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1 Introduction

Equality of opportunity (EOp or, conversely, IOp for inequality of opportunity) is a widely held ideal of
fairness, stating that differences in life success should reflect differences in individual effort, but should
not be determined by factors beyond the control of the individual, the so-called circumstances. Building
on a distinguished literature in political philosophy (e.g. Arneson 1989; Cohen 1989; Dworkin 1981;
Rawls 1971; Roemer 1993), the concept has recently stimulated a growing body of research in eco-
nomics and related disciplines (see Fleurbaey 2008; Roemer 1998). These ideas have also influenced
agenda-setting and policy-making at the highest levels. Goal 10 of the United Nations Sustainable De-
velopment Goals (SDGs), for example, recognizes that ‘income inequality cannot be effectively tackled
unless the underlying inequality of opportunities is addressed’. Alan Krueger, a former main economic
adviser to President Obama, once said ‘The rise in inequality in the United States over the last three
decades has reached the point that inequality in incomes is causing an unhealthy division in opportuni-
ties, and is a threat to our economic growth.’ Equality of opportunity, as opposed to pure equality of
outcomes, offers a version of egalitarianism that recognizes the role of individual responsibility.

The ideal of equality of opportunity rests on two basic principles (Fleurbaey 2008): the compensation
principle, stating that inequalities arising from individual circumstances (factors beyond the individual
responsibility) are unfair and should be compensated by society; and the reward principle, which ad-
dresses the problem of how to apportion outcomes to different degrees of effort. Different versions of
these two principles have been proposed in the literature. In particular, ex-post compensation (Roemer
1993) states that inequalities across people with different circumstances should be equalized after effort
is realized. This is mainly achieved by equating outcomes of those who exert the same level of effort.
On the other hand, ex-ante compensation (Van de Gaer 1993) states that inequalities across people with
different circumstances should be equalized before effort is realized. This is achieved by equating op-
portunity sets.1 This latter goal has been operationalized by interpreting the outcome distribution among
individuals with the same circumstances (so-called ‘types’ in Roemer’s terminology) as the opportunity
sets open to each individual in that group. Hence the focus is on the (reduction of) inequality between
types. As far as the reward principle is concerned, different versions of the principle have been proposed
by the literature, expressing different attitudes with respect to the outcome inequality observed among
individuals endowed with the same circumstances: from utilitarian reward (Fleurbaey 2008; Van de Gaer
1993), which expresses perfect neutrality, to inequality-averse reward (Ramos and Van de Gaer 2016),
which expresses aversion to inequality, to intermediate and agnostic positions (Fleurbaey and Peragine
2013).

The theoretical and the empirical literature on EOp has grown enormously in recent years, and a vast ar-
ray of methods and approaches to the measurement of IOp has been explored: see Ferreira and Peragine
(2015), Ramos and Van de Gaer (2016), and Roemer and Trannoy (2015) for recent surveys. However,
in most of the existing literature, both theoretical and empirical, the outcome of interest is typically
represented by a unidimensional variable: income, consumption, education, or health. On the other
hand, both the theory and the practice of inequality measurement have moved towards the multidimen-
sional space. For a long time, many researchers have advocated the inclusion of non-income dimensions
in the evaluation of well-being (Atkinson and Bourguignon 1982; Kolm 1977; Maasoumi 1986; Sen
1973). Apparently, their call was heeded: for instance, the United Nations now uses a multidimensional
measure, the Human Development Index, to evaluate the well-being of nations and their progress over
time. Several multidimensional measures of welfare and of inequality have been developed (Gajdos
and Weymark 2005; Maasoumi 1986; Tsui 1