

can share the trophy by collecting two battle victories each. The contest designer

may not be satisfied with such a result. In order to make sure that the champion is

also successful in absolute terms, the designer may introduce a winning threshold to

be achieved by the champion, as in a model of race.

Our model can be thought of as an alternative to a standard round-robin tour-

nament in the sense that it implements modifications to a round-robin tournament

in two dimensions: (i) endogenous scheduling and (ii) additional tie-braking games.1

We structure our paper around this observation. We start with the equilibrium anal-

yses of round-robin tournaments both with exogenously-given and endogenously-

determined schedules. Afterward, we formally introduce the alternative tournament

model, analyze its equilibrium for all possible versions, and compare all these tour-

nament structures in terms of expected total equilibrium effort.2

We show that two of the tournament structures we introduce outperform all the

other tournament structures considered in this paper. We refrain from going into

the technical details here, but a brief intuition is in order: In the second round, a

winner of the first round competes against the non-played loser of the first round.

Normally, this would have resulted in a discouragement effect for the latter side,

but then the fourth round match-ups are optimally selected such that if the player

who lost in the first round wins in the second round, he/she will be incentivized to

exert even more effort in the third round. Furthermore, independent of the outcomes

of the second-round battles, there will always be at least two players who are very

1The latter is a direct consequence of introducing a winning threshold into a standard round-
robin tournament.

2The maximization of expected total effort is, arguably, the most frequently-used objective
criterion in contest theory. It is especially relevant in sport contests where higher total effort is
related to higher attendance and greater revenue. See Dasgupta and Nti (1998), Moldovanu and
Sela (2001), Borland and MacDonald (2003), Szymanski (2003), and Nti (2004) among others.
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motivated to exert high efforts in the third round, and all players would do that

in case each player collects one battle victory in the first two rounds. As a result,

the maximum expected total effort is achieved in equilibrium. Further details are

provided later in the paper.

Although round-robin tournaments are extensively studied in the operations re-

search literature (see Fleurent and Ferland, 1993; Russel and Leung, 1994; Nemhauser

and Trick, 1998; Henz et al., 2004; Rasmussen and Trick, 2008 among others), those

studies mostly assume non-strategic players, and thus they ignore the effects of play-

ers’ strategic effort choices on the tournament outcome. On the other hand, possibly

due to the complexity of the respective equilibrium analysis (see Krumer et al., 2017a,

pg. 634), there are only a few papers in the game theory literature that contributes

a new perspective to the discussion by considering strategic players.

Among those papers, Krumer et al. (2017a) examine round-robin tournaments

with three or four symmetric players. In case of four players, they assume that

two battles in a round are scheduled one of the the after. Using an all-pay contest

success function, they show that a player who plays in the first game of each of the

first two rounds ends up with a higher equilibrium winning probability, indicating

a first-mover advantage. Krumer et al. (2017b) analyze a three-player round-robin

tournament with one strong player and two equally-weak players. They find that

in order to maximize expected total equilibrium effort, the designer should use a

round-robin tournament rather than a one-shot contest if the asymmetry between

the strong player and the weak players is sufficiently high. Later, Sahm (2019)

investigates fairness in a model similar to the one studied by Krumer et al. (2017a).

Differently, however, he utilizes a Tullock contest success function and shows that the

discrimination is weaker in Tullock contests compared to all-pay contests. Following

this result, the author also analyzes endogenous scheduling in a three-player round-

robin tournament. Finally, Krumer et al. (2020) study an optimal tournament design

problem for a round-robin tournament with three symmetric players with either one

prize or two prizes. They find that the designer should allocate only one prize if

he/she aims to maximize expected total equilibrium effort.3

3We are also aware of two recent working papers. Similarly to the other papers mentioned above,
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The paper is organized as follows. In Section 2, we provide equilibrium analyses

of four-player round-robin tournaments with exogenous and endogenous schedules.

