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Abstract 
 
Equilibrium models with heterogeneous agents and aggregate uncertainty are difficult to analyze 
since policy functions and market prices depend on the cross-sectional distribution over agents’ 
state variables which is generally a high-dimensional object. This paper develops and applies a 
general model framework in which this problem does not arise. If sufficiently many agents enter 
the economy in every aggregate state of the world, policy functions and prices depend only on 
the exogenous aggregate state but are independent of the distribution over idiosyncratic states. 
The first part of this paper proves existence results for such block-recursive equilibria and 
derives an ergodic property which is useful for their computation. The second part applies this 
equilibrium concept to models of firm dynamics with competitive or frictional input markets and 
to incomplete-market economies with endogenous asset market participation. 
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1 Introduction

The analysis of general-equilibrium models with heterogeneous households or firms is com-

plicated by a number of well-known difficulties. On the theoretical side, the existence of a

recursive equilibrium, where policy functions and market prices depend on a minimal set of

state variables, cannot be guaranteed in general.1 Applied research uses advanced numerical

techniques to compute approximate equilibria, without specifying how close these approxima-

tions are to a recursive equilibrium with rational expectations (conditional on the existence

of the latter). On the other hand, in the absence of aggregate uncertainty, the existence of a

stationary equilibrium can often be established. In fact, the comparative statics of stationary

equilibria is standard practice for policy analyses,2 which are sometimes complemented by

numeric approximations of transition paths after one-time policy changes. Yet, the (local or

global) stability of a stationary equilibrium is typically unknown, which casts doubts on its

validity as a long-run model outcome.

This paper analyzes and applies a general infinite-horizon model framework in which these

problems do not arise. It has heterogeneous agents who are subject to idiosyncratic and

aggregate risk and who decide in each period about trading a finite number I of commodities.

Typical examples are incomplete-markets models where households have stochastic income and

trade different assets, or dynamic models of firms which are subject to stochastic productivity

shocks and decide about the adjustment of production inputs. The central difficulty in most

standard models is that commodity prices are generally not only functions of the exogenous

aggregate state but that they depend on the cross-sectional distribution over exogenous and

endogenous idiosyncratic states which is a high-dimensional object. This feature is important

because the agents’ demands for commodities respond differently to price changes; hence it is

essential to know the cross-sectional distribution in order to determine equilibrium prices.

The framework analyzed in this paper does not have this feature. It deviates from many

standard models in that there is endogenous entry of possibly different agent types. In models

of firm dynamics, these entrants are startups which differ in firm-specific characteristics, such as

initial productivity. In incomplete-markets economies, they can be hand-to-mouth households

with different income realizations or preferences deciding to participate in asset market trade.

Provided that there are I different entry types entering the economy in all aggregate states,

then the prices of the I commodities are pinned down by the entry conditions of these I entrant

1Kubler and Schmedders (2002), Kubler and Polemarchakis (2004) and Santos (2002) give examples of dy-

namic general equilibrium economies for which no recursive equilibrium exists. Under restrictive assumptions,

existence of recursive equilibrium has been shown in overlapping generations models (Citanna and Siconolfi,

2010, 2012) and in incomplete-markets models with infinitely-lived households (Brumm et al., 2017). With ap-

propriate extensions of the state space, existence results for rational-expectations equilibria have been obtained

for different incomplete-market economies (e.g. Duffie et al., 1994; Miao, 2006; Cao, 2020).
2See Acemoglu and Jensen (2015) for existence and comparative-statics properties of stationary equilibria

in a large class of heterogeneous-agent models.
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types. As a result, commodity prices depend only on the exogenous aggregate state but are

independent of the distribution over idiosyncratic states. On the other hand, entry ensures that

commodity markets are in equilibrium in all states of the world. Following earlier literature,

I label such an outcome a block-recursive equilibrium (BRE): The first block of equilibrium

objects, namely value functions, policy functions and market prices, is determined without

knowledge of the cross-sectional distribution. Using these prices and policy functions, market

clearing in commodity markets determines the dynamics of the cross-sectional distribution

together with market entry (i.e., the second equilibrium block).

It is far from trivial under what conditions a BRE exists. The main difficulty is to en-

sure that commodity markets are in equilibrium with positive entry in all aggregate states

of the world. This includes not only the exogenous aggregate state, but in particular the

cross-sectional distribution over idiosyncratic states. Section 2 introduces the general model

framework, defines recursive and block-recursive equilibria, and derives precise condition un-

der which BRE exist (Theorems 1 and 2). The first theorem starts from a given stationary

equilibrium (without aggregate shocks) and uses continuity arguments to derive the existence

of BRE in the presence of small aggregate shocks. Equilibrium distributions in these equilibria

remain close to the stationary distribution in a weak topology sense. Theorem 2 derives a sim-

ilar result for the strong topology, using stronger assumptions but no continuity arguments.

Both theorems show that the dynamics of equilibrium distributions follows an iterated function

system, cf. Barnsley and Demko (1985), on a bounded metric space of distribution measures.

Nearly the same assumptions that ensure existence of BRE also permit a statement about

their ergodic behavior: Theorem 3 shows that the iterated function system converges to a

unique invariant distribution. This distribution is a high-dimensional object, namely a prob-

ability measure on the infinite-dimensional aggregate state space. Nonetheless, the ergodic

property permits a straightforward computation via simulations of the iterated function sys-

tem which can be implemented at low computational cost. The assumptions underlying these

theorems also require that a stationary equilibrium is locally stable in the corresponding topol-

ogy which justifies comparative statics experiments and which facilitates the computation of

transitional dynamics.

Section 3 illustrates the usefulness of this equilibrium concept for different economic mod-

els. In Section 3.1, I consider models of firm dynamics following Hopenhayn (1992). It is not a

new insight of this paper that such models can have block-recursive solutions. Both Hopenhayn

(1992) and Hopenhayn and Rogerson (1993) describe how the stationary equilibrium in their

models, with quasi-linear utility of the representative household in general equilibrium, can

be solved in a block-recursive way: The equilibrium price (equivalently, the equilibrium real

wage) in their models is pinned down by an entry condition without knowledge of the cross-

sectional firm distribution.3 Nonetheless, almost all of the macroeconomic literature which

3The general results derived in Section 2 also borrow from the insights developed in Hopenhayn (1992).

2



studies firm dynamics with aggregate uncertainty has not utilized this property and instead

resorts to approximate aggregation techniques.4 An important exception is the work of Lee

and Mukoyama (2007, 2018) who use block recursivity to solve their model of entry and exit

dynamics over the business cycle. As in much of this literature, they have one variable input

of production (and hence one equilibrium price to be determined), and they do not specify the

conditions for equilibrium existence. This paper applies block recursivity to models of firm

dynamics with multiple production inputs and multiple entry types and it derives rigorous

conditions for the existence of BRE and their asymptotic properties. In some examples, BRE

may not exist, either because the steady state is unstable5 or because aggregate uncertainty is

too large. I consider a calibrated version of a model with two types of labor inputs, production

workers and managers, where the latter input enhances the span-of-control of the firm’s pro-

duction technology. The composition of entrant types, namely small businesses and firms with

growth potential, is endogenous in this model, which gives rise to an endogenous propagation

of cohort-level employment, similar to Sedláček and Sterk (2017).

Section 3.2 considers models with heterogeneous multi-worker firms and search frictions in

the labor market which are useful for the analysis of job and worker flows over the business

cycle. Much of the recent search-and-matching literature builds on directed search which is

known to provide tractable solutions due to block recursivity (see Shi, 2009; Gonzalez and Shi,

2010; Kaas and Kircher, 2015; Menzio and Shi, 2010, 2011; Schaal, 2017). In models with

search on-the-job, directed search is essential for block-recursive solutions, cf. the discussion in

Menzio and Shi (2011).6 However, in business-cycle models with heterogeneous multi-worker

firms and without on-the-job-search, directed search is by no means necessary for this feature.

Hawkins (2011) demonstrates that the business-cycle model of Elsby and Michaels (2013) with

random search and intrafirm bargaining is block-recursive when entry of firms is allowed for.

This model is one application of the framework developed in this paper, as is the directed

search model with multi-worker firms of Kaas and Kircher (2015). Neither Hawkins (2011) nor

Kaas and Kircher (2015) prove the existence of BRE in their respective models in the presence

of aggregate shocks.

In Section 3.3 I study an incomplete-markets model with exogenous idiosyncratic labor

4These contributions either rule out entry altogether (Khan and Thomas, 2008; Bachmann et al., 2013),

they assume it to be exogenous (e.g. Veracierto, 2002), they make potential entrants ex-ante heterogeneous

(e.g. Clementi and Palazzo, 2016) or entry costs dependent on the aggregate entry rate (e.g. Samaniego, 2008;

Sedláček and Sterk, 2017), all of which rule out block recursivity, as does a utility function of the representative

household which is not quasi-linear; see the discussion in Section 3.1.
5To my knowledge, instability of the (unique) stationary equilibrium in the Hopenhayn (1992) model has

not been noticed before.
6The models of Shi (2009) and Menzio and Shi (2010, 2011) do not belong to the general model framework

described in this paper. They have one firm type entering many different markets at constant cost such that

the aggregate entry rate is always positive. This paper has multiple entry types who may or may not enter in

equilibrium, and a BRE fails to exist if entry is zero in some aggregate states.
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income (Huggett, 1993) and aggregate uncertainty. I add an endogenous asset participation

margin to this model: Households are born as hand-to-mouth consumers and may acquire

the financial skills to become active in asset market trade at a given fixed cost. When new

traders become active in every aggregate state, equilibrium is block-recursive. I illustrates the

properties of such equilibria on the basis of a simple example. If asset prices are moderately

procyclical, a block-recursive equilibrium exists such that asset market participation is also

procyclical. On the other hand, existence fails if asset prices are either too volatile or acyclical.

The framework developed in this paper only encompasses models with exogenous aggregate

states whereas it does not capture economies where aggregate state variables evolve endoge-

nously over time, such as the aggregate capital stock in a growth model. In the concluding

Section 4, I briefly discuss possible extensions in this direction. As long as the endogenous

aggregate state variables do not enter the agents’ payoff functions, the analytical results carry

over with relatively minor modifications. Examples are incomplete-markets economies where

some assets can be produced and accumulated. On the other hand, when an endogenous ag-

gregate state enters the agents’ payoffs, such as in macroeconomic incomplete-markets models

as in Aiyagari (1994), the formal analysis of block-recursive equilibria becomes a more intricate

problem.

2 Theory

This section analyzes a general environment that describes equilibrium outcomes in infinite-

horizon, discrete-time models with heterogeneous agents and aggregate uncertainty. The agents

in this framework may represent households or firms, and their payoffs stand for the utility

or profit values which depend on idiosyncratic and aggregate exogenous state variables, as

well as on the agents’ decisions about trading a finite-dimensional commodity bundle. In the

applications of the next section, these commodities stand for asset holdings of households or

production inputs of firms, albeit other applications are conceivable. Payoffs further depend

on market prices which are determined endogenously so that all commodity markets are in

equilibrium.

The terminology used in this section resembles the one of dynamic general equilibrium

models with competitive markets. The applications that I consider in Sections 3.1 and 3.3

belong to this class of models. However, this framework also covers economies with search

frictions where search is random or directed. In those applications, the mathematical structure

is identical but the terminology (in particular, “prices” and “market clearing”) is inappropriate;

see Section 3.2 for clarification.
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2.1 The Environment

Exogenous aggregate state. The exogenous aggregate state is denoted z and follows a

Markov process on the finite set Z = {z1, . . . , zN}. All values zn, n = 1, . . . , N , are elements

of a compact subset Z̄ of an Euclidean space with non-empty interior.

Exogenous idiosyncratic state. The idiosyncratic state is denoted x ∈ X where X is

a finite set. It follows a Markov process with transition probabilities πxx′(z), x, x′ ∈ X, which

depend continuously on the aggregate state z.

Commodities. There is a finite number I of commodities. An agent’s trade of commodity

i is denoted ai ∈ Ai, i = 1, . . . , I, where Ai is a compact interval of the real numbers containing

zero. A ≡ A1 × · · · × AI ⊂ IRI denotes the set of feasible commodity bundles.

Prices. The price of commodity i is denoted pi ∈ Pi, where the set of feasible prices Pi is

a compact interval of the real numbers with non-empty interior. P ≡ P1 × · · · × PI ⊂ IRI is

the set of commodity price vectors.

Agents. There is a continuum of agents which may be either active (engaged in commodity

trade) or inactive (no commodity trade). The total mass of agents M̄ can be finite or infinite.7

Preferences. All agents discount future payoffs with factor β < 1. The period payoff

of an inactive agent depends only on exogenous state variables and is denoted ū(x, z). The

period payoff of an active agent is u(a′, a, p, x, z), where a′ ∈ A (a ∈ A) denotes the agent’s

commodity bundle at the end (at the beginning) of the period, and p ∈ P is the price vector.

Both ū and u are continuous in z ∈ Z̄. In addition, u is continuous in (a′, a, p) and concave in

(a′, a), with strict concavity in a′.

Choice sets. An active agent chooses a′ ∈ A(a, p, x, z) where the choice set A(.) is

a non-empty, compact-valued and continuous correspondence which satisfies the convexity

requirement that λa′1 + (1− λ)a′0 ∈ A(λa1 + (1− λ)a0, p, x, z) whenever a′0 ∈ A(a0, p, x, z) and

a′1 ∈ A(a1, p, x, z), for all λ ∈ [0, 1] and a0, a1 ∈ A.

Entry. At the beginning of a period, an inactive agent in state (x, z) may enter at cost

c(x, z) which is then subtracted from the period payoff. This agent enters with zero commodi-

ties (i.e., a = 0 ∈ A) and draws the initial idiosyncratic state x0 from distribution π0(x0|x).8

Exit. Exit follows an exogenous process. I assume that every agent dies at the end of a

period with probability ξ(x, z) ∈ [0, 1] which depends continuously on z. Exiting agents are

replaced by newborn inactive agents with the same productivity. Write β0(x, z) ≡ β[1−ξ(x, z)]
for the effective discount factor of an agent in state (x, z).

Commodity supply. While heterogeneous agents optimally decide about their commod-

ity trades, there may be another side of the market which supplies these commodities. In

7M̄ =∞ is a common assumption in many models of firm dynamics where an unbounded mass of potential

firms may enter in every period. In contrast, a finite measure of agents is appropriate in models with household

heterogeneity.
8In applications with firm heterogeneity, this specification encompasses the common assumption that entrant

firms draw initial productivity stochastically.
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applications of this framework, the supply side can be modeled as the outcome of decisions

of rational agents (for instance, labor supply of a representative household in a model of firm

dynamics). In the general framework of this section, I describe the supply side simply by a

continuous function S : P × Z̄ → IRI
+ which maps the price vector p ∈ P and the aggregate

state z ∈ Z̄ into a vector of commodities.

Commodity markets. In applications with frictionless markets (Sections 3.1 and 3.3),

the commodity markets are in equilibrium if aggregate supply S equals the aggregation of

commodity trades a′ over all active agents. However, this framework also encompasses models

with search frictions (see Section 3.2) where an agent’s trade absorbs additional resources

(e.g. the commodities of unmatched sellers). To include such models, define the absorption

function Â : A×A× P → IRI
+ which maps (a′, a, p) into the absorption of commodities when

an agent adjusts the commodity vector a to a′ at price vector p. This function is Lipschitz

continuous in all arguments and satisfies Â(a′, a, p) ≥ a′. If commodity markets are frictionless,

the absorption function is simply Â(a′, a, p) = a′.

2.2 Recursive and Block-Recursive Equilibria

A recursive equilibrium describes a situation where agents decide optimally about commodity

trades and entry, while commodity markets are in equilibrium. Each period, prices, value

functions and policy functions depend on a minimal set of relevant state variables. Generally,

these state variables must include information about the distribution of active agents over

idiosyncratic states (a, x) ∈ A ×X since this distribution feeds into commodity demand and

hence determines equilibrium prices.

LetM+(A×X) be the set of bounded Borel measures9 µ on A×X, describing the measure

of active agents at the beginning of a period (before entry) over idiosyncratic states (a, x). In

the case of a finite total measure of agents (M̄ < ∞), one also needs to keep track of the

distribution of all agents (active and inactive) over idiosyncratic states x, denoted by µX(.)

which is an element of M+(X, M̄), the set of measures µX on finite set X (i.e., non-negative

vectors of dimension card(X) summing up to M̄). The aggregate state vector is the collection

(z, µ, µX) ∈ Z ×M+(A×X)×M+(X, M̄).

To simplify the exposition, the following analysis considers recursive equilibria where entry

is never constrained above by the available inactive agents. In such situations, value functions,

policy functions, and prices depend on (z, µ) but are independent of the measure µX .

Definition 1: A recursive equilibrium (with unconstrained entry) is a subsetM⊂M+(A×
X), a subset MX ⊂ M+(X, M̄), value functions v : A ×X × Z ×M → IR, v̄ : X × Z → IR

for active and inactive agents, a policy function â : A×X ×Z ×M→ A, a price function p̂ :

Z×M→ P , an entry function m : X×Z×M→ IR+, and transition functions for distribution

9A ⊂ IRI is endowed with the Borel σ-algebra and finite set X has the σ-algebra generated by all elements.
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measures Ψ : M× Z → M (mapping µ into µ′, given z) and ΨX : MX × Z ×M → MX

(mapping µX into µ′X , given (z, µ)) such that10

(a) Optimization of active agents: Their value function v solves the recursive problem

v(a, x, z, µ) = max
a′∈A(a,p,x,z)

u(a′, a, p, x, z) + β0(x, z)Ex,zv(a′, x′, z′, µ′)

given p = p̂(z, µ) and µ′ = Ψ(µ, z), for all (a, x, z, µ). The policy function â(a, x, z, µ)

maximizes the objective function in this problem.

(b) Optimal entry: For all (x, z, µ), the measure of entrantsm(x, z, µ) satisfies the complementary-

slackness condition

m(x, z, µ) ≥ 0 , Ex(v(0, x0, z, µ)− v̄(x, z)− c(x, z)) ≤ 0 ,

where the value function of inactive agents v̄ satisfies

v̄(x, z) = ū(x, z) + β0(x, z)Ex,zv̄(x′, z′) , for all (x, z).

(c) Market clearing: For all (z, µ),

S(p̂(z, µ), z) =

∫
Â (â(a, x, z, µ), a, p̂(z, µ)) dµ̃(a, x) ,

where µ̃ = µ+
∑
x∈X

µ0
x ·m(x, z, µ) (1)

denotes the distribution of active agents after entry and µ0
x ∈M+(A×X) is the proba-

bility distribution measure defined by µ0
x({0} × x0) = π0(x0|x).

