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1 Testing for polarization 

1.1 Simple test for job and wage polarization 

As a simple test for job polarization, we fit a quadratic regression—at the 3-digit occupational 
level—of the log change in employment share on initial log mean weekly earnings (and its square), 
testing the significance of the parameters (Goos and Manning 2007; Sebastián 2018a). Specifically, 
we estimate the following model: 

where ∆ log�𝐸𝐸𝑗𝑗,𝑡𝑡� is the change in the log employment share of occupation 𝑗𝑗 between survey wave 
𝑡𝑡 − 1 and 𝑡𝑡, log�𝑦𝑦𝑗𝑗,𝑡𝑡−1� is the logarithm of the mean labour earnings in occupation 𝑗𝑗 in survey wave 
𝑡𝑡 − 1, and log�𝑦𝑦𝑗𝑗,𝑡𝑡−1�

2 is the square of initial log mean labour earnings. 

We repeat the same exercise with log change in earnings as the dependent variable (Sebastián 
2018b), estimating the following model: 

where ∆ log�𝑦𝑦𝑗𝑗,𝑡𝑡� is the change in log mean labour earnings in occupation 𝑗𝑗 between survey wave 
𝑡𝑡 − 1 and 𝑡𝑡.  

Both equations are estimated by weighting each occupation 𝑗𝑗 by its initial employment share to 
avoid that results are biased by compositional changes in small occupation groups.  

1.2 Regression of changes in employment and earnings on the level of routine intensity 

∆ log�𝐸𝐸𝑗𝑗,𝑡𝑡� = 𝛽𝛽0 + 𝛽𝛽1 log�𝑦𝑦𝑗𝑗,𝑡𝑡−1� + 𝛽𝛽2 log�𝑦𝑦𝑗𝑗,𝑡𝑡−1�
2
, (2) 

∆ log�𝑦𝑦𝑗𝑗,𝑡𝑡� = 𝜑𝜑0 + 𝜑𝜑1 log�𝑦𝑦𝑗𝑗,𝑡𝑡−1� + 𝜑𝜑2 log�𝑦𝑦𝑗𝑗,𝑡𝑡−1�
2
, (3) 
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In a next step, we fit a quadratic regression—at the 3-digit occupational level—of the log change 
in employment share on the initial level of routine intensity (Sebastián 2018a). Again, we repeat 
the same exercise with log change in earnings as the dependent variable, estimating the following 
two equations, where 𝑅𝑅𝑅𝑅𝐼𝐼𝑗𝑗 measures the (time-invariant) routine-task intensity of occupation 𝑗𝑗: 

2 The role of occupations in inequality 

2.1 Shapley decomposition of changes in inequality 

One way of exploring the role played by occupations (and the tasks performed by workers) in 
explaining inequality trends is to quantify the extent to which earnings differentials can be 
attributed to differences in earnings among workers performing different tasks, i.e. who are 
employed in different occupations (between-occupation inequality), as opposed to differences in 
earnings among workers performing similar tasks, i.e. who are employed in the same occupation 
(within-occupation inequality) but differ in other personal or job characteristics, such as skills, 
experience, geographic location, or formality status. 

To investigate these effects, we follow the approach of decomposing overall inequality into 
between-group and within-group inequality, when groups are defined according to the occupation 
in which a worker is employed. The mean log deviation is the only inequality measure that can be 
expressed as the sum of inequality between groups (inequality remaining when all workers of each 
group are given the average earnings of their occupation) and inequality within groups (inequality 
remaining once all individual earnings are re-scaled so to remove inequality between occupations).1 
The decomposition of the Gini index, however, does not allow for an exact partition into between-
group and within-group components, unless the income ranges of the defined groups are non-
overlapping. In the classical decomposition (Bhattacharya and Mahalanobis 1967; Pyatt 1976), 
there is thus a third residual term that relates to both between-group and within-group inequality. 
Furthermore, even if the subgroup income ranges do not overlap, the within-group term weighs 
each group based on the product of the share of workers in the occupation and the share of 

 