In Section 3, we formulate a new tournament design. Section 4 presents our main

results that compare all these tournament structures. Section 5 concludes.

2 A Round-robin Tournament

Consider four symmetric players in a player set N = {1, 2, 3, 4}. They compete in

a round-robin tournament. The procedure is as follows. In each round, players are

pairwise matched. For each pair of players, there is a component battle in which the

players choose how much effort to exert, a Tullock contest success function determines

who wins the battle, and the winning player collects one point from this round. For

example, assuming that players i, j ∈ N are matched in a given round, player i wins

the battle with probability.
ei

ei + ej

where ei and ej denote the exerted effort levels. If both players exert zero effort, then

a tie-breaker rule applies: the player with more battle victories wins with probabil-

ity 1, but if both players have the same number of battle victories, then each player

would have a winning probability of 1/2. We also assume that the marginal cost of

effort is one for every player and in each round.

A player competes against each of the other players and no player competes

against the same opponent twice. The tournament always ends in three rounds.

At the end, whichever player has more battle victories becomes the tournament

champion and collects a winning prize of V > 0. If there are multiple such players,

they become co-champions and share the winning prize equally.

The standard round-robin tournament as studied in the literature considers an

exogenously-given schedule. This means that who will be matched with whom in

each round is known before the tournament starts. A different specification may

Laica et al. (2017) examine round-robin tournaments with three or four symmetric players and
multiple prizes, whereas Sela et al. (2020) analyze a round-robin tournament with four symmetric
players and two prizes.
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consider a tournament with an endogenously-determined schedule. This means that,

depending on the results of the first-round battles, it is possible for player i ∈ N to

compete against either of the other two players in the second round. Notice that

once the second-round battles are set, there is only one possible match-up for the

third-round battles. In this specification, there are two versions to be considered:

(a) winners of the first round compete against each other, or (b) a winner of the first

round competes with the non-played loser of the first round.4

Our first result analyzes the unique symmetric subgame perfect Nash equilibrium

(SPNE) in each version with an endogenously-determined schedule. As it will be

revealed later, this result makes it easier to analyze the unique symmetric SPNE in

the standard round-robin tournament with an exogenously-given schedule.

Proposition 1. There exists a unique symmetric SPNE in either version of a round-

robin tournament with an endogenously-determined schedule. The expected total ef-

fort that will be exerted in equilibrium is 0.7407V if the winners of the first round

compete against each other in the second round and 0.7585V if each winner of the

first round competes with the non-played loser of the first round in the second round.

Proof. We analyze SPNE via backward induction. There are three possible cases at

the beginning of the third round.5

Case 1. Assume that there are two players with two battle victories each (without

loss of generality, say players 1 and 2), so that the other two players could not win

any battle in the first two rounds. In the third round, the laggards compete against

each other. Since there is no possibility that they will become a champion, both

players exert zero effort in equilibrium.

In the battle between players 1 and 2, player i ∈ {1, 2} maximizes

ei
e1 + e2

V − ei

4Notice that such a round-robin tournament with an endogenously-determined schedule is a
natural combination of a round-robin tournament and a Swiss tournament.

5In the following, by an abuse of notation, we omit the current round or state when denoting
players’ effort choices. Furthermore, in all utility maximization problems considered below, the
respective second-order conditions hold.
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In the equilibrium, we find e1 = e2 = V/4. This yields an expected payoff of V/4 to

each player i ∈ {1, 2}.
Case 2. Assume that all players have one battle victory each. A player i ∈ N

maximizes
ei

e1 + e2

V

2
− ei

in her respective battle. In the equilibrium, we find ei = V/8 for each player i ∈ N .

This yields an expected payoff of V/8 to each player i ∈ N .

Case 3. Assume that there is one player with two battle victories (without loss of

generality, say player 1), there are two players with one battle victory each (without

loss of generality, say players 2 and 3), and the remaining player could not win any

battle in the first two rounds.