(d) Evolution of distribution measures:

(d1) For all (z, µ), µ′ = Ψ(µ, z) satisfies

µ′(A0 ×X0) =

∫ ∑
x′∈X0

[1− ξ(x, z)]πxx′(z)I
(
â(a, x, z, µ) ∈ A0

)
dµ̃(a, x) ,

for all Borel sets A0 ⊂ A, X0 ⊂ X, and with µ̃ defined in (1).

(d2) For all (z, µ, µX), µ′X = ΨX(µX , z, µ) satisfies

µ′X(x′) =
∑
x∈X

πxx′(z)
[
µX(x)−m(x, z, µ) +

∑
x̂∈X

m(x̂, z, µ)π0(x|x̂)
]
,

for all x′ ∈ X. Moreover, for all (z, µ, µX) and x ∈ X,

µX(x) > µ(A× {x}) +m(x, z, µ) .
10Simplifying notation, Eyg(y′) denotes the expectation of g(y′) when y′ is next period’s value of a random

variable, conditional on current value y. I denotes the indicator function.
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The recursive equations in (a) and (b) specify value functions of active and inactive agents

where only the former decide about commodity trade. The complementary-slackness condition

in (b) says that positive entry of agents of type x in aggregate state (z, µ) requires that

potential entrants are indifferent between remaining inactive and becoming active and paying

the entry cost.11 Condition (c) says that aggregate commodity supply is equal to the aggregate

absorption of commodity trades of all agents after entry. Condition (d1) specifies how the

distribution measure of active agents evolves from one period to the next, given the distribution

µ̃ after entry, policy function â, exit rates ξ and transition probabilities πxx′ . Condition (d2),

which is not needed if M̄ =∞, describes the evolution of all agents (active and inactive) over

time, taking into account that entrants draw new idiosyncratic states from distribution π0.12

The last requirement in (d2) says that there are sufficiently many inactive agents in every state

x ∈ X so that entry is never constrained from above.

As is well known, the theoretical and numerical analysis of recursive equilibria is compli-

cated by the fact that a high-dimensional state variable (here, the infinite-dimensional distri-

bution measure µ) enters the agents’ value and policy functions. This is required whenever

there is aggregate uncertainty: Movements in z induce changes in the heterogeneous agents’

commodity demands, and the extent to which this shifts aggregate demand depends on the

cross-sectional distribution.

In the absence of aggregate uncertainty, the analysis of heterogeneous-agent models is

typically confined to a stationary equilibrium, which is defined as follows:

Definition 2: A stationary equilibrium is a recursive equilibrium where zn = z̄ for all n,

M = {µ̄} and MX = {µ̄X}.

Note that the stationarity of distribution measures is embodied in this definition, due to

Definition 1(d) and the requirement that the invariant sets M and MX reduce to a single-

ton. Stationary equilibria are much easier to study and often used for comparative statics

experiments. Nevertheless, the (local) stability of a stationary equilibrium is rarely examined.

Thus it remains unclear whether a recursive equilibrium without aggregate shocks exists and

converges to the stationary solution µ̄ if the initial distribution measure µ0 differs from µ̄, even

when µ0 is close to µ̄ in an appropriate topological sense. In fact, a stationary equilibrium can

be unstable even when it is unique, as I demonstrate with an example of a Hopenhayn model

in Section 3.1.

The goal of this section is to establish conditions under which value and policy functions

depend on finite-dimensional state variables so that these complications disappear. There is

indeed hope for such a simplification, provided that sufficiently many agents enter the economy

11Therefore, continuation utility of inactive agents is Ex,z v̄(x′, z′), regardless of their entry decision at the

beginning of the next period.
12Note again that every exiting agent is replaced by a newborn agent of the same type which is why exit

probabilities do not show up in the dynamics of µX .
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in every aggregate state. To see this, suppose that there is a set of entry types XE ⊂ X (that

is, inactive agents with idiosyncratic state x ∈ XE) with cardinality equal to the number of

commodities I. If these agents enter in every aggregate state, the value function can potentially

be defined on the smaller state space (a, x, z) ∈ A×X×Z, and the price function also reduces

to p̂ : Z → P . These functions jointly solve the set of equations

v(a, x, z) = max
a′∈A(a,p̂(z),x,z)

u(a′, a, p̂(z), x, z) + β0(x, z)Ex,zv(a′, x′, z′) , (2)

for (a, x, z) ∈ A×X × Z ,

v̄(x, z) = Exv(0, x0, z)− c(x, z) , for (x, z) ∈ XE × Z . (3)

Equation (2) is a standard recursive problem, given the price function p̂. This price function

is a vector with N · I elements (I commodity prices in N aggregate states) which is potentially

pinned down by the N ·I entry conditions (3), i.e., I entry types x ∈ XE in N aggregate states

z ∈ Z are indifferent between remaining inactive and entering after paying the entry cost. In

other words, all commodities in all states of the world are priced by market entrants.13

Following Shi (2009), I label equilibria with this feature block-recursive: Value functions,

policy functions and market prices are pinned down by the “block” of equations (2) and (3)

which correspond to conditions (a) and (b) of Definition 1. The second block of equilibrium

conditions (conditions (c) and (d)) must be solved after the first block. In particular, the

measures of entrants m(x, z, µ) ≥ 0, x ∈ XE, depend on the distribution measure of incumbent

agents µ and must be consistent with market clearing in all I commodity markets. A block-

recursive equilibrium is defined as follows.

Definition 3: Let XE ⊂ X have cardinality I. A block-recursive equilibrium (BRE)

with entry types x ∈ XE is a recursive equilibrium where v, â and p̂ do not depend on the

distribution measure µ and where m(x, z, µ) > 0 for x ∈ XE, m(x, z, µ) = 0 for x /∈ XE, for

all z ∈ Z and µ ∈M.

In the next subsection, I establish conditions under which BRE with aggregate shocks exist

in the neighborhood of a stationary equilibrium. To begin with, suppose that a stationary

equilibrium with I entry types exists:

Assumption 1: There exists a stationary equilibrium with aggregate state (z̄, µ̄, µ̄X) where

z̄ ∈ int(Z̄), stationary equilibrium price p̄ ∈ int(P ) and a subset XE with cardinality I such

that:

(a) m(x, z̄, µ̄) > 0 for all x ∈ XE,

13The same logic applies if the entry cost further depends on the price vector (for example, firm entry requires

labor input whose cost depends on wages). However, it may not vary in other dimensions across agents or

depend on the mass of entrants, as is the case in some of the papers listed in footnote 4.
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(b) Exv(0, x0, z̄, µ̄) < v̄(x, z̄) + c(x, z̄) for all x /∈ XE.

The two conditions say that there are exactly I entry types in the stationary equilibrium

whereas all other agents strictly prefer not to enter. Under plausible independence conditions

specified in the next subsection, this is a generic feature: A small deviation of the stationary

aggregate state z̄ induces a small change of stationary commodity prices p̄ = p̂(z̄) ∈ P ⊂ IRI

consistent with exactly I entry conditions for agents x ∈ XE while all other agents strictly

prefer not to enter. By a similar reasoning, a stationary equilibrium with more than I entrant

types cannot be generic: a small deviation of the stationary aggregate state z̄ typically cannot

induce a reaction of I commodity prices such that entry remains optimal for more than I

agent types. On the other hand, stationary equilibria without entry or with entry of less

than I agent types may easily exist (and they do exist in various classes of models). In these

situations, however, one cannot expect existence of a BRE: there are not enough entrants to

price all commodities in all aggregate states. Then, commodity prices must depend on the

cross-sectional distribution to guarantee market clearing in all states of the world.14

2.3 Existence of Block-Recursive Equilibria

This section establishes two existence theorems. The first theorem builds on continuity argu-

ments for small deviations of the aggregate states zn from the stationary value z̄, obtaining

BRE in a weak topology neighborhood of the stationary distribution measure µ̄. The second

result starts out from a given solution of equations (2) and (3) and characterizes conditions

for the existence of a BRE where the set of distribution measuresM is bounded in the strong

topology.

Establishing the existence of BRE in the topological neighborhood of a stationary equilib-

rium requires two steps. First, equations (2) and (3) must have a solution p = p̂(z) for all

aggregate states when z ∈ Z is close to z̄ and varies over time. Throughout this section, I fix

the transition probabilities of the Markov process for z and consider variation of the aggregate

states zn, n = 1, . . . , N around z̄. This step is relatively straightforward and requires a few

regularity conditions specified below. One of these conditions also guarantees the genericity of

a stationary equilibrium.

Second, the dynamics of distribution measures µ and µX must remain close to the stationary

distribution measures, which is required to ensure that commodity markets clear with positive

entry in all states of the world. Otherwise the block-recursive prices obtained from equations

(2) and (3) cannot be equilibrium prices. Obtaining such a stability property is far from trivial.

14Proving the existence of a stationary equilibrium with the properties of Assumption 1 is feasible in specific

applications of this framework invoking fixed-point or continuity arguments; see e.g., Hopenhayn (1992) and

Hopenhayn and Rogerson (1993) for existence of an equilibrium with entry in heterogeneous-firm models with

one input commodity (I = 1). See Acemoglu and Jensen (2015) for existence results for a broad class of models.
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Beginning with the first step, write the value function of a candidate BRE as a function

of the current aggregate state index n = 1, . . . , N , parameterized by the vector of aggregate

states, denoted ~z = (z1, . . . , zN) ∈ Z̄N , and by the vector of commodity prices over all aggregate

states, denoted ~p = (p1, . . . , pN) ∈ PN . The Bellman equation (2) is then written as

v(a, x, n; ~z, ~p) = max
a′∈A(a,pn,x,zn)

u(a′, a, pn, x, zn) + β0(x, z)Ex,nv(a′, x′, n′; ~z, ~p) . (4)

Using standard arguments, Lemma 1 in the Appendix shows that value and policy functions

â(a, x, n; ~z, ~p) for this problem exist which are continuous in (a, ~z, ~p). Further, the value func-

tion of inactive agents v̄(x, n; ~z) exists and is continuous in ~z.

Then rewrite the entry conditions as follows:

w(x, n; ~z, ~p) ≡ Exv(0, x0, n; ~z, ~p)− v̄(x, zn)− c(x, zn) = 0 , n = 1, . . . , N, x ∈ XE . (5)

Given a vector of aggregate states ~z, these are N · I equations in N · I unknowns ~p. Let
~̄z = (z̄, . . . , z̄) ∈ Z̄N and ~̄p = (p̄, . . . , p̄) ∈ PN be the vectors of stationary aggregate states and

prices from Assumption 1. Further write a generic price vector as ~p = (pjo) where j = 1, . . . , I

are commodities and o = 1, . . . , N are aggregate states. Write the set of entrants XE = {xi ∈
X : i = 1, . . . , I} and impose the following differentiability and independence assumptions:

Assumption 2: The expected net benefit of an entrant w(.) is differentiable in (~z, ~p) in a

neighborhood of (~̄z, ~̄p). Furthermore:

(a) The I × I matrix (
N∑
o=1

∂w(xi, n, ~̄z, ~̄p)

∂pjo

)
i,j

is invertible for some aggregate state n.

(b) For every entry type xi ∈ XE there exists some commodity j such that the N ×N matrix

Wij =

(
∂w(xi, n, ~̄z, ~̄p)

∂pjo

)
n,o

is invertible.

Assumptions 2(a) and 2(b) are distinct independence conditions. 2(a) says that entry types

benefit differently from changes in commodity prices, when these are varied uniformly across

aggregate states. This assumption is needed to ensure that all I commodities can be priced

by heterogeneous market entrants. In fact, the matrix in (a) is independent of the aggregate

state n since a change of commodity j’s price, uniformly across aggregate states o, takes the

same impact on agent i’s value in every aggregate state n, given that zn = z̄ (see the proof of

11



Proposition 1 for a formal argument). It follows from Assumption 2(a) (invoking the implicit

function theorem) that the stationary equilibrium is generic in the sense that a small deviation

of the stationary aggregate state permits another stationary commodity price vector consistent

with entry conditions (5) (which are I equations in I unknowns in stationary equilibrium).

Assumption 2(b) says that every entrant agent benefits differently from price changes across

aggregate states, at least for one of the commodities. This assumption is needed to make sure

that entrants determine market prices when the aggregate state varies.

Both elements of Assumption 2, together with the implicit function theorem, imply that

the entry equations (5) can be inverted for ~p when the aggregate state vector ~z varies around

the stationary vector ~̄z.

Proposition 1: Under Assumptions 1 and 2, the entry conditions (5) have a unique

solution ~p = p̃(~z) for all aggregate state vectors ~z in an open neighborhood of ~̄z. Function p̃ is

continuous.

When all commodity prices are pinned down by market entrants, are commodity markets

in equilibrium? The answer to this question requires to deal with the second step described

above. Write the commodity absorption of an agent (a, x) in aggregate state n more compactly

as

an(a, x; ~z) ≡ Â (â(a, x, n; ~z, p̃(~z)), a, p̃(~z)) ,

where ~z is in the neighborhood of ~̄z. Proposition 1 and continuity of the policy function (see

Lemma 1 in the Appendix) ensure that an are continuous functions of a and ~z.

For any measurable function φ : A×X → IRI and any bounded Borel measure µ on A×X,

define

< φ, µ > ≡
∫
φdµ ∈ IRI .

In a candidate BRE, suppose that mn(x) > 0 agents of types x ∈ XE enter in aggregate state

zn, while entry of all other types x /∈ X is zero. The distribution of active agents after entry

is then µ̃ = µ +
∑

x∈XE mn(x)µ0
x. Commodity market clearing (Definition 1.c) can then be

written

S(p̃n(~z), zn) = < an(.; ~z), µ̃ >

= < an(.; ~z), µ > +
∑
x∈XE

< an(.; ~z), µ0
x > mn(x)

= < an(.; ~z), µ > +A0
n(~z)mn , (6)

where A0
n(~z) ≡ (< an(.; ~z), µ0

x >)x∈XE is an I×I matrix defining the absorption of I commodi-

ties in rows by x ∈ XE entry types in columns. mn ≡ (mn(x))x∈XE ∈ IRI is the column vector

of entrant measures of types x ∈ XE. Without aggregate uncertainty (~z = ~̄z), matrix A0
n(~z)
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is independent of n and denoted Ā0. To make sure that equation (6) can be inverted, impose

the following independence assumption:

Assumption 3: The I × I matrix Ā0 is invertible.

Assumption 3 says that the I entry types trade the I commodities to a linearly independent

extent in stationary equilibrium. For example, different entrant firms hire heterogeneous labor

inputs differently. Because of continuity (cf. Lemma 3 in the Appendix), matrix A0
n(~z) is

invertible for ~z close to ~̄z and all n. This permits inversion of (6) (with mn, S and an written

as column vectors):

mn = A0
n(~z)−1

[
S(p̃n(~z), zn)− < an(.; ~z), µ >

]
. (7)

At the stationary equilibrium (~z = ~̄z and µ = µ̄), Assumption 1 says that the vector of entry

measures is strictly positive, m̄ ∈ IRI
++. Since all vectors and matrices in (7) are continuous

functions of ~z, one may expect that entry remains positive (and hence, commodity markets are

in equilibrium at block-recursive prices) if the distribution measure of active agents µ remains

sufficiently close to the stationary measure and if the right-hand side of (7) is continuous in µ

in the corresponding topology.

To derive such results, consider the vector space of bounded, signed Borel measures on

A × X, denoted M(A × X).15 Consider the Kantorovich-Rubinstein metric (cf. Bogachev

(2007b))

d(µ, ν) ≡ sup

{∫
fdµ−

∫
fdν : f ∈ Lip1,1

}
, µ, ν ∈M(A×X) ,

where Lip1,1 is the set of Lipschitz continuous real-valued functions on A × X satisfying

|f(a0, x) − f(a1, x)| ≤ |a0 − a1| for all a0, a1 ∈ A and x ∈ X and |f |s ≤ 1 where |.|s is

the sup norm. This metric generates the weak topology on the subset of non-negative mea-

sures; see Lemma 2 in the Appendix on this result and further properties of this metric. In

Lemma 3, I show that the mapping (µ, ~z) 7→< an(.; ~z), µ >∈ IRI is continuous under the

following assumption:

Assumption 4: Policy function â is Lipschitz continuous in the state variable a.

It follows that the entry vectors mn as defined in (7) are strictly positive provided that ~z

is sufficiently close to ~̄z and that d(µ, µ̄) is sufficiently small.

It remains to establish that distribution measures stay sufficiently close to the stationary

measure as they evolve over time. The dynamics of distribution measures in (d1) of Definition

1 can be written as

µ′ = T ∗n(~z)µ̃ , (8)

15It is necessary to start from the space of signed measures since some of the operators defined below cannot

a priori be restricted to the set of non-negative measures.
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where T ∗n(~z) is a linear operator on M(A×X), defined by

T ∗n(~z)µ̃(A0 ×X0) =

∫ ∑
x′∈X0

[1− ξ(x, zn)]πxx′(zn)I(an(a, x; ~z) ∈ A0)dµ̃(a, x) ,

for all Borel sets A0 ×X0. Using (7), the measure of active agents after entry is

µ̃ = µ+
∑
x∈XE

µ0
xmn(x) = µ+ µ0mn

=
[
1− µ0A0

n(~z)−1 < an(.; ~z), . >
]
µ+ µ0A0

n(~z)−1S(p̃n(~z), zn) . (9)

Here µ0 : IRI → M(A × X) is a linear operator defined by (yi) 7→
∑

i µ
0
xi
yi, and 1 is the

identity operator. Combining (8) and (9) shows that the distribution measure µ in aggregate

state n adjusts according to the affine-linear mapping Ψn defined by

µ′ = Ψnµ ≡ S∗n(~z)µ+ µ∗n(~z) , (10)

where S∗n(~z) is the linear operator on M(A×X) defined by16

S∗n(~z) ≡ T ∗n(~z) ◦
[
1− µ0A0

n(~z)−1 < an(.; ~z), . >
]
,

and µ∗n(~z) is the (signed) measure on A×X defined by

µ∗n(~z) ≡ T ∗n(~z)µ0A0
n(~z)−1S(p̃n(~z), zn) .

At the stationary equilibrium vector ~̄z, all mappings Ψn = Ψ̄ are identical so that distribution

measures adjust according to

µ′ = Ψ̄µ ≡ S̄∗µ+ µ̄∗ , (11)

where S̄∗ = S∗n(~̄z) and µ̄∗ = µ∗n(~̄z) for all n. By definition of the stationary equilibrium, µ̄ is a

steady state of (11).

