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Abstract 
 
Gerrymandering undermines representative democracy by creating many uncompetitive 
legislative districts, and generating the very real possibility that a party that wins a clear majority 
of the popular vote does not win a majority of districts. We present a new approach to the 
determination of electoral districts, taking a design perspective. Specifically, we develop a 
redistricting game between two parties who both seek an advantage in upcoming elections, and 
show that we can achieve two desirable properties: First, the overall election outcome corresponds 
to the popular vote. Second, most districts are competitive. 
JEL-Codes: D720, C720. 
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1 Introduction

State legislatures in the United States are generally elected from single-member districts.

The process by which the state is divided up into districts differs from state to state.

However, in most states, the main power lies with the state legislatures themselves that

pass by majority vote, after each decennial census, a new map of districts.

In this process, the state legislature (or, more precisely, the majority party that con-

trols the legislature) faces some legal constraints. For example, the population in each

district cannot deviate too much from the average district size; the districts have to be

contiguous; too-overtly racial gerrymandering may be banned by the Voting Rights Act.

However, even with those constraints, being able to decide on the allocation of voters to

districts is hugely advantageous to the party in control of the redistricting process.

For example, Republicans took over the Pennsylvania state legislature in the 2010

Republican wave election and used the opportunity to create a district map that is very

favorable to them. Even though Democratic candidates received 55 percent of the popu-

lar vote in the 2018 elections across all districts, versus 44.4% for Republican candidates,

Republicans still control 110 out of 203 seats in the Pennsylvania House of Representa-

tives. Similarly, 63 out of 99 representatives in the 2019/2020 Wisconsin State Assembly

(the lower chamber of the legislature) are Republicans, in spite of Democratic candidates

winning the corresponding state-wide aggregated vote 53% to 45%.

While, in the current decade, the gerrymandering advantage is mostly with Republi-

cans because they had a very strong showing in the 2010 election that gave them control

over the last redistricting process, in the 1990s and 2000s, Democrats managed, through

gerrymandering, to hold on to majorities in Southern state legislatures at a time when

these states were solidly Republican in all presidential elections.1

The resulting disconnect between the political preference of the majority of the elec-

torate and the election outcome is problematic for two reasons. First, and most obviously,

there is a representation problem: A voting system where a minority of voters consistently

gets to decide what the majority should do lacks democratic legitimacy.

Second, if most representatives are elected in districts that are not competitive in the

general election, they will have insufficient incentives for good behavior, both in terms

of valence provision and in terms of positioning.2 Regarding valence provision, think of

constituency service; an incumbent who is more or less guaranteed reelection is less likely

to feel compelled to provide adequate service for his constituents than one who feels that,

if enough voters are unhappy, his job is in danger.

Regarding positioning, the problem in predominantly “blue” or “red” districts is that

incumbents are more concerned with the primary election than with the general election

and are therefore more likely to cater to the median primary voter in their party than to

1At the federal level, McCarty et al. (2009) show that gerrymandering has increased the Republican

seat share in the House of Representatives.
2See, e.g., Callander (2005), Van Weelden (2015) and Krasa and Polborn (2018).
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the median voter in the district. And, if (what seems reasonable) voters have preferences

that depend both on local candidates positions and on those of the national or state

party, then primary voters of the party whose national position is sufficiently favored by

the district median voter do not have to nominate a candidate whose position appeals to

this district median voter in order to win — rather, a candidate who mostly appeals to

the party faithful is essentially unbeatable in the general election (Krasa and Polborn,

2018).

Because of these problems, there is substantial backlash against existing gerrymanders

and also the institutions that allow for it to happen. Existing gerrymanders (i.e., the

district assignments engineered by legislatures) can be challenged in courts, and some

state supreme courts have granted injunctive relief against maps considered to be so

unfair that they violate democratic principles in the respective state’s constitution.

However, in the 2004 Vieth v. Jubilirer decision, the US Supreme Court has refused to

rule against partisan gerrymanders, arguing that “partisan gerrymandering claims were

nonjusticiable because there was no discernible and manageable standard for adjudicating

political gerrymandering claims.”3

While one might suspect that justices’ partisan preferences add to their unwillingness

to interfere with the specific gerrymandering cases brought before them, it is genuinely

difficult to define general abstract rules that can be used to determine which district

maps should still be acceptable and which ones should be illegal. Measures of electoral

district compactness such as the Polsby–Popper 1991 Test or measures of “wasted votes”

such as the Efficiency Gap define “ideal” fair situations and provide some measure of how

far away a particular redistricting map is from that ideal, but are clearly conceptually

unsatisfying. For example, the plaintiffs in Gill v. Whitford argued that an Efficiency

Gap of more than 7% indicates illegal gerrymandering; but why not 5% or 10% as limit

instead?

In this article, we argue that, rather than coming up with an ideal measure of ger-

rymandering and a necessarily somewhat arbitrary boundary line between “still legal”

and “sufficiently outrageous to be illegal,” it is more fruitful to design a system of rules

for a redistricting process that leads to, in equilibrium, a map that has certain desirable

features.

This is similar in spirit to the classical problem of how to fairly divide a cake between

two children – we let one child cut the cake in two pieces and the other one choose which

one she wants to have. This process in which two self-interested agents participate is

more likely to lead to a fair outcome than the alternative of devising general rules and

constraints under which only one child chooses both their own and the other child’s piece.

Specifically, we provide the rules for a redistricting game in which both parties partic-

ipate and want to maximize their respective probability of winning a majority of seats in

3See https://en.wikipedia.org/wiki/Vieth_v._Jubelirer, and also the US Supreme Court Gill

v. Whiford and Benisek v. Lamone decisions in 2018, upholding Vieth.
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the legislature in a future election. Our primary objective is that the district map gener-

ated in equilibrium has the property that the party that wins the support of a majority

of the electorate in an election always also wins a majority of seats in the legislature.

In our setting, there are Democratic and Republican partisans (i.e., voters who can

be relied on voting for their party for sure), as well as independents. Some independents

vote Republican, and some Democrat, and the exact split depends on a random state

of the world. The redistricting game yields an order of districts according to the net

advantage of, say, the Democrats. Whatever the state of the world, the party that wins

the median district according to that order wins a majority of districts. Thus, in the

redistricting game, each party seeks to maximize the probability of winning the median

district.

We analyze a sequential districting system in which parties assign voters to 2N dis-

tricts over L rounds of play. Each party starts with a budget set that contains all voters

in the state (i.e., each voter is both an initial element of the Democratic and the Re-

publican budget set), and has to be completely distributed at the end. Thus, in each

round, each party assigns a fraction of 1/(2NL) of all voters to each district, and each

district eventually ends up with a fraction of 1/2N of all voters in the state. In addition

to the regular districts, there is also one at-large district, so that there are in total 2N+1

representatives in the legislature.

Our main result is that, if both parties play this assignment game, then the equi-

librium district map has the property that the party that is favored by a majority of

voters statewide always (i.e., in every state of the world) wins the majority of legislative

districts.4

While the game is too complex to derive the exact equilibrium play, we prove this result

by constructing, for each party, a strategy that allows it to win, against any opponent

strategy, a majority of districts whenever it wins the majority of the statewide votes.

The intuition for this result is as follows. Observe first that, for a party to win

a majority in the legislature more often than it wins the statewide popular vote, it is

necessary to introduce an asymmetry between the median and the average district.5 For

example, if Republicans want to win even in some cases in which they lose the popular

vote, they need a district map in which the median district has more Republican partisans

or fewer Democratic partisans than the statewide average.

In a system in which one party can unilaterally decide on district allocations (such as

the one currently in place in most states), such an asymmetry is easy to achieve. In con-

trast, the key to the fairness of our proposed sequential system is that, when Republicans

attempt to generate such an asymmetry in a round (essentially, by allocating dispropor-

tionately more Republican voters to slightly more than half of the districts, and more

4This result holds in the limit as the number of rounds L is sufficiently large.
5When we talk about the “median” district here, we think of districts ordered with respect to their

net partisan advantage.
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Democratic voters to the remainder of districts), Democrats can react by balancing, i.e.,

making the Republican-targeted districts more Democratic, and the remainder districts

more Republican. Thereby, we show, they can offset the asymmetry that Republicans

attempt to create.

The remainder of the paper is organized as follows. In Section 2, we comment on

related literature. A simple example is presented in Section 3. Section 4 introduces our

general framework, with the main results of the formal analysis in Section 4.2. Sections 5

and 6 contain discussions of extensions, robustness and conclusions. Proofs are collected

in the Appendix.

2 Related Literature

This paper uses ideas from mechanism and market design and applies them to gerryman-

dering. We share with the literature on mechanism design that we seek to implement

a particular outcome –namely, an assignment of voters to districts such that the party

that wins the popular vote always wins a majority of seats in the legislature,– and ask

whether we can find a game that generates this result as an equilibrium outcome.6 There

is a trivial “solution” of this problem, which is to have proportional representation of

parties based on a single national district. However, such a “solution” would eliminate

the connection between local constituencies and their representatives, whose legitimacy

is based on majority support in that district. So, we take as given that there have to be

many districts and that all voters have to be assigned to a new district map from time

to time. Working with these predetermined institutional constraints – rather than pro-

ceeding axiomatically on the basis of a game-theoretic solution concept – is a similarity

to many papers on market design.7

The question how to organize competition for a market, for example in natural mo-

nopolies, is a central theme in market design, see e.g. Iossa et al. (2019). In this context,

the concern is to benefit from scale economies while limiting the monopolists’s abuse of

market power. Limiting power abuse in the design of electoral districts is a different

application and requires very different modeling choices. Still, the overarching question

is the same: How to organize competition for electoral districts at an ex ante stage, so as

to ensure that competition, when it takes place, yields desirable outcomes ex post.

The theory of mechanism design and implementation theory is multifaceted.8 We in-

6William Vickrey emphasized the need for “an automatic and impersonal procedure for carrying

out a redistricting” already in the early in the 1960s, see Vickrey (1961). He did not approach this

challenge from a mechanism design perspective, though. Moreover, the class of mechanisms that he

helped to develop, the well-known Vickrey-Clarke-Groves (VCG) mechanisms, align private interests

with an objective of surplus-maximization. The mechanism developed in this paper focuses on a different

alignment, namely, the alignment of political party incentives with the legitimacy of an election outcome.
7See Roth (2002) for an outline of the market design agenda.
8For textbooks treatments of the mechanism design problem, see e.g. Mas-Colell et al. (1995) or
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sist on finding a game so that every equilibrium implements the popular vote, as opposed

to the more modest objective of showing that there is some game with some equilibrium

that implements the popular vote, see Jackson (2001) for a discussion. We also consider

a game with symmetric rather than asymmetric information and use the solution con-

cept of a subgame perfect equilibrium, see e.g. Moore and Repullo (1988) for a seminal

reference.

Our paper develops a notion of implementation by means of a dynamic Colonel Blotto

game (for applications of static divide-the-dollar or Colonel Blotto games, see, for in-

stance, Myerson (1993), Lizzeri and Persico (2001, 2005), Laslier and Picard (2002),

Konrad (2009) and Kovenock and Roberson (2020)). To the best of our knowledge, using

a dynamic version of this class of games is novel in the literature on mechanism design

and implementation theory.

Previous theoretical literature on gerrymandering has analyzed the decision problem

of the party that happens to be in power when redistricting is due. We depart from this

perspective and, instead, propose a system in which district boundaries are determined

as the outcome of a game that is played by two competing parties. This game has

some similarities with the divide-the-dollar game, but an important difference is that our

system does not give rise to Condorcet cycles and mixed strategy equilibria. Instead,

it involves a sequential mechanism that implements the popular vote as a pure strategy

equilibrium.9 In the following, we discuss the connection to the previous literature on

gerrymandering in more detail. Further remarks on the divide-the-dollar game can be

found in Section 5.

Coate and Knight (2007) define a district map that is, in a utilitarian sense, opti-

mal, and provide conditions under which the optimum can be reached as an outcome of

gerrymandering. The main differences to our approach is that we focus on a different

objective (implementing a majority for the popular vote winner), and that we construct

a game that achieves this objective as an equilibrium outcome. Most of the technical

aspects of our settings are similar: There is an exogenous number of districts; the only

constraint imposed on gerrymanders is that all districts have to contain the same num-

ber of voters; and the electorate is composed of partisan and independent voters, with

uncertainty about election outcomes resulting from aggregate shocks to the behavior of

independents.

Friedman and Holden (2008) and to Gul and Pesendorfer (2010) both focus on (self-

ishly) optimal gerrymandering strategies in a setting in which one party assigns voters to

districts in order to maximize its advantage in future elections. In Friedman and Holden

Börgers et al. (2015).
9Groseclose and Snyder (1996) study coalition formation within a legislature on the assumption that

there are two competing vote-buyers. While they also look at a sequential mechanism, their focus is

positive rather than normative in that they seek an explanation for the frequent occurrence of superma-

jorities – as opposed to minimal winning coalitions. The design of sequential mechanisms is also a theme

in auction theory, see e.g. Benôıt and Krishna (2001).
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(2008), the incumbent party observes noisy signals of the voters’ party preferences and

thus can order voters according to the probability that they will support it. The pa-

per investigates whether an optimal gerrymander involves “packing” (i.e., concentrating

likely opponents in few districts) and ”cracking” (distribute one’s most likely supporters

evenly over the remaining majority of districts). 10 While there is a difference in focus,

a similarity between Friedman and Holden (2008) and our work is that both provide a

fully microfounded analysis of the assignment of voters to districts.

Gul and Pesendorfer (2010) consider a strategic game of gerrymandering, but assume

that each party has an own territory that it controls. Thus, in equilibrium, the districts

drawn in the territory of party 1 are a best response to the districts drawn in the territory

of party 2 and vice versa. Again, a key question is to what extent there is cracking and

packing in equilibrium. In our setting, parties also have incentives for cracking and

packing. However, in equilibrium, parties neutralize each other in their attempts to

create districts in which they are favored to win, and thus, each party wins if and only if

it wins the popular vote.