1 Among the indices verifying the usual inequality properties, only the Generalized Family of Entropy indices can be 
decomposed into the sum of inequality between groups and a weighted sum of group inequality (with weights 
depending on population and income shares), property known as additive decomposability (see Shorrocks 1984). 
Among the members of this family, only the Mean Log Deviation and the Theil index verify that the weights of the 
within-group term add up to one, and therefore the sum of weights is independent of the distribution. Only in the 
case of the Mean Log Deviation are the weights the population shares and then are independent of between-group 
inequalities (making the index path independent, with inequality between groups being the inequality remaining when 
all workers of each group are given the average earnings of their occupation, and inequality within groups being the 
inequality remaining once all earnings are re-scaled so to remove inequality within each occupation). See, for instance, 
the formal discussion in Chakravarty (2009).  

∆ log�𝐸𝐸𝑗𝑗,𝑡𝑡� = 𝛿𝛿0 + 𝛿𝛿1�𝑅𝑅𝑅𝑅𝐼𝐼𝑗𝑗� + 𝛿𝛿2�𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗�
2
, (4) 

∆ log�𝑦𝑦𝑗𝑗,𝑡𝑡� = 𝜗𝜗0 + 𝜗𝜗1�𝑅𝑅𝑅𝑅𝐼𝐼𝑗𝑗� +𝜗𝜗2�𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗�
2

. (5) 
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earnings held by workers in that occupation, and is thus not independent of between-group 
inequalities.  

Formally, the decomposition can be expressed as follows: Let 𝑦𝑦 denote individual earnings and 
𝐺𝐺(𝑦𝑦) denote the Gini index. Further, let 𝑦𝑦𝑏𝑏 = (𝑚𝑚1, … ,𝑚𝑚𝐽𝐽) be a vector in which the earnings of 
all workers in occupation 𝑗𝑗 = 1 … 𝐽𝐽 are replaced by the average earnings in that occupation, 𝑚𝑚𝑗𝑗 . 
That is, within-occupation inequality is removed, and only between-occupation inequality remains. 
Let 𝑦𝑦𝑤𝑤 = (𝑦𝑦1 𝑚𝑚

𝑚𝑚1 …𝑦𝑦𝐽𝐽 𝑚𝑚
𝑚𝑚𝐽𝐽) be a vector in which the earnings of all workers are re-scaled so that all 

occupations have the same average earnings 𝑚𝑚. That is, between-occupation inequality is removed, 
and only within-occupation inequality remains. The Gini estimated on the first vector, 𝐺𝐺(𝑦𝑦𝑏𝑏), has 
been widely used as a measure of between-group inequality. However, for the reasons discussed 
above, this term might be understating the actual contribution of inequalities between groups to 
total inequality, and the residual term, 𝐺𝐺(𝑦𝑦) − 𝐺𝐺(𝑦𝑦𝑏𝑏), cannot immediately be interpreted as the 
contribution of within-group inequality. In fact, one could follow an alternative approach and 
directly estimate the contribution of inequality within groups as 𝐺𝐺(𝑦𝑦𝑤𝑤), and use the residual term, 
𝐺𝐺(𝑦𝑦) − 𝐺𝐺(𝑦𝑦𝑤𝑤), to approximate the between-group contribution. That is, there are two plausible 
distinct estimates for the between-group contribution, 𝐺𝐺(𝑦𝑦𝑏𝑏) and 𝐺𝐺(𝑦𝑦) − 𝐺𝐺(𝑦𝑦𝑤𝑤), and two for the 
within-group, 𝐺𝐺(𝑦𝑦𝑤𝑤) and 𝐺𝐺(𝑦𝑦) − 𝐺𝐺(𝑦𝑦𝑏𝑏), which means that the contributions are path dependent. 
As mentioned above, only the Mean Log Deviation, M, verifies that 𝑀𝑀(𝑦𝑦) = 𝑀𝑀(𝑦𝑦𝑏𝑏) + 𝑀𝑀(𝑦𝑦𝑤𝑤), 
with therefore the contributions being independent of the path followed to estimate the 
contributions: 

In other cases, like the Gini index, to obtain a path independent decomposition of inequality, one 
can follow the Shapley decomposition, in which the contribution of each term is estimated as the 
average of the two possible contributions, so that  the between-group 𝐺𝐺𝐵𝐵 and within-group 𝐺𝐺𝑊𝑊 
contributions add up to total inequality: 

Note that in general 𝐺𝐺𝐵𝐵 will be lower than 𝐺𝐺(𝑦𝑦𝑏𝑏), but will likely better reflect the between-group 
nature of inequality. 