For a subcase, assume that player 1 competes against player 4 in the third round.

The result is trivial: since player 4 is totally discouraged, she exerts zero effort.

Thus, player 1 wins this battle for sure even when she exerts zero effort herself (due

to the tie-breaking assumption). As a result, player 1 becomes a champion with an

expected payoff of V . Anticipating the outcome of that battle, and knowing that

there is no possibility that they will become a champion, players 2 and 3 exert zero

effort in their own component battle.

For another subcase, assume that player 3 competes against player 4 in the third

round. The result is again trivial: since player 4 is totally discouraged, she exerts

zero effort. Thus, player 3 wins this battle for sure even when she exerts zero effort

herself (due to the tie-breaking assumption). As a result, player 3 becomes one of

the three co-champions in case player 2 wins against player 1 in their own battle.

Anticipating this outcome, player 1 maximizes

e1
e1 + e2

V +
e2

e1 + e2

V

3
− e1

whereas player 2 maximizes
e2

e1 + e2

V

3
− e2

We find that e1 = 4V/27 and e2 = 2V/27, which yields an expected payoff of 17V/27
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to player 1 and V/27 to player 2. Furthermore, player 3 has an expected payoff

of 3V/27.

This completes the equilibrium analysis of the third-round battles. There is only

one possible case at the beginning of the second round. In that case, there are two

players with one battle victory each (without loss of generality, say players 1 and 2)

and the other two players could not win in the first round.

First, we consider the version in which the winners of the first round compete

against each other. Notice that, in this version, only Case 3 can be observed in

the third round. Assuming that player 1 played against player 3 in the first round,

player 1 maximizes

e3
e3 + e4

(
e1

e1 + e2
V +

e2
e1 + e2

3V

27

)
+

e4
e3 + e4

e1
e1 + e2

17V

27
− e1

in this round. Player 2’s maximization problem can be written symmetrically. Fur-

thermore, player 3 maximizes

e2
e1 + e2

e3
e3 + e4

V

27
− e3

in this round. Player 4’s maximization problem can be written symmetrically. Tak-

ing the respective first-order conditions and restricting our attention to symmetric

equilibrium where e1 = e2 and e3 = e4, we find e1 = e2 = 41V/216 ≈ 0.1898V and

e3 = e4 = V/216 ≈ 0.0046V . This yields an expected payoff of 53V/216 ≈ 0.2454V

to players 1 and 2 and V/216 ≈ 0.0046V to players 3 and 4.

Second, we consider the version in which each winner of the first round competes

with the non-played loser of the first round. Notice that, in this version, all three

cases can be observed in the third round. Assuming that player 1 played against

player 3 in the first round, player 1 maximizes

e2
e2 + e3

(
e1

e1 + e4

V

4
+

e4
e1 + e4

V

27

)
+

e3
e2 + e3

(
e1

e1 + e4

17V

27
+

e4
e1 + e4

V

8

)
− e1
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in this round. Furthermore, player 3 maximizes

e1
e1 + e4

e3
e2 + e3

3V

27
+

e4
e1 + e4

e3
e2 + e3

V

8
− e3

in this round. The maximization problems for players 2 and 4 can be written sym-

metrically. Taking the respective first-order conditions and restricting our attention

to symmetric equilibrium where e1 = e2 and e3 = e4, we find e1 = e2 ≈ 0.0595V and

e3 = e4 ≈ 0.0232V . This yields an expected payoff of 0.2143V to players 1 and 2

and 0.0091V to players 3 and 4.

This completes the equilibrium analysis of the second-round battles. Finally, we

analyze the equilibrium efforts in the first-round battles. Once again, our analysis

will be divided into two parts, based on the two versions considered. In the former

version, each player can anticipate that her continuation payoff would be 0.2454V if

she wins now and 0.0046V if she loses now. One can find that ei ≈ 0.0602V for each

player i ∈ N in the first round. Then, in the latter version, each player can anticipate

that her continuation payoff would be 0.2143V if she wins now and 0.0091V if she

loses now. One can find that ei ≈ 0.0513V for each player i ∈ N in the first round.