3 A simple example

Before we proceed to the general model, it is helpful to present a simplified example that

encompasses the main ideas. Our inspiration comes, to some extent, from mechanisms

for the fair division of a private good. For the cake-cutting problem in the introduction,

a fair outcome can be decentralized by means of a mechanism so that one party can take

advantage of any bias created by the other party. A mechanism for the determination of

districts, however, has to deal with two additional complications: First, only one party

can win a majority, i.e. there is no perfect divisibility. Second, the winning party should

be the one with more support in the electorate at large.

A related problem arises in competitive chess when the winner of a tournament needs

to be found via a decisive “Armageddon” game that cannot end in a draw. In one

version, White has to win (i.e., a draw is equivalent to a win for Black). To compensate

for this big advantage, both players submit a “bid” for the right to play as Black : While

White has a fixed time budget for the game (e.g., 30 minutes), each player submits a bid

indicating the lowest time budget that they would accept to play Black, and the lower

bidder gets to play Black. Thus, as in the districting problem, ultimately a winning

party needs to be found, and it is desirable that the stronger party wins. Moreover,

the competing parties jointly determine the rules of the game. The following example

illustrates how we bring these ideas to gerrymandering.

Suppose there are two parties, D and R, and three districts. In the electorate at large,

there are 600 independent voters, 300 voters who always vote for party R (R partisans)

and 300 voters who always vote for party D (D partisans). There is a state of the world

10This terminology goes back to Owen and Grofman (1988).
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ω ∈ [−1, 1] that determines the Republican margin of victory in the pool of independent

voters. For instance, ω = 1 indicates that all independents vote for party R, ω = 1
2

indicates that 75 percent of the independents vote for R and 25 percent vote for D, and

so on. Consequently, party R wins the popular vote when ω > 0 and party D wins the

popular vote when ω < 0. We take ω to be the realization of a random variable.

We now look at the following game of district determination: In each district, there

are 200 independent voters, and there is nothing the parties can do about this. (This is

relaxed in the more general analysis below.) The 600 partisan voters, by contrast, need to

be allocated, and moreover, districts have to be equal-sized. Thus, every district receives

200 partisan voters and what needs to be determined is the mix between R partisans and

D partisans. After districts are determined, an election takes place, and whoever wins at

least two districts wins the election.

An ideal gerrymander for a party is the one that maximizes its probability of winning

the election. For instance, the ideal gerrymander for party R, assigns 200 D partisans

to one district. The two remaining districts are each assigned 50 D partisans and 150

R partisans. Consequently, R wins the election whenever ω > −1
2
. Thus, whenever ω

lies between −1
2

and 0, party D wins the popular vote, but party R wins a majority of

districts.

The following mechanism alleviates this problem: Each party comes up with an own

assignment of partisan voters to districts. This is done sequentially: First, party D

presents its assignment. Party R observes it and then proposes its assignment. Thus,

each voter is assigned twice, once by each party. In total, each district now has 400

independent voters, and is assigned a total of 400 partisans by the two parties.11 Suppose

party D assigns 100 D partisans and 100 R partisans to each district (one can show that

Party D cannot do better). The best response of party R then is, again, to have 200

D partisans in one district, and two further districts with 50 D partisans and 150 R

partisans each. In this case, party R wins the election whenever ω > −1
4
. Compared to

the gerrymander in the previous paragraph, there are now more states in which the party

that wins the popular vote is also the party that wins the election. However, there are

still states of the world where this is not the case.

As we now argue, playing this game over many rounds gets us closer to an implemen-

tation of the popular vote. Specifically, suppose that, in every round, each party assigns

two voters to every district, with D moving first in every round. Thus, in total, six voters

are assigned by each party in every round. We claim that, in equilibrium, party D wins

the election whenever ω < 0 and party R wins the election whenever ω > 0. The proof of

this claim is constructive: We first argue that party R has a strategy that ensures win-

ning the election whenever ω > 0, i.e. in these states party R wins whatever the strategy

11For now, we stick to the assumption that independent voters are exogenously assigned and distributed

evenly over districts. With one assignment per party, there are 400 independent voters in each district,

200 per party.
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played by party D. Analogously, we show that party D can ensure to win almost surely

whenever ω < 0, provided that the number of rounds is sufficiently large.

Consider the following strategy for party R: In each round, simply “neutralize” party

D’s choice. For each district, assign an R partisan for every D partisan assigned by party

D in the previous round, and assign a D partisan for every R partisan. Clearly, this

strategy is feasible and ensures that parties D and R have the same number of partisan

supporters in each district. Consequently, when R plays this strategy, R can ensure to

win whenever ω > 0.

Party D has to move first in every round and therefore cannot follow a strategy that

achieves an exact neutralization of R’s moves. However, when there are many rounds,

the discrepancy becomes small. To see this, consider the following strategy for party D:

In the first round, assign one D partisan and one R partisan to every district. From the

second round on, neutralize R’s move in the previous round, i.e. match every R partisan

assigned by party R with a D partisan and every D partisan with an R partisan. While

neutralization is not feasible in the last round (because D does not get to respond to

R’s last move), up to that point, districts remain balanced. With the last move, R may

be able to gain an advantage, but it is easy to see that the size of this advantage in the

median district is at most 1. Thus, when the number of rounds is large, party D gets close

to an exact neutralization, and hence can ensure to win the election whenever ω < 0.

Note that we do not claim that these strategies are optimal for the parties in every

subgame, only that they are feasible and thus provide a lower payoff bound. In fact, it is

quite clear that there are subgames in which R’s strategy is not optimal. For example, if,

after D’s last move in the, say, 100th round, the net R-advantage by district is (−2, 0, 0),

then, rather than to equalize the forces in the first district, it is better for party R to use

the final move to create an advantage in battles 2 and 3.

The general lessons from this stylized example are as follows: If one party gets to

allocate all voters, it enjoys a large advantage in terms of winning probability. This is

true, albeit to a lesser extent, if we impose additional constraints on what allocations

can be chosen. Additional constraints (e.g., districts have to be “contiguous,” i.e., only

certain voter combinations are feasible assignments) may limit the advantage of the party

that gets to decide on the voter allocation, but will generally not eliminate it completely.

Designing a game in which both players participate in drawing up the allocation of voters

to districts has the potential to create a completely fair outcome. Additional constraints

are not needed to obtain the desirable outcome. They may actually be unhelpful, as they

not only constrain the party presenting a first draw, but also constrain the other party’

response.
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4 A General Framework

We now introduce our general framework. The previous section provides a special case

in which a biased election outcome due to strategic gerrymandering can be avoided.

The purpose of the more general framework introduced here is to see whether these

insights extend to settings so that the two parties may have different numbers of partisan

supporters, an endogenous assignment of independent voters and an arbitrary number of

districts.

There are 2N districts, indexed by k ∈ {1, 2, . . . , 2N} and an at-large district. The

electorate consists of voters who always vote Republican (R partisans), voters who always

vote Democrat (D partisans) and independent voters. The mass of Republican partisans,

Democrat partisans and independent voters in the electorate at large is, respectively,

given by

bR = 2N βR , bD = 2N βD , bI = 2N βI , where βR + βD + βI = 1 .

We assume, without loss of generality, that βR ≤ βD. We also assume βD ≤ 1
2
. Absent

this assumption, there would be no uncertainty about which party wins the popular vote.

Let pR be the probability that an independent votes for the Republicans and pD

the probability that she votes for the Democrats. We denote the difference of these

probabilities by ω = pR − pD. Thus, ω ∈ Ω = [−1, 1]. With an appeal to a law of large

numbers for large economies, we interpret pR and pD also as the fraction of independents

voting, respectively, for Republicans and Democrats. Consequently, ω is the Republican’s

margin of victory in the pool of independent voters. In the following, ω is taken to be the

realization of a random variable with cdf denoted by F . We assume F to be continuous.

Popular vote. We denote the set of states in which party D or party R wins the

popular vote, respectively, by

ΩD :=

{
ω : ω <

βD − βR
βI

}
and ΩR :=

{
ω : ω >

βD − βR
βI

}
.

The probability that party D wins the popular vote is denoted by

π∗D = pr(ω ∈ ΩD) = F

(
βD − βR

βI

)
.

District outcomes. As we describe in more detail below, we consider games so that

voters are allocated to districts over various rounds. In such a process, any one party P ∈
{D,R} sends voters to any one district k. There is then a particular mix of Republican

partisans, Democratic partisans and independent voters in that mass of voters. More

formally, a strategy for party D is a collection σD = (σDk)
2N
k=1, and a strategy for party

R is a collection σR = (σRk)
2N
k=1. In this collection,

σDk = (σDDk, σ
R
DK , σ

I
Dk) with σDDk + σRDk + σIDk = 1 ,
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is the proposal of party D for district k. Thus, party D assigns a unit mass of voters to

any one district k, and the shares of D partisans, R partisans and independent voters

are, respectively, denoted by σDDk, σ
R
Dk and σIDk. We use analogous notation for party R.

Party D wins district k if

σDDk + σDRk ≥ σRDk + σRRk + ω
(
σIDk + σIRk

)
, (1)

or, equivalently, if

σDDk + σDRk −
(
σRDk + σRRk

)
σIDk + σIRk

≥ ω . (2)

Hence, if F is the cdf of ω, the probability that party D wins district k is

πDk = F

(
σDDk + σDRk −

(
σRDk + σRRk

)
σIDk + σIRk

)
.

and the probability that party R wins district k is πRk = 1−πDk. In the following, when

we seek to emphasize the dependence of winning probabilities on the parties’ strategies,

we write πDk(σD, σR).

We say that district k is a replica of the at-large district if πDk = π∗D.12 If all districts

are replicas of the at-large-district, then the popular vote determines outcomes both at the

local district level and at the aggregate state or national level. This avoids constellations

so that one party wins the popular vote and the other party wins a majority of seats. It

also creates healthy competition at the district-level so that no representative can take

his reelection for granted. In the following, Theorem 2 will show that, for N large we can

come very close to the ideal of all districts replicating the at-large-district.13

Winning the election. A party wins the election if it wins a majority of the seats.

Recall that there 2N districts and an at-large-district. Thus, there are 2N + 1 seats in

total and winning a majority requires to win at least N + 1 of them. We denote by πVD,

12Note that “replica” here does not require that all three type proportions are the same in district k

as in the electorate as a whole (though that would certainly be sufficient), but rather that the critical

state

ω̂k =
σDDk + σDRk −

(
σRDk + σRRk

)
σIDk + σIRk

is the same in district k and in the electorate as a whole. For example, if the type distribution in the

electorate is (0.4, 0.4, 0.2) (for D-partisans, R-partisans, independents), then the critical state is the same

in a district where the type distribution is (0.3, 0.3, 0.4).
13Katz et al. (2020) define various measures of fairness in redistricting, using the seat-vote curve

S(V ) that maps the Democrats’ overall vote share V into the proportion of seats that they win in the

legislature. For example, symmetry (i.e., S(V ) = 1 − S(1 − V )) requires that the Democrats’ and the

Republicans’ seat share as a function of their vote share is the same.

In their language, the objective that the popular vote winner receives a majoritycan be written as

S(V ) < 0.5 if V < 0.5 and S(V ) > 0.5 if V > 0.5.

10



the probability of such a V ictory for party D. We define πVR analogously. Our focus is

on whether we can ensure an alignment of the party that wins a majority of seats with

the party that wins the popular vote.

For a formal treatment of this question the following notation proves helpful. Given a

pair of strategies (σD, σR), we denote the probability of a victory for party R, conditional

on party R winning the popular vote, by πVR(σD, σR | ω ∈ ΩR). A system that guarantees

the “correct” outcome at the aggregate level has

πVR(σD, σR | ω ∈ ΩR) = 1 and πVD(σD, σR | ω ∈ ΩD) = 1 ,

for every pair of equilibrium strategies (σD, σR).

Our main result in Theorem 1 will show that we can indeed achieve this outcome

through a sequential mechanism in which parties assign voters to districts over many

rounds, alternating which party moves first and which one moves second. We now turn

to formal description of this sequential protocol.

4.1 The protocol

Each party assigns every voter to one of the districts. As a consequence, any one voter

is assigned twice, once by D and once by R. If a voter is assigned to district k by party

D and to some other district k′ 6= k by party R, he simply casts one vote in each district

election. If k′ = k (i.e., both parties assign the voter to the same district), then his vote

is counted twice in that election.

Sequence of moves. Voters are assigned to districts over L rounds. In each round l,

any party P specifies σPl = (σDkPl, σ
R
kPl, σ

I
kP l)

2N
k=1 so that

σDkPl + σRkPl + σIkP l =
1

L
.

In words: Party P assigns a mass of 1
L

voters to any one district k. The percentage

shares of D partisans, R partisans and independents in that mass of voters are then,

respectively, given by

βDkPl := L σDkPl , βRkPl := L σRkPl and βIkP l := L σIkP l .

For concreteness, we assume that, for l odd, R moves first and D second. For l even, D

moves first and R second. Thus, the second-mover advantage, if any, alternates. D has

this advantage in odd rounds and R has it in even rounds.

Feasibility. Let the total number of D partisans assigned by party P to district k over

L rounds be denoted

σDPk :=
L∑
l=1

σDPkl.

11



Analogously, let

σRPk :=
L∑
l=1

σRPkl and σIPk :=
L∑
l=1

σIPkl .

For any party P , (σPk)
2N
k=1 has to be consistent with the distribution of voters in the

electorate at large, i.e.,

1

2N

2N∑
k=1

σDPk = βD ,
1

2N

2N∑
k=1

σRPk = βR , and
1

2N

2N∑
k=1

σIPk = βI .

Winning probabilities. Winning probabilities for specific districts or for a majority

of seats depend on the number of rounds L. We use superscript L to indicate this

dependence. For instance, we write πLDk for the probability that party D wins district k

when there are L rounds of play, or πV LR for the probability that party R wins a majority

of seats when there are L rounds of play.

4.2 The main result

Our main result, Theorem 1, shows that, with a sufficiently large number of rounds, every

equilibrium is such that the “correct” party wins, namely the one that wins the popular

vote.