As discussed above, without stability of the stationary measure in the absence of aggregate

shocks, as defined by the deterministic dynamical system (11), the stochastic dynamical system

(10) can hardly permit locally bounded solutions. Therefore, the existence of a BRE requires

stability of system (11). I impose a somewhat stronger contraction property, namely:

Assumption 5: Operator S̄∗ is a contraction with modulus λ < 1, i.e.,

d(S̄∗µ, S̄∗ν) ≤ λd(µ, ν) for all µ, ν ∈M(A×X) .

16While operator T ∗n(~z) maps non-negative measures µ ∈M+(A×X) into non-negative measures, operator

S∗n(~z) does not have this property, precisely because positive entry cannot a priori be guaranteed for all

µ ∈ M+(A × X). For this reason, S∗n(~z) must be defined on the vector space of signed measures. Similarly,

µ∗n(~z) may not be a non-negative measure because A0
n(~z)−1S(p̃n(~z), zn) ∈ IRI may have negative entries.
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In the Appendix, I prove the following:

Proposition 2: Suppose that a continuous price function ~p = p̃(~z) exists in a neighborhood

of ~̄z (such as derived from Proposition 1). Further suppose that Assumptions 1, 3, 4 and 5

are fulfilled. Then for every sufficiently small εµ > 0 there exists εz > 0 such that for every

~z with |~z − ~̄z| < εz, all affine linear functions Ψn : µ 7→ S∗n(~z)µ + µ∗n(~z) map the open ball of

non-negative measures around µ̄ of radius εµ into itself, i.e., Ψn(B(µ̄, εµ)) ⊂ B(µ̄, εµ) where

B(µ̄, εµ) ≡ {µ ∈M+(A×X) : d(µ, µ̄) < εµ}.

Proposition 2 implies that distribution measure µ remains contained in a neighborhood of

µ̄ when z undergoes a Markov process close enough to z̄. From the considerations above it

follows that commodity markets are then in equilibrium at strictly positive entry vectors mn

defined in (7). The following theorem states the first main result about the existence of BRE in

the presence of aggregate shocks. To close the remaining requirements, it must be guaranteed

that none of the agents x /∈ XE wishes to enter and to ensure that there are enough inactive

agents to enter in every state of the world. The last requirement needs another regularity

assumption when the total measure of agents is finite:

Assumption 6: If M̄ < ∞, then the transition matrix of idiosyncratic states at the

stationary equilibrium (πxx′(z̄)) is a contraction on the space of probability distributions on X

endowed with the `1-metric.

Theorem 1: Under the assumptions of Proposition 2 together with Assumption 6, if εz > 0

is sufficiently small, there exists a block-recursive equilibrium for every ~z with |~z − ~̄z| < εz.

Theorem 1 builds on continuity arguments to establish the existence of a BRE for aggregate

shocks in a neighborhood around the stationary aggregate state. It does not specify the size of

this neighborhood. For practical purposes, it may be useful to know whether a BRE exists for

a given vector of aggregate states ~z = (z1, . . . , zN) ∈ Z̄N . Such a statement, formally shown in

Theorem 2 below, necessarily requires stronger assumptions. To begin with, assume directly

that there is a vector of prices solving the entry conditions for I entry types:

Assumption 7: For the given vector of aggregate states ~z = (z1, . . . , zN), there is a price

vector ~p and value function v satisfying the Bellman equation (4), the entry conditions (5),

and Exv(0, x0, n; ~z, ~p)− v̄(x, n, ~z)− c(x, zn) ≤ 0 for x /∈ XE.

To make sure that commodity markets are in equilibrium in all aggregate states, assume

that all I × I matrices A0
n as defined above are invertible:

Assumption 8: For all n, matrix A0
n = (< an(.), µ0

x >)x∈XE is invertible.

15



It follows that distribution measures in any candidate BRE follow the stochastic system of

affine-linear mappings

µ′ = Ψnµ = S∗nµ+ µ∗n , (12)

where S∗n are the linear operators on M(A × X) and µ∗n ∈ M(A × X) are the (signed)

measures, as defined above. In a given aggregate state (n, µ), the I-dimensional vector of

entrant measures follows from the market-clearing condition (cf. equation (7)),

mn = (A0
n)−1 {S(pn, zn)− < an(.), µ >} . (13)

To guarantee that the system (12) is stable and has positive entry in all aggregate states,

use the strong topology on M(A × X), induced by the total variation norm ‖.‖TV , and the

following contraction property:

Assumption 9: Operators S∗n are contractions in the total variation norm with modulus

λ < 1.

Since (M(A × X), ‖.‖TV ) is a Banach space (see Theorem 4.6.1 in Bogachev (2007a)),

every mapping Ψn has a unique fixed point,17 denoted µ̄n. Assume that these are non-negative

measures with associated strictly positive entry vectors:

Assumption 10: For all n, µ̄n ∈M+(A×X) and m̄n ≡ (A0
n)−1 {S(pn, zn)− < an(.), µ̄n >} ∈

IRI
++.

With these assumptions at hand, and imposing a further parameter restriction, there exists

an invariant set of non-negative measures:

Proposition 3: Suppose that Assumptions 7–10 are fulfilled. Define

η ≡ min
n,i

m̄n,i

supA×X |Hn,i(.)|
> 0 , δ ≡ max

n,o
‖µ̄n − µ̄o‖TV ≥ 0 ,

where m̄n,i is the ith component of vector m̄n, and Hn,i is the ith component of the continuous

function (A0
n)−1an(.) : A×X → IRI . If δ < η(1− λ), then the set

M≡
{
µ ∈M+(A×X) : ‖µ− µ̄n‖TV < η for all n

}
is invariant under all mappings Ψn. Further, mn as defined in (13) is strictly positive for all

n and µ ∈M.

17The vector space of signed measuresM(A×X) endowed with the Kantorovich-Rubinstein metric d is not

complete (cf. Bogachev (2007b), p. 192) which is why the contraction mapping theorem cannot be applied for

this metric. This is the reason why Theorem 2 uses the total variation norm. On the other hand, the space of

non-negative measures M+(A×X) is complete with metric d (see Lemma 2(a)). This property is used in the

next section on asymptotic behavior.
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Proposition 3 directly implies the existence of a BRE if the measure of agents is infinite.

Otherwise another condition is required to ensure that sufficiently many inactive agents of

every entrant type exist.

Assumption 11: If M̄ <∞, then

(i) π0(x|x) = 1 (i.e., the idiosyncratic state does not change upon entry).

(ii) The transition matrices Πn ≡ (πxx′(zn)) are contractions with modulus ρ < 1 (in `1-

metric), and the unique invariant measures µ̄X,n of Πn are strictly positive such that

|µ̄X,n1 − µ̄X,n2|1 ≤ (1− ρ) min
x∈X

µ̄X,n3(x) , for all n1, n2, n3 = 1, . . . , N .

Theorem 2: For given (z1, . . . , zN) ∈ Z̄N a block-recursive equilibrium exists provided that

Assumptions 7–11 are satisfied, M̄ is sufficiently large, and δ < η(1− λ) with δ and η defined

in Proposition 3.

2.4 Asymptotic Behavior and Computation

Theorems 1 and 2 specify conditions under which BRE with aggregate shocks exist on a

bounded, complete metric space (M, d) where d is either the Kantorovich-Rubinstein metric18

or the total variation metric, thus inducing either the weak or the strong topology on the

measure space. The stochastic dynamics on this metric space is described by a finite number of

affine-linear mappings Ψn :M→M which are all contractions of modulus λ < 1.19 Over time,

the aggregate state index n undergoes a Markov process with given transition probabilities ψnn′ .

If this exogenous Markov process defines a contraction on the space of probability measures

on N = {1, . . . , N}, then the aggregate state (µ, n) converges in probability to an invariant

probability measure onM×N . Theorem 3 makes this ergodic statement precise. First of all,

impose a standard condition that makes the Markov process for n contractive (cf. Lemma 11.3

in Stokey et al. (1989)):

Assumption 12: There exists ε > 0 and aggregate state index n̄ ∈ N such that ψnn̄ ≥ ε

for all n ∈ N .

Next, define the metric D on Ω ≡M×N by

D((µ1, n1), (µ2, n2)) ≡ d(µ1, µ2) + αρ(n1, n2) ,

18Note that M⊂M+(A×X) and footnote 17 for completeness of (M, d).
19More precisely, Theorem 1 requires only that the steady-state mapping Ψ̄ is a λ-contraction. But then,

under the conditions of Proposition 2, all mappings Ψn are contractions, possibly with a larger modulus

λ′ ∈ [λ, 1). This follows from similar continuity arguments as those used in the proof of Proposition 2.
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where ρ is the discrete metric on N , and

α ≡ 2

ε
· sup {d(µ1, µ2) : µ1, µ2 ∈M} .

Evidently, (Ω, D) is a complete metric space. Consider the Borel σ-algebra on Ω, and let P(Ω)

denote the set of probability measures on Ω. Define the Kantorovich-Rubinstein metric on

P(Ω) by

dK(Q1, Q2) ≡ sup

{∫
fd(Q1 −Q2) : f ∈ Lip1(Ω)

}
,

where Lip1 ≡ {f : Ω → IR : |f(ω1) − f(ω2)| ≤ D(ω1, ω2) for all ω1, ω2 ∈ Ω} is the space of

real-valued Lipschitz continuous functions with unit Lipschitz constant on Ω.20

The joint stochastic dynamics of (µ, n) ∈ Ω can be defined by an iterated function system

(see Barnsley and Demko (1985) and Kunze et al. (2012)):

Φ : Ω× [0, 1]→ Ω ,

(ω, y) = ((µ, n), y) 7→ ω′ = (µ′ = Ψnµ, n
′ = N̂(n, y)) ,

where y is a uniformly distributed random variable and the mapping N̂ induces the given

Markov process on N (see the proof of Theorem 3 for the construction of N̂). For any

given initial aggregate state ω0 ∈ Ω, the mapping Φ defines a sequence of random variables

ωt(ω0) recursively via ωt+1(ω0) = Φ(ωt(ω0), yt), where yt are stochastically independent and

uniformly distributed on [0, 1]. Let Qω0
t denote the probability distribution of ωt(ω0), i.e.,

Qω0
t (Ω̃) ≡ Prob(ωt(ω0) ∈ Ω̃) for all Borel sets Ω̃ ⊂ Ω. The following theorem, which makes

use of a result on the ergodic dynamics of iterated function systems by Stenflo (2001), shows

that for any initial state ω0, the probability distributions Qω0
t converge in metric dK , at an

exponential rate, to a unique invariant distribution Q̄ on P(Ω).

Theorem 3: Let the assumptions of either Theorem 1 or Theorem 2 be fulfilled and let

(M, d) be the invariant metric space implied by either of these theorems. Furthermore, let

Assumption 12 be fulfilled. Then there exists a unique probability measure Q̄ ∈ P(Ω) and a

constant γ, such that for λ̄ ≡ max(λ, 1− ε
2
) < 1,

dK(Qω0
t , Q̄) ≤ γλ̄t , for all ω0 ∈ Ω and t ≥ 0 .

Because Ω is the product of two sets, one of which is a space of measures on a subset

of an Euclidean space, the invariant distribution Q̄ is generally a high-dimensional object.

Fortunately, due to Theorem 3, Q̄ can be approximated by simulations of the underlying

iterated function system from an arbitrary starting point ω0.

20Different from the Kantorovich-Rubinstein metric defined above on the measure space M(A × X), the

Lipschitz functions in the definition of dK are not restricted to be uniformly bounded. This is possible because

this metric is defined on a space of probability measures.
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The numeric computation of BRE and its invariant distribution can then be implemented

as follows. First, discretize the state space A (cardinality r ∈ IN), and find (and calibrate) a

stationary equilibrium with exogenous aggregate state z̄ and commodity price vector p̄ such

that there are exactly I entry types. To solve the model with aggregate risk, use the following

procedure:

1. For a given vector of exogenous aggregate states ~z = (z1, . . . , zN) close to z̄, guess a price

vector ~p = (p1, . . . , pN).

2. Solve Bellman equation (4) via value function iteration.

3. Verify the entry conditions (5) and update ~p if these conditions are not fulfilled with

tolerable accuracy. In this case, go back to the previous step. Otherwise, proceed to the

next step.

4. Solve for matrices A0
n and check invertibility. Stack elements of the finite state space

A ×X in vectors µ of dimension Y = r · |X| and compute the Y × Y -matrices S∗n and

vectors µ∗n ∈ IRY , both defining the affine-linear mappings Ψn on IRY . If matrices S∗n
satisfy ‖S∗n‖1 < 1, mappings Ψn are contractions in the `1-norm (i.e., the total variation

norm). This verifies Assumptions 8 and 9 above.

5. Calculate the invariant measures µ̄n (fixed points of Ψn) and verify Assumption 10

(i.e. µ̄n ∈ IRY
+ and mn ∈ IRI

++). Check if the parameter condition of Proposition 3

is fulfilled. If so, this defines invariant set M⊂ IRY
+.21

6. Take any vector µ ∈ M and n ∈ N . Iterating over the Markov process for n and

mappings Ψn asymptotically approximates the unique ergodic distribution according to

Theorem 3.

3 Applications

This section shows how the theoretical results of the previous section can be usefully applied

to different economic models with heterogeneous firms or heterogeneous households. It largely

builds on illustrative examples which highlight the requirements for the existence of BRE and

their properties.

21Note that Proposition 3, and the assumptions and derivations preceding it, apply equally for the finite

(discretized) commodity state space A.
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3.1 Firm Dynamics

Consider an equilibrium model with heterogeneous firms which hire workers of two types,

production workers and managers, in competitive labor markets. Firms face idiosyncratic and

aggregate productivity risk and operate production technologies with decreasing returns in

both labor inputs. This extends the classic Hopenhayn (1992) and Hopenhayn and Rogerson

(1993) model to two types of labor and aggregate uncertainty.

Specifically, a firm with `p production workers and `m managers produces f(`p, `m, x, z)

units of output where x is idiosyncratic productivity and z is aggregate productivity. The

production function f is increasing and concave in both labor inputs with jointly decreasing

returns in (`p, `m). x and z follow Markov processes on finite sets with transition probabilities

πxx′ and ψzz′ , respectively. If a firm adjusts labor inputs from (`p−, `
m
− ) to (`p, `m) it pays

adjustment cost h(`p, `m, `p−, `
m
− ). Firms exit at the end of a period with exogenous probability

ξ. There is an unbounded mass of two types of potential entrants, i = 1, 2: If entrant firm i

pays cost ci(z), it draws initial idiosyncratic productivity x from distribution πi0(x).

Labor inputs are supplied by a representative household whose expected utility over streams

of consumption Ct and labor supply (Lpt , L
m
t ) is given by

E
∑
t≥0

βt [Ct − vp(Lpt )− vm(Lmt )] ,

where vp and vm are increasing and convex functions describing the disutility of labor of

production workers and managers. The household owns all firms, receiving aggregate profit

income Πt in period t. The budget constraint of the household in period t is Ct ≤ Πt +

wptL
p
t +wmt L

m
t , where wpt and wmt denote the real wages of the two labor types in period t. The

household optimally supplies Lpt = (v′p)
−1(wpt ) units of production labor and Lmt = (v′m)−1(wmt )

units of managerial labor.

Note that quasi-linear utility of the representative household is a necessary requirement

for this model to have a BRE.22 The reason is that firms discount future profits with the

household’s discount factor which is constant and equal to β when utility is quasi-linear, but

stochastic and dependent on the aggregate state (including the cross-sectional firm distribu-

tion) otherwise.

In a candidate BRE, wages for both labor types depend only on the (exogenous) aggregate

state, to be denoted wp(z) and wm(z). The recursive formulation of the firm’s problem is

22The utility function of the representative household in Hopenhayn (1992) and Hopenhayn and Rogerson

(1993) is strictly concave in consumption and linear in the single labor input. In generalizations with two (or

more) labor inputs, it is required to have linearity either in consumption or in one of the multiple labor inputs

(for instance, production labor in the present model).
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then23

v(`p−, `
m
− , x, z) = max

`p,`m
f(`p, `m, x, z)−wp(z)`p−wm(z)`m−h(`p, `m, `p−, `

m
− )+β0Ex,zv(`p, `m, x′, z′) ,

with β0 = β(1− ξ). Entry conditions for both firm types i = 1, 2 are∫
v(0, 0, x, z)dπi0(x) = ci(z) ,

for all aggregate states z. In a BRE, these equations pin down value functions, policy functions,

and the two wages wp(z) and wp(z) across aggregate states. Entry rates of both firm types

i = 1, 2 must be consistent with market clearing in labor markets for production and managerial

labor.

In the following I consider two versions of this model without adjustment costs such that

value functions do not depend on previous labor inputs. First I discuss existence properties of

BRE in a closed-form example with one labor input. Then I describe a calibrated model where

the composition of startups changes over the business cycle. In both examples, aggregate

productivity alternates between two levels zL < zH with (symmetric) transition probability

ψzLzH = ψzHzL ≡ ψ.

3.1.1 Closed-Form Solutions with Homogeneous Labor Input

Consider the special case of this model with one labor input ` and Cobb-Douglas production

function xz
1−α`

1−α. In the absence of adjustment costs, a firm with productivity x employs

`∗(w, xz) ≡ (xz/w)1/α workers so that profit income is π∗(w, xz) ≡ α
1−α(xz)1/αw−

1−α
α . The

features of BRE critically depend on the properties of the idiosyncratic productivity process.

If entrants draw initial productivity from the stationary productivity distribution of incumbent

firms, the distribution of firms is independent of the history of aggregate shocks. In this case,

which is described in detail in Appendix B, a BRE exists whenever aggregate shocks are not

too large.

Since young firms are smaller than older firms, it is often assumed that startups draw initial

productivity from a different distribution than incumbent firms (cf. Hopenhayn and Rogerson

(1993)). In such situations the firm distribution depends on the history of aggregate shocks.

Provided that the dynamics of the firm distribution is stable (as required in Assumption 5

or Assumption 9 of Section 2), BRE exist when aggregate shocks are not too large (as they

do in the calibrated model of Lee and Mukoyama (2018)). However, the following example

demonstrates that the (unique) steady state of this model can also be unstable in which case the

stationary equilibrium is not a valid long-run description of this model. Instead the dynamics

23Different from the notation in the general framework, the initial state (`p−, `
m
− ) has subscript “−” while

labor input choices in the current period have no index. This modification is for notational convenience since

firms produce in the current period with (`p, `m) at productivity (x, z).
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converges to an endogenous limit cycle alternating between periods with and without entry.

Then no BRE exists, no matter how small aggregate shocks are.

To illustrate these results, consider a particularly simple process of firm productivity where

a new (“young”) firm enters the market with productivity xy. At the end of every period with

probability λ, a young firm becomes an established (“old”) firm in which case productivity

increases to xo > xy. Otherwise the firm keeps low productivity xy.24 The exit rate ξ is

identical for all firms.