As a result, changes in inequality over time can also be decomposed into the sum of the 
contribution of each term: 

2.2 Shapley decomposition of changes in between-group inequality: the contribution of 
workers shares and average earnings 

The contribution of inequalities between occupations to explain the trend in overall inequality ∆𝐺𝐺𝐵𝐵 
may come from two different channels. First, changes in the structure of employment can affect 
inequality trends. For example, if middle-income occupations decrease in size and low- and high-
income groups expand, while the earnings differences between occupations remain stable, overall 
inequality will rise. Second, changes in the earnings gap between occupations may also impact the 
overall distribution of earnings. If, for example, incomes grow faster in high-paying occupations 
than in low-paying occupations, while the structure of employment remains unchanged, this will 

𝑀𝑀(𝑦𝑦𝑤𝑤) = 𝑀𝑀(𝑦𝑦) −𝑀𝑀(𝑦𝑦𝑏𝑏) and 𝑀𝑀(𝑦𝑦𝑏𝑏) = 𝑀𝑀(𝑦𝑦) −𝑀𝑀(𝑦𝑦𝑤𝑤)., (1) 

𝐺𝐺 = 𝐺𝐺𝐵𝐵 + 𝐺𝐺𝑊𝑊; 

with 𝐺𝐺𝐵𝐵 = 1
2

[𝐺𝐺(𝑦𝑦𝑏𝑏) + 𝐺𝐺 − 𝐺𝐺(𝑦𝑦𝑤𝑤)] 𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺𝑊𝑊 = 1
2

[𝐺𝐺(𝑦𝑦𝑤𝑤) + 𝐺𝐺 − 𝐺𝐺(𝑦𝑦𝑏𝑏)], 
(2) 

∆𝐺𝐺 = ∆𝐺𝐺𝐵𝐵 + ∆𝐺𝐺𝑊𝑊, (3) 
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result in an increase in overall earnings inequality. To disentangle whether changes in employment 
structure or changes in average earnings are driving the trend in inequality between occupations, 
we repeat the analysis with counterfactual distributions in which either the occupational shares or 
the occupational mean earnings are kept constant. 

Let ∆𝐺𝐺𝑏𝑏𝑏𝑏 = 𝑓𝑓(𝑚𝑚0,𝑚𝑚1; 𝑒𝑒0) be the change in ∆𝐺𝐺𝐵𝐵 in the counterfactual situation in which 
occupational employment shares 𝑒𝑒𝑡𝑡 are held constant over two periods t=0 and t=1. Since only 
the mean earnings across occupations 𝑚𝑚𝑡𝑡 are allowed to change, one can say that the only between-
occupation inequality change was driven by changes in average earnings. Similarly, one can define 
∆𝐺𝐺𝑏𝑏𝑏𝑏 = 𝑓𝑓(𝑚𝑚0; 𝑒𝑒0, 𝑒𝑒1) as the corresponding change in ∆𝐺𝐺𝐵𝐵 when the mean earnings by occupation 
are held constant, instead, and only employment shares change, explaining, therefore, the change 
in the contribution of between-occupation inequality. 

Similarly to what was done before, one can then define the Shapley contribution of these two 
elements (employment shares and mean earnings) to the change in inequality between occupations, 
respectively ∆𝐺𝐺𝐵𝐵𝐵𝐵 ad ∆𝐺𝐺𝐵𝐵𝐵𝐵, as given by: 

Where a higher contribution of ∆𝐺𝐺𝐵𝐵𝐵𝐵 indicates that inequality between occupations is changing 
due to a composition effect (changes in employment shares) while a higher contribution of ∆𝐺𝐺𝐵𝐵𝐵𝐵 
indicates that changes in inequality between occupations is driven by changes in the structure of 
average earnings. 