Theorem 1 For all ε > 0, there is L̂, so that, for L ≥ L̂, in every equilibrium (σD, σR),

πV LR (σD, σR | ω ∈ ΩR) ≥ 1− ε and πV LD (σD, σR | ω ∈ ΩD) ≥ 1− ε .

Theorem 2 complements this finding: It shows that it is possible to achieve this outcome

with only small distortions at the district level. With many districts, i.e. for N → ∞,

there is an equilibrium, so that almost every district is a replica of the at-large-district.

Theorem 2 For all ε > 0 and all δ > 0, there is L̂ so that for L ≥ L̂, there exists a pair

of strategies (σD, σR), so that

πV LR (σD, σR | ω ∈ ΩR) ≥ 1− ε and πV LD (σD, σR | ω ∈ ΩD) ≥ 1− ε ,

and

#

{
k : | σ

D
Dk + σDRk − (σRDk + σRRk)

σIDk + σIRk
− βD − βR

βI
| ≥ δ

}
1

2N
≤ 2

N
.

Formal proofs of Theorems 1 and 2 are in the Appendix. Note that Theorems 1 is a

statement about all equilibrium strategies, whereas Theorem 2 is a statement about one

pair of strategies that approximates a particular equilibrium for L large.

The key insights that carry these proofs are Propositions 1, 2 and 3 below. Propo-

sition 1 deals with the symmetric case of parties that have equal numbers of partisan

12



supporters, βD = βR. As we will explain, in this case, each party can neutralize any

attempt of its competitor to create districts that are more favorable than the average dis-

trict. Propositions 2 and 3 then deal with the asymmetric case, βD > βR. Proposition 2

shows that party D can ensure to win whenever ω ∈ ΩD simply by spreading its partisans

supporters evenly over at least fifty percent of the districts, i.e. by following a strategy

that is referred to as cracking in the literature. Proposition 3 deals with the challenge

for party R to counter this strategy of party D in such a way that it wins a majority

whenever ω ∈ ΩR. We will show that party R can achieve this outcome by a strategy

of spreading D partisans over less than fifty per cent of the districts. Such a strategy is

referred to as packing.

4.3 Symmetry

The following Proposition 1 deals with the case that both parties have the same number

of committed supporters. In this case, both players can achieve (in the limit of L→∞)

that each district looks like the electorate at large and therefore is won by D if ω ∈ ΩD

and by R if ω ∈ ΩR.

Proposition 1 Suppose that βD = βR. For every ε > 0, there is L̂ so that for L ≥ L̂,

a) there is σR so that, for every σD, | σ
D
Dk+σD

Rk−(σR
Dk+σR

Rk)

σI
Dk+σI

Rk
− βD−βR

βI
| ≤ ε in every

district k.

b) there is σD so that, for every σR, | σ
D
Dk+σD

Rk−(σR
Dk+σR

Rk)

σI
Dk+σI

Rk
− βD−βR

βI
| ≤ ε in every

district k.

A proof of the Proposition can be found in the Appendix. The main idea is to specify a

strategy, say, for party R that neutralizes any attempt of party D to engage in cracking

or packing. To achieve this, in any round l, and for any district k, R assigns a number of

R partisans that matches the number of D partisans assigned by party D in the previous

round. Likewise, R assigns a number of D partisans equal to the number of R partisans

assigned previously by party D. Consequently, in any district k, σDDk+σDRk−
(
σRDk + σRRk

)
is zero, and hence party D wins the district with probability

F

(
σDDk + σDRk −

(
σRDk + σRRk

)
σIDk + σIRk

)
= F (0) = F

(
βD − βR

βI

)
= π∗D .

The formal proof consists in showing that, for L large, such moves – or close approxi-

mations of them – are feasible. If party R follows such a strategy, then, for L sufficiently

large, party R can turn every district into a copy of the at-large-district, and therefore

win them whenever it wins the majority of the popular vote. It is worth emphasizing

that this neutralizing strategy of party R works robustly, i.e. it does not depend on the

behavior of party D.

13



In turn, party D also has such a neutralizing strategy at its disposal, i.e., can also

turn each district into an approximate copy of the at-large district, and therefore also

can ensure that it wins the districts whenever it wins the at-large district.

Proposition 1 implies, in particular, that for sufficiently large L, party D has a strategy

so that it wins a majority of districts whenever ω ∈ ΩD. (In fact, it wins all districts in

these states.) By the same logic, party R has a strategy so that it wins a majority of

districts whenever ω ∈ ΩR. Therefore, in every equilibrium, it has to be the case that

party D wins whenever ω ∈ ΩD and that party R wins whenever ω ∈ ΩR: If party D

won with a probability strictly larger than π∗D, party R could profitably deviate to the

strategy in part a) of Proposition 1. If party D won with a probability strictly below π∗D,

party D could profitably deviate to the strategy in part b) of Proposition 1.14

An illustration. Proposition 1 uses the properties of neutralizing strategies to bound

equilibrium payoffs, but does not provide an explicit characterization of equilibrium

strategies. In the limit case, as L → ∞, the neutralizing strategy yields equilibrium

payoffs and can therefore be regarded as an “equilibrium in the limit”. For finite L, neu-

tralizing moves and best responses do not usually coincide. We illustrate this by means

of the following example: Suppose that βD = βR = 1
3

and that there are 10 districts, so

that a legislative majority requires winning (at least) six districts.

First observe that, if party R was in charge of assigning voters to districts, without

being contested by party D, it would spreads its own partisan supporters evenly over six

districts and pack the Democratic partisans in a complementary set of four districts, as

illustrated in Figure 1.

Figure 2 below illustrates the neutralizing response of party D, and Figure 3 illustrates

a best response, under the assumption that L = 1, so that the game ends after party D’s

move. The neutralizing strategy has every D partisan matched with an R partisan and

every R partisan matched with a D partisan. Under symmetry, there is also a D partisan

for every R partisan in the electorate at large. As a consequence, the parties’ winning

probabilities at the district level are equal to their probabilities of winning the popular

vote.

The best response, in the subgame generated by R’s move depicted in Figure 1, differs

from the neutralizing response in that it takes advantage of the fact that D partisans have

already been packed in four districts. Party D then tries to secure two further districts

and, once they have each been assigned a unit mass of D partisans (the maximum possible

amount), uses the remaining D partisans to increase its winning probability in the four

districts that already lean towards it. Party D finally disposes of the R partisans in

its budget set so that they do not interfere with the winning probability in those six D

14Strictly speaking, the preceding argument shows that, in any equilibrium, D’s winning probability

must be Pr(ΩD). The conclusion that D must win in all states ω ∈ ΩD, and lose whenever ω ∈ ΩR

follows from the fact that the votes for either party, are, in each district, monotone in ω.
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σRk

2

1

σDk

2

1

k1 2 3 4 5 6 7 8 9 10

Figure 1: 10 Districts, βD = βR = 1
3
. Party R’s optimal assignment of a unit mass of

voters when it seeks to maximize the probability of winning a majority of 6 districts –

and when party R’s assignment is not contested by an assignment of party D. Party

R then wins a majority of districts with probability F (1.25) > F (0), its probability of

winning the popular vote.

leaning districts; i.e. R partisans are assigned where party D’s chances of winning are

lowest. Consequently, party R wins a majority of six seats only with probability F (−1).

4.4 Asymmetry

Proposition 1 cannot be adapted to the asymmetric case βR < βD. For concreteness,

suppose that βD > 0 and βR = 0: party D has a significant number of loyal voters,

whereas party R gets votes only from independent voters, if at all. Neutralizing strategies

are not feasible in this case. For instance, Party D can no longer match the number of

democratic partisans assigned to some district k by party R with an equal number of

republican partisans.

In the following, we will first focus on the case βD > 0 and βR = 0, and subsequently

extend the analysis to constellations with 0 < βR < βD. We show that either party can

ensure to win a majority of districts with a probability at least as large as its probability

of winning the popular vote. In this sense, at the aggregate level, the “correct” outcome

prevails. However, we can no longer ensure that all districts are turned into close replicas

of the electorate at large. There may be some safe districts for party D. That said, for N

and L large, we will show that there is an equilibrium in which the share of such districts

15
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Figure 2: 10 Districts, βD = βR = 1
3
. Party R’s neutralizing response to party D’s

assignment in Figure 1.

is small.

Recall that, due to the at-large-district, if party D wins N districts and the popular

vote it wins a strict majority of seats. The following Proposition shows that party D can

ensure to win N districts in all states of the world ω in which it wins the popular vote.

Put differently, party D can ensure to win the overall election in all states of the world

where it “should” win.

Proposition 2 Suppose that βR = 0 and βD > 0. For every L, there is σD so that, for

every σR, πV LD (σD, σR | ω ∈ ΩD) = 1.

The Proposition follows from a simple argument. Suppose that party D assigns, over the

course of the whole game, a mass of 2βD partisan D voters to half of the districts, say,

to any district with an index k larger or equal to N + 1.15 Then, whatever, the strategy

of party R, the percentage share of partisan D voters in those district is bounded from

below by βD. Equivalently, all such districts are won whenever the state ω is such that

βD ≥ ω βI . Hence, ω ∈ ΩD implies that party D wins at least fifty percent of all districts.

The at-large district then ensures a majority of seats for party D. Also note that this

conclusion does not depend on the assumption that the number of rounds L is large.

For party R it is more challenging to ensure a victory whenever it wins the popular

vote. When party R was alone in determining districts, it could simply pack all partisan

15In the literature such a strategy is also refereed to as “cracking”.
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Figure 3: 10 Districts, βD = βR = 1
3
. Party D’s best response to party R’s assignment

in Figure 1.

D voters in a small subset of districts, and, as a consequence, have a large number of

districts with only independent voters. It would then win all of the latter whenever

independents voters lean towards party R, i.e. whenever ω > 0. Thus, party R would

win too often, i.e. it would win in states ω in which it does not win the popular vote.

The presence of party D upsets this strategic logic. Party D also has an incentive to

concentrate partisan D voters, but would spread them over a larger number of districts.

By Proposition 2, when they are spread over N districts, party D wins a majority of seats

whenever it wins the popular vote. Thus, if party R engaged in a packing of partisan D

voters in a small number of districts, party D would simply say “thank you” and add

further districts that are dominated by D partisans to those that have been generated by

party R.

The following Proposition shows that, for L large, party R can overcome these diffi-

culties. More precisely, it can ensure to win a majority of districts whenever it wins the

popular vote.

Proposition 3 Suppose that βR = 0 and βD > 0. For every ε > 0, there is L̂ so that

L ≥ L̂ implies the existence of a strategy σR so that, for all σD,

πV LR (σD, σR | ω ∈ ΩR) ≥ 1− ε .

A detailed proof can be found in the Appendix. Its logic is as follows: When party R

wants to secure a majority whenever ω ∈ ΩR, it needs to ensure that there are at least N
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districts so that, after L rounds of play, the percentage share of partisan D voters is below

βD. Thus, the objective of party R is to minimize the share of D partisans in the district

with rank N , where the ranking is such that lower ranked districts have a lower share of

D partisans. To show that party R can indeed enforce an outcome where this share of

D partisans remains below βD, we assume that party D’s objective is to maximize the

share of D partisans in the district with rank N . When R’s strategy succeeds under this

assumption, then it succeeds against any strategy of party D.16

Since party D seeks to maximize the share of D partisans in that district, it will not

waste partisan D voters in lower ranked ones. Thus, party D concentrates partisan D

voters in the N + 1 top-ranked districts, i.e. it engages in cracking. More specifically,

whenever it is called upon to play in some round l, and plans to assign a certain mass of

D partisans, the following pecking order is optimal: Assign D voters to the district with

rank N until its mass of D partisans is equal to the one in the district with rank N + 1.

From that point on, keep these two districts at a joint level and add further D partisans

until this joint level equals the one in the district with rank N + 2. From then on, the

districts with ranks N , N + 1 and N + 2 are raised to the level of district N + 3 and so

on, until no further D partisans are left, see Figures 4 and 5 for an illustration.

σDk

k1 2 3 4 5 6 7 8 9 10

Figure 4: 10 Districts, 0 = βR < βD. In round l, party D inherits, for every district,

a stock of D partisans, illustrated in gray. It then adds further D partisans in round

l, illustrated in blue. This figure is drawn under the assumption that party D assigns

only few partisan D voters in round l, so that, when assigning them optimally, its budget

allows to raise the level of partisan D voters only in districts 5,6, and 7.

What is an optimal response of party R? Its problem is to get rid of a total mass of

2NβD partisan D voters in such a way that they contribute as little as possible to the

mass of partisan D voters in the district with rank N . What is clearly harmless is to

add partisan D voters to districts with ranks below N − 1, provided they are not yet an

16We show in the Appendix, that we can assume that the ranking of districts remains unchanged

over the whole course of the game. Any outcome that a party can achieve in some round l with a rank

reversing voter assignment can also be achieved without a rank reversal. Thus, there is no ambiguity

when we simply refer to the district with rank N .
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σDk

k1 2 3 4 5 6 7 8 9 10

Figure 5: 10 Districts, 0 = βR < βD. In round l, party D inherits, for every district,

a stock of D partisans, illustrated in gray. It then adds further D partisans in round l,

illustrated in blue. This figure is drawn under the assumption that party D assigns many

partisan D voters in round l, so that, when assigning them optimally, its budget allows

to raise the level of partisan D voters in all districts with a rank weakly larger than 5.

equal level with the district that has rank N .17 Thus, when party R plans to assign some

mass of partisan D voters in some round, it will first fill the bottom N − 1 districts up

to the point where a joint level of partisan D voters is reached in the bottom N districts.

This ensures a minimal level of partisan D voters in all districts. See Figure 6 for an

illustration under the assumption that the mass of partisan D voters assigned in round

l does not suffice to bring the bottom 4 districts to the level of district 5. Figure 7 is

based on the alternative assumption that the mass exceeds what would be needed for

that purpose.