Given these results, the expected total effort that will be exerted in equilibrium

would be

(4× 0.0602V ) + (2× 0.1898V ) + (2× 0.0046V ) +
1

4

(
2× 6V

27

)
= 0.7407V,

if winners of the first round compete against each other in the second round; and

(4× 0.0513V ) + (2× 0.0595V ) + (2× 0.0232V )+

p2
(

2× V

4

)
+ p(1− p)

(
2× 6V

27

)
+ (1− p)2

(
4× V

8

)
= 0.7585V

where p = 0.0595/(0.0595+0.0232) = 0.7195, if a winner of the first round competes

with the non-played loser of the first round in the second round.

To analyze the standard round-robin tournament with an exogenous schedule, we

start with the following observations. The equilibrium analysis for the last two rounds
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would be similar to the corresponding ones above. As for the first-round battles,

the equilibrium analysis would be different because of the changes in continuation

payoffs. In particular, those payoffs would be written as convex combinations of

the continuation payoffs from the two versions of the model with an endogenous

schedule. Now, without loss of generality, assume that player 1 wins her battle

against player 2 in the first round and that player 1 will compete against player 3 in

the second round. Since player 3 has a 50% probability of winning her battle against

player 4 in a symmetric equilibrium, the current model evolves into the version in

which winners of the first round compete against each other in the second round

with a probability of 1/2 and into the other version with a probability of 1/2.

Proposition 2. There exists a unique symmetric SPNE in a round-robin tournament

with an exogenously-given schedule. The expected total effort that will be exerted in

this equilibrium is 0.7496V.

Proof. Utilizing our observations above, we can argue that each player can anticipate

that her continuation payoff would be (0.2454V + 0.2143V )/2 = 0.2298V if she wins

in the first round and (0.0046V + 0.0091V )/2 = 0.0068V if she loses in the first

round. We can then find that ei ≈ 0.0557V for each player i ∈ N in the first round.

Given these results, the expected total effort that will be exerted in equilibrium

would be

(4× 0.0557V ) +
1

2
TEW +

1

2
TEL = 0.7496V

where

TEW = (2× 0.1898V ) + (2× 0.0046V ) +
1

4

(
2× 6V

27

)
is the expected total equilibrium effort (after the first round) in case winners of the

first round compete against each other and

TEL = (2× 0.0595V ) + (2× 0.0232V )+

p2
(

2× V

4

)
+ p(1− p)

(
2× 6V

27

)
+ (1− p)2

(
4× V

8

)
10



is the expected total equilibrium effort (after the first round) in case each winner

of the first round competes with the non-played loser of the first round, where p =

0.7195 as calculated earlier.

In the following two sections, we formally introduce various versions of our alter-

native tournament model and identify the optimal one after reporting the expected

total equilibrium effort in each version.

3 An Alternative Tournament Model

Consider four symmetric players in the player set N = {1, 2, 3, 4}. They compete

in a tournament game with multiple rounds. The procedure is as follows. In each

round, players are pairwise matched. For each pair of players, there is a component

battle in which those players choose how much effort to exert, a Tullock contest

success function determines who wins the battle, and the winning player collects one

point from this round. Similar to a round-robin tournament, assuming that players

i, j ∈ N are matched in a given round, player i wins the battle with probability

ei
ei + ej

where ei and ej denote the exerted effort levels. Similarly, if both players exert zero

effort, then a tie-breaker rule applies: the player with more battle victories wins with

probability 1, but if both players have the same number of battle victories, then each

player would have a winning probability of 1/2. We also assume that the marginal

cost of effort is one for every player and in each round.