2.3  RTI and inequality, the concentration index 

The previous decompositions help to identify if a significant share of inequality or its trend is 
explained by differences in earnings across occupations. Inequality between occupations is the 
result of their specific characteristics, such as the skills required for the job, for instance, or the 
nature of the tasks performed by workers, the main interest of this project. To further explore the 
relevance of the task composition of occupations in explaining trends in inequality, we calculate, 
in addition, the routine-task intensity (RTI) concentration index for the distribution of average 
earnings by occupations. Here occupations are sorted by their RTI, while for the conventional 
measure of inequality between occupations, 𝐺𝐺(𝑦𝑦𝑏𝑏), occupations are sorted by their average 
earnings.  

The Gini index is, in general, geometrically defined as twice the area between the Lorenz curve 
and the 45º line. If workers are assigned the average earnings in their occupation, one obtains the 
Gini index of inequality between occupations. The Gini concentration index is defined in similar 
terms as twice the area between the concentration curve (see Kakwani 1980) and the diagonal. The 
concentration curve is a generalization of the Lorenz curve in which the variable that is 
accumulated in the abscissa is not necessarily sorted by the variable accumulated in the ordinate. 
While the Lorenz curve of the distribution of earnings between occupations plots the cumulative 
distribution of occupation earnings for each cumulative proportion of employment, with 
occupations sorted by earnings, the concentration curve does the same but with workers sorted 
by another outcome. In this case we will use the inverted RTI measure to sort occupations from 

∆𝐺𝐺𝐵𝐵 = ∆𝐺𝐺𝐵𝐵𝐵𝐵 + ∆𝐺𝐺𝐵𝐵𝐵𝐵 

∆𝐺𝐺𝐵𝐵𝐵𝐵 =
1
2

[∆𝐺𝐺𝑏𝑏𝑏𝑏 + ∆𝐺𝐺𝑏𝑏 − ∆𝐺𝐺𝑏𝑏𝑏𝑏] 

∆𝐺𝐺𝐵𝐵𝐵𝐵 =
1
2

[∆𝐺𝐺𝑏𝑏𝑏𝑏 + ∆𝐺𝐺𝑏𝑏 − ∆𝐺𝐺𝑏𝑏𝑏𝑏]. 

(4) 
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highest to lowest routine tasks intensity. One would in general expect least routine tasks to have 
higher earnings, although this relationship is not necessarily monotonic in practice. The 
concentration curve is non-decreasing in the proportion of workers but, unlike the Lorenz curve, 
is not necessarily convex and may fall above the diagonal. The Gini inequality and concentration 
indices are identical when there is perfect correlation between earnings and the inverted RTI, that 
is when least routine occupations tend to have higher average earnings. Therefore, the ratio 
between the concentration and the inequality indices is a measure of the association between RTI 
and average earnings (based on the Gini metrics) and gives an idea of to what extent between-
occupation inequalities are related to their level of RTI or, alternatively, to other factors (like skills, 
for example).  

3 Reweighting/RIF regression decomposition of changes in the distribution of 
earnings  

In a final step, we follow the estimation methodology developed by Firpo et al. (2007, 2009) to 
quantify the role played by different variables at different points of the earnings distribution in 
determining inequality trends over time. The original approach presents an extension of the 
Oaxaca-Blinder decomposition method, where each variable’s contribution to the change in 
earnings is decomposed into a ‘composition’ effect and a ‘wage structure’ effect at each percentile 
of the earnings distribution. The estimation method has been expanded by Fortin et al. (2011) to 
different functionals of the earnings distribution, including measures of dispersion such as the Gini 
coefficient (see also Firpo et al. 2011, 2018 for an extensive discussion), which makes this approach 
particularly useful in the context of our analysis. It allows us to quantify the extent to which 
intertemporal changes in inequality can be attributed to changes in the distributions of certain 
worker characteristics and changes in the labour market remuneration of these characteristics. 

Technically, the estimation strategy is performed in two stages. At the first stage, distributional 
changes between the initial and final periods are divided into an aggregate earnings structure effect 
and an aggregate composition effect, using a reweighting method approach, based on a semi-
parametric propensity score procedure. In the second stage, the two components are further 
subdivided into the contribution of different sets of explanatory variables using the recentred 
influence function (RIF) regressions.  