σDk

k1 2 3 4 5 6 7 8 9 10

Figure 6: 10 Districts, 0 = βR < βD. In round l, party R inherits, for every district, a

stock of D partisans, illustrated in gray. It then adds further D partisans in round l,

illustrated in red. This figure is drawn under the assumption that party R assigns few

partisan D voters in round l, so that, when assigning them optimally, the level in the

districts with a rank below 5 cannot be raised to the level in the district with rank 5.

17In the literature this is refereed to as “packing”.
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Figure 7: 10 Districts, 0 = βR < βD. In round l, party R inherits, for every district, a

stock of D partisans, illustrated in gray. It then adds further D partisans in round l,

illustrated in red. This figure is drawn under the assumption that party R assigns many

partisan D voters in round l, so that, when assigning them optimally, the level in the

districts with a rank below 5 is raised to the level in the district with rank 5. Additional

D partisans are then assigned to the top-ranked districts.

Figure 7 illustrates the following logic: When further partisan D voters need to be

assigned after a common level in the bottom N districts has been achieved, party R

needs to continue with districts in the upper half. Here the logic is to assign partisan

D voters where they are least likely to help party D in its attempts to raise the level in

the district with rank N . Thus, party R begins with the top ranked district and there

assigns as many partisan D voters as possible. If the capacity constraint of 1
L

for that

district and that round is reached, party R will start to fill the district with the second

highest rank, and so on. Thus, there is a concentration on the top-ranked districts when

party R assigns D partisans to districts in the upper half of the rank distribution.

Using a more colorful language, we also refer to R’s strategy for the bottom half as a

water-level-strategy. Given a sufficient volume of partisan D voters, the level in the basin

consisting of the bottom N − 1 districts is raised to the level prevailing in the district

with rank N . We will refer to R’s strategy for the upper half as building-towers-strategy.

A tower is a district in the upper half with a level of partisan D voters that sticks out.

If additional D partisans need to be assigned, party R will assign them with priority to

the district that sticks out most, i.e. it will make the highest tower even higher. It will

then move to the second highest tower, and so on.

For a complete equilibrium characterization, we would also need to describe how many

D partisans are assigned by whom and when, i.e. we would need to characterize, for any

party P and any round l the equilibrium value of βDPl, defined as the percentage share of

D partisans in the total mass of 2N
L

voters assigned by party P in round l. We do not

provide such a complete equilibrium characterization, but show that party R can choose

the sequence {βDPl}Ll=1 so that the share of partisan D voters in the district with rank N
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remains below βD. To this end, assume that party R chooses βDR1 = 0, and for any l ≥ 2,

βDRl = βDDl−1. Thus, party R waits until party D starts to assign D partisans and then

assigns in, any round, as many D partisans as party D assigned in the round before.

Given the partial characterization of equilibrium behavior above, this implies that,

after any move of party R, the bottom 2N − 2 districts have the same level of partisan

D voters, while there are some further partisan D voters in the top ranked district,

and, possibly, also in the district with the second highest rank. To see this, suppose

for concreteness, that party D chooses βDD1 > 0. Then, it will spread a mass of βDD1
2N
L

partisan D voters over evenly over N + 1 districts. In round 2, party R will use the mass

of voters previously assigned to N − 1 of those districts to have an equal water-level in

the bottom half. The remaining mass of partisan D voters is then assigned to at most

two further districts. See Figure 8 for an illustration. This pattern is now repeated over

various rounds, with the implication that, after any move of party R there is a joint level

of partisan D voters in the bottom 2N − 2 districts.

}
1
L

σDk

k1 2 3 4 5 6 7 8 9 10

Figure 8: 10 Districts, 0 = βR < βD. Party R assigns as many D partisans as party D

did in the previous round. In light blue is the first round in which party D assigns a

positive mass of partisan D voters. The response of party R is in light red. In blue is the

second round in which party D assigns a positive mass of partisan D voters, and party

R’s response is in red. As a consequence, there is a common water-level in the bottom

eight districts, both after R’s first response and after R’s second response.

It is now easy to see that the percentage share of partisan D voters in the pivotal

district with rank N cannot be strictly above βD. This would imply a percentage share

above βD in all districts and this is incompatible with the fact that the share if partisan

D voters in the electorate at large equals βD. Also note that there is a common level of

partisan D voters in all districts, with exception of the two top ranked ones. Thus, party

R’s has a strategy that ensures winning a majority whenever ω ∈ ΩR, and moreover,

implies that there are at most two districts that are “safe” for party D. For N →∞ the

fraction of districts where the outcome deviates from the popular vote becomes negligible.

By Proposition 3, and for L large, party R can ensure to win a majority of seats
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whenever ω ∈ ΩR and, by Proposition 2 party D can ensure to win a majority of seats

whenever ω ∈ ΩD. As an implication, for N and L large, a constellation where party

D concentrates its partisan D supporters in fifty percent of the districts and party R

concentrates them in the other half approximates the equilibrium. Also the share of

districts in which outcomes are not approximately equal to the popular vote then becomes

negligible.

Relaxing the assumption that βR = 0. Proposition 4 below is a generalization

of Proposition 3 that allows for the possibility that there are both R partisans and D

partisans, but maintains the assumption that there are more of the latter.

Proposition 4 Suppose that βR < βD.

a) For every ε > 0, there is L̂ so that L ≥ L̂ implies the existence of a strategy σR so

that, for all σD,

πV LR (σD, σR | ω ∈ ΩR) ≥ 1− ε .

b) For every ε > 0, there is L̂ so that L ≥ L̂ implies the existence of a strategy σD so

that, for all σR,

πV LD (σD, σR | ω ∈ ΩD) ≥ 1− ε .

The key for the proof of Proposition 4 is the insight is that either party has an incentive

to use its own partisan supporters so that they are spread evenly over fifty percent of

the districts. The other party then has an incentive to respond to this attempt using a

water-level and building-towers-strategy. When this logic is squared with the assumption

that either party assigns in a round l as many rival partisans as the rival party used in

the previous round – so that βDRl = βDDl−1 and βRDl−1 = βRRl−2 – then there at most 2 safe

districts for party D and at most two safe districts for party R. Theorem 2 follows from

this last observation.

5 Discussion

In this section, we discuss issues of robustness, both in terms of substantive concerns (such

as additional requirements to impose on the system), as well as theoretical extensions of

the model.

Our system achieves two objectives, namely that the party that wins the support of a

majority of voters wins the majority in the legislature, and that all, or at least a large share

of, districts are competitive. This said, there may be other objectives that are desirable

for a district map and the implied legislature, and so it is interesting to analyze whether

it is possible to tweak our system so that it also satisfies these additional objectives.
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5.1 Opposition representation in the legislature

We first discuss the objective of having the opposition party represented in the legislature.

Because most or all districts are replicas of the electorate at-large, in most states of the

world, the majority-preferred party wins a very large percentage of seats, with few or

none going to the minority party.

Even though the minority party has very limited influence on which policies are en-

acted even if it is represented in the legislature, this representation my have beneficial

effects. For one, the minority can at least participate in the discussion of legislative pro-

posals and provide additional information in this context, and to the extent that they

can persuade the majority party, they can have (possibly Pareto-improving) influence

on policy. A strong opposition within the legislature may also be useful for providing

information about legislative proposals to the public.

Finally, if legislative experience matters for performance, then the voters’ opportunity

to replace the current majority (if either voters’ political preferences shift, or if the current

majority party “misbehaves” and needs to be replaced for incentive reasons) is better if

the opposition party contains at least some experienced legislators who do not have to

learn from scratch how a legislature works.

So, how could we adjust our system if we wanted to guarantee a substantial opposition

representation in the legislature? One simple possibility s to turn each district into a

multi-member district.

For example, suppose that each district is represented by 3 legislators. Within each

district, there is proportional representation (or some transferable vote system), so that

the party that gets more votes in the district receives 2 representatives, and the other

party the remaining seat if its vote share is above a threshold. The percentage of votes

that is required to win one seat in a district of three representatives depends on the specific

rules that map the votes obtained by the parties in the district to a seat allocation.

For example, with both the Hare-Niemeyer procedure and the Webster/Sainte-Lague

procedure (the methods used in German federal elections from 1987 to 2005, and after

2005, respectively), obtaining more than 1/6 of the vote entitles the weaker party in a

district with three representatives to one seat.18

In this case, the redistricting game between the parties remains exactly the same as

in the basic model, while the losing party is essentially guaranteed a representation of

one-third in the legislature. In contrast to the current system with one representative per

district, this system would also guarantee that each voter is represented, in the legislature,

by (at least) one representative from his district and from his favorite party.

18The methods would differ in the vote share that is required to guarantee the stronger party two seats

if there are three or more parties.
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5.2 Representation of demographic minorities

Another conceivable objective is that there is a certain subset of districts whose majority

has to be composed of a certain demographic type such as African Americans or His-

panics (“majority-minority districts”). Generally, there is a tension between imposing

this constraint and an implementation of the popular vote: If demographic minorities

are extremely likely to vote for Democrats, then generating a subset of districts in which

minority voters are a majority necessarily implies that the remaining districts have a

below-average share of Democratic partisans. Thus the objectives of ensuring a fair elec-

tion outcome in terms of a correspondence between the outcome of the popular vote, and

creating a large set of “majority-minority” districts, may be logically incompatible.

This said, with the system of competitive gerrymandering described in the previous

section, if a party wants to generate districts that overrepresent certain demographic

groups, it can plausibly do so that without negatively impacting its winning probability.

For example, suppose that the Democratic party has its core supporters among Blacks

and certain urban Whites, while they are weaker among other groups of voters, e.g., rural

Whites. How the Democrats mix these voter types into legislative districts is their choice

– in particular, it seems well feasible to create some districts in which the Democratic

partisans allocated to these districts are predominantly Black, so that they would have

a strong influence on the outcome of the Democratic primary.

5.3 Geographic constraints

In most states, electoral districts are currently required to be contiguous. Our system

allows parties to allocate voters to districts without any geographic constraints, and the

districts generated as an equilibrium outcome are unlikely to be contiguous. Is that

problematic? We now argue that the answer is “no”.

There are three justifications for imposing a contiguity requirement for districts, nei-

ther of which is particularly compelling from a logical point of view.

First, most (though not all) polities throughout history have contiguous maps, which

is useful for the provision of public goods, say, the protection against outside invaders.

As public goods are not really provided at the legislative district level, and there is,

in particular, no danger of invasion that concerns single districts and could be easier

countered if districts were contiguous, this is not a convincing argument.

Second, and relatedly, geographic closeness may be a proxy for preference homo-

geneity, and it could be argued that it may be more efficient, or at least easier, for

representatives to represent more homogeneous districts. While this argument clearly

applies to cities and other polities that determine autonomously which public goods are

and are not provided for their inhabitants, this argument is less compelling for legisla-

tive districts. State legislators generally set policy as a team, and it applies to the state

as a whole. From this perspective, it is not clear what advantage more homogeneous
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legislative districts would convey.

Third, it could be argued, that contiguity makes it easier for representatives to pro-

vide constituency services. Note that what plausibly influences the costs of providing

constituency services is the average geographic distance of constituents, not contiguity of

the district by itself. For example, Texas’ 28th district (in Figure 9) is contiguous, but

clearly not designed to minimize travel time to the representative’s district office.

Figure 9: TX-28: Contiguous, but not compact

To the extent that minimizing travel is important to lower the costs for representatives’

constituency service, both parties should prefer geographically close districts, and we

would therefore expect both parties in our system to coordinate their choices in a way

that voters in any one district are geographically clustered (albeit probably not in a

contiguous way), rather than coming from all corners of the state.19

The fourth and final argument for a contiguity requirement is that, in a time of severe

gerrymandering, contiguity serves as a de-facto constraint that limits the party in power

from even more egregious gerrymandering. While this may be a valid second-best type

argument within the current redistricting system, our system shows that it is possible to

reach a better outcome without this constraint.

5.4 National elections and statewise gerrymandering

Our model directly applies to the choice of state legislative districts, i.e., the choice

of the district map is made at the level of the polity that is voting in later elections.

19Formally, suppose that parties are lexicographically-first interested in their winning probability, and

lexicographically-second in the average distance of voters within districts (or some other measure of

geographic closeness). Our results imply that, in any equilibrium, the parties’ winning probabilities are

equal to their respective probability of winning the popular vote. Both parties have the same ranking

over equilibrium maps in terms of their geographic closeness, and therefore can be expected to coordinate

on the mutually best equilibrium.
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For federal elections, the power to draw district maps lies at the state level, while the

relevant outcome is clearly which party wins a majority in the House of Representatives.

This mismatch (which one can interpret as another geographic constraint) would be

problematic in our system.

Specifically, suppose there is a set S of states, with the electorate of state s captured

by the population shares βs = (βDs, βRs, βIs). A distribution function Fs describes the

random behavior of independent voters in state s.

Clearly, if the states are very similar in terms of their preference distributions (in

the sense that βDs−βRs

βIs
is equal for all s, and the same state ω obtains in all states,

which implies that the outcome of the popular vote is the same in all states), then the

restriction that certain districts have to be formed from voters that live in the same state

is no restriction for the parties, and the equilibrium is substantively the same as in our

basic model.

In contrast, suppose that states differ substantially in their political preference dis-

tribution. In this case, a party is not really interested in maximizing the probability of

winning the majority of seats in a particular state, but rather in winning a majority of

seats in the federal legislature.

Consider, for example, the game in a state that is substantially more conservative

than the country at-large (say, Tennessee). If all districts in Tennessee are replicas of

the state, then the most likely outcome would be that all districts go to the Republicans.

In contrast, if Democrats are able to win some seats in the state by concentrating their

supporters, these additional seats may well be pivotal for who wins a majority in Congress.

Thus, it appears that, in Tennessee, Democrats would have an incentive to concentrate

their supporters, while Republicans would benefit from generating similar districts. A

complete analysis of the equilibrium in our system, but with the geographical constraint

that, in each district, all voters have to come from the same state, is beyond the scope

of this paper and is left for future research.