It is straightforward to show that the entry conditions in both aggregate states can be

satisfied with equality with wages wH , wL > 0, provided that entry costs are not too cyclical

(see Appendix B for details). For example, if entry costs are constant cL = cH = c, then wages

are procyclical satisfying (wH/wL)1−α = zH/zL.

Now consider the evolution of the firm distribution over time. Write Ln for labor supply in

aggregate state n = H,L, and write `yn = `∗(wn, x
yzn) and `on = `∗(wn, x

ozn) for employment

of young and old firms in aggregate state n. Write µy, µo ∈ IR+ for the measures of young and

old firms at the beginning of a period (prior to entry). When m firms enter in aggregate state

n, the labor market clears if

(µy +m)`yn + µo`on = Ln . (14)

To the next period, the measures of young and old firms adjust to

(µy)′ = (1− ξ)(1− λ)(µy +m) , (15)

(µo)′ = (1− ξ) (µo + λ(µy +m)) . (16)

Substituting (14) into (16) shows that the measure of old firms adjusts according to

(µo)′ = Rn − Sµo , (17)

where

Rn ≡ (1− ξ)λLn
`yn

and S ≡ (1− ξ)

[
λ

(
xo

xy

)1/α

− 1

]
.

The measure of young firms in the next period is obtained by substituting (14) into (15). It

depends on the measure of old firms in the current period and on the current aggregate state

n:

µy
′
= (1− ξ)(1− λ)

[
Ln
`yn
−
(
xo

xy

)1/α

µo

]
. (18)

24In this example, firm size and firm age are positively correlated due to the exogenous productivity process.

Another feature giving rise to a positive firm age-size relation are upward adjustment costs (e.g. hiring or

training costs). In fact, it is possible to construct examples of unstable dynamics where productivity is constant

and firms are initially small due to the presence of adjustment costs.
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The measure of entrants is

m =
Ln
`yn
− µy −

(
xo

xy

)1/α

µo . (19)

A BRE exists if, for any stochastic realization of aggregate states n = H,L, the dynamics of

distribution measures, defined by (17) and (18), is such that (µo, µy) � 0 and such that the

entry measure m defined by (19) remains positive. This necessitates that the dynamics of µo

remains bounded. Inspection of (17) shows that the critical parameter S is not necessarily

contained in the interval (−1, 1) which is the stability condition of this dynamic system. In

particular, S > 1 if xo > 2αxy (i.e., if the productivity gap between established firms and

startups is large enough), if λ is close to one (i.e., firms grow large fast enough) and if the exit

rate is sufficiently low. For such parameter constellations, even in the absence of aggregate

shocks, the unique steady state is unstable so that this economy follows an endogenous equi-

librium cycle. In Appendix B, I describe the dynamics of the deterministic model in a special

case and show that it converges to equilibrium cycles (which may be periodic or non-periodic)

alternating between states of positive and zero entry. Because of this instability, no BRE exists

in the presence of (arbitrarily small) aggregate shocks when S > 1.

Consider next the case where the deterministic steady state is stable with S ∈ (0, 1)

(i.e. Assumption 5 of Section 2 is fulfilled). Then BRE exist in the presence of (small) aggregate

shocks. Depending on the cyclicality of the wage and on the labor supply elasticity, it is possible

that RH is larger or smaller than RL. If the wage is relatively stable and/or labor supply is

rather inelastic, RH < RL applies. In this case, Figure 1 illustrates the dynamics of µo over

time. It is evident from this graph that the invariant ergodic distribution of this stochastic

system is contained in the interval [µo, µo] with

µo ≡ RH − SRL

1− S2
< µo ≡ RL − SRH

1− S2
.

Positive distribution measures require the condition µo > 0, i.e. RH > SRL (which is trivially

satisfied when there are no aggregate shocks, RH = RL). Moreover, another parameter restric-

tion is required to ensure that entry is positive in all aggregate states. In Appendix B, I prove

that m > 0 at the invariant ergodic distribution of (µo, µy) if

µo ≥ max
n,n′

Rn[(S + (1− ξ)(2− λ))]−Rn′

(S + 1− ξ)[S + (1− ξ)(1− λ)]
,

which is also satisfied if aggregate shocks are small enough. Due to RH < RL and because a

larger measure of established firms µo implies a lower entry rate, entry is procyclical in the

BRE.

3.1.2 A Calibrated Example with Two Worker Types

Now suppose that a firm’s production function is f(`p, `m, x, z) = xz(a + `m)α
m

(`p)α
p

where

a > 0 stands for the managerial work of the firm’s owner, `m and `p are managers and
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Figure 1: Dynamics of the firm distribution for S < 1: the BRE is contained in the interval

[µo, µo].

production workers hired in the labor market, and αp + αm < 1 so that overall returns to

labor are decreasing. Write wpn = wp(zn) and wmn = wm(zn) for the wages of production

workers and managers in aggregate state n ∈ {L,H} in a BRE. Idiosyncratic productivity

attains one of four levels x1 < x2 < x3 < x4 corresponding to four firm size classes.

Two types of firms τ = 1, 2 enter the economy at cost cτ (z). Firms of type 1 are small

businesses with no growth potential. They enter at the lowest productivity state x1 which

stays constant over time. In the calibrated model, these firms do not find it optimal to hire

managers, i.e. they choose `m = 0 in all aggregate states. Firms of type 2 have potential to

grow large. With probability π0,i such a firm draws initial productivity xi. For an existing

firm of this type with productivity xi, i ≤ 3, productivity increases to the next highest level

xi+1 with probability πi at the end of every period. Firms of type 2 and productivity x ≥ x2

find it optimal to hire managers at the calibrated parameters.

The firm distribution is a five-dimensional vector defining the masses of firms of both firm

types, where firms of type 2 can be in one of four productivity states. By construction, the

value function of type 1 firms depends negatively on the wages of production workers but is

independent of the wages of managers, whereas the value function of type 2 firms decreases in

wages of both worker types. Hence small business entrants pin down the wages of production

workers, while wages of managers are pinned down by entrants with growth potential.

The model is calibrated at annual frequency to match empirical facts about the firm dis-

tribution from the Business Dynamics Statistics (BDS) of the U.S. Census Bureau and about

wages and employment of “production workers” (production and nonsupervisory employees)

and “managers” (all other employees) from the Current Employment Statistics of the U.S. Bu-
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reau of Labor Statistics (CES); see Appendix B for details. Set β = 0.95 and ξ = 0.1 to reflect

a five-percent interest rate and a ten percent annual firm exit rate. With labor inputs `m

and `p measured in the numbers of employees, a = 1 captures the managerial labor input of

a small firm’s (single) owner. Production elasticities are set to αp = 0.587 and αm = 0.263

which ensure that overall returns to scale are αp + αm = 0.85 (a standard value) and that the

managers’ share in earnings is 31 percent of total earnings.

With average aggregate productivity normalized at z = 1, the four idiosyncratic produc-

tivity levels xi are set to match average firm size in the four size classes 1-9, 10-99, 100-999,

and 1000+. The entry shares π0,i and the transition rates πi for firms of type 2 are set to

match the shares of firms in these size classes, both for entrants and for all firms in the BDS.

Entry costs for both firm types in steady state (z = 1) are set such that the equilibrium wage

of managers is 63% above the wage of production workers.

Cyclical parameters are calibrated as follows: Aggregate labor productivity fluctuates be-

tween zL = 1 − ε and zH = 1 + ε with transition probability ψ where ε and ψ are set so

that the model matches the standard deviation and annual autocorrelation of detrended real

GDP. Entry costs for both types of firms, cτ (zn), τ = 1, 2 and n = L,H, fluctuate procycli-

cally such that the standard deviation of the aggregate entry rate (0.6%) and its correlation

with aggregate output (0.43) match the data targets. This implies that entry costs of both

firms vary by about half as much as aggregate labor productivity, while wages for produc-

tion workers and managers are procyclical and are 67% (110%) as volatile as aggregate labor

productivity. The representative household’s disutility of production and managerial labor

is vp(Lp)
1
γp

+1 + vm(Lm)
1
γm
−1. The scale parameters vp and vm and the Frisch elasticities γp

and γm are set such that average employment for workers and managers, and their cyclical

variations (relative to labor productivity) are in line with the data.

The calibrated model has a BRE with positive entry of both types of firms. This is illus-

trated in Figure 2 which shows a projection of the asymptotic equilibrium, i.e. the limit of the

iterated function system on the six-dimensional aggregate state space (µ, n) where n = H,L is

the exogenous aggregate state and µ ∈ IR5
+ is the distribution vector of firm types. The entry

rate of type 2 firms (firms with growth potential) is more volatile than the entry rate of type

1 firms (small businesses). Both entry rates are also procyclical. Specifically, the correlation

coefficient between the entry rate of type 2 (type 1) firms and output is 0.46 (0.22), and the

entry rate of type 2 firms is more than twice as volatile as the entry rate of type 1 firms.

This feature implies that the growth potential of startups varies over the business cycle

which is in line with the facts documented by Sedláček and Sterk (2017). Firms that enter in

booms are larger on average than firms that enter in recessions, and this difference in startup

size propagates into subsequent years. Figure 3 shows the average firm size of startups in

different periods of the cycle against the size of the same cohort of firms in the following three

years. In periods of high aggregate output, firms start larger on average, and these firms also

grow larger in subsequent periods. That is, firm size is highly positively correlated within the
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Figure 2: Entry rates for both firm types in the BRE.

Note: The dots show model outcomes of a simulation for 2000 periods where the first 500 periods are discarded.

Red (blue) points are for low (high) realizations of aggregate productivity z.

same cohort of firms.

3.2 Firm Dynamics with Search Frictions

Consider a model with homogeneous labor input and matching frictions in the labor mar-

ket. As in the previous section, heterogeneous firms operate production functions f(`, x, z),

increasing and strictly concave in labor input `, where x and z are idiosyncratic and aggregate

productivity. New firms enter at cost c(z) in which case they draw initial productivity x with

probability π0(x). Idiosyncratic productivity adjusts from x to x′ with probability πxx′ . Post-

ing V vacancies entails recruitment cost κ(V ) where κ is an increasing and (weakly) convex

function. Each vacancy is filled with probability q(θ) where θ is market tightness (vacancies

per unemployed worker) which generally depends on the aggregate state of the economy. The

job-filling rate q is a decreasing function of θ.

On the other side of the labor market is a unit mass of risk-neutral workers who can

be either employed or unemployed. Employed workers do not search for jobs but quit into

unemployment with exogenous probability s0 at the beginning of each period. An unemployed

worker finds a job with probability p(θ) = θq(θ); otherwise this worker receives unemployment

income b and searches again next period. Firms and workers discount future income with
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Figure 3: Average firm size at entry against firm size of the same cohort in the following three

years.

Note: The graph is based on a simulation for 2000 periods with the first 500 periods discarded.

factor β < 1.

The timing within each period is as follows: First, idiosyncratic and aggregate productiv-

ities are realized and new firms enter. Second, each firm decides to separate from a fraction

s ≥ s0 of its workers and to post V ≥ 0 vacancies. Third, vacancies and unemployed work-

ers are matched, where newly separated workers can search for employment within the same

period. Fourth, output is produced and wages are paid. Fifth, a fraction ξ of firms exits the

market in which case all its workers enter the unemployment pool. Again, β0 = β(1 − ξ)

denotes the effective discount factor.

Consider two versions of this model: First, with random search, market tightness θ varies

only with the aggregate state so that the job-filling rate is identical for all hiring firms and the

job-finding rate is identical for all unemployed workers. Wages are negotiated between a firm

and each of its workers in every period, taking into account the impact of every additional

worker on the bargaining outcome with all other workers (cf. Stole and Zwiebel (1996)). This

model is nearly identical to the one of Elsby and Michaels (2013) with free entry of firms.

Building on Hawkins (2011) who shows that the Elsby-Michaels model with linear vacancy

costs permits block-recursive solutions, I establish that this model is indeed a special case

of the general framework developed in Section 2. Second, I consider the same model with

competitive search where firms compete for workers by offering contingent long-term contracts.
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In this model, market tightness (and job-filling rates) vary across firms which are matched with

workers in different submarkets. Kaas and Kircher (2015) demonstrate that this model is block-

recursive, and it also turns out to be a special case of the general framework of the previous

section.

Write µ(`−, x) for the distribution measure of existing firms, entering the period with `−
workers and drawing idiosyncratic productivity x. After entry of m ≥ 0 firms, the distribution

measure of firms is µ̃ = µ + m
∑

x∈X µ
0
x where µ0

x has mass π0(x) at (0, x) and zero mass

elsewhere. Consider a candidate BRE in which the employment policy of a given firm (`−, x)

depends only on the exogenous aggregate state z, written as ` = ˆ̀(`−, x, z). The job-filling

rate of this firm is q(θ(`−, x, z)) where θ is independent of (`−, x) under random search. After

separations and before hiring, firm (`−, x) employs min [`−(1− s0), `] workers and it posts

V = 1
q(θ(`−,x,z))

max [0, `− `−(1− s0)] vacancies. Consistent with market tightness θ(`−, x, z),

these vacancies require V
θ(`−,x,z)

unemployed workers. Therefore, the employment policy of firm

(`−, x) absorbs

min [`−(1− s0), `] +
1

p(θ(`−, x, z))
max [0, `− `−(1− s0)] (20)

workers. Since total labor supply is normalized to unity, the aggregate resource constraint in

any given period (after separations and before hires) is written

1 =

∫
min

[
`−(1− s0), ˆ̀(`−, x, z)

]
+

1

p(θ(`−, x, z))
max

[
0, ˆ̀(`−, x, z)− `−(1− s0)

]
dµ̃(`−, x) .

(21)

3.2.1 Random Search

In a candidate BRE with random search, market tightness is a function of the exogenous

aggregate state but independent of firm characteristics, θ(z). Let w(`, x, z) denote the bar-

gained wage in a firm with ` workers when idiosyncratic (aggregate) productivity is equal to

x (z). Let η ∈ (0, 1) denote the bargaining power of workers, and let vacancy costs be linear,

κ(V ) = κ0 · V . With intrafirm bargaining the wage solves the differential equation

w(`, x, z) = (1− η)b+ η

[
f`(`, x, z)− w`(`, x, z)`+

p(θ(z))κ0

(1− p(θ(z)))q(θ(z))

]
and it further satisfies the limiting condition that the wage bill in a firm with no workers is

zero, lim`→0w(`, x, z)` = 0. The proof of this result follows Elsby and Michaels (2013) and is

contained in Appendix B.25

25Their model has no quits and a slightly different timing assumption (separated workers do not search

in the same period). In the special case f(`, x, z) = xz`α, the wage is w(`, x, z) = (1 − η)b +

η
[
αzx`α−1

1−η(1−α) + p(θ(z))κ0

(1−p(θ(z)))q(θ(z))

]
.
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The Bellman equation describing the employment adjustment of firms is

v(`−, x, z) = max
`
f(`, x, z)−w(`, x, z)`− κ0

q(θ(z))
max[`−`−(1−s0), 0]+β0Ex,zv(`, x′, z′) . (22)

With positive entry in all aggregate states, the free-entry condition is

c(z) =
∑
x

π0(x)v(0, x, z) . (23)

Equations (22) and (23) define policy and value function as well as market tightness θ(z) in all

aggregate states in a BRE. The aggregate resource constraint (21), with θ(z) independent of

(`−, x), takes the form of the market-clearing condition in Definition 1(c) of the general model

framework with appropriately defined absorption function26 Â(`, `−, θ) > `.

3.2.2 Competitive Search

Kaas and Kircher (2015) show that the competitive search equilibrium is constrained efficient

in the sense that it maximizes the discounted value of aggregate surplus subject to the matching

of workers and firms in different submarkets. At the beginning of each period, the planner

takes the distribution of incumbent firms µ and the exogenous aggregate state z as given. The

recursive formulation of the planner’s problem is

V(µ, z) = max

∫
f(`, x, z)− b`− κ(V )dµ̃(`−, x)− c(z)m+ βEzV(µ′, z′) , (24)

subject to µ̃ = µ+m
∑

x∈X µ
0
x (the measure of active firms after entry), ` = `−(1− s) + q(θ)V

(employment in firm (`−, x) after separations and hires), next period’s firm distribution µ′

given by

µ′(A0 ×X0) = (1− ξ)
∫ ∑

x′∈X0

πxx′I
(
ˆ̀(`−, x, z) ∈ A0

)
dµ̃(`−, x) ,

for all Borel sets A0×X0, and subject to the aggregate resource constraint (21). Maximization

in (24) is over the entry measure m ≥ 0 and over separation rates s, vacancies V and market

tightness θ, specific for each firm (`−, x) in the support of the firm distribution µ̃.

Consider a candidate solution of the planner’s problem with positive entry in all aggregate

states, and write ρ(z) for the multiplier on the aggregate resource constraint (21). Kaas

and Kircher (2015) show that the solution of the planner’s problem is isomorphic to (i) the

maximization of the social surplus value of each firm (`−, x) and (ii) optimal entry.27 The

26See equation (20). In the absence of search frictions with p(θ) = 1, the absorption function is simply

Â(`, `−, θ) = `, as in a model with competitive labor markets.
27The equivalence of (25) and (26) to the original problem (24) follows by writing the planner’s value function

in the form V(µ, z) =
∫
v(`−, x, z)dµ(`−, x).
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surplus value of firm (`−, x) solves the recursive problem

v(`−, x, z) = max
s,V,θ,`

f(`, x, z)− b`− κ(V )− ρ(z)

[
`−(1− s) +

V

q(θ)

]
+ β0Ex,zv(`, x′, z′) (25)

subject to ` = `−(1− s) + q(θ)V and s ≥ s0. Optimal entry requires

c(z) =
∑
x

π0(x)v(0, x, z) . (26)

In problem (25), the planner takes into account the shadow price ρ(z) of the firm’s workers

after separations, `−(1 − s), and of V/q(θ) unemployed workers searching for jobs at this

firm. Using first-order conditions, the separation rate s, vacancies V and market tightness

θ can be expressed as functions of past and current employment (`−, `) and of the shadow

price ρ(z). Therefore (25) and (26) have the same structure as (2) and (3) in the general

model framework. Moreover, the aggregate resource constraint (21) with θ(`−, x, z) rewritten

as θ = Θ(`−, `, ρ) has the same form as the market-clearing condition in Definition 1 with

suitably defined absorption function Â(`−, `, ρ). Therefore, the existence results for the BRE

apply to the planner’s solution (and hence for the competitive search equilibrium) in this

example.

3.3 Incomplete Markets with Asset Market Participation

Consider a Huggett (1993) model in which households decide about asset market participation.