In general, any distributional parameter (earnings quantile, Gini index, interquantile ratio, etc.) can 
be written as a functional 𝑣𝑣(𝐹𝐹𝑦𝑦) of the cumulative distribution of earnings 𝐹𝐹𝑦𝑦(𝑦𝑦). The first part of 
the decomposition consists of dividing the overall change in the distributional measure between 
two years (𝑡𝑡 = 0 and 𝑡𝑡 = 1) into a composition effect driven by changes in the distribution of the 
workers characteristics, 𝑋𝑋, observed in both periods—such as the increasing level of education, 
lower average RTI, or a higher share of workers from a specific demographic group—and an 
earnings structure effect that reflects how the conditional distribution of earnings 𝐹𝐹(𝑦𝑦|𝑋𝑋) of 
workers with those given characteristics changes over time (the effect of changes in the returns to 
characteristics).  

Let 𝑣𝑣�𝐹𝐹𝑦𝑦𝑠𝑠|𝑡𝑡� be the distributional measure of interest when workers in year 𝑡𝑡 obtain earnings under 
the earnings structure prevailing of year 𝑠𝑠. Then 𝑣𝑣�𝐹𝐹𝑦𝑦0|𝑡𝑡=0� and 𝑣𝑣�𝐹𝐹𝑦𝑦1|𝑡𝑡=1� are the observed 
measures in, respectively, the initial and final periods, while 𝑣𝑣�𝐹𝐹𝑦𝑦0|𝑡𝑡=1� reflects the counterfactual 
measure that would have prevailed if workers in the final period obtained their earnings under the 
earnings structure of the initial period (which is never observed). By adding and subtracting this 
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counterfactual measure to the overall difference over time ∆𝑜𝑜𝑣𝑣 , we get the first aggregate 
decomposition: 

∆𝑜𝑜𝑣𝑣= 𝑣𝑣�𝐹𝐹𝑦𝑦1|𝑡𝑡=1� − 𝑣𝑣�𝐹𝐹𝑦𝑦0|𝑡𝑡=0�
= �𝑣𝑣�𝐹𝐹𝑦𝑦1|𝑡𝑡=1� − 𝑣𝑣�𝐹𝐹𝑦𝑦0|𝑡𝑡=1�� + �𝑣𝑣�𝐹𝐹𝑦𝑦0|𝑡𝑡=1� − 𝑣𝑣�𝐹𝐹𝑦𝑦0|𝑡𝑡=0�� 

                    = ∆𝑆𝑆𝑣𝑣                              +                   ∆𝑋𝑋𝑣𝑣 . 

where ∆𝑆𝑆𝑣𝑣 is the earnings structure effect and ∆𝑋𝑋𝑣𝑣  is the composition effect.  

In this context, the counterfactual distribution can be estimated using reweighting, a method that 
provides a consistent estimate of the counterfactual distribution under the ignorability assumption. 
This procedure consists of replacing the marginal distribution of X in the initial year with the 
marginal distribution of X in the final year. This is done by multiplying the sampling weight of 
each initial observation by a reweighting factor 𝜓𝜓(𝑋𝑋), estimated with propensity score reweighting. 
Applying the Bayes’ rule, this factor can be expressed as: 

𝜓𝜓(𝑋𝑋) =
Pr(𝑋𝑋|𝑡𝑡 = 1)
Pr(𝑋𝑋|𝑡𝑡 = 0) =

Pr(𝑡𝑡 = 1|𝑋𝑋)
Pr(𝑡𝑡 = 0|𝑋𝑋)

Pr(𝑡𝑡 = 0)
Pr(𝑡𝑡 = 1). 