Overall, the discussion here bears some resemblance to the classical decentralization

theorem of Oates (1972) - except that the policy recommendations are turned upside

down: In Oates (1972), public goods should be provided locally if there is pronounced

heterogeneity in local preferences. In this case, respecting local preferences is more im-

portant than realizing scale economies or internalizing spillovers. When the public good

in question is the legitimacy of a national election, considerable heterogeneity between

different local polities calls for gerrymandering at the national level, and homogeneity

makes gerrymandering at the local level tolerable.

5.5 Relationship to the divide-the-dollar / Colonel Blotto game

Our formal analysis in the previous section is based on strictly competitive game in which

parties assign partisan and independent voters to districts to maximize their probability
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of winning an election. This can be regarded as a variation of the well known Colonel

Blotto or divide-the-dollar game. In the Colonel Blotto game, troops are allocated over

various battlefields in an attempt to win a war.20 In the divide-the-dollar game, two

parties compete for the support of voters. Each party is endowed with one dollar. A

party proposal specifies which voter receives how much of that dollar.

Our game differs from the canonical divide-the-dollar game in two important points.

Most importantly, we look at sequential rather than simultaneous moves. As is well-

known, see e.g. the discussion in Laslier and Picard (2002), the simultaneous move game

gives rise to Condorcet cycles and admits only equilibria in mixed strategies. The same

would apply in our model if we made the parties choose their allocation of voters in all

districts simultaneously. In particular, note that, in a simultaneous move setup, there

is no pure strategy equilibrium in which all districts are replicas of the at-large district:

Hypothesize an equilibrium in which both parties distribute D partisans, R partisans

and independent voters uniformly, with the implication that every district is a copy

of the at-large-district. Then, each party has an incentive to deviate so as to make a

majority of districts more favorable to itself, by taking out some of its partisans from the

complementary set of districts and reassigning them.

A further difference to the divide-the-dollar game comes from the consideration of

asymmetric endowments. In the divide-the-dollar-game, each party has the same en-

dowment, one dollar. A comprehensive treatment of gerrymandering needs to allow for

the possibility that one party has more partisan supporters than the other. Moreover,

allowing for independent voters yields randomness in voting outcomes, whereas payoffs

are deterministic in the divide-the-dollar game. In the divide the dollar game, a voter

supports a party with probability 1 if it offers more than the rival party, flips a coin if

the two offers are equal, and votes for the rival otherwise. Here, with the behavior of

independent voters governed by a continuous probability distribution, there is no such

discontinuity.

These differences raise two questions: First, is it true that the divide-the-dollar game

and our game of gerrymandering can be viewed as different formalizations of broadly

similar strategic situations? Second, to what extent is our possibility result for an imple-

mentation of the popular vote sensitive to alternative modeling choices?

We provide detailed answers in part B of the Appendix. To answer the first question,

we show that a simplified version of our model, combined with simultaneous rather than

sequential moves, yields the divide-the-dollar game analyzed in Myerson (1993). Our an-

swer to the second question is that modeling choices can be altered without upsetting our

basic insight; i.e. that it is possible to implement the popular vote with alternating moves

in a sequential game of gerrymandering. Specifically, we provide an illustration based on

a simple model with the following features: Districts are filled not over various rounds,

20The classical reference is Gross and Wagner (1950), see Kovenock and Roberson (2020) for a recent

treatment.
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but one after the other. Moreover, there are no independent voters, with the consequence

that payoff functions are deterministic and discontinuous, i.e. payoff functions are as in

the divide-the-dollar game.

5.6 Maximizing the expected number of districts

To what extent does our analysis rest on the assumption that parties seek to maximize the

probability of winning a majority of seats? An alternative objective is the maximization

of the expected number of seats. We argue in the following that this alters the parties’

incentives. Even though, by Theorem 1, each party can make sure that it wins a majority

of seats whenever it wins the popular vote, it may now prefer to follow a different strategy.

The fraction of districts won by, say, party D is a random variable with a Poisson

binomial distribution. Its expected value is given by

ΠD(σD, σR) := 1
2N

∑2N
k=1 πDk(σD, σR)

= 1
2N

∑2N
k=1 F

(
σD
Dk+σD

Rk−(σR
Dk+σR

Rk)
σI
Dk+σI

Rk

)
.

The parties’ incentives are now shaped by the curvature of F . To see this, consider the

following assumptions which imply that F is symmetric and that a party faces decreasing

returns from assigning own partisans when being ahead in a district, and increasing

returns when lagging behind.

i) Symmetry. For any x, F (x) = 1− F (−x).

ii) Curvature. f ′(x) < 0, for x > 0,

iii) Inada. limx→0 f(x) =∞ and limx→∞ f(x) = 0.

In this case, the logic that own partisan supporters should be concentrated on at most N+

1 districts no longer applies. A party with more partisan supporters than its competitor

will try to spread its advantage evenly over many districts. It mostly operates on the

concave part of F and therefore seeks to equate the marginal returns from the assignment

of own partisan supporters. Analogously, a party that has fewer partisan supporters might

now have an incentive to concentrate them on a narrow set of districts, i.e. to engage

in packing: With the number of seats as the objective, securing a small number with a

large probability can be preferable to winning a majority with a small probability. More

formally, the party with fewer partisan supporters mostly operates on the convex part of

F and therefore prefers a convex combination with own partisans concentrated in some

districts and none in others over an even distribution across districts.
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6 Concluding Remarks

In a democracy, voters elect their representatives. However, when representatives are

elected by plurality rule in districts, gerrymandering has the potential of reversing this

relationship into one where parties select their voters.

A majority party that can unilaterally select the district map in which future elections

are held can usually guarantee that it maintains majority status even if a majority of

voters should prefer the opposition party in future elections. This subverts a fundamental

principle of democracy.

Furthermore, the US Supreme Court, while recognizing that gerrymandering is very

problematic, has generally refused to intervene against gerrymanders because there is

no operational procedure to separate an “excessive” gerrymander from an admissible

one. Thus, while several state courts have taken a more aggressive stance against gerry-

mandering, it is unlikely that there are purely judicial solutions to the gerrymandering

problem.

In this paper, we have developed a system for redistricting legislative districts that

has several attractive features. In particular, we show that the equilibrium district map

satisfies the property that the election (almost surely) leads to the party winning the

popular vote receiving a majority of seats in the legislature. Furthermore, a robust

representation of the minority party in the legislature can be guaranteed by using the

modified system discussed in Section 5.1.

While it is unlikely that majority parties will simply resign their redistricting powers

and adopt the system proposed in this paper, in many states, voters have the power to

institute a new redistricting process through a referendum process.
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A Proofs

A.1 Proof of Proposition 1

We first prove statement a) in Proposition 1. We describe a strategy for party R. Sub-

sequently, we verify that, upon playing this strategy, party R ensures that all district

outcomes approximate the popular vote.

Neutralizing moves. In round 1, party R moves first. In this case, party R chooses,

for any district k,

σDkR1 =
1

L
βD , σRkR1 =

1

L
βR and σIkR1 =

1

L
βI ,

i.e. the mix of the different types of voters is as in the electorate at-large. R moves second

in round 2, and then, immediately after, R moves first in round three. When party R

makes these moves it can condition on the choices of D in rounds 1 and 2. We say that

R’s move in round 2 neutralizes D’s move in round 1 if, for every district k,

σDkR2 = σRkD1 and σRkR2 = σDkD1 .

Analogously, we say that R’s move in round 3 neutralizes D’s move in round 2 if

σDkR3 = σRkD2 and σRkR3 = σDkD2 .

Thus, a neutralizing move of R in round l is such that R assigns as many own supporters

to district k as D did in the previous round, and also assigns as many opponents to

district k as D did before. Consequently, after R has moved in round 3, any district k is

a replica of the at-large-district: For any k,∑2
l=1(σDkDl − σRiDl) +

∑3
l=1(σDkRl − σRiRl)∑2

l=1 σ
I
kDl +

∑3
l=1 σ

I
kRl

=
βD − βR

βI
= 0 ,

where the last equality follows from the assumption of symmetry, βD = βR.

Feasibility. At this stage, a discussion of feasibility is warranted: Are such neutralizing

moves feasible? For L small, they are not, at least not, in general. For instance, if L = 3,

then the move in round 3 is already the last move of party R and it will have to assign

voters subject to a binding budget constraint that may prevent a neutralization in all

districts. We now argue that, for large L, however, there is a number of initial rounds

where such a neutralization is possible without violating the feasibility constraint.

After l rounds of play, denote the budgets available to R for the last L− l rounds by

2N βRRl , 2N βDRl , and 2N βIRl .
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Feasibility of a neutralizing move of R in round l requires that,

βRRl ≥ 1

2N

2N∑
k=1

σRkRl =
1

2N

2N∑
k=1

σDkDl−1 ,

and

βDRl ≥ 1

2N

2N∑
k=1

σDkRl =
1

2N

2N∑
k=1

σRkDl−1 .

Now recall that, in any round l, the pair (σDiRl, σ
R
iRl) has to lie in an 1

L
-simplex. Thus,

feasibility is guaranteed provided that

2N βRRl ≥ 1

L
and NβDRl ≥ 1

L
.

In this case, for any district k, all points in the 1
L

-simplex are available to R.

Finally, note that, for l small, and L large βRRl is close to βR and βDRl is close to βD.

Thus, for L is sufficiently large, these constraints are automatically satisfied for small l,

implying that neutralizing moves of R are feasible in early rounds.

A binding feasibility constraint. Suppose that there is some round l′ where neu-

tralizing moves are no longer feasible for R. We will now argue that, in such a case, for

L large, R can still get close to neutralization. To make this point, we relate the budget

available to R in round l′ to the budget available to D in round l′− 1, on the assumption

that the neutralizing strategy was feasible in all previous rounds. Note that, for any l,

2N βRRl = 2N βR −
∑2N

k=1

∑l−1
j=1 σ

R
kRj

= 2N βR − 2N βR
L
−
∑2N

k=1

∑l−1
j=2 σ

R
kRj

= 2N βR − 2N βR
L
−
∑2N

k=1

∑l−2
j=1 σ

D
kDj

= 2N βR − 2N βR
L
−
(

2N βD − 2N βDDl−1

)
= 2N βDDl−1 − 2N βR

L
.

(3)

where the last line follows from the assumption of symmetry, βD = βR. Also note that,

by the feasibility constraint for D,

2N∑
k=1

σDkDl−1 ≤ 2N βDDl−1 , (4)

and that, using (3), the feasibility constraint for R in round l can be written as

2N∑
k=1

σRkRl ≤ 2N βDDl−1 − 2N
βR
L

.
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Thus, for L large, R faces a constraint in round l that is close to the constraint for D in

round l− 1. Still, a problem of feasibility arises when the choices of D in round l− 1 are

such that R lacks the endowment that would be needed to neutralize this move. This

constellation arises if

2N βDDl−1 − 2N
βR
L

<

2N∑
k=1

σDkDl−1 ≤ 2N βDDl−1 .

This chain of inequalities has to hold in round l′, the round where the feasibility constraint

starts to bind.

Approximating neutralizing moves. We can now complete the description of R’s

strategy, by specifying R’s moves from round l′ onwards.

Let

∆ :=
2N∑
k=1

σDkDl′−1 −
(

2N βDDl′−1 − 2N
βR
L

)
and also note that, as an implication of the feasibility constraint for D,

∆

2N
≤ βR

L
. (5)

Then define the strategy for R in round l′ so that, for every k,

σRkRl′ = σDkDl′−1 −
∆

2N
,

and note that this construction ensures that R’s feasibility constraint holds as an equality.

As a consequence, in all rounds larger than l′, there are no R partisans left for an

assignment by party R. Also, there are at most 2N βD
L
D partisans left for an assignment

by party D.21 Therefore, for any k,∑L
l=1 σ

D
kDl −

∑L
l=1 σ

R
kRl =

∑l′−2
l=1 σ

D
kDl −

∑l′−1
l=2 σ

R
kRl −

βR
L

+σDkDl′−1 − σRkRl′ +
∑L

l=l′ σ
D
kDl

= −βR
L

+ ∆
2N

+
∑L

l=l′ σ
D
kDl

≤ 2N βD
L
,

(6)

where the last inequality holds because of (5). Thus, for L large,
∑L

l=1 σ
D
iDl −

∑L
l=1 σ

R
iRl

is bounded from above by a term that is close to 0.

21To see this, note that 2N βDDl′−1 − 2N βR

L <
∑2N
k=1 σ

D
kDl′−1 implies 2N βDDl′ < 2N βD

L .

34



A lower bound is found on the (counterfactual) assumption that the feasibility con-

straint never binds, which implies∑L
l=1 σ

D
kDl −

∑L
l=1 σ

R
kRl ≥ −βR

L
. (7)

Together, inequalities (6) and (7) imply that, for any district k,

lim
L→∞

L∑
l=1

σDkDl −
L∑
l=1

σRkRl = 0 . (8)

We can proceed in the analogous way for the specification of σDkRl. The critical value of

l where the feasibility constraint starts to bind may be different for the assignment of D

partisans by R. But this is inconsequential for the conclusion that, for any k,

lim
L→∞

L∑
l=1

σDkRl −
L∑
l=1

σRkDl = 0 . (9)

Consequently, in any district k, for L large we have

σDk − σRk
σIk

' βD − βR
βI

' 0 ,

where

σDk := σDDk + σDRk , σ
R
k := σRDk + σRRk and σIk := σIDk + σIRk .

Thus, any district is close to a replica of the at-large district as far as the mix between

republican, democrat and independent voters is concerned, and for L → ∞ there is

actually convergence to the mix of these voter types in the electorate at large. Since F

is a continuous function, this also implies that

πLDk = F

(
σDk − σRk

σIk

)
converges to

π∗D = F

(
βD − βR

βI

)
as L grows without limit.