There is a mass M̄ of households with discount factor β and period utility u(c) where c is

consumption. The economy can be in low-income aggregate state z = zL or in high income

aggregate state z = zH with transition probabilities ψzz′ , z, z
′ ∈ {zL, zH}. A household

can be in one of two idiosyncratic states: employment (x = E) or unemployment (x = U)

with transition probabilities πxx′(z). Income of a household in state (x, z) is denoted y(x, z).

Further, households are either inactive (hand-to-mouth) or active (traders).

Households die exogenously with probability ξ at the end of a period so that β0 = β(1− ξ)
is the effective discount factor of a household. A dying household is replaced by a newborn

household who enters the economy in the same income state as the exiting household. Newborn

households enter the economy as hand-to-mouth consumers. Each period, a hand-to-mouth

consumer decides whether to acquire the ability to become a trader household at utility cost

τ(z).

The only asset in this example is a Lucas tree in unit supply which pays dividend income

d(z).28 In a candidate BRE, the (ex-dividend) price of this asset depends only on the aggregate

state and is denoted q(z). Trader households can buy arbitrary shares of the asset, while

28Extensions with multiple assets are possible. A BRE then requires hand-to-mouth households who differ

in some characteristics (income or preferences) and who become traders in all aggregate states.
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short-selling is not permitted. If a household dies at the end of the period, its asset shares

are redistributed to the other shareholders in proportion to their asset holdings. Hence, if

a household buys st shares in period t and survives to the next period, the household enters

period t+1 with st
1−ξ shares. This implies that the ex-post asset return, conditional on survival,

is q(zt+1)+d(zt+1)
q(zt)(1−ξ) .

The Bellman equation of a trader household in income state (x, z) who held s shares of the

asset in the previous period is

v(s, x, z) = max
s′≥0

u(c) + β0Ex,zv(s′, x′, z′)

subject to

c+ q(z)s′ ≤ y(x, z) +
q(z) + d(z)

1− ξ
s . (27)

Let s′ = ŝ(s, x, z) denote the policy function of this problem. Suppose that parameters and

asset prices are such that ŝ(.) maps the compact interval A ≡ [0, s̄] into itself for a large

enough upper bound s̄ > 0 and every (x, z) ∈ {E,U} × {zH , zL}. The lifetime utility of a

hand-to-mouth household satisfies

v̄(x, z) = u(y(x, z)) + β0Ex,zv̄(x′, z′) , for all (x, z) .

Consider a BRE in which a positive measure of employed hand-to-mouth households be-

come traders in every aggregate state. Unemployed hand-to-mouth households do not become

traders. The corresponding asset-market participation conditions are

v(0, E, z)− τ(z) = v̄(E, z) , (28)

v(0, U, z)− τ(z) < v̄(U, z) , (29)

for z ∈ {zH , zL}. In the BRE, the participation conditions (28) pin down the asset price in

the two aggregate states z = zH , zL.

Let µ(s, x) denote the distribution of traders over idiosyncratic states (s, x) at the beginning

of a period. When the exogenous aggregate state is z, the asset market clears if measure m(z, µ)

of (employed) hand-to-mouth households decides to become traders such that∫
ŝ(s, x, z)dµ(s, x) + ŝ(0, E, z)m(z, µ) = 1 ,

which implies that the measure of new traders is

m(z, µ) =
1

ŝ(0, E, z)

(
1−

∫
ŝ(s, x, z)dµ(s, x)

)
. (30)
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Let µ̃ = µ + m(z, µ)δ(0,E) denote the distribution measure of traders in aggregate state (z, µ)

(with δ denoting the Dirac measure). The distribution measure of traders at the beginning of

the next period is denoted µ′ and satisfies

µ′(A0 ×X0) = (1− ξ)
∫

I(ŝ(s, x, z) ∈ A0) ·

(∑
x′∈X0

πxx′(z)

)
dµ̃(s, x) , (31)

for all Borel sets A0 ⊂ A and X0 ⊂ {E,U}. As described in Section 2, equations (30) and

(31) can be expressed by two affine-linear functions, denoted ΨH and ΨL, mapping the space

of distribution measures on A×X into itself.

Consider a numeric example to illustrate the existence (or non-existence) of a BRE. The

period length is a year and ξ = 0.025 is set to reflect a 40-year working life. The utility function

is u(c) = c1−γ

1−γ with relative risk aversion γ = 2 and the discount factor is set to β = 0.93.

Labor incomes of employed households are 1 ± ε in aggregate states z = zH , zL where ε > 0

controls cyclicality of aggregate labor income. Transitions between aggregate states occur with

probability 0.5. Unemployment income is constant at 0.4 in both aggregate states. Transitions

from E to U (U to E) occur with probability 0.1 (0.9, resp.) so that the unemployment rate

is constant at 10 percent.

The dividend is constant at d = 0.02 and the asset price fluctuates around q̄ = 0.4 so that

the average asset return is around 5%. The utility cost to become a trader is calibrated such

that the asset price in the high (low) aggregate state is q(zH) = q̄(1 + α) (q(zL) = q̄(1 − α),

resp.). Parameter α, which may be positive, zero, or negative, controls the cyclicality of the

endogenous asset price. Solving the model for a steady state (ε = α = 0) yields an equilibrium

stationary mass of traders µ which averages to µ̄ ≈ 0.82. The mass of households is set to

M̄ = 2µ̄, reflecting that half of all households are stock owners.

To explore the existence of BRE in the presence of aggregate shocks, set ε = 0.005, i.e. ag-

gregate labor income has a standard deviation of about 0.5%. Assume first that α = 0.01

which implies that the asset return fluctuates procyclically between 3 and 7 percent across

aggregate states. This choice of α implies that the utility cost to become a trader must be set

to τ(zH) = 0.5697 and τ(zL) = 0.5700 and hence is almost constant over time. The utility gain

to become a trader is 0.5114 for unemployed households (the same in both aggregate states);

therefore, these households decide not to become traders in equilibrium. This is intuitive since

these households would start trading only in the first period after they find a job.

For this parameterization, the smaller (red) points in Figure 4 show the share of traders

and new traders (among all households) in a simulation of this model for 20,000 periods where

the first 500 periods are discarded. Hence these points illustrate a projection of the stationary

ergodic distribution in the numeric approximation of a BRE.29 The BRE exists in this example

29The simulation uses a grid of 100 equally-spaced points for assets, which implies that the measure of traders

in the approximate equilibrium has dimension 200 (two idiosyncratic income states and 100 asset levels). The

approximate invariant ergodic measure is a probability distribution on IR200×{L,H} (cf. Section 2.4).
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Figure 4: Shares of traders and new traders in the BRE with procyclical asset price (α = 0.01).

Note: The red dots show model outcomes for a simulation for 20,000 periods where the first 500 periods are

discarded. The blue circle (green diamond) shows the stationary state if this model realizes the high-income

(low-income) state in all periods.

because the measure of new traders is strictly positive in this asymptotic equilibrium.

The two larger points in this figure show the hypothetical outcomes if this economy would

realize either the high-income state (blue circle) or the low-income state (green diamond) in all

periods. In fact, the red points in the upper right (lower left) half of this figure are realizations

for high (low) aggregate productivity. Therefore, asset market participation and entry into

asset market trade are procyclical.

The existence of a BRE requires a particular configuration of participation costs (and hence,

equilibrium prices). If the model is calibrated such that the asset price is either constant across

aggregate states (α = 0) or twice as cyclical (e.g., α = 0.02), then no BRE exists.30 This is

illustrated in the two graphs of Figure 5. In both cases, the dynamics of the distribution

measure µ converges to an ergodic distribution (because the affine-linear maps ΨH and ΨL are

contractions). However, entry into asset market trade is not positive in all aggregate states of

the invariant ergodic distribution: Both graphs reveal occasionally a negative number of new

traders which is inconsistent with equilibrium.

30The first case (α = 0) requires procyclical participation costs, τ(zH) = 0.5717 > τ(zL) = 0.5679, whereas

a more volatile asset price (α = 0.02) requires countercyclical participation costs, τ(zH) = 0.5678 < τ(zL) =

0.5721.
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(a) α = 0.00 (b) α = 0.02

Figure 5: Non-existence of BRE for α = 0 (constant asset price) and α = 0.02 (strongly

procyclical asset price): The hypothetical shares of traders and new traders in a candidate

equilibrium are shown by the small (red) points. Equilibrium does not exist because the share

of new traders occasionally becomes negative.

Note: See the notes for Figure 4.

4 Conclusions and Extensions

This paper presents a general model framework and derives existence and ergodicity results for

recursive equilibria which have a particularly simple structure: Value and policy functions of

heterogeneous agents vary with the exogenous aggregate state but are independent of the high-

dimensional cross-sectional distribution. This simplification is feasible due to block recursivity.

Market prices and value functions are solved via participation conditions of market entrants

(the first block), while entry is consistent with market clearing (the second block which remains

high-dimensional).

Using several dynamic equilibrium models with heterogeneous firms and heterogeneous

households, I demonstrate how this framework can be applied and under which conditions

the existence of block-recursive equilibria can be guaranteed and when it fails. The crucial

requirements are first, the stability of the stationary equilibrium (which is itself difficult to

analyze in infinite-dimensional state spaces), and second, that aggregate uncertainty is not

too large so that entry stays positive in all states of the world. The examples are deliberately

simple and illustrative; they can certainly be extended to include, for example, firm dynamics

with more than two factor inputs or incomplete-market economies in which households trade

multiple assets.

Although this framework covers some standard dynamic models, it does not include models

with endogenous aggregate state variables. However, block-recursive equilibria may also exist
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in such broader classes of models, as I will explain in the remaining few paragraphs. Exploring

such extensions in detail should be an interesting avenue for future research.

If there are endogenous aggregate state variables which do not enter the agents’ payoff

functions, extending the previous results is relatively straightforward. As an example, consider

again the model of Section 3.3 and suppose that the Lucas tree is not in fixed unit supply.

Instead the tree depreciates at rate δ at the end of every period, whereas a production sector

produces new trees with strictly increasing and convex cost function C. Tree producers in

period t maximize qtIt − C(It) which leads to C ′(It) = qt. The stock of new trees adjusts to

Kt+1 = (1−δ)Kt+It. This model permits a block-recursive equilibrium in which the price q(z)

is determined via the asset-market participation conditions (28). The Bellman equation is the

same as in the model with a fixed asset supply, but the asset return in the budget constraint

(27) is diminished to (1−δ)q(z)+d(z)
1−ξ because of the depreciation of the asset.

If the aggregate state is (zn, K, µ), the capital market clears if the measure of employed

households starting to trade assets is

m(zn, K, µ) =
1

ŝ(0, E, zn)

(
K −

∫
ŝ(s, x, zn)dµ(s, x)

)
.

Therefore, µ̃ = µ + m(zn, K, µ)δ(0,E) is the distribution measure of traders in aggregate state

(zn, K, µ). The distribution measure of traders at the beginning of the next period is then

µ′ = T ∗n µ̃ = S∗nµ+ µ∗nK , (32)

where linear operator S∗n and µ∗n ∈ M+(A,X) as in the model without depreciation and

production of trees. The stock of Lucas trees in the next period is

K ′ = (1− δ)K + (C ′)−1(q(zn)) . (33)

This shows that the joint dynamics of (K,µ) is described by N affine linear mappings Ψn :

IR+×M→ IR+×M.31 It is straightforward to extend Theorem 2 (Existence) and Theorem 3

(Ergodicity) under appropriate modifications of the assumptions. In particular, all mappings

Ψn must be contractions and their unique fixed points must be sufficiently close as specified

in Proposition 3.

Matters are more complex if there are endogenous state variables which (directly or indi-

rectly) enter the agents’ payoff functions. Consider a modified version of the model of Aiyagari

(1994). There is a unit mass of households that differ in their stochastic labor efficiency x.

Similar to the example of Section 3.3, households enjoy utility u(c) of consumption and they

discount future utility with factor β0 = β(1− ξ) where ξ is the death rate. Dying households

31Another example with a similar structure is an extension of the Hopenhayn (1992) model with capital

accumulation.

35



are replaced by newborns who enter as hand-to-mouth consumers. A hand-to-mouth house-

hold with labor efficiency x may become a trader household at utility cost τ(x, z). Trader

households can buy shares of capital a′ ≥ 0 which earn gross return R(z′, K ′) in the next

period. The real wage per efficiency unit w(z,K) and the real gross return R(z,K) are deter-

mined from the marginal products of firms operating the constant returns production function

F (z,K, L), i.e. w(z,K) = FL(z,K, 1) and R(z,K) = 1− δ+FK(z,K, 1) where δ is the capital

depreciation rate and where average labor efficiency is normalized to one.

Consider a candidate block-recursive equilibrium in which value functions depend only on

(z,K) but not on the cross-sectional distribution. The Bellman equation of a trader household

with capital holdings a and labor efficiency x is

v(a, x, z,K) = max
a′≥0

u (xw(z,K) +R(z,K)a− a′) + β0Ex,zv(a′, x′, z′, K ′) . (34)

The utility value of hand-to-mouth households solves

v̄(x, z,K) = u (xw(z,K)) + β0Ex,zv̄(x′, z′, K ′) . (35)

Both Bellman equations include a forecast of the capital stock in the next period K ′. In

a block-recursive equilibrium, this capital stock must be independent of the cross-sectional

distribution. In other words, the current aggregate state (z,K) is sufficient to forecast next

period’s capital stock K ′ = K̂(z,K).32 Such a solution is compatible with equilibrium, if there

is a unique hand-to-mouth household type xe who decides to participate in asset market trade

in every aggregate state. That is,

v(0, xe, z,K) = τ(xe, z) + v̄(xe, z,K) (36)

holds in all relevant aggregate states (z,K) of this model (while all other hand-to-mouth

households do not participate). Proving analytically that equations (34), (35) and (36) have

a solution (v, v̄, K̂) is a more intricate problem than before. Given a guess for function K̂ :

Z× [0, K0]→ [0, K0] with appropriate upper bound for capital K0, the Bellman equations (34)

and (35) determine v and v̄ uniquely, both of which depend implicitly on function K̂. Therefore,

the participation condition (36) can be understood as an implicit equation which maps function

K̂ into another function Φ(z,K) ≡ v(0, xe, z,K) − τ(xe, z) − v̄(xe, z,K) : Z × [0, K0] → IR.

If the functional equation Φ(.) = 0 can be inverted for a class of functions defined in the

neighborhood of a steady-state equilibrium (z̄, K̄), a candidate for a block-recursive solution

to equations (34)–(36) would exist.

Given such a solution, the dynamics of distribution measures is complicated by the fact

that the aggregate capital stock enters policy functions. Let µ denote the cross-sectional

32This is reminiscent of the perceived law of motion in approximations of recursive equilibria (cf. Krusell and

Smith (1998)) where households forecast next period’s capital stock on the basis of today’s aggregate state z

and today’s capital stock. If equilibrium is block-recursive, such a law of motion is exact.
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distribution of trader households over idiosyncratic states (a, x) at the beginning of a period.

If the current aggregate state is (zn, K), next period’s distribution takes the form

µ′ = S∗n(K)µ+ µ∗n(K) , (37)

where linear operators S∗n(.) and distribution measures µ∗n(.) depend nonlinearly on K.33 If the

N mappings (µ,K) 7→ (µ′, K ′) defined by (37) and K ′ = K̂(K, zn) are contractive, existence

and ergodicity of a block-recursive equilibrium can potentially be established with similar

methods as in the proofs of Theorems 2 and 3.
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Appendix A: Proofs

Lemma 1: The Bellman equation

v(a, x, n; ~z, ~p) = max
a′∈A(a,pn,x,zn)

u(a′, a, pn, x, zn) + β0(x, zn)Ex,nv(a′, x′, n′; ~z, ~p) (38)

has a unique solution v with corresponding policy function â. Both are continuous functions

of (a, ~z, ~p). Furthermore, the value function of inactive agents

v̄(x, n; ~z) = ū(x, zn) + β0(x, zn)Ex,nv̄(x′, n′; ~z)

exists and is continuous in ~z.

Proof of Lemma 1: Write v0 ≡ v − v̄ which satisfies the Bellman equation

v0(a, x, n; ~z, ~p) = max
a′∈A(a,pn,x,zn)

u(a′, a, pn, x, zn)− ū(x, zn)︸ ︷︷ ︸
≡ u0(a′, a, pn, x, zn)

+β0(x, zn)Ex,nv0(a′, x′, n′; ~z, ~p) .

(39)

Let N ≡ {1, . . . , N} and let C be the set of real-valued continuous functions on the compact set

A×X×N × Z̄N×PN . For any v0 ∈ C and n ∈ N , the objective function in (39) is continuous

in (a′, a, ~z, ~p) because u, ū, β0(x, .) and transition probabilities πxx′(.) are continuous functions.

Since A(a, pn, x, zn) is non-empty and compact valued, the maximum exists. Therefore, the

right-hand side in (39) defines a function Tv0 : A × X × N × Z̄N × PN → IR, and the

Theorem of the Maximum (Stokey et al., 1989, Theorem 3.6) with continuity of A imply that

Tv0 ∈ C. Furthermore, when C is endowed with the sup norm, T is a contraction with modulus

β̄0 ≡ βmaxx,z[1− ξ(x, z)] < 1 because Blackwell’s sufficient conditions apply, cf. Stokey et al.

(1989, Theorems 3.3 and 9.6). By the contraction mapping theorem, T has a unique fixed

point v0 ∈ C.
Using similar arguments, the simple Bellman equation for inactive agents has a unique

solution v̄ which is continuous in ~z. Therefore, v = v0 + v̄ is the unique and continuous

solution to the original Bellman equation (38). Both problems (38) and (39) have the same

policy correspondence G : A×X ×N × Z̄N × PN ↪→ A which is non-empty, compact-valued

and upper hemi-continuous, cf. Stokey et al. (1989, Theorem 3.6).

The existence of a continuous policy function also uses standard arguments. Consider

the subspace C ′ ⊂ C which contains continuous functions which are concave in a. Take any

arbitrary v0 ∈ C ′. Because u is strictly concave in a′, the right-hand side in (39) is strictly

concave in a′. Therefore, the maximum is unique. Furthermore, Tv0 ∈ C ′: Take any a0 6= a1

and (x, n, ~z, ~p), and let a′0 and a′1 denote the unique maxima of (39) for a = a0 and a = a1,

respectively. By assumption on A(.), a′λ ≡ λa′1 + (1 − λ)a′0 ∈ A(aλ, pn, x, zn) with aλ ≡
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λa1 + (1− λ)a0 for all λ ∈ [0, 1]. Therefore,

Tv0(aλ, x, n; ~z, ~p) = sup
a′
u0(a′, aλ, pn, x, zn) + β0(x, zn)Ex,nv0(a′, x′, n′; ~z, ~p)

≥ u0(a′λ, aλ, pn, x, zn) + β0(x, zn)Ex,nv0(a′λ, x
′, n′; ~z, ~p)

≥ λ
[
u0(a′1, a1, pn, x, zn) + β0(x, zn)Ex,nv0(a′1, x

′, n′; ~z, ~p)
]

+ (1− λ)
[
u0(a′0, a0, pn, x, zn) + β0(x, zn)Ex,nv0(a′0, x

′, n′; ~z, ~p)
]

= λTv0(a1, x, n; ~z, ~p) + (1− λ)Tv0(a0, x, n; ~z, ~p) .