In practical terms, we estimate the reweighting factor using a simple reweighting procedure. Using 
the pooled sample of workers of both periods, we estimate the probability of each worker being 
observed in the final year conditional on a set of covariates (Pr(𝑡𝑡 = 1|𝑋𝑋)) and its complement 
(Pr(𝑡𝑡 = 0|𝑋𝑋) = 1 − Pr(𝑡𝑡 = 1|𝑋𝑋)). This is done using a logit model in which the dependent 
variable is a year dummy and the explanatory variables are the key covariates and relevant 
interactions. The predicted probability scores are then used to reweight the initial sample so that 
it resembles the final sample in terms of average worker characteristics. That is, we increase the 
weight of workers in the initial year with characteristics that were more common in the end year, 
and similarly reduce the weight of those with characteristics that were less common. The 
reweighted distribution reflects the counterfactual that combines the final marginal distribution of 
characteristics and the initial conditional earnings distribution, 𝐹𝐹𝑦𝑦0|𝑡𝑡=1. We estimate the 
distributional measure of interest 𝑣𝑣 for this counterfactual distribution, which is used in the 
aggregate decomposition described above. 

One limitation of this reweighting procedure is that obtaining detailed decompositions of the 
earnings structure effects is not straightforward. Therefore, these are obtained in the second step, 
using linear RIF decompositions. The RIF decomposition is similar to the classical Oaxaca-Blinder 
approach, but with the usual outcome variable, log of earnings, being replaced by the Recentered 
Influence Function of the target statistic 𝑣𝑣, 𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦; 𝑣𝑣). 

The Influence Function of a statistic 𝑣𝑣, 𝐼𝐼𝐼𝐼(𝑦𝑦; 𝑣𝑣), measures the impact on the statistic of marginally 
increasing the population mass at a certain point 𝑦𝑦 (i.e. a small contamination) and has an expected 
value of zero. More formally, if 𝑦𝑦𝜀𝜀 is a mixture distribution assigning a probability 1 − 𝜀𝜀 to the 
original distribution 𝑦𝑦 and 𝜀𝜀 to a specific point 𝑦𝑦𝑖𝑖 (see Hampel 1974), the 𝐼𝐼𝐼𝐼 is obtained as the 
directional derivative: 

𝐼𝐼𝐼𝐼(𝑦𝑦𝑖𝑖; 𝑣𝑣) = 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐼𝐼(𝑦𝑦𝜀𝜀)|𝜀𝜀=0 ; with 𝐸𝐸𝑦𝑦(𝐼𝐼𝐼𝐼(𝑦𝑦; 𝑣𝑣) = 0. 

The 𝑅𝑅𝑅𝑅𝑅𝑅(y; 𝑣𝑣) is obtained after recentering the IF at the value of the target statistic so that the 
expectation is 𝑣𝑣: 
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𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦; 𝑣𝑣) = 𝑣𝑣 + 𝐼𝐼𝐼𝐼(𝑦𝑦; 𝑣𝑣) with 𝐸𝐸𝑦𝑦(𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦; 𝑣𝑣)) = 𝑣𝑣. 

The 𝐼𝐼𝐼𝐼 and 𝑅𝑅𝑅𝑅𝑅𝑅 of several distributional measures have already been computed. In particular, the 
𝑅𝑅𝑅𝑅𝑅𝑅 of the 𝜏𝜏-th quantile 𝑞𝑞𝜏𝜏 ≡ inf (𝑦𝑦|𝐹𝐹(𝑦𝑦) ≥ 𝜏𝜏), is given by: 

𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦𝑖𝑖; 𝑞𝑞𝜏𝜏) = 𝑞𝑞𝜏𝜏 +
𝜏𝜏 − 𝟏𝟏(𝑦𝑦𝑖𝑖 ≤ 𝑞𝑞𝜏𝜏)

𝑓𝑓𝑦𝑦(𝑞𝑞𝜏𝜏)
 

where 𝟏𝟏(𝑦𝑦𝑖𝑖 ≤ 𝑞𝑞𝜏𝜏) is an indicator function that takes value 1 if the earnings of worker 𝑖𝑖 falls below 
the 𝜏𝜏-th quantile and 0 otherwise, and 𝑓𝑓𝑦𝑦 is the estimated (non-parametric kernel) density function 
evaluated at 𝑞𝑞𝜏𝜏. The 𝑅𝑅𝑅𝑅𝑅𝑅 of the Gini index 𝐺𝐺 is given by:  

𝑅𝑅𝐼𝐼𝐼𝐼(𝑦𝑦𝑖𝑖;𝐺𝐺) = 2
𝑦𝑦𝑖𝑖
𝑚𝑚
�
𝑖𝑖
𝑛𝑛
−

1 + 𝐺𝐺
2

� + 2 �
1
2
− 𝐿𝐿𝑖𝑖� 

where 𝑚𝑚 is the mean earnings, 𝐿𝐿𝑖𝑖 is the value of the Lorenz curve (the cumulative share of 
earnings) for the population share with earnings 𝑦𝑦𝑖𝑖 or below.  

An OLS regression of the corresponding 𝑅𝑅𝑅𝑅𝑅𝑅 on 𝑋𝑋 is estimated for the initial and end years, as 
well as for the counterfactual: 

𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦𝑖𝑖𝑖𝑖;𝑣𝑣) = 𝛾𝛾𝑡𝑡𝑋𝑋𝑖𝑖𝑖𝑖; 𝑡𝑡 = 0, 1, 𝑐𝑐. 

These regressions can be used to decompose the difference in 𝑣𝑣 between two distributions as in 
conventional Oaxaca-Blinder decompositions, replacing the log of earnings with the 
corresponding 𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦𝑖𝑖𝑖𝑖;𝑣𝑣) estimated for each observation. This is done by adding and subtracting 
a specific counterfactual that combines the characteristics of the final distribution with the 
coefficients of the initial one. A RIF decomposition of the distributional change between the 
counterfactual and final distribution can be used to break the aggregate structural effect previously 
obtained by reweighting into a pure RIF structural effect ∆𝑆𝑆,𝑝𝑝

𝑣𝑣  (the RIF earnings structure effect in 
this decomposition) and a RIF reweighing error ∆𝑆𝑆,𝑒𝑒

𝑣𝑣  (the RIF composition effect): 

∆𝑆𝑆𝑣𝑣= (𝛾𝛾1 − 𝛾𝛾𝑐𝑐)𝑋𝑋𝑖𝑖1 + 𝛾𝛾𝑐𝑐(𝑋𝑋𝑖𝑖1 − 𝑋𝑋𝑖𝑖𝑖𝑖) 

= ∆𝑆𝑆,𝑝𝑝
𝑣𝑣 + ∆𝑆𝑆,𝑒𝑒

𝑣𝑣 . 

Similarly, with a second RIF decomposition for the distributional change between the 
counterfactual and initial distributions, we can break the reweighting composition effect into a 
pure RIF composition effect ∆𝑋𝑋,𝑝𝑝

𝑣𝑣  (the RIF composition term in this decomposition) and a 
specification error ∆𝑋𝑋,𝑒𝑒

𝑣𝑣  (the RIF structural term): 

∆𝑋𝑋𝑣𝑣= 𝛾𝛾0(𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖0) + (𝛾𝛾𝑐𝑐 − 𝛾𝛾0)𝑋𝑋𝑖𝑖𝑖𝑖 

= ∆𝑋𝑋,𝑝𝑝
𝑣𝑣 + ∆𝑋𝑋,𝑒𝑒

𝑣𝑣 . 

The linearity of all these terms, due to the use of linear RIF regressions, makes obtaining the 
corresponding detailed effects for specific sets of characteristics as straightforward as in the 
conventional Oaxaca-Blinder approach. 

The analysis is focused on the effects of interest, that is, the pure RIF composition (∆𝑋𝑋,𝑝𝑝
𝑣𝑣 ) and pure 

RIF earnings structure (∆𝑆𝑆,𝑝𝑝
𝑣𝑣 ) effects. Note that these RIF effects add up to the corresponding 
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reweighting totals only if both error terms are zero. While the reweighting error should be 
negligible provided we use a rich logit model with interactions among the covariates, and can be 
generally ignored, the size of the specification error depends on the linearity of the estimated RIF 
coefficients, that is, by how much they change after reweighting the initial distribution to mimic 
the final one.2  

Finally, standard errors are obtained after bootstrapping the entire process (reweighting and RIF 
decompositions) using a large number of replications (500 in the Ghana case). 
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