Statement b) in Proposition 1. The prove of statement a) in Proposition 1 con-

structs a strategy for party R and verifies that it has the property calimed in statement

a). Party D has “the same” strategy available: For round 1, choose in every district a

mix of voters that is as in the electorate at-large. For all other early rounds so that the

feasibility constraint is not binding, use the move in round l to neutralize R’s move in

round l − 1. For the round in which the feasibility becomes binding, assign voters so

that the departure from full normalization is the same in all districts and the remaining

budget is exhausted. Thus, the proof of statement b) is a straightforward adaptation of

the proof of statement a) and therefore omitted.
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A.2 Proof of Proposition 2

Party D wins the popular vote whenever ω < βD
βI

. Hence, to ensure winning a majority

of seats whenever ω < βD
βI

, party D needs to ensure that there are N districts so that,

after L rounds of play,∑L
l=1 σ

D
kDl +

∑L
l=1 σ

R
kDl

2−
∑L

l=1 σ
D
kDl −

∑L
l=1 σ

R
kDl

> ω ,

whenever βD
βI
> ω. Since the distribution F of ω is continuous, the probability that∑L

l=1 σ
D
kDl +

∑L
l=1 σ

R
kDl

2−
∑L

l=1 σ
D
kDl −

∑L
l=1 σ

R
kDl

> ω ,

is equal to the probability that∑L
l=1 σ

D
kDl +

∑L
l=1 σ

R
kDl

2−
∑L

l=1 σ
D
kDl −

∑L
l=1 σ

R
kDl

≥ ω .

Therefore, πV LD (σD, σR | ω ∈ ΩD) = 1 holds when there are N districts so that, after L

rounds of play,∑L
l=1 σ

D
kDl +

∑L
l=1 σ

R
kDl

2−
∑L

l=1 σ
D
kDl −

∑L
l=1 σ

R
kDl

≥ βD
βI

.

Consider the following strategy for party D: In all rounds l, choose σDkDl = 0, for k ≤ N

and σDkDl = 2βD

L
, for all k > N . Consequently,

∑L
l=1 σ

D
kDl+

∑L
l=1 σ

R
kDl

2−
∑L

l=1 σ
D
kDl−

∑L
l=1 σ

R
kDl

=
2βD+

∑L
l=1 σ

R
kDl

1−2βD+1−
∑L

l=1 σ
R
kDl

≥ 2βD
2(1−βD)

= βD
βI

Thus, whenever the state of the world ω is such that βD < ω βI , implying that D wins

the popular vote, then D also wins all districts with an index k ∈ {N + 1, . . . , 2N} with

probability 1.

A.3 Proof of Proposition 3

Party R wins the popular vote whenever the state ω is such that ω > βD
βI

= βD
1−βD

. To win

a majority of seats in all such states, after L rounds of play, there need to be at least N

districts with

∑L
l=1 σ

D
kDl+

∑L
l=1 σ

R
kDl

2−
∑L

l=1 σ
D
kDl−

∑L
l=1 σ

R
kDl

< βD
1−βD

.
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Equivalently, there need to be N districts with a percentage share of partisan D voters

below βD. In the following, we show that, for L large, party R indeed has a strategy

available that ensures this outcome. The proof will be indirect: We will show that there

is no strategy for party D that so that the percentage share of partisan D voters is larger

than βD in at least N + 1 districts.

District ranks. Parties assign voters to districts over various rounds. We denote by

sDk,l the percentage share of partisan D voters in district k after l rounds of play. We

denote the corresponding mass of partisan D voters by µDk,l. We will often rank districts

according to the share of D voters. Let rl(k) ∈ {1, . . . , 2N} be the rank of district k after

l rounds of play. We assign ranks so that rl(k) > rl(k
′) implies sDk,l > sDk′,l. Hence, the

district with largest share of D voters has rank 2N , the district with the second-largest

share has rank 2N − 1 and so on. The mapping rl is taken to be injective implying

that every rank in {1, . . . , 2N} is assigned. Thus, if two districts have the same share

of partisan D voters one is (arbitrarily) assigned a higher rank than the other. What

matters for the analysis that follows is that, if some district k has rank r, this implies

that there are 2N − r further districts with a share of at least sDk,l.

Party Objectives. As explained above, we seek to show that there is no strategy for

party D that so that the percentage share of partisan D voters is larger than βD in at

least N + 1 districts. We therefore assume that it is party D’s objective to maximize

the percentage share of partisan D voters in the district with rank N after L rounds of

play. Specifically, we will show that party R has a strategy under which this percentage

share will be (weakly) below βD, on the assumption that D’s objective is to maximize

this share. As an implication, party R’s strategy implies a percentage share (weakly)

below βD, for any strategy of party D.22

A strategy for party R. In any round l, given a – for now exogenous – budget of

βDR,l
2N
L

partisan D voters to be assigned, proceed sequentially in the following way – until

the budget of partisan D voters for that round is exhausted:

i) Add D partisans to the lowest ranked district until the mass of D partisans equals

the mass in the district with the second lowest rank. From then on, keep the mass

in these two districts equal.

ii) Add D partisans to the two lowest ranked districts until the mass of D partisans

equals the mass in the district with the third lowest rank. From then on, keep the

22This is an implication of the game being zero sum. Any equilibrium strategy of party R solves a

maximin-problem, i.e. it maximizes party R’s payoff under the assumption that party D’ strategy is

chosen with the objective to make the maximum attained by R as small as possible, see e.g. Osborne

and Rubinstein (1994). Thus, if party D does not behave this way, the payoff realized by party R can

only get larger.
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mass in these two districts equal.

iii) Proceed analogously for all districts with a rank smaller or equal N −2. From then

on, keep the mass in all these districts equal. Add D partisans to the N − 1 lowest

ranked districts until the mass of D voters equals the mass in the district with rank

N . From then on, don’t add further D partisans to one of the bottom N districts.

iv) Add D voters to the top ranked district.

v) If there are still D voters left in the budget after a mass of 1
L
D voters has been

assigned to the top ranked district, add D voters to the district with the second

highest rank, etc, then move to the district with the third highest rank, etc.

vi) Stop when no further D voters are left.

Note that, as an implication, R’s play in any round leaves the ranking of districts un-

changed.

A best response for party D. Consider a – for now exogenous – sequence of budgets

for party D’s play {βDDl}Ll=1.

Note that since party R never affects the ranking of districts, the ranking of districts

in any round is entirely due to party D. We now argue that it entails no loss of generality

to assume that party D’s moves do neither affect the ranking of districts.

To be specific, consider party D’s move in a round l+1, where l is odd, implying that

D moves first in round l+1.23 Suppose that two districts k and k′ are such that µDk,l > µDk′,l.

Also suppose that, after party D’s move in round l + 1, the ranking is reversed, so that

µDk,l+1 < µDk′,l+1. We now argue that an equivalent outcome can be induced without a

rank reversal, and with the same implications for the budget of partisan D voters.

• Note first that the the rank reversing move requires a mass of D partisans equal to

σDk,l+1 + σDk′,l+1 =
(
µDk,l+1 − µDk,l

)
+
(
µDk′,l+1 − µDk′,l

)
(10)

• Now consider an alternative strategy in round l + 1, σ̄l+1 = (σ̄k,l+1)2N
k=1 that is the

same for all districts, except for the two districts k and k′ with the rank reversal.

Under this alternative strategy, the mass of partisan D voters in district k is raised

to the high level equal to µDk′,l+1 and the mass of partisan D voters in district k′ is

raised to the low level of µDk,l+1. Thus, this alternative strategy yields an equivalent

outcome as the original strategy: Districts k and k′ flip their ranks, but in any case

there are µDk′,l+1 D partisans in the higher ranked district and µDk,l+1 D partisans in

the lower ranked district.

23The same logic applies to party D’s moves in odd rounds. Writing this down formally would require

some obvious adjustments of notation, taking account of the fact that party D moves second in those

rounds.
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• The mass of D partisans required under the alternative strategy is

σ̄Dk,l+1 + σ̄Dk′,l+1 =
(
µDk′,l+1 − µDk,l

)
+
(
µDk,l+1 − µDk′,l

)
, (11)

and therefore equal to the mass required by the rank reversing strategy.

We can therefore assume without loss of generality that, from the initial round onward,

party D assigns partisan D voters only to N + 1 districts. The ranking of these districts

can be assumed to remain unchanged throughout the whole game. From now on, we

assume for notational ease, that the index k coincides with the ranking of district k, i.e.

we let rl(k) = k, for all k and l.

This also implies that it is never optimal to have a budget of partisan D voters in

some round that makes it necessary to assign D voters to more than N + 1 districts.

Thus, we may assume that, for any round l,

βDDl
2N

L
≤ N + 1

L
,

or, equivalently,

βDDl ≤ 1

2
+

1

2N
.

Given some budget for moves in round l, the optimal strategy for party D is now as

follows:

i) Add partisan D voters to the district with rank N until the mass of D voters equals

the mass in the district with the rank N + 1. From then on, keep the mass in these

two districts equal.

ii) Add partisan D voters to the two districts with ranks N and N + 1 until the mass

of D voters equals the mass in the district with rank N + 2. From then on, keep

the mass in these three districts equal.

iii) Proceed analogously for all districts with a rank larger or equal N + 2, until the

budget of D voters is exhausted.

Party R’s sequence of budgets. We now specify a particular sequence of budgets

for party R: As the first mover in the initial round, it does not assign any partisan D

voters, βDR1 = 0. In any round l ≥ 2, and as long os this is feasible, party R assigns as

many partisan D voters as party D did in the previous round

βDRl+1 = βDDl .

This is clearly feasible in early rounds. If, however, party D keeps some partisan D voters

for the last round so that βDDL > 0, then party R will have to assign an additional mass

of βDDL
2N
L

late in the game. Otherwise party R would violate its budget constraint. This
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amount is bounded from above by 2N
L

and vanishes for L large. Thus, for L → ∞, and

given that F is a continuous cdf , this will not affect the parties’ winning probabilities in

any one district.

In the following, we will focus on the limit case L → ∞. For expositional ease, and

without loss of generality, we assume that βDDL = 0, and that

βDRl+1 = βDDl ,

for all l < L.

Party R’s strategy has the following implication: Whenever party R moves, it brings

the mass of D voters in the bottom N−1 districts to the level that party D has generated

for the district with rank N in the previous round. Moreover, party R adds D voters at

most to the two top-ranked districts, and does not assign any D voters to districts with

the ranks N,N + 1, . . . , 2N − 2.

To see this, first consider rounds 1 and 2:

• In round 1, party D assigns an equal mass of D voters to N + 1 districts.

• In round 2, party R fills the bottom N−1 districts. It then has additional D voters

left. But those fill at most two further districts. According to party R’s strategy,

as many as possible are assigned to the district with the top rank 2N . If additional

D voters are left, they go to the district with rank 2N − 1.

Now consider rounds 3 and 4:

• In round 3, party D’s best response stipulates to assign an equal mass of D voters

to the districts with ranks N,N+1, . . . , 2N−2. Those are N−1 districts. Possibly,

it also assigns D voters to the two top ranked districts.

• In round 4, party R fills the bottom N − 1 districts. It can do so by adding to the

districts in the bottom N − 1 exactly the amount of D voters that party D has

added to the districts with ranks N,N + 1, . . . , 2N − 2 in round 3.

• If party D has added voters to the two top ranked districts, then party R has

additional D voters left after the bottom 2N −2 districts have been leveled. Again,

by party R’s strategy, of these voters as many as possible are assigned to the district

with the top rank 2N . If additional D voters are left, they go to the district with

rank 2N − 1.

Completing the argument. The strategies of parties R and D described above imply

that after the last move in round L, there is an equal mass of partisan D voters for all

districts with a rank smaller or equal to 2N − 2. The mass of these voters is (weakly)

larger in the two top ranked districts. Now suppose that the percentage share of D
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partisans in the district with rank N is strictly larger than βD. Equivalently, the mass

of D voters in that district exceeds 2 βD. Then, the mass of D voters exceeds 2 βD in

all districts. Hence, the total mass of assigned D voters is strictly larger than 2N βD.

But this is infeasible as the two parties’ total endowments with partisan D voters only

sum to 4N βD. Thus, the assumption that party D can generate N + 1 districts with

a percentage share of partisan D voters strictly larger than βD leads to a contradiction,

and must be false.

A.4 Proof of Proposition 4: Sketch

We now sketch how the proofs of Propositions 2 and 3 need to be adapted when there is

a non-negligible fraction of partisan R voters.

On the pivotal district. When we seek to show that party D has a strategy that

ensures a victory whenever it wins the popular vote, we need to show that party D can

ensure to win all districts with a rank larger or equal to N + 1 whenever ω ∈ ΩD; where

ranks, after some round l, now refer to the order of districts according to

∆D(k, l) :=
µDk,l − µRk,l

2 l
L
− (µDk,l + µRk,l)

.

In this expression, µDk,l denotes, as before, the total mass of partisan D voters assigned

to district k over the first l rounds of play, and µRk,l is the analogously defined mass of

partisan R voters. To show that party D has such a strategy, we assume that party D

seeks to maximize ∆D(k, l) in the district with rank N + 1, and that party R seeks to

minimize this quantity. This strategy of R is the one that makes it most difficult for party

D to achieve, in the district with rank N + 1, a value of ∆D(k, l) that exceeds βD−βR
βI

,

and hence ensures winning a majority of seats whenever ω ∈ ΩD. We thereby construct

an equilibrium on the assumption that the pivotal district is the one with rank N + 1.

When we seek to show that party R has a strategy that ensures a victory whenever

it wins the popular vote, we provide an indirect proof. We show that there is a strategy

for party R which prevents party D from winning all districts with a rank larger or equal

to N whenever ω ∈ ΩR. This analysis amounts to constructing an equilibrium on the

assumption that the pivotal district is the one with rank N .

A.4.1 Proof of statement b) in Proposition 4

Party R’s strategy. We adapt party R’s strategy in the following way: The strategy

for the assignment of partisan D voters is the same as in the proof of Proposition 3,

except that there is an adjustment for the pivotal district which instead of being the

district with rank N is now the district with rank N + 1. In any round l, given a – for

now exogenous – budget of βDR,l
2N
L

partisan D voters to be assigned, proceed sequentially

in the following way – until the budget of partisan D voters for that round is exhausted:
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i) Add D partisans to the lowest ranked district until ∆D(k, l) equals the value for

the district with the second lowest rank. From then on, keep ∆D(k, l) in these two

districts equal.

ii) Add D partisans to the two lowest ranked districts until the joint level of ∆D(k, l)

equals the value in the district with the third lowest rank. From then on, keep

∆D(k, l) in these three districts equal.

iii) Proceed analogously for all districts with a rank smaller or equal N −1. From then

on, keep ∆D(k, l) in all these districts equal. Add D partisans to the Nth lowest

ranked districts until the value of ∆D(k, l) equals the one for the district with rank

N + 1. From then on, don’t add further D partisans to one of the bottom N + 1

districts.

iv) Add D voters to the top ranked district.

v) If there are still D partisans left in the budget after a mass of 1
L
D voters has been

assigned to the top ranked district, add D voters to the district with the second

highest rank, etc, then move to the district with the third highest rank, etc.

vi) Stop when no further D partisans are left.