Here the second inequality follows since u is concave in (a′, a) and since v0 is concave in a′.

This proves that Tv0 ∈ C ′. Since C ′ is a closed subset of C, it follows that the unique fixed

point of T is in C ′. This implies that the (upper hemi-continuous) policy correspondence is a

continuous policy function which is denoted â. 2

Proposition 1: Under Assumptions 1 and 2, the entry conditions (5) have a unique

solution ~p = p̃(~z) for all aggregate state vectors ~z in an open neighborhood of ~̄z. Function p̃ is

continuous.

Proof of Proposition 1: In order to apply the implicit function theorem, differentiate

the N · I equations (for xi ∈ XE, i = 1, . . . I, and n = 1, . . . , N) in (5) with respect to the

N · I prices (pjo). This gives rise to the Jacobian matrix

J =
(
wijno
)

with wijno ≡
∂w(xi, n; ~̄z, ~̄p)

∂pjo
.

Here (j, o) are columns (commodity prices in different states) and (i, n) are rows (entrant types

in different states). We can write this matrix in the form

J =

W11 . . . W1I

...
. . .

...

WI1 . . . WII

 ,

with N × N submatrices Wij = (wijno)n,o. Assumption 2(b) says that for every i there exists

some j such that Wij is invertible.

For each (i, j, n), define w̄ijn ≡
∑N

o=1w
ij
no =

∑N
o=1

∂w

∂pjo
(xi, n, ~̄z, ~̄p) which is the marginal change

in the value of entrant i in aggregate state n if price j is marginally increased, uniformly in

all aggregate states o = 1, . . . , N . Note that the value function v (and therefore w) does not

depend on the aggregate state index n at any constant aggregate state vector ~z = (z, . . . , z)

and constant aggregate price vector ~p = (p, . . . , p). This is because Bellman equations (38)

are identical for all values of n in a stationary environment. Hence, the unique fixed point of

these Bellman equations cannot depend on n either. Therefore, one can write w̄ij = w̄ijn for all

n. Assumption 2(a) says that the N ×N matrix (w̄ij)i,j is invertible.

41



Now suppose that the Jacobian matrix J is not invertible. Then there are K different rows

(i1, n1), . . ., (iK , nK), and λ1, . . . , λK ∈ IR \{0} such that

K∑
k=1

λkw
ikj
nko

= 0 for all (j, o) . (40)

It follows that

0 =
N∑
o=1

K∑
k=1

λkw
ikj
nko

=
K∑
k=1

λkw̄
ikj for all j .

Then either ik 6= ik′ for some k and k′, contradicting invertibility of (w̄ij) (Assumption 2(a)).

Alternatively, if ik = i for all k, Assumption 2(b) implies that there exists some j such that

Wij = (wijno)n,o is invertible. This contradicts (40) for ik = i.

This demonstrates that the Jacobian matrix J is invertible. The implicit function theorem

yields a solution ~p = p̃(~z) for ~z close to ~̄z, with differentiable function p̃. 2

Lemma 2: Let M(A × X) be the vector space of bounded, signed Borel measures on the

compact set A×X. Let M+(A×X) be the subset of bounded, nonnegative measures. Define

the Kantorovich-Rubinstein metric by

dp,q(µ, ν) = sup

{∫
fdµ−

∫
fdν : f ∈ Lipp,q

}
, µ, ν ∈M(A×X) ,

where Lipp,q are real-valued functions on A×X satisfying |f(a0, x)−f(a1, x)| ≤ p|a0−a1| and

|f |s ≤ q with sup norm |.|s and p, q > 0. Write d = d1,1. The following properties hold:

(a) (M+(A×X), d) is a complete and separable metric space and d induces the weak topology

on this measure space.

(b) d(µ, 0) = µ(A×X) for µ ∈M+(A×X)

(c) d(µ, ν) ≥ |µ(A×X)− ν(A×X)|

(d) d(µ, ν) ≤ ‖µ− ν‖ where ‖.‖ is the total variation norm.

(e) d(λµ, λν) = λd(µ, ν) for λ > 0.

(f) d(µ+ ζ, ν) = d(µ, ν − ζ).

(g) min(p, q)d1,1(µ, ν) ≤ dp,q(µ, ν) ≤ max(p, q)d1,1(µ, ν).

Proof of Lemma 2:

(a) follows from Theorems 8.3.2 and 8.9.4. in Bogachev (2007b). (b) and (c) follow by

setting f , 1 or f , −1. (d) follows because the total variation norm satisfies

‖µ‖ = sup

{∫
fdµ : f measurable and |f |s ≤ 1

}
.
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(e) and (f) follow because d(., .) is induced by a norm on M(A×X). (g) follows because for

every f ∈ Lip1,1, min(p, q) · f ∈ Lipp,q, and for every f ∈ Lipp,q, max(p, q) · f ∈ Lip1,1. 2

Lemma 3: The function (µ, ~z) 7→< an(.; ~z), µ > (from M(A × X) × Z̄N into IRI) is

continuous.

Proof of Lemma 3:

(a) Continuity in ~z: Take any µ, and ~z
′ 6= ~z. Then

< an(.; ~z
′
), µ > =

∫
an(a, x; ~z

′
)dµ(a, x)→

∫
an(a, x; ~z)dµ(a, x)

when ~z
′ → ~z because an is continuous in a and in ~z and because A×X is compact.

(b) Continuity in µ: Take and ~z and µ′ 6= µ. By Assumption 4 and the properties of

the absorption function Â(.), each of the I elements of function an is Lipschitz continuous

with some Lipschitz parameter p. Because of continuity and since A × X is compact, each

element of an is bounded in absolute value by some constant q. Therefore, for each element

ain, i = 1, . . . , I:∣∣∣∣∫ ain(.; ~z)d(µ− µ′)
∣∣∣∣ ≤ sup

{∫
gd(µ− µ′) : g ∈ Lipp,q

}
≤ max(p, q) sup

{∫
gd(µ− µ′) : g ∈ Lip1,1

}
= max(p, q)d(µ, µ′) .

The second inequality follows from Lemma 2(g). This proves continuity of < ain(., ~z), µ > (and

hence < an(.; ~z), µ >) in µ. 2

Proposition 2: Suppose that a continuous price function ~p = p̃(~z) exists in a neighborhood

of ~̄z (such as the one derived from Proposition 1). Further suppose that Assumptions 1, 3, 4

and 5 are fulfilled. Then for every sufficiently small εµ > 0 there exists εz > 0 such that for

every ~z with |~z − ~̄z| < εz, all affine linear functions Ψn : µ 7→ S∗n(~z)µ + µ∗n(~z) map the open

ball of non-negative measures around µ̄ of radius εµ into itself, i.e., Ψn(B(µ̄, εµ)) ⊂ B(µ̄, εµ)

where B(µ̄, εµ) ≡ {µ ∈M+(A×X) : d(µ, µ̄) < εµ}.
Proof of Proposition 2: Let

B(~̄z, εz) =
{
~z ∈ Z̄N : |~z − ~̄z| < εz

}
B(µ̄, εµ) = {µ ∈M+(A×X) : d(µ, µ̄) < εµ}

be open balls around the stationary values ~̄z and µ̄. Note that B(µ̄, εµ) includes non-negative

measures only. Lemma 4 below shows that for εz and εµ small enough, every Ψn maps B(µ̄, εµ)

into M+(A×X) when ~z ∈ B(~̄z, εz).

Now take any small enough εµ and εz with the property Ψn(B(µ̄, εµ)) ⊂ M+(A ×X) for

|~z− ~̄z| < εz. To prove the assertion of this proposition requires to set εz sufficiently small such

that Ψn(B(µ̄, εµ)) ⊂ B(µ̄, εµ) for |~z − ~̄z| < εz.
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Write Ψ̄ for the map µ 7→ S̄∗µ + µ̄∗ which has fixed point µ̄. By Assumption 5, Ψ̄ is a

λ-contraction. Define a metric on the set of continuous linear operators T ∗ : M(A × X) →
M(A×X) by

dO(T ∗, T ∗
′
) ≡ sup

{
d(T ∗µ, T ∗

′
µ) : µ ∈M+(A×X) s.t. µ(A×X) = 1

}
. (41)

Since the subset of probability measures on a compact set is compact in the weak topology (see

Theorem 8.9.3 in Bogachev (2007b)) and T ∗, T ∗
′
are continuous, the supremum is finite, so that

dO is a well-defined metric. It is straightforward to verify d(T ∗µ, T ∗
′
µ) ≤ dO(T ∗, T ∗

′
)µ(A×X)

for every µ ∈M+(A×X) and continuous linear operators T ∗, T ∗
′
. In Lemma 5 below I prove

that S∗n(~z) are continuous operators on M(A × X) so that the metric dO can be applied to

these operators.

For any µ ∈ B(µ̄, εµ),

d(Ψnµ, µ̄) ≤ d(Ψnµ, Ψ̄µ) + d(Ψ̄µ, µ̄)

= d(S∗n(~z)µ+ µ∗n(~z), S̄∗µ+ µ̄∗) + d(Ψ̄µ, Ψ̄µ̄)

≤ d(S∗n(~z)µ, S̄∗µ+ µ̄∗ − µ∗n(~z)) + λd(µ, µ̄)

≤ d(S∗n(~z)µ, S̄∗µ) + d(S̄∗µ, S̄∗µ+ µ̄∗ − µ∗n(~z)) + λεµ

≤ dO(S∗n(~z), S̄∗)µ(A×X) + d(µ∗n(~z), µ̄∗) + λεµ . (42)

Here, the inequalities in the third and fifth line make use of Lemma 2(f). Note that µ(A×X) =

d(µ, 0) ≤ d(µ, µ̄) + d(µ̄, 0) < εµ + µ̄(A × X), so that µ(A × X) is bounded above. Lemma

6 below shows that ~z 7→ S∗n(~z) is a continuous function from Z̄N into the operator space on

M(A×X) with the dO metric. Lemma 7 shows that ~z 7→ µ∗n(~z) from Z̄N into (M(A×X), d)

is continuous as well. Therefore, the first two terms in the last line of (42) are arbitrarily small

for small enough εz (because of S∗n(~̄z) = S̄∗ and µ∗n(~̄z) = µ̄∗). Since λ < 1, all three terms

together, and therefore d(Ψnµ, µ̄), are smaller than εµ for small enough εz. This shows that

Ψn maps B(µ̄, εµ) into itself for small enough εz. 2

Lemma 4: For εz and εµ small enough and ~z in an εz-neighborhood of ~̄z, all functions Ψn

map measures µ ∈ B(µ̄, εµ) into a non-negative measure.

Proof of Lemma 4: Recall the entry vectors

mn = A0
n(~z)−1

[
S(p̃n(~z), zn)− < an(.; ~z), µ >

]
∈ IRI .

By Lemma 3, (µ, ~z) 7→< an(.; ~z), µ > depends continuously on µ and on ~z. By assumption on

S, by continuity of p̃, the policy function and the absorption function Â, the matrix A0
n(.)−1

and the vector S(.) also depend continuously on ~z. Since mn = m̄ ∈ IRI
++ at (µ, ~z) = (µ̄, ~̄z),

mn is a strictly positive vector for ~z and µ in εz (εµ, resp.) neighborhoods of ~̄z (µ̄, resp.) with

εz and εµ small.
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For any µ ∈ B(µ̄, εµ) (which by definition includes non-negative measures), and mn ∈ IRI
++,

µ̃ = µ+
∑
x∈XE

µ0
xmn(x)

is a non-negative measure. Since operator T ∗n(~z) maps any non-negative measure into a non-

negative measure, µ′ = T ∗n(~z)µ̃ = Ψnµ is a non-negative measure. This proves the assertion of

the lemma. 2

Lemma 5: The linear operators S∗n(~z) are continuous mappings from the metric space

(M(A×X), d) into itself.

Proof of Lemma 5: Recall the definition

S∗n(~z) ≡ T ∗n(~z) ◦ [1− µ0A0
n(~z)−1 < an(.; ~z), . >] .

For any real-valued measurable function f on A×X and any µ ∈M(A×X),∫
fd(T ∗n(~z)µ) =

∫
[1− ξ(x, zn)]Ex,nf(an(a, x; ~z), x′)dµ(a, x) .

Here the expectations operator is over the realization of x′ with probability πxx′(zn). Therefore,∫
fd(S∗n(~z)µ) =

∫
[1− ξ(x, zn)]Ex,nf(an(a, x; ~z), x′)d

([
1− µ0A0

n(~z)−1 < an(.; ~z), . >
]
µ
)

(a, x)

=

∫
[1− ξ(x, zn)]Ex,nf(an(a, x; ~z), x′)dµ(a, x)

−
∑
xi∈XE

{∫
[1− ξ(x0, zn)]Ex0,nf(an(a0, x0; ~z), x′)dµ0

xi
(a0, x0)

∑
j

aij(~z)

∫
ajn(.; ~z)dµ

}
,

where aij(~z) are the elements of I × I matrix A0
n(~z)−1. Rearranging the integral terms in the

last line, this can be written more compactly:∫
fd(S∗n(~z)µ) =

∫
gn((a, x), f, ~z)dµ(a, x) ,

where gn(., f, ~z) is the measurable function defined by

gn((a, x), f, ~z) ≡ [1− ξ(x, zn)]Ex,nf(an(a, x; ~z), x′) (43)

−
∑
xi∈XE

[∫
[1− ξ(x0, zn)]Ex0,nf(an(a0, x0; ~z), x′)dµ0

xi
(a0, x0)

∑
j

aij(~z)ajn(a, x; ~z)

]
.

By Assumption 4, an is Lipschitz continuous in a. If f ∈ Lip1,1, then gn(., f, ~z), which is the

sum, product and composite of bounded Lipschitz continuous functions, is also an element of

Lipp,q for some p, q > 0 which are independent of f .
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Take any µ, ν ∈M(A×X). Then

d(S∗n(~z)µ, S∗n(~z)ν) = sup

{∫
gn(., f, ~z)d(µ− ν) : f ∈ Lip1,1

}
≤ sup

{∫
hd(µ− ν) : h ∈ Lipp,q

}
≤ max(p, q)d(µ, ν) ,

where the last inequality follows from Lemma 2(g). This proves that S∗n(~z) is continuous. 2

Lemma 6: The map S∗n from Z̄N into the space of continuous, linear operators on (M(A×
X), d) endowed with the dO metric defined in (41) is continuous.

Proof of Lemma 6: Take any ~z, ~z
′ ∈ Z̄N . Then

dO(S∗n(~z), S∗n(~z
′
)) = sup

{
d(S∗n(~z)µ, S∗n(~z

′
)µ) : µ ≥ 0, µ(A×X) = 1

}
= sup

{∫
fd
(
S∗n(~z)µ− S∗n(~z

′
)µ
)

: µ ≥ 0, µ(A×X) = 1, f ∈ Lip1,1

}
= sup

{∫
gn(., f, ~z)− gn(., f, ~z

′
)dµ : µ ≥ 0, µ(A×X) = 1, f ∈ Lip1,1

}
≤ sup

{
sup
(a,x)

∣∣∣gn(a, x, f, ~z)− gn(a, x, f, ~z
′
)
∣∣∣ : f ∈ Lip1,1

}
,

with gn(., f, ~z) defined in (43). Now∣∣∣gn(a, x, f, ~z)− gn(a, x, f, ~z
′
)
∣∣∣ (44)

≤
∣∣∣[1− ξ(x, zn)]Ex,nf(an(a, x; ~z), x′)− [1− ξ(x, z′n)]Ex,nf(an(a, x; ~z

′
), x′)

∣∣∣
+
∑
xi∈XE

∣∣∣ ∫ [1− ξ(x0, zn)]Ex0,nf(an(a0, x0; ~z), x′)dµ0
xi

(a0, x0)
∑
j

aij(~z)ajn(a, x; ~z)

−
∫

[1− ξ(x0, z
′
n)]Ex0,nf(an(a0, x0; ~z

′
), x′)dµ0

xi
(a0, x0)

∑
j

aij(~z
′
)ajn(a, x; ~z

′
)
∣∣∣ .

Because f ∈ Lip1,1, the terms in this expression can be estimated above by the sum of several

terms of the form,∣∣∣[1− ξ(x, zn)]πxx′(~z)− [1− ξ(x, z′n)]πxx′(~z
′
)
∣∣∣ , ∣∣∣an(a, x; ~z)− an(a, x; ~z

′
)
∣∣∣ , (45)∣∣∣∣∫ an(a0, x0; ~z)− an(a0, x0; ~z

′
)dµ0

xi

∣∣∣∣ , ∣∣∣aij(~z)− aij(~z
′
)
∣∣∣

46



(multiplied by some constants which are independent of f). For instance, the first term on the

right-hand side of (44) can be estimated above by∣∣∣[1− ξ(x, zn)]Ex,nf(an(a, x; ~z), x′)− [1− ξ(x, z′n)]Ex,nf(an(a, x; ~z
′
), x′)

∣∣∣
=
∣∣∣∑
x′

[1− ξ(x, zn)]πxx′(zn)f(an(a, x; ~z), x′)−
∑
x′

[1− ξ(x, z′n)]πxx′(z
′
n)f(an(a, x; ~z

′
), x′)

∣∣∣
≤

∣∣∣∣∣∑
x′

([1− ξ(x, zn)]πxx′(zn)− [1− ξ(x, z′n)]πxx′(z
′
n)) f(an(a, x; ~z), x′)

∣∣∣∣∣
+

∣∣∣∣∣∑
x′

[1− ξ(x, z′n)]πxx′(z
′
n)(f(an(a, x; ~z), x′)− f(an(a, x, ~z

′
), x′))

∣∣∣∣∣
≤
∑
x′

|[1− ξ(x, zn)]πxx′(zn)− [1− ξ(x, z′n)]πxx′(z
′
n)|+

∣∣∣f(an(a, x; ~z), x′)− f(an(a, x, ~z
′
), x′)

∣∣∣ .
The other terms can be estimated similarly, making use of the triangle inequality and the fact

that any continuous function on the compact domains A×X or Z̄N is bounded above. Because

of continuity, all terms in (45) go to zero, uniformly over (a, x) ∈ A × X (compact), when

~z
′ → ~z. Hence the left-hand side in (44) goes to zero, uniformly in (a, x) and independently

of f ∈ Lip1,1. This shows that S∗n(~z
′
)→ S∗n(~z) in the dO-topology. 2

Lemma 7: The map µ∗n from Z̄N into the measure space (M(A×X), d) is continuous.