Each player’s objective is to collect a total of three battle victories before any

of the other players succeeds the same. If a player achieves this on her own, then

the tournament ends, that player is declared to be the tournament champion, and

she collects a winning prize of V > 0. Given the tournament design, there might

be two players who achieve this at the same time, and for that, we consider two

specifications of the model: (i) both three-victory players win the tournament and
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equally share a total prize of V ;6 and (ii) there is an additional round where those

three-victory players compete in a final game to determine the tournament champion

who will then collect a prize of V .

This tournament design displays some similarities with a round-robin tournament,

a Swiss tournament, and a race. The first three rounds are played as in a round-

robin tournament with a Swiss-type endogenous schedule. Notice that if one player

wins three component battles in three rounds, the tournament ends exactly in three

rounds with that player becoming the tournament champion. However, it is also

possible that such a player does not exist, in which case we either have two or three

players with two battle victories.7 In this latter case, our alternative model allows

for tie-braking games to be played in additional rounds. This is a direct consequence

of defining a threshold number of victories to be achieved by the champion, which is

an apparent similarity to a race model.

Before proceeding further, we introduce the following notation. A node is denoted

by a quadruple (a, b, c, d) where each entry represents the total number of battle

victories achieved by the respective player before arriving that node. For the sake of

illustration, victories by players 1 and 4 in that round would move the game to node

(a + 1, b, c, d + 1). Moreover, when we refer to a specific node (a, b, c, d), it does not

necessarily mean that player 1 has a battle victories, player 2 has b battle victories,

and so on. Instead, such a node represents all cases in which one player has a battle

victories, another player has b battle victories, and so on. That is to say, we consider

anonymity among players when reporting our results.

As it was the case earlier, we consider two versions for the second round match-

ups: (a) winners of the first round compete against each other, or (b) each winner

of the first round competes with the non-played loser of the first round. But now, if

the tournament is not finalized in three rounds, there are two possible nodes in the

fourth round: (2, 2, 1, 1) or (2, 2, 2, 0). For the former node, there are three versions:

(a) the leaders compete against each other, (b) the leader who defeated the other

6Compared to a round-robin tournament, this specification tries to break the tie after the first
three rounds, but if tie is not broken, there will be two co-champions.

7It is worth reminding here that in any version of round-robin tournaments considered in Sec-
tion 2, those players with two victories would become co-champions.
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leader competes with the laggard who defeated the other laggard, or (c) the leader

who defeated the other leader competes with the laggard who was defeated by the

other laggard. For the latter node, there are three versions: (a) the leader who lost

in the first round competes with the laggard, (b) the leader who lost in the second

round competes with the laggard, or (c) the leader who lost in the third round

competes with the laggard. Furthermore, in case the tournament is not finalized in

four rounds, (2, 2, 2, 2) would be the only possible node in the fifth round. Given that

this is a symmetric node, we consider random matching at this node. This leads to

2× 3× 3 = 18 tournament structures. Considering the two specifications mentioned

earlier, we have a total of 36 alternative tournament structures.

4 The Results

In this section, we report our main results on the optimal tournament design in

terms of expected total equilibrium effort. In that regard, the complete characteriza-

tion of equilibrium strategies in each version of our tournament model is necessary.

However, considering the length of the equilibrium analyses for all 36 tournament

structures, we do not report them in the main body of the paper. The equilibrium

efforts and equilibrium winning probabilities on each possible node are reported in a

supplementary material available on authors’ web pages.

The 4th round The 2nd round (i.e., Node (1,1,0,0))
Node (2,2,1,1) Node (2,2,2,0) Winner vs. Winner Winner vs. Loser

a a CW1 CL1
a b CW2 CL2
a c CW3 CL3
b a CW4 CL4
b b CW5 CL5
b c CW6 CL6
c a CW7 CL7
c b CW8 CL8
c c CW9 CL9

Table 1: 18 possible versions under the first specification with co-champions (C)
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Here we first report the tournament structure that yields the highest expected

total equilibrium effort under each specification of the model: (i) two three-victory

players equally share V and (ii) those three-victory players compete in a final game

after which the winner collects V . Afterward, we also make a comparison between

all tournament structures considered in this paper.