The assignment of partisan R voters is the mirror image of the assignment of D partisans

by party D in the proof of Proposition 3. Party R will focus on bringing down ∆D(k, l)

in the bottom N + 1 districts. This also implies that party R will always choose

βRRl ≤
1

2
+

1

2N

to avoid having to assign partisan R voters to a district with rank N + 2 or larger. Now,

given a budget of βRR,l
2N
L

partisan R voters to be assigned, party R proceeds sequentially

in the following way – until the budget of partisan R voters for that round is exhausted:

i) Add R partisans to the district with rank N + 1 until ∆D(k, l) falls to the value for

the district with rank N . From then on, keep ∆D(k, l) in these two districts equal.

ii) Add R partisans to the districts with ranks N + 1 and N until their joint level

of ∆D(k, l) equals the value in the district with rank N − 1. From then on, keep

∆D(k, l) in these three districts equal.

iii) Proceed analogously for all districts with a rank smaller or equal N − 1.

Party D’s strategy. Party D can now respond to party R’ strategy in the following

way:
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• Assign R partisans according to a water-level and building-towers-strategy as out-

lined in the proof of Proposition 3: Assign as many R partisans as party R did in

the previous round. Bring the top 2N − 2 districts to a joint level of R partisans

and possibly have additional R partisans in the two bottom districts.

• Assignment of D partisans: Over the L rounds of play, assign a mass of 2βD voters

to any district with a rank lager or equal to N + 1.

Outcome in the pivotal district. Consequently, after L rounds of play, and for L

sufficiently large, in any one of the top 2N − 2 districts, the mass of partisan R voters

is bounded from above by 2βR. Moreover, the districts in the bottom half are filled with

partisan D voters assigned by party R, and the districts in the upper half have are filled

with the partisan D voters assigned by party D, i.e. 2βD per district in the upper half.

All this implies that, in the district with rank N + 1 after L rounds of play,

∆D(N + 1, L) =
µDN+1,L−µ

R
N+1,L

2−(µDN+1,L+µRN+1,L)

=
2βD−µRN+1,L

2−(2βD+µRN+1,L)

≥ 2βD−2βR
2−(2βD+2βR)

= βD−βR
βI

.

The inequality in the third line follows from the fact that 2βD−x
2−(2βD+x)

is a decreasing function

of x provided that βD ≤ 1
2
.

A.4.2 Proof of statement a) in Proposition 4

The reasoning parallels the one from part 1, except that we now seek to show that party

R can respond to party D’s optimal behavior in such a way that, after L rounds of play,

it is ensured that, in the district with rank N ,

∆D(N,L) ≤ βD−βR
βI

.

To achieve this outcome, party R can respond with a water-level and building-towers-

strategy to party D’s assignment of partisan D voters. As a consequence, there is a

common level of 2N − 2 partisan D voters in the bottom 2N − 2 districts and possibly a

higher level in the two top districts. Consequently, the mass of partisan D voters in any

one district in the bottom 2N − 2 is bounded from above by 2βD. Moreover, R can, over

the L rounds of play, assign a mass of 2βR partisan R voters to any district with a rank

smaller or equal to N . This implies that
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∆D(N,L) =
µDN,L−µ

R
N,L

2−(µDN,L+µRN,L)

=
µDN,L−2βR

2−(µDN,L+2βR)

≤ 2βD−2βR
2−(2βD+2βR)

= βD−βR
βI

,

where the inequality in the third line follows from the fact that x−2βR
2−(x+2βR)

is an increasing

function of x.

A.5 Proof of Theorems 1 and 2

Propositions 1 – 4 imply that for all (βD, βR) with 0 ≤ βR ≤ βD ≤ 1
2
, the following

statements hold true:

a) For every ε > 0, there is L̂ so that L ≥ L̂ implies the existence of a strategy σR so

that, for all σD,

πV LR (σD, σR | ω ∈ ΩR) ≥ 1− ε .

b) For every ε > 0, there is L̂ so that L ≥ L̂ implies the existence of a strategy σD so

that, for all σR,

πV LD (σD, σR | ω ∈ ΩD) ≥ 1− ε .

Thus, for L ≥ L̂, if party R plays the strategy in part a) it realizes a payoff of at least

1− ε conditional on ω ∈ ΩR, whatever the strategy chosen by party D. Therefore, in any

equilibrium party R’s equilibrium payoff in these states is bounded from below 1− ε. (It

is also bounded from above by 1.) The same is true for party D. This proves Theorem 1.

For L large, the strategies constructed in the proof of Proposition 4 approximate

equilibrium strategies for all (βD, βR) with 0 ≤ βR ≤ βD ≤ 1
2
: With these strategies

party R ensures to win with probability arbitrarily close to 1 when ω ∈ ΩR and party D

ensures to win with probability arbitrarily close to 1 whenever ω ∈ ΩD. Theorem 2 then

follows from the observation that, with these strategies, there are at most 4 districts, out

of a total of 2N districts, that are not replicas of the electorate at large.

B Alternative modelling choices

In this part of the Appendix, we show formally that there is a close connection between

the divide-the-dollar game and the competitive-districting game. In particular, we show

that the competitive-districting game is equivalent to the divide-the-dollar under the
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following assumptions: (i) simultaneous moves, (ii) unbiased and uncorrelated behavior

of independents, (iii) equal population shares of R and D partisans, and (iv) deterministic

and discontinuous winning probabilities. We begin with a recap of the divide-the-dollar-

game in Myerson (1993).

B.1 The divide-the-dollar game

The analysis in Myerson (1993) includes a divide-the-dollar-game with two parties and a

continuum of voters. For any one voter i, party j draws an offer from a distribution with

cdf Gj. The offers to different voters are taken to be iid draws from this distribution.

Admissible distributions satisfy the resource constraint∫ ∞
0

x dGj(x) = e ,

where e is the endowment that can be redistributed in the electorate. Myerson (1993)

contains a proof of the following Claim: There is one and only one symmetric equilibrium.

In this equilibrium, Gj is a uniform distribution with support [0, 2e].

For later reference, we reproduce the proof that parties playing a uniform distribution

with support [0, 2e] is an equilibrium. Suppose that party 2 plays this hypothetical

equilibrium strategy. We now verify that it is a best response for party 1 to also play

this strategy: Suppose that party 1 makes an offer of x1
i to voter i. The probability that

i votes for party 1 is the probability of the event that x2
i ≤ x1

i , where, by assumption, x2
i

is a random variable with a uniform distribution on [0, 2e]. Thus the probability that i

votes for party 1 is given by

prob(x2
i ≤ x1

i ) =


0, if x1

i < 0 ,
x1i
2e
, if x1

i ∈ [0, 2e] ,

1, if x1
i > 2e .

Note that offers larger than 2e are dominated for party 1. We may therefore assume that

the support of G1 is bounded from above by 2e. Given G1, the probability that voter i

votes for party 1 is given by∫ 2e

0
prob(x2

i ≤ x1
i ) dG

1(x1
i ) = 1

2e

∫ 2e

0
x1
i dG

1(x1
i ) = 1

2
,

where the second equality follows from the resource constraint. Thus, all distributions

G1 with support [0, 2e] and mean e yield a payoff of 1
2
, and there is no strategy yielding

a higher payoff. Playing a uniform distribution with support [0, 2e] is therefore a best

response for party 1.24

24Playing e with probability 1 would also be a best response for party 1; but then the strategies are

no longer mutually best responses. If party 1 plays e with probability 1, then party 2 can offer a tiny

fraction of voters less than e and anyone elso more than e and thereby generate a winning probability

close to 1.

45



B.2 The districting game

We now show that a strictly competitive game of gerrymandering with simultaneous

moves and unbiased independent voters is essentially equivalent to the divide-the-dollar-

game introduced in the previous subsection.

B.2.1 No independents

Assume that there is a continuum of districts of mass one. Every party sends a contin-

uum of voters with mass one to every district. We initially assume that there are no

independents. This assumption will be relaxed below.

Let σjD = (σDjD, σ
R
jD) be a generic voter assignment of party D to district j. The

share of democratic voters assigned to this district is denoted by σDjD and the share of

republican voters is σRjD = 1 − σDjD. Given a pair (σjD, σjR), district j is won by the

democrats if

σDjD + σRjD > σDjR + σRjR ,

or, equivalently, if

σDjD > σRjR .

There is a tie if σDjD = σRjR. If σDjD < σRjR, the district is won by party R. Note the

similarity to the divide-the-dollar-game: a district is won by the party that is offering

more, in the sense of sending more of its supporters.

Suppose both parties have a popular vote share of 1
2
. Then we can formalize a strategy

of party D as a distribution GD so that∫ 1

0

σDjD dGD(σDjD) =
1

2
.

Analogously, a strategy of party R is a distribution GR so that∫ 1

0

σRjR dG
R(σRjR) =

1

2
.

It follows from Myerson’s analysis that the unique symmetric equilibrium has both parties

play a uniform distribution on [0, 1].

B.2.2 Adding independents

Suppose that a fraction 1− e of all voters is of the independent type. These voters vote

for the democrats with probability pD = 1
2
. By the law of large numbers, a fraction 1

2
e

votes for D with probability 1 and a fraction 1
2
e votes R with probability 1. The parties’

voter assignments are now triplets that also specify the fraction of independents assigned

to any one district. Thus, for a generic district j, we write σjD = (σDjD, σ
R
jD, σ

I
jD) and

σjR = (σDjR, σ
R
jR, σ

I
jR).
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Under the above assumptions, the behavior of independents is not source of uncer-

tainty. In district j the mass of independents voting for party D is given by

pD(σIjD + σRjD)

and the mass of independents voting for party R is

(1− pD)(σIjD + σRjD) .

With pD = 1
2

these expressions are equal so that independents play no role for which

party wins district j.

Suppose that party D sends a fraction 1 − e of independent voters to every district.

Also suppose that it draws the share of democratic voters from a uniform distribution on

[0, e]. We now show that it is a best response for party R to follow the same strategy.

Given the behavior of D, party R wins district j if

σDjD + σDjR < σRjD + σRjR

or, equivalently, if

σDjD < σRjR +
1

2

(
σIjR − (1− e)

)
.

The probability of this event is given by

prob(R wins j | σjD, σjR) =


0, if σRjR + 1

2

(
σIjR − (1− e)

)
≤ 0 ,

σR
jR+ 1

2(σI
jR−(1−e))
e

, if σRjR + 1
2

(
σIjR − (1− e)

)
∈ [0, e] ,

1, if σRjR + 1
2

(
σIjR − (1− e)

)
≥ e .

Thus, strategies for R so that σRjR + 1
2

(
σIjR − (1− e)

)
< 0 or σRjR + 1

2

(
σIjR − (1− e)

)
> e

are dominated.

Now suppose that R draws (σRjR, σ
I
jR) from a joint distribution GR with marginal

distributions denoted, respectively, by GRR and GRI . The marginal distributions satisfy

the resource constraints∫
σRjR dG

RR(σRjR) =
1

2
e ,

and ∫
σIjR dG

RI(σIjR) = 1− e .

47



The probability that R wins district j is given by

prob(R wins j | σjD, σjR) = 1
e

∫ ∫
σRjR + 1

2

(
σIjR − (1− e)

)
dGR(σRjR, σ

I
jR)

= 1
e

∫ ∫
σRjR dG

R(σRjR, σ
I
jR)

+1
e

1
2

(∫ ∫
σIjR dG

R(σRjR, σ
I
jR)− (1− e)

)
= 1

e

∫
σRjR dG

RR(σRjR)

+1
e

1
2

(∫
σIjR dG

RI(σIjR)− (1− e)
)

= 1
2
.

Thus, party R cannot do better than mimicking the strategy of party D, thereby securing

a winning probability of 1
2
.

B.3 Alternating moves in a divide-the-dollar game in which en-

dowments may be unequal

To what extent are the specifics of the game laid out in Section 4 necessary for our main

insight in Theorem 1? Would alternative modelling choices still give rise to the conclusion

that it is possible to implement the popular vote. Here, we suggest an affirmative answer.

We look at a simple model that differs from the model in the main text in various

dimensions: Districts are filled not over various rounds, but one after the other. There

are no independent voters and winning probabilities in districts are deterministic and

discontinuous, as in the divide-the-dollar game. The party that wins the popular vote is

the one that has more partisan supporters. We show that this party also wins a majority

of districts.

Setup. There are 3 districts. Each district is assigned a unit mass of voters by each

party. There are no independent voters. The mass of democratic voters in the electorate

at large is bD = 3 βD, and the mass of republican voters is bR = 3 βR = 3 (1 − βD). A

strategy for party D is a vector σD = (σD1 , σ
D
2 , σ

D
3 ) specifying the number of democratic

voters sent to any one district. The understanding is that the number of republican voters

sent to these districts is then given by (1− σD1 , 1− σD2 , 1− σD3 ). Analogously, a strategy

for party R is a vector σR = (σR1 , σ
R
2 , σ

R
3 ).

The probability that party D wins district k is a non-decreasing function of(
σDk + (1− σRk )

)
−
(
σRk + (1− σDk )

)
,

i.e. of the difference between the numbers of democratic and republican voters in the

district. Equivalently, we can view this probability simply as a function of σDk − σRk so
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that

πDk(σ
D
k − σRk ) =


1, if σDk − σRk > 0 ,
1
2
, if σDk − σRk = 0 ,

0, if σDk − σRk < 0 .