Proof of Lemma 7: Take any ~z, ~z
′ ∈ Z̄N and recall that

µ∗n(~z) ≡ T ∗n(~z)µ0A0
n(~z)−1S(p̃n(~z), zn) .

Write µ2
n(~z) ≡ µ0A0

n(~z)−1S(p̃n(~z), zn) ∈M(A×X). Because of continuity of A0
n(.)−1S(p̃n(.), .) :

Z̄N → IRI , µ2
n(.) : is also continuous. Then,

d
(
T ∗n(~z)µ2

n(~z), T ∗n(~z
′
)µ2

n(~z
′
)
)

= sup

{∫
fd(T ∗n(~z)µ2

n(~z))−
∫
fd(T ∗n(~z

′
)µ2

n(~z
′
)) : f ∈ Lip1,1

}

= sup

{∫ ∑
x′

[1− ξ(x, zn)]πxx′(zn)f(an(a, x; ~z), x′)dµ2
n(~z)

−
∫ ∑

x′

[1− ξ(x, z′n)]πxx′(z
′
n)f(an(a, x; ~z

′
), x′)dµ2

n(~z
′
) : f ∈ Lip1,1

}

= sup

{∫ [∑
x′

[1− ξ(x, zn)]πxx′(zn)f(an(a, x; ~z), x′) (46)

− [1− ξ(x, z′n)]πxx′(z
′
n)f(an(a, x; ~z

′
), x′)

]
dµ2

n(~z)

+

∫ ∑
x′

[1− ξ(x, z′n)]πxx′(z
′
n)f(an(a, x; ~z

′
), x′)d(µ2

n(~z)− µ2
n(~z

′
)) : f ∈ Lip1,1

}
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For arbitrary ε > 0,∣∣∣∣∣∑
x′

[1− ξ(x, zn)]πxx′(zn)f(an(a, x; ~z), x′)− [1− ξ(x, z′n)]πxx′(z
′
n)f(an(a, x; ~z

′
), x′)

∣∣∣∣∣ < ε ,

for all f ∈ Lip1,1 and all (a, x) ∈ A × X when ~z
′

is sufficiently close to ~z. This follows

because an, πxx′(.) and ξ(x, .) are continuous, A ×X is compact, and f ∈ Lip1,1. Hence, the

first term in (46) goes to zero when ~z
′ → ~z. Regarding the second term, note that (a, x) 7→

[1 − ξ(x, z′n)]πxx′(z
′
n)f(an(a, x; ~z

′
), x′) is a function h ∈ Lipp,q for some p, q > 0 (independent

of f) because an and f ∈ Lip1,1 are Lipschitz continuous functions. Since µ2
n(~z

′
) → µ2

n(~z) in

the d-metric when ~z
′ → ~z (see the beginning of this proof), this term goes to zero (because

of Lemma 2(g)). This proves that d(T ∗n(~z)µ2
n(~z), T ∗n(~z

′
)µ2

n(~z
′
)) → 0 when ~z

′ → ~z so that the

assertion of the lemma follows. 2

Theorem 1: Under the assumptions of Proposition 2 together with Assumption 6, if εz > 0

is sufficiently small, there exists a block-recursive equilibrium for every ~z with |~z − ~̄z| < εz.

Proof of Theorem 1: We know from the proof of Lemma 4 that the entry vector

mn = A0
n(~z)−1

[
S(p̃n(~z), zn)− < an(.; ~z), µ >

]
(47)

is strictly positive for (~z, µ) ∈ B(~̄z, εz)× B(µ̄, εµ). By Assumption 1 and continuity of v, v̄, c

and p̃,

Exv(0, x0, n; ~z, p̃(~z)) < v̄(x, zn) + c(x, zn) for all x ∈ X \XE ,

for |~z − ~̄z| < εz. Hence no inactive agent x /∈ XE wishes to enter. It remains to prove the last

feature of Definition 1 (d2) saying that the number of entrant and incumbent agents is not

constrained by the total number of agents. This is obvious if M̄ = ∞. Otherwise, write the

dynamics of the distribution µX (Definition 1, d2) in matrix notation

µ′X = Π(z)
[
µX + (Π0 − 1)m(z, µ)

]
, (48)

where Π(z) is the transpose of the Markov transition matrix (πxx′(z))xx′ , Π0 is the transpose

of the matrix of conditional probabilities over entry states, (π0(x|x̂))x̂x, and m(z, µ) ∈ IR|X|

is the entry vector, defined by (47) for elements x ∈ XE and with zero entries for x /∈ XE.

Assumption 1 says that for constant z = z̄ a stationary equilibrium exists with constant entry

vector m̄ (which is positive at elements x ∈ XE and zero in all other elements). The stationary

distribution measure µ̄X satisfies

µ̄X = Π(z̄)
[
µ̄X + (Π0 − 1)m̄

]
.

The last feature of Definition 1 (d2) requires that

µ̄X(x) > µ̄(A× {x}) + m̄(x) for all x ∈ X.
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It must be shown that there is a setMX of distribution measures µX which is invariant under

(48) for (~z, µ) ∈ B(~̄z, εz)×B(µ̄, εµ) and (εz, εµ) small enough such that

µX(x) > µ(A× {x}) +m(x) (49)

for all µX ∈MX , entry vectors defined by (47), µ ∈ B(µ̄, εµ), and (~z, µ) ∈ B(~̄z, εz)×B(µ̄, εµ).

By continuity of transition probabilities, we can set

‖Π(z)− Π(z̄)‖1 < ε0 ,

with matrix norm ‖.‖1 induced from the `1 vector norm, for arbitrary ε0 > 0 for small enough

(εz, εµ). Because of continuity of (47),

|m− m̄| < ε1 ,

for arbitrary ε1 > 0 for small enough (εz, εµ). Consider an arbitrary ε2 > 0 and the ε2 open ball

around µ̄X (in |.|1 norm). For small ε2, B(µ̄X , ε2) is invariant under µ′X = Π
[
µX + (Π0−1)m

]
if m ∈ B(m̄, ε1) and Π ∈ B(Π(z̄), ε0) for (ε0, ε1) small enough. To prove this assertion, take

µX ∈ B(µ̄X , ε2), m ∈ B(m̄, ε1) and Π ∈ B(Π(z̄), ε0). By Assumption 6, ‖Π(z̄)‖1 = ρ < 1.

Then,

|Π(µX + (Π0 − 1)m)− µ̄X |1 ≤ |Π(µX + (Π0 − 1)m)− Π(z̄)(µX + (Π0 − 1)m)|1
+ |Π(z̄)(µX + (Π0 − 1)m)− Π(z̄)(µ̄X + (Π0 − 1)m̄)|1
≤ ‖Π− Π(~z)‖1 · |µX + (Π0 − 1)m|1

+ ‖Π(z̄)‖1 {|µX − µ̄X |1 + ‖Π0 − 1‖1 · |m− m̄|1}
≤ ε0 {|µ̄X + (Π0 − 1)m̄|1 + ε2 + ‖Π0 − 1‖1ε1}

+ ρ {ε2 + ‖Π0 − 1‖1ε1}
< ε2 .

Because of ρ < 1, the last inequality holds if ε0, ε1 and ε2 are small enough.

For such values of ε0, ε1 and ε2, B(µ̄X , ε2) is invariant under µ′X = Π
[
µX + (Π0 − 1)m

]
if

m ∈ B(m̄, ε1) and Π ∈ B(Π(z̄), ε0). Therefore, B(µ̄X , ε2) is invariant under (48) if (εz, εµ) is

small enough. Then (49) holds when ε2, ε1 and εµ are set sufficiently small. This proves the

last requirement of the theorem. 2

Proposition 3: Suppose that Assumptions 7–10 are fulfilled. Define

η ≡ min
n,i

m̄n,i

supA×X |Hn,i(.)|
> 0 , δ ≡ max

n,o
‖µ̄n − µ̄o‖TV ≥ 0 ,

where m̄n,i is the ith component of vector m̄n, and Hn,i is the ith component of the continuous

function (A0
n)−1an(.) : A×X → IRI . If δ < η(1− λ), then the set

M≡
{
µ ∈M+(A×X) : ‖µ− µ̄n‖TV < η for all n

}
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is invariant under all mappings Ψn. Further, mn as defined in (13) is strictly positive for all

n and µ ∈M.

Proof of Proposition 3: Take µ ∈M and consider

mn = (A0
n)−1S(pn, zn)− < Hn(.), µ > = m̄n− < Hn(.), µ̄n − µ > ,

where µ̄n is the unique fixed point of Ψn (Assumption 9 and Banach’s fixed point theorem)

and m̄n = (A0
n)−1S(pn, zn)− < Hn(.), µ̄n >∈ IRI

++ (Assumption 10). mn is a strictly positive

vector iff

< Hn(.), µ̄n − µ > � m̄n .

For each component of m̄n, this follows if < Hn,i(.), µ̄n − µ > =
∫
Hn,id(µ̄n − µ) < m̄n,i. This

follows if

sup
A×X
|Hn,i(.)| · ‖µ− µ̄n‖TV < m̄n,i , for all i and n ,

which holds by definition of M and η.

Because mn ∈ IRI
++ for every µ ∈ M and n, Ψnµ is a non-negative measure. This uses a

similar argument as in the proof of Lemma 4: the measure of active agents after entry µ̃ is

non-negative, and T ∗n maps non-negative measures into non-negative measures. It remains to

show that Ψnµ ∈M. For every o = 1, . . . , N ,

‖Ψnµ− µ̄o‖TV ≤ ‖Ψnµ− µ̄n‖TV + ‖µ̄n − µ̄o‖TV
≤ λη + δ < η ,

where the last inequality follows from the assumption δ < η(1− λ). This completes the proof

of Proposition 3. 2

Theorem 2: For given (z1, . . . , zN) ∈ Z̄N a block-recursive equilibrium exists provided that

Assumptions 7–11 are satisfied, M̄ is sufficiently large, and δ < η(1− λ) with δ and η defined

in Proposition 3.

Proof of Theorem 2: Proposition 3 implies that with equilibrium distributions in in-

variant setM, all requirements of Definition 1 are fulfilled except (d2). This last requirement

is not needed if M̄ = ∞. Otherwise, the distribution measures of active and inactive agents,

denoted µX , evolve over time according to

µ′X = ΠnµX , (50)

where Πn is the transpose of the Markov transition matrix (πxx′(zn))xx′ (because of Assumption

11(i), entrants do not draw a new idiosyncratic state). By Assumption 11(ii), all matrices

Πn are contractions of modulus ρ, so that invariant measure µ̄X,n exists. Then with d̄ ≡
maxn1,n2 |µ̄X,n1 − µ̄X,n2|1, it is straightforward to verify that the set

MX ≡
{
µX ∈M(X, M̄) : |µX − µ̄X,n|1 ≤

d̄

1− ρ
for all n

}
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is invariant under all mappings Πn. Furthermore, MX ⊂ IR
|X|
++. To show this, take any

µX ∈MX , x ∈ X and arbitrary n. Assumption 11(ii) implies µ̄X,n ∈ IR
|X|
++. Then

µX(x) ≥ µ̄X,n(x)− |µ̄X,n(x)− µX(x)| > 0 ,

if |µ̄X,n(x)− µX(x)| < µ̄X,n(x). The first inequality follows from

|µ̄X,n(x)− µX(x)| ≤ |µ̄X,n − µX |1 ≤
d̄

1− ρ
≤ min

x∈X
µ̄X,n(x) ,

where the last inequality follows from Assumption 11(ii). This proves that MX contains

strictly positive vectors. Since all these vectors sum up to M̄ , they can be made arbitrarily

large if M̄ is large enough. Because the invariant sets of distribution measures M, MX and

entry vectors m are bounded (see Proposition 3), the last inequality in Definition 1, (d2) is

satisfied for all µ ∈ M, entry vectors m defined by (13), and µX ∈ MX , if M̄ is sufficiently

large. 2

Theorem 3: Let the assumptions of either Theorem 1 or Theorem 2 be fulfilled and let

(M, d) be the invariant metric space implied by one of these theorems. Furthermore, let As-

sumption 12 be fulfilled. Then there exists a unique probability measure Q̄ ∈ P(Ω) and a

constant γ, such that for λ̄ ≡ max(λ, 1− ε
2
) < 1,

dK(Qω0
t , Q̄) ≤ γλ̄t , for all ω0 ∈ Ω and t ≥ 0 .

Proof of Theorem 3: To apply Theorem 2.1 of Stenflo (2001), the following two properties

must be shown:

ED(Φ(ω1, y),Φ(ω2, y)) ≤ λ̄D(ω1, ω2) for all ω1, ω2 ∈ Ω , (51)

ED(ω0,Φ(ω0, y)) < ∞ for some ω0 ∈ Ω , (52)

where the expectations operators are over the realization of uniformly distributed y ∈ [0, 1].

Property (52) trivially follows because Ω =M×N is bounded in the metric D = d+ αρ.

Regarding property (51), define first the mapping N̂ : N × [0, 1]→ N inducing the Markov

chain (ψno). Let {ni : i = 1, . . . , N} be some ordering of N such that n1 = n̄ with ψnn̄ ≥
ε > 0 (Assumption 12). For every j = 1, . . . , N , let ψ0

nnj
=
∑j

i=1 ψnni denote the cumulative

transition probability from n to next period’s states n′ ∈ {n1, . . . , nj}. Then define

N̂(n, y) =
{
ni : i = min{j : y ≤ ψ0

nnj
}
}
.

When y is uniformly drawn from [0, 1], then Prob(N̂(n, y) = n′) = ψnn′ , hence the iterated

function system defined by N̂ induces the original Markov chain.
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Next establish the following property:

Eρ(N̂(n, y), N̂(o, y)) ≤ (1− ε)ρ(n, o) for all n, o ∈ N . (53)

If n = o, (53) trivially holds since both sides are equal to zero. If n 6= o, then ρ(n, o) = 1. Let

λ∗ denote the Lesbesgue measure on the real numbers. Then

Eρ(N̂(n, y), N̂(o, y)) = Prob
(
N̂(n, y) 6= N̂(o, y)

)
= 1− Prob

(
N̂(n, y) = N̂(o, y)

)
= 1− λ∗

{(
[0, ψ0

nn1
] ∩ [0, ψ0

on1
]
)
∪
N−1⋃
i=1

(
(ψ0

nni
, ψ0

nni+1
] ∩ (ψ0

oni
, ψ0

oni+1
]
)}

≤ 1− ε ,

because ψ0
nn1

= ψnn̄ ≥ ε for all n ∈ N . This proves (53).

Finally, for any ω1 = (µ1, n1), ω2 = (µ2, n2) ∈ Ω,

ED(Φ(µ1, n1, y),Φ(µ2, n2, y)) = d(Ψn1µ1,Ψn2µ2) + αEρ(N̂(n1, y), N̂(n2, y))

≤ d(Ψn1µ1,Ψn1µ2) + d(Ψn1µ2,Ψn2µ2) + α(1− ε)ρ(n1, n2)

≤ λd(µ1, µ2) + d̄ · ρ(n1, n2) + α(1− ε)ρ(n1, n2) ,

where d̄ ≡ sup {d(µ1, µ2) : µ1, µ2 ∈M}. Here the second line uses property (53) and the

third line uses that all mappings Ψn are λ-contractions. By definition of λ̄ = max(λ, 1 − ε
2
)

and α = 2d̄
ε

,

λd(µ1, µ2) + (d̄+ α(1− ε))ρ(n1, n2) ≤ λ̄ (d(µ1, µ2) + αρ(n1, n2)) = λ̄D(ω1, ω2) .

This proves property (51) and therefore the requirements of Theorem 2.1 of Stenflo (2001). 2
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Appendix B: Further Details

Firm Dynamics with Homogeneous Labor and History-Independent

Firm Distribution

Suppose that the Markov process for idiosyncratic productivity has a unique ergodic distri-

bution π∗(x). Entrants draw initial productivity from this stationary distribution. Thus, the

distribution over idiosyncratic productivities is independent of the dynamics of entry and ag-

gregate shocks. In a BRE, write wn = w(zn) for the wage and v(x, n) for a firm’s discounted

profit value in aggregate state n ∈ {H,L}. Profit values satisfy

v(x, n) = π∗(wn, xzn) + β0ψExv(x′, n′) + β0(1− ψ)Exv(x′, n) , (54)

for n′ 6= n ∈ {H,L} and with π∗ as defined in the main text. Entry conditions in both aggregate

states are cn ≡ c(zn) = Ev(x, n) where the expectations operator is over the initial realization

of x, drawn from the stationary distribution π∗. Because of this feature and equation (54), the

entry condition in aggregate state n is

cn = Aζn + β0ψcn′ + β0(1− ψ)cn ,

with n′ 6= n and A ≡ α
1−αEx

1/α, ζn ≡ z
1/α
n w

−(1−α)/α
n . These two equations can be solved for

ζH =
1

A

{
cH (1− β0(1− ψ))− cLβ0ψ

}
,

ζL =
1

A

{
cL (1− β0(1− ψ))− cHβ0ψ

}
.

Hence, there are wages wn > 0 consistent with entry in both aggregate states whenever ζn > 0,

n ∈ {H,L}. This is the case if

max

(
cH
cL
,
cL
cH

)
< 1 +

1− β0

β0ψ
, (55)

which requires that entry costs are not too cyclical. For instance, if cH = cL, then ζH = ζL
and wages are procyclical with (wH/wL)1−α = zH/zL. On the other hand, with moderately

procyclical entry costs, wages are constant across aggregate states.

Suppose there are µ̄ > 0 incumbent firms at the beginning of a period (whose idiosyncratic

productivities are distributed with π∗) and that the aggregate state is n ∈ {H,L}. If there are

m > 0 entrants, then aggregate labor demand is `n(µ̄ + m) where `n ≡ E(x1/α)(zn/wn)1/α is

average employment of a firm in state n. With labor supply Ln ≡ (v′)−1(wn), the labor market

is in equilibrium if

Ln = `n(µ̄+m) , n ∈ {H,L} .
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Next period there are

µ̄′ = (1− ξ)(µ̄+m) = (1− ξ)Ln
`n
≡ µ̄∗n

incumbent firms. Therefore, in this example, the affine-linear functions (10) mapping the

current firm distribution into next period’s distribution are constant functions (independent of

µ), i.e. the firm distribution is independent of the history of aggregate shocks. The measures

of incumbent firms alternate stochastically between two levels, µ̄∗H and µ̄∗L. Entry is positive

if, and only if, for all aggregate states (n, n′) ∈ {H,L}2,

µ̄∗n′ − (1− ξ)µ̄∗n > 0 . (56)

These considerations demonstrate the existence of a BRE when aggregate shocks are not too

large: Then condition (55) ensures that entry conditions are fulfilled for wages wH , wL > 0,

and (56) is satisfied (because µ̄∗n depend continuously on zn).

Details about the Model in Section 3.1.1.

Here the following results mentioned in the main text are shown:

1. If entry costs cn are sufficiently close across aggregate states n = H,L, there exist wages

wn such that the entry conditions are satisfied in both aggregate states.

2. A BRE exists if S ∈ (0, 1) and if the parameter conditions

µo ≥ max
n,n′

Rn[(S + (1− ξ)(2− λ))]−Rn′

(S + 1− ξ)[S + (1− ξ)(1− λ)]
, (57)

and RH > SRL are satisfied (if RH ≤ RL; otherwise, if RL > RH , RL > SRH must

hold).

Regarding the first point, start with the recursive equations for profit values V y
n , V o

n for young

and old firms in both aggregate states n, where n′ 6= n:

V y
n = π∗(wn, x

yzn) + β0ψ [(1− λ)V y
n′ + λV o

n′ ] + β0(1− ψ) [(1− λ)V y
n + λV o

n ] ,

V o
n = π∗(wn, x

ozn) + β0ψV
o
n′ + β0(1− ψ)V o

n .

With πin ≡ π∗(wn, x
izn) for i = y, o, n = H,L, the profit values of young firms in both states

are solved for

V y
L =

1

1− β0(1− λ)

{
πyL +

β0λ

1− β0

πoL + Cy(πyH − π
y
L) + Co(πoH − πoL)

}
,

V y
H =

1

1− β0(1− λ)

{
πyH +

β0λ

1− β0

πoH − Cy(πyH − π
y
L)− Co(πoH − πoL)

}
,
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with positive constants

Cy ≡ β0(1− λ)ψ

1− β0(1− λ)(1− 2ψ)
, Co ≡ β0λψ

1− β0(1− 2ψ)

{
1

1− β0

+
β0(1− λ)(1− 2ψ)

1− β0(1− λ)(1− 2ψ)

}
.

Because πyn = ζnπ
y, πon = ζnπ

o with ζn ≡ z
1/α
n w

−(1−α)/α
n and constants πy, πo, the entry

conditions cn = V y
n can be rewritten in the form

cL = A0ζL + A1(ζH − ζL) ,

cH = A0ζH − A1(ζH − ζL) ,

with positive constants A0, A1. These equations can be solved uniquely for ζH > 0 and ζL > 0

(and hence for wages wH > 0, wL > 0), provided that entry costs cH and cL are sufficiently

close.

Regarding the second statement, under the assumptions S ∈ (0, 1) and RH ≤ RL, the

iterated function system (µo)′ = Rn − Sµo, where n undergoes a Markov process on {H,L}
converges to an invariant ergodic distribution with support (µo, n) ∈ [µo, µo]× {H,L} where

µo ≡ RH − SRL

1− S2
≤ µo ≡ RL − SRH

1− S2
,

with equality if RH = RL. The lower bound µo is strictly positive under the assumption

RH > SRL. It remains to prove that entry is strictly positive in all aggregate states under the

additional parameter condition (57). From (19),

m =
Ln
`yn
− µy −

(
xo

xy

)1/α

µo =
Rn

(1− ξ)λ
− µy − S + 1− ξ

(1− ξ)λ
µo .

From (17) and (18),

µo = Rn− − Sµo− ,

µy =
1− λ
λ

[
Rn− − (S + 1− ξ)µo−

]
,

where µo− is the measure of old firms in the previous period and n− is the aggregate state in

the previous period. Hence, m > 0 iff

Rn > Rn− [S + (1− ξ)(2− λ)]− (S + 1− ξ) [S + (1− ξ)(1− λ)]µo .

For µo ∈ [µo, µo], this inequality is fulfilled if µo satisfies condition (57).
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Endogenous Equilibrium Cycles in the Hopenhayn (1992) Model

This section describes equilibrium cycles in a special case of the model described in Section

3.1.1. To simplify, set λ = 1; that is, startups produce with low productivity xy in the first

period and then continue to operate with higher productivity xo > xy in all subsequent periods.

Suppose that the steady state of this model is unstable which happens when

S = (1− ξ)

((
xo

xy

)1/α

− 1

)
> 1 ,

as has been shown in the main text.

Let labor supply be L(w) = L0w
γ with scale parameter L0 and Frisch elasticity γ. A

competitive equilibrium is a sequence of wages wt, distribution measures of incumbent firms

µot , discounted profit values of incumbents vot , and entry measures mt such that

L0w
γ
t =

[
(xo)

1
αµot + (xy)

1
αmt

]
w
− 1
α

t , (58)

µot+1 = (1− ξ)(µot +mt) , (59)

vot = πo(wt) + β0v
o
t+1 , (60)

mt ≥ 0 , c ≥ πy(wt) + β0v
o
t+1 (c.s.) , (61)

where πi(w) = α
1−α(xi)

1
αw−

1−α
α , i = y, o, are profits of young and old firms. Equation (58) is

labor market equilibrium, (59) is the adjustment of incumbent firms over time, and (60) is the

discounted profit value of incumbents. The last complementary-slackness condition says that

when no firms enter, entry costs exceed the gains from entry, and they are equal otherwise.

This system of equations has a unique steady state with positive entry; indeed, this example

is a special case of the classic Hopenhayn (1992) model. The steady state is locally unstable,

however, when S > 1. The global dynamics of the system (58)–(61) are not straightforward to

characterize, in particular because (61) may or may not bind and because (60) is a forward-

looking equation which potentially gives rise to a large set of dynamic equilibria, including

sunspot cycles. To simplify even further, shut down this forward-looking channel by setting

the household discount factor to zero such that β0 = β(1− ξ) = 0. In this case, condition (61)

can be expressed more compactly as follows:

mt ≥ 0 , wt ≥ w̄ =

(
α

1− α
1

c
(xy)1/α

) α
1−α

(c.s.).

Either entry is positive and the equilibrium wage equals w̄ (i.e., the BRE wage consistent

with entry), or entry is zero in which case the market-clearing wage exceeds w̄. Solving this

simple model shows that the dynamics reduces to one equation describing the evolution of the

measure of incumbent firms:

µot+1 =

{
(1− ξ)µ0

t , µ0
t ≥ µ̂o ,

R− Sµot , µot < µ̂ot ,
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where R = (1 − ξ)(xy)−1/αL0w̄
γ+ 1

α and S are defined as in the main text. If the measure of

incumbent firms is below the threshold µ̂o = R/(S + 1− ξ), entry is positive and the market-

clearing wage equals w̄. If the measure of incumbent firms exceeds µ̂o, entry is zero, and the

market-clearing wage satisfies L0w
γ+ 1

α
t = (xo)

1
αµot .

Figure 6 illustrates the dynamics of µot in the case S > 1. The unique steady state µo∗ < µ̂o

is unstable. However, the dynamics of µot does not diverge but rather settles down on equi-

librium cycles alternating between periods with positive entry and periods with zero entry.34

Such cycles can have arbitrary periodicity or may be non-periodic. In fact, cycles of period

three exist in this model if the condition S ≥ 2−ξ
1−ξ holds.35 Such a cycle is illustrated in Fig-

ure 6. Because this one-dimensional system is continuous, a cycle of period three implies that

cycles of any other periodicity as well as chaotic cycles exist.36

Figure 6: Endogenous cycles in the Hopenhayn (1992) model.

Calibration of the Model in Section 3.1.2

Table 1 shows the values of all model parameters and their calibration targets. The parameters

for firm productivities xi (i = 1, 2, 3, 4), the initial productivity distribution π0,i and the

34A variation of this model where entry costs are not constant but increasing in the measure of entrant firms

(as in, e.g., Sedláček and Sterk, 2017) can also produce endogenous equilibrium cycles where entry is positive

in all periods.
35The cycle is (µo1, µ

o
2, µ

o
3) with µ0

3 < µ̂o ≤ µo2 < µo1 where µo1 = R/[1 + S(1− ξ)2].
36See Li, T.Y. and Yorke, J.A. (1975), “Period three implies chaos”, The American Mathematical Monthly,

Vol. 82 (10), 985–992.
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Table 1: Calibrated parameters.

Parameter Value Explanation/Target

Discount factor β 0.95 Annual interest rate

Exit probability ξ 0.1 Annual firm exit rate (BDS)

Manager prod. elasticity αm 0.263 31% manager earnings share

Worker prod. elasticity αp 0.587 Returns to scale 0.85

Owner labor input a 1 Single owner in small firms

Firm productivities (x1, . . . , x4) (2.86,3.75,5.25,8.24) Firm size (Table 2, row 2)

Entry shares type 2 (π0,1, . . . , π0,4) (0.896,0.102,0.002,0) Entrant size dist. (Table 2, row 3)

Transition prob. type 2 (π1, π2, π3) (0.066,0.009,0.014) Firm size dist. (Table 2, row 4)

LS scale (managers) vm 0.063 17.1m managers (1970–2018)

LS scale (workers) vp 0.129 76.7m workers (1970–2018)

LS elasticity (managers) γm 1.1 Cyclicality manager employment

LS elasticity (workers) γp 2.5 Cyclicality worker employment

Aggregate productivity (zH , zL) (1.008,0.992) Std. dev. real GDP

Transition prob ψ 0.2 Autocorrelation real GDP

Entry costs (mean) (c̄1, c̄2) (10.71,18.99) Mean wages wp = 1, wm = 1.63

Entry costs (cycle) (
c1H−c

1
L

c̄1 ,
c2H−c

2
L

c̄2 ) (0.98%,0.81%) See text

annual upward transition rates πi for i ≤ 3 are set to calibrate average firm size and the firm

distribution of entrants (age 0 firms) and all firms over the four size classes 1-9, 10-99, 100-999

and 1000+. The corresponding data targets are obtained from the firm age×size tabulations

of the Business Dynamics Statistics of the U.S. Census Bureau, averaged over the years 1977–

2014. See Table 2 for these numbers which are exactly replicated by the model in steady state

with aggregate productivity z = 1.

Table 2: Firm size distribution.

Size class 1–9 10–99 100–999 1000+

Mean employment 3.5 25.3 239.8 4832.4

Share entrants (%) 94.8 5.1 0.1 0.0

Share firms (%) 76.2 21.9 1.7 0.2

Employment and wages of production workers and managers are obtained from the Current

Employment Statistics (CES) of the U.S. Bureau of Labor Statistics (1970–2018). Production

workers are “Production and nonsupervisory employees”, whereas managers are the difference

between “All employees” and this number. On average during 1970 and 2018, there are 17.1

million managers and 76.7 million production workers. Given their respective wages and the

Frisch elasticities (see below), these targets pin down the labor disutility scale parameters.
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Regarding wages, average real hourly earnings of all employees (wa) and of production and

nonsupervisory employees (wp) are available from the CES since 2006. With aggregate weekly

hours of all employees (ha) and of production and nonsupervisory employees (hp), this allows

to back out the implied average hourly wage of managers as a residual: wm = waha−wphp
ha−hp . The

average wage gap between managers and production workers during 2006-2018 is wm/wp =

1.63. This target together with the normalization wp = 1 implies entry costs for both firm

types in steady state. The earnings share of managers wmhm

waha
is 31 percent on average. This

target pins down the production function elasticity parameter αm relative to αp.

Aggregate labor productivity is measured by the ratio between real U.S. GDP and average

weekly hours from the CES (1970-2018). All quarterly series are logged and HP-detrended

with λ = 1600. The cyclical components have standard deviations 1.68% (production workers),

1.17% (managers) and 0.96% (labor productivity). Given the calibrated cyclicality of wages

for both types of workers, the cyclicality of employment (relative to productivity) is used to

set the Frisch elasticities of labor supply for both worker types.

Four parameters of the model are calibrated internally to match further business-cycle

features. These are the cyclical variation of the labor productivity parameter z, the transition

rate between high and low labor productivity, and the cyclical variation of both entry costs

around their steady-state values. These are set to match (i) the standard deviation and annual

autocorrelation of real GDP (logged and HP-detrended, 1.9% and 0.6 resp.), (ii) the standard

deviation of the firm entry rate in the BDS (HP-detrended, 0.6%), (iii) the correlation between

the the cyclical components of the entry rate and GDP (0.43).

Intrafirm Bargaining in the Random Search Model of Section 3.2.1

This section derives the equilibrium wage with Stole-Zwiebel intrafirm bargaining for the model

in Section 3.2.1. It adapts the proof of Proposition 1 in Elsby and Michaels (2013) to the setup

of Section 3.2. (which includes quits, firm exit, aggregate risk and a different timing speci-

fication). As Elsby and Michaels (2013), start with the presumption that the wage function

w(`, x, z) is such that the firm’s flow profit is concave in ` and supermodular in (`, x). The

first of these features implies that the firm’s employment policy is characterized by first-order

conditions. In particular, the firm hires workers (i.e. ` > `−(1− s0)) if

f`(`, x, z)− w(`, x, z)− w`(`, x, z)`− κ0

q(θ(z))
+ β0D(`, x, z) = 0 ,

where

D(`, x, z) ≡ Ex,z
dv

d`
(`, x′, z′) .

The firm fires workers (` < `−(1− s0)) if

f`(`, x, z)− w(`, x, z)− w`(`, x, z)`+ β0D(`, x, z) = 0 .
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These two conditions determine employment levels for a hiring firm `h(x, z) and for a separating

firm `s(x, z) such that `h(.) < `s(.). That is, firms with employment `−(1− s0) below `h(x, z)

hire up to `h(x, z), firms with `−(1−s0) above `s(x, z) separate from `−(1−s0)−`s(x, z) workers,

and those in between choose ` = `−(1 − s0). Supermodularity of the profit function implies

that `s and `h are increasing functions of x: More productive firms choose larger employment.

This also implies that there are cutoff levels for productivity xs(`−, z) < xh(`−, z) such that

(i) firms with x < xs(`−, z) fire workers, (ii) firms with x > xh(`−, z) hire workers, and (iii)

firms with x ∈ [xs(`−, z), xh(`−, z)] remain passive. Define the separation rate for firm (`−, x)

in aggregate state z as s(`−, x, z) = s0 if x ≥ xs(`−, z) and s(`−, x, z) = `−−`s(x,z)
`−

otherwise.

Define the value of the marginal worker to a firm

J(`, x, z) ≡ f`(`, x, z)− w(`, x, z)− w`(`, x, z)`+ β0D(`, x, z) .

Optimal employment adjustment implies that

J(`, x, z) =

{
0 , ` = `s(x, z) ,
κ0

q(θ(z))
, ` = `h(x, z) .

(62)

Let U(z) denote the value of unemployment and let W (`, x, z) be the value of employment in

a firm of size `. Because W − U (J) increases (decreases) linearly in the bargained wage (see

below), Nash bargaining implies the sharing rule

(1− η) [W (`, x, z)− U(z)] = ηJ(`, x, z) , (63)

where η is the workers’ bargaining power parameter. The Bellman equation for an unemployed

worker is

U(z) = [1− p(θ(z))] [b+ βEzU(z′)] + p(θ(z))

∫
W (`h(x, z), x, z)dν(`−, x, z) , (64)

where

dν(`−, x, z) ≡ max[0, `h(x, z)− `−(1− s0)]

H(z, µ̃)
dµ̃(`−, x)

is the probability of finding a job at firm (`−, x) conditional on being hired where µ̃ is the firm

distribution after entry and

H(z, µ̃) ≡
∫

max[0, `h(x, z)− `−(1− s0)]dµ̃(`−, x)

is the aggregate number of hires. For any worker in a firm that is currently hiring, (62) and

(63) imply that

W (`h(x, z), x, z)− U(z) =
η

1− η
J(`h(x, z), x, z) =

η

1− η
κ0

q(θ(z))
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is independent of the type of the hiring firm (`−, x). Therefore, the integral term in (64)

simplifies to U(z) + η
1−η

κ0
q(θ(z))

so that it follows

U(z) = b+ βEzU(z′) +
p(θ(z))

1− p(θ(z))

η

1− η
κ0

q(θ(z))
. (65)

The Bellman equation for an employed worker is

W (`, x, z) = w(`, x, z) + βξEzU(z) + β(1− ξ)Ez

{ ∑
x′<xs(`,z′)

πxx′

[
s(`, x′, z′)U(z′)

+ (1− s(`, x′, z′))W (`s(x
′, z′), x′, z′)

]
+

∑
x′∈[xs(`,z′),xh(`,z′)]

πxx′

[
s0U(z′) + (1− s0)W (`(1− s0), x′, z′)

]
(66)

+
∑

x′>xh(`,z′)

πxx′

[
s0U(z′) + (1− s0)W (`h(x

′, z′), x′, z′)

]}
.

Because of (62) and (63)

W (`s(x
′, z′), x′, z′) = U(z′) if x′ < xs(`, z

′) ,

W (`(1− s0), x′, z′) = U(z′) +
η

1− η
J(`(1− s0), x′, z′) if xs(`, z

′) ≤ x′ ≤ xh(`, z
′) ,

W (`h(x
′, z′), x′, z′) = U(z′) +

η

1− η
κ0

q(θ(z′))
if x′ > xh(`, z

′) .

This can be substituted into the integral expressions of (66). Together with (65) follows that

(1− η) [W (`, x, z)− U(z)] = (1− η)(w(`, x, z)− b)− η p(θ(z))

1− p(θ(z))

κ0

q(θ(z))
(67)

+β0(1− s0)Ez
{ ∑
x′∈[xs(`,z′),xh(`,z′)]

πxx′ηJ(`(1− s0), x′, z′) +
∑

x′>xh(`,z′)

πxx′η
κ0

q(θ(z′))

}
.

On the other hand, the expected marginal profit in a firm with ` workers is

D(`, x, z) = Ez
∑
x′

πxx′
dv

d`
(`, x′, z′)

= Ez
{ ∑
x′∈[xs(`,z′),xh(`,z′)]

πxx′(1− s0)J(`(1− s0), x′, z′) +
∑

x′>xh(`,z′)

πxx′(1− s0)
κ0

q(θ(z′))

}
,

which uses the envelope condition for (22). Equating (1− η) [W (`, x, z)− U(z)] in (67) with

ηJ(`, x) = ηf`(`, x, z)− ηw(`, x, z)− ηw`(`, x, z)`+ ηβ0D(`, x, z)
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shows that all forward-looking terms cancel out so that it remains

(1− η)(w(`, x, z)− b)− η p(θ(z))

1− p(θ(z))

κ0

q(θ)
= ηf`(`, x, z)− ηw(`, x, z)− ηw`(`, x, z)` ,

which is the differential equation for w(`, x, z) reported in Section 3.2.1.
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