Proposition 3. In the alternative tournament model, consider the first specification

with co-champions. Among the 18 possible versions, the optimal tournament is such

that (i) in the second round, a winner of the first round competes with the non-played

loser of the first round; (ii) on node (2, 2, 1, 1) of the fourth round, a leader competes

with either laggard; and (iii) on node (2, 2, 2, 0) of the fourth round, the leader who

lost in the second round competes with the laggard. The expected total equilibrium

effort is 0.7929V.

Proof. The equilibrium analysis follows as in the proof of Proposition 1. For each

version of the tournament, by performing backward induction, starting from the

furthest decision node (2,2,2,2) and ending at the first decision node (0,0,0,0), we

characterize the unique stationary subgame perfect Nash equilibrium of the model.

Specification: C W L
1 0.7732V 0.7539V
2 0.7515V 0.7775V
3 0.7612V 0.7480V
4 0.7732V 0.7558V
5 0.7515V 0.7929V
6 0.7612V 0.7520V
7 0.7732V 0.7559V
8 0.7515V 0.7929V
9 0.7612V 0.7520V

Table 2: The expected total equilibrium efforts under specification C

The interested reader is referred to the supplementary material for the respective

equilibrium efforts and equilibrium winning probabilities on each possible node. Here

we summarize the expected total equilibrium efforts in Table 2.
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The intuition is that if in the second round, a winner of the first round competes

with the non-played loser of the first round (as specified in (i)), then a possible

third-round battle is between a player with two battle victories and a player who

won the first-round battle but lost the second-round battle. The latter player knows

that if she wins in the third round, she will be playing against a totally discouraged

player in the fourth round (as specified in (iii)). This creates an additional incentive

for that player to exert a higher effort in the third round against her opponent who

already has a strong incentive to exert high effort due to her two battle victories.

As for (ii), on node (2,2,1,1), if the leaders compete against each other, then they

would exert V/4 and end up with an expected payoff of V/4 each; but if a leader

competes with a laggard, then the laggards would be totally discouraged, so that

even the leaders would have no reason to exert any effort, but then they would end

up with an expected payoff of V/2 each. Since the latter expected payoff is much

higher, it creates an additional incentive to exert higher efforts in the earlier rounds.

Note also that although some positive amount of total effort would be exerted in the

former case, as it turns out, its overall effect is not dominant due to the fact that

node (2,2,1,1) will not be visited with a high probability.

The 4th round The 2nd round (i.e., Node (1,1,0,0))
Node (2,2,1,1) Node (2,2,2,0) Winner vs. Winner Winner vs. Loser

a a FW1 FL1
a b FW2 FL2
a c FW3 FL3
b a FW4 FL4
b b FW5 FL5
b c FW6 FL6
c a FW7 FL7
c b FW8 FL8
c c FW9 FL9

Table 3: 18 possible versions under the second specification with a final game (F)

Proposition 4. In the alternative tournament model, consider the second specifica-

tion with a final game. Among the 18 possible versions, the optimal tournament is

such that (i) in the second round, winners of the first round compete against each
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other; and (ii) on node (2, 2, 2, 0) of the fourth round, the leader who lost in the first

round competes with the laggard. The expected total equilibrium effort is 0.7851V.

Proof. The equilibrium analysis follows as in the proof of Proposition 1. For each

version of the tournament, by performing backward induction, starting from the

final game and ending at the first decision node (0,0,0,0), we characterize the unique

stationary subgame perfect Nash equilibrium of the model.