We consider a sequential game: Parties first assign voters to district 1, then to district

2 and finally to district 3. Who moves first and who moves second alternates. Specifically,

party D moves first for districts 1 and 3, and second for district 2. Party R moves first

in district 2, and second in districts 1 and 3. Thus, the sequence of events is as follows:

1. Party D makes a proposal for k = 1.

2. Party R makes a proposal for k = 1.

3. Party R makes a proposal for k = 2.

4. Party D makes a proposal for k = 2.

5. Party D makes a proposal for k = 3.

6. Party R makes a proposal for k = 3.

Once districts 1 and 2 are filled, the outcome in district 3 is pinned down, implying that

stages 5 and 6 no longer involve strategic choices. Specifically, the mass of democratic

and republican voters that the two parties can assign to the last district are given by

σD3 = bD − σD2 − σD1 and σR3 = bR − σR2 − σR1 .

Thus,

πD3(σD3 − σR3 ) =


0, if σD3 − σR3 < 0 ,
1
2
, if σD3 − σR3 = 0 ,

1, if σD3 − σR3 > 0 .

(12)

We assume that parties maximize the number of districts that they win. In the given

deterministic setup, this is equivalent to maximizing the probability of winning.

Equilibrium in the subgame that begins after district 1 has been filled. The

following Proposition characterizes the equilibrium for the subgame that starts after the

outcome for district 1 has been determined. We denote by bD2 and by bR2 the parties’

endowments with own partisans for the last two districts, i.e. after district 1 has been

filled. We denote by

ΠD2 = πD2(σD2 − σR2 ) + πD3(σD3 − σR3 )

party D’s payoff in that subgame. We use analogous notation for party R.

49



Proposition 5 Consider the subgame that begins after the outcome for district 1 has

been determined. The equilibrium payoff of party D is

ΠD2(bD2 , b
R
2 ) =


2, if bD2 > bR2 ,

1, if 2bD2 > bR2 ≥ bD2 ,
1
2
, if bR2 = 2bD2 ,

0, if bR2 > 2bD2 .

(13)

The payoff ΠR2 of party R for all districts k ≥ 2 is given by

ΠR2(bD2 , b
R
2 ) = 2− ΠD2(bD2 , b

R
2 ) . (14)

An equal split

σR3 = σR2 =
1

2
bR2

is equilibrium behavior for R, the first mover in district 2. An equal split

σD3 = σD2 =
1

2
bD2

is equilibrium behavior for D, the second mover in district 2, if bD2 ≥ bR2 or if bR2 > 2bD2 .

For a proof of Proposition 5, see Section B.4 below. Note that we can view ΠD2 also as

a function of bD2 − bR2 so that

ΠD2(bD2 − bR2 ) =


2, if bD2 − bR2 > 0 ,

1, if 0 ≥ bD2 − bR2 ≥ −bD2 ,
1
2
, if bD2 − bR2 = −bD2 ,

0, if bD2 − bR2 < −bD2 .

(15)

Equilibrium in the overall game. We now turn to the overall game. The following

Proposition characterizes equilibrium payoffs.

Proposition 6 Equilibrium payoffs in the three district game are

ΠR1 =



3, if bR > 2bD ,

2, if 2bD ≥ bR > bD ,
3
2
, if bD = bR ,

1, if bD > bR ≥ 1
2
bD

0, if 1
2
bD > bR .

(16)

and

ΠD1 = 3− ΠR1
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For a proof of Proposition 6, see Section B.5 below. To facilitate the comparison to

equation (15) we can also write

ΠD1(bD − bR) =



3, if bD − bR > bR ,

2, if bR ≥ bD − bR > 0 ,
3
2
, if bD − bR = 0 ,

1, if 0 > bD − bR ≥ −bD ,

0, if −bD > bD − bR .

(17)

Note that this is perfectly symmetric. This implies, in particular, that there is no first or

second mover advantage. A party’s payoff is entirely determined by the margin of victory

in the popular vote, i.e. by bD − bR. Also, bD − bR > 0 implies that party D wins a

majority of districts and bD − bR < 0 implies that party R wins a majority of districts.

Thus, the popular vote determines which party wins a majority of districts.

The proofs of Propositions 5 and 6 below also contain a characterization of equilibrium

behavior. It implies that the three districts will not typically look like replicas of the

electorate at large. This would require that both parties spread republican and democratic

voters evenly over the three districts. Such an equal split is compatible with equilibrium

behavior only in the symmetric case βD = βR.

B.4 Proof of Proposition 5

District 2, second move by D. Party D chooses σD2 and σD3 subject to

σD2 + σD3 ≤ bD2 ,

where the budget bD2 = bD − σD1 is predetermined at this stage. Note that σR3 and σR2
are also known at this stage. Thus, given bD2 and σR, party D chooses σD2 and σD3 to

maximize

ΠD2 = πD2(σD2 − σR2 ) + πD3(σD3 − σR3 ) .

Lemma 1 Consider the second stage of the subgame at district 2. The payoff ΠD
2 of

party D for all districts d ≥ 2 is given by

ΠD2 =


2, if bD2 > bR2 ,

1, if bR2 ≥ bD2 > min{σR2 , σR3 } ,
1
2
, if bD2 = min{σR2 , σR3 } ,

0, if bD2 < min{σR2 , σR3 } .

(18)

The payoff ΠR
2 of party R for all districts d ≥ 2 is given by

ΠR2 = 2− ΠD2 . (19)
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Proof.

1. Party D can win districts 2 and 3 if the budget suffices to pay more than σR2 for

district 2 and more than σR3 for district 3. This is the case if bD2 > σR2 + σR2 , or,

equivalently, if bD2 > bR2 .

2. If bR2 ≥ bD2 > min{σR2 , σR3 } , then party D can win district k = 2 or district k = 3.

For bR2 > bD2 , party D chooses either σD2 > σR2 and σD3 < σR3 or σD2 < σR2 and

σD3 > σR3 . For bR2 = bD2 , there is an additional possibility, which is to win both with

prob 1
2

by choosing (σD2 , σ
D
3 ) = (σR2 , σ

R
3 ).

3. If bD2 = min{σR2 , σR3 } then partyD either wins district 2 or district 3 with probability
1
2

and loses the other one for sure.

4. If bD2 < min{σR2 , σR3 } party D loses both district 2 and district 3.

Note that for districts 2 and 3, there is a second mover advantage for party D that plays

out in the following ways: (i) If D has a tiny budget advantage it can win both districts.

(ii) Party D can have a much smaller budget than party R and still get one district. �

District 2, first move by R. Party R chooses σR2 and σR3 to minimize ΠD2 subject to

σR2 + σR3 = bR2 .

Lemma 2 ΠD2 = 0 ⇐⇒ bR2 > 2bD2 .

Proof.

=⇒: Let ΠD2 = 0. Then it follows from (18) that σR3 > σD2 and σR2 > bD2 . Hence,

σR3 + σR2 > 2bD2 . Equivalently, bR2 > 2bD2 .

⇐=: Let bR2 > 2bD2 . Choose σR2 = σR3 > bD2 . Then D has no chance whatever the district.

Hence, ΠD2 = 0.

Note that with bR2 > 2bD2 an equal split by both is equilibrium behavior. �

Lemma 3 ΠD2 = 1
2
⇐⇒ bR2 = 2bD2 .

Proof.

=⇒: Let ΠD2 = 1
2
. Then, it follows from (18) that bD2 = min{σR2 , σR3 }. Suppose that

σR2 6= σR3 . Then it is budgetary feasible for R to chose both σR2 > bD2 and σR3 > bD2
yielding ΠD2 = 0, contrary to the assumption of optimizing behavior. Thus, it must

be that σR2 = bD2 and σR3 = σD2 implying bR2 = 2bD2 .
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⇐=: Let bR2 = 2bD2 . Then, by our previous argument ΠD2 = 0 is out of reach for R and

the best possible outcome is ΠD2 = 1
2
. This can be reached with σR2 = σR3 = bDm−1.

Then D has a chance of winning at most one district. In this district the winning

probability is 1
2
.

Note that with bR2 = 2bD2 , equal split is equilibrium behavior by R, but not by D. �

Lemma 4 ΠD2 = 1 ⇐⇒ 2bD2 > bR2 ≥ bD2 .

Proof.

=⇒: Let ΠD2 = 1. It follows from Lemmas 2 and 3 that 2bD2 > bR2 . It follows from (18)

that bR2 ≥ bD2 .

⇐=: Let 2bD2 > bR2 ≥ bD2 . Lemmas 2 and 3 imply that ΠD2 ≥ 1. It follows from (18) that

R can induce ΠD2 = 1 by choosing an equal split σR2 = σR3 = 1
2
bR2 .

Note that with 2bD2 > bR2 ≥ bD2 , equal split is eq. behavior by R. For D it is eq behavior

only if bR2 = bD2 . If the inequality is strict D goes for one district and leaves the other

district for R. �

Lemma 5 ΠD2 = 2⇐⇒ bD2 > bR2 .

Proof.

=⇒: Let ΠD2 = 2. It follows from Lemmas 2-4 that bD2 > bR2 .

⇐=: Let bD2 > bR2 . It follows from (18) that ΠD2 = 2.

Note that with bD2 > bR2 an equal split by both is equilibrium behavior. �

B.5 Proof of Proposition 6

District 1, second move by R. Party R’s problem is to choose σR1 and bR2 to maximize

ΠR1 = πR1(σD1 − σR1 ) + ΠR
2 (bD2 − bR2 ) ,

subject to

σR1 + bR2 = bR .

Lemma 6

ΠR1 = 3 ⇐⇒ bR > 2bD2 + σD1 .
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Proof.

=⇒: Let ΠR1 = 3. Then it must be that πR1 = 1 and ΠR2 = 2. This requires that

σR1 > σD1 and bR2 > 2bD2 . Adding these inequalities and using the budget constraint

yields bR > 2bD2 + σD1 .

⇐=: Let bR > 2bD2 + σD1 . Then it is budgetary feasible for R to have both σR1 > σD1 and

bR2 > 2bD2 and hence πR1 = 1 and ΠR2 = 2.

�

Lemma 7

bR = 2bD2 + σD1 =⇒ ΠR1 = 2 .

Proof. Let bR = 2bD2 + σD1 . Then, bR2 > 2bD2 implies σR1 < σD1 , πR1 = 0, ΠR2 = 2 and

hence ΠR1 = 2. Analogously, bR2 = 2bD2 implies σR1 = σD1 , πR1 = 1
2
, ΠR2 = 3

2
and hence

ΠR1 = 2. Finally, suppose that bR2 < 2bD2 implies σR1 > σD1 . Since it is possible to have

bR2 ≥ b2
D, this implies that πR1 = 1, ΠR2 = 1 and hence ΠR3 = 2. �

Lemma 8

2bD2 + σD1 > bR > bD =⇒ ΠR1 = 2 .

Proof. By Lemma 7, ΠR1 = 2 is an upper bound for the payoff that can be reached if

2bD2 +σD1 > bR. Reaching the upper bound is possible if bR2 and σR1 can be chosen so that

bR2 ≥ bD2 and σR1 > σD1 . This is possible only if bR > bD. �

Lemma 9

bR = bD =⇒ ΠR1 =
3

2
.

Proof. With bR = bD, party R can choose σR1 = σD1 and bR2 = bD2 which yields πR1 = 1
2

and ΠR2 = 1. It remains to be shown that ΠR2 = 2 is out of reach for R if D behaves

optimally in the first move for district 1. Suppose D does an equal split so that σD1 = 1
3
bD.

Suppose first that R chooses σR1 < σD1 so that πR1 = 0. On this assumption it is

optimal to choose σR1 = 0 and bR2 = bR. We then have bD2 = 2
3
bR2 and bD2 − bR2 = −1

3
bD2 .

By equation (15) this implies ΠR2 = 1. Hence, this is not better than mimicking D’s

strategy for R.

Finally, suppose that R chooses σR1 > σD1 so that πR1 = 1. We then have bD2 − bR2 > 0

and hence ΠR
2 = 0. Again, this is not better than mimicking D’s strategy for R. Thus, if

bD = bR, then an equal split is optimal for both R and D. �

Lemma 10

bR < bD =⇒ ΠR1 ≤ 1 .
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Proof. The arguments in the proof of the previous Lemma imply that D can ensure

that R wins at most one district by choosing an equal split. �

Lemma 11

bD > bR ≥ 1

2
bD ⇐⇒ ΠR1 = 1 .

Proof.

=⇒: Let bR ≥ 1
2
bD. If bR ≥ bD2 , then R can ensure ΠR1 = 1 by choosing bR2 = bR. Hence,

suppose that bD2 > bR. Then R can ensure ΠR1 = 1 by choosing σR1 = bR > σD1 =

bD − bD2 . (Note that bR ≥ 1
2
bD and bD2 > bR imply that bD − bD2 < bR.)

⇐=: Suppose that 1
2
bD > bR or, equivalently, that bD > 2bR. Then D can choose σD1 > bR

and bD2 > bR. Hence, π1D = 1 and Π2D = 2. Thus, ΠR1 6= 1.

�

Lemma 12

1

2
bD > bR =⇒ ΠR1 = 0 .

Proof. Suppose that 1
2
bD > bR or, equivalently, that bD > 2bR. Then D can choose

σD1 > bR and bD2 > bR. Hence, πD1 = 1 and ΠD2 = 2. Thus, ΠR1 = 0. �

To wrap up, we have

ΠR1 =



3, if bR > 2bD2 + σD1 ,

2, if 2bD2 + σD1 ≥ bR > bD ,
3
2
, if bD = bR ,

1, if bD > bR ≥ 1
2
bD

0, if 1
2
bD > bR .

(20)

and

ΠD1 = 3− ΠR1 .

District 1, first move by R. The analysis above leaves open what happens if bR > bD.

In this case, D can reach at most ΠD1 = 1. Reaching this upper bound is possible if and

only if bD2 and σD1 can be chosen so that 2bD2 + σD1 ≥ bR. This is possible if and only if

2bD ≥ bR. This observation completes the proof of Proposition 6.
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