Specification: F W L
1 0.7851V 0.7447V
2 0.7582V 0.7560V
3 0.7619V 0.7473V
4 0.7851V 0.7460V
5 0.7582V 0.7604V
6 0.7619V 0.7479V
7 0.7851V 0.7460V
8 0.7582V 0.7604V
9 0.7619V 0.7479V

Table 4: The expected total equilibrium efforts under specification F

The interested reader is referred to the supplementary material for the respective

equilibrium efforts and equilibrium winning probabilities on each possible node. Here

we summarize the expected total equilibrium efforts in Table 4.

The intuition is quite similar to the one we provided for Proposition 3 above.

The match-ups specified in (i) and (ii) aim to motivate the player who will be

competing against an opponent with two victories in the third round. There are two

differences. First, given the current second-round battles, node (2,2,1,1) would not

be reached.8 Accordingly, the match-ups on node (2,2,1,1) will not have any effect

on the expected total equilibrium effort. Second, there is now an important final

game in which players would exert a total contest effort of V/2. Thus, the version

where the probability of reaching node (3,3,1,1), which is the only node that leads

to a final game, is the highest turns out to be the total-effort-maximizing one.

8It is for sure that node (2,1,1,0) is reached from node (1,1,0,0). The player with no victory
would be totally discouraged in the third round, so that node (2,2,1,1) cannot be reached.
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Given the expected total equilibrium efforts presented in Propositions 1–4 for

39 different tournament structures (i.e., 36 for our alternative tournament model,

two for round-robin tournaments with an endogenous schedule, and one for a round-

robin tournament with an exogenous schedule), we state our main result in the

following corollary. In short, two of the tournament structures we introduce here

outperform all the others in the expected total effort they induce in equilibrium.

Corollary 1. Among all tournament structures considered, CL5 and CL8 maximize

the expected total equilibrium efforts.

At this point, it may be natural to think that the reason why the expected total

equilibrium effort is maximized in two versions of our alternative tournament model

is that, compared to a standard round-robin tournament, we allow for additional

component battles in the fourth and fifth rounds, whenever necessary. However, as

we explain in the following remark, this line of thought is not necessarily correct.

Remark 1. Given a tournament structure, adding more component battles into the

model does not necessarily increase the expected total effort in equilibrium. This can

be observed in two specifications mentioned above. By definition, the total number

of component battles in the final game specification is greater than the total num-

ber of component battles in the co-champion specification. However, as shown in

Corollary 1, the expected total equilibrium effort is maximized in two versions of the

co-champion specification.

Finally, while conducting our analysis we made some further observations on the

equilibrium path, which we think are worthy of presenting here.

• If node (2, 2, 1, 1) is reached and if the leaders do not compete against each

other in the current round, then the laggards are totally discouraged in their

respective contests. The game moves to node (3, 3, 1, 1) for sure.

• The game never reaches node (2, 2, 2, 2) in equilibrium. So, a maximum of four

rounds will be played (neglecting the final game).

• A player who won at most once in the first three rounds is totally discouraged.
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• A player who lost the first two rounds is totally discouraged.

• If node (2, 1, 1, 0) is reached and (a) if the leader competes with the laggard,

then the game moves to node (3, 2, 1, 0) for sure; but (b) if the leader competes

with a one-victory player, then the game moves either to node (3, 2, 1, 0) or to

node (2, 2, 2, 0).

• The game never reaches node (3, 1, 1, 1) in an equilibrium.

5 Conclusion

In this paper we propose a novel tournament design that incorporates the main

properties of a round-robin tournament, a Swiss tournament, and a race. We conduct

equilibrium analyses for various versions of our alternative model as well as three

versions of a round-robin tournament. Utilizing expected total equilibrium effort as

a comparison criterion, we show that two of the tournament structures we introduce

outperform all the other tournament structures considered in this paper. We provide

intuition for differences in the expected total equilibrium efforts and present some

further observations on the equilibrium behavior in our tournament design. Future

work may study fairness properties of our tournament, conduct comparisons using

different objective criteria, and develop computational methods to extend it to more

than four players and three victory thresholds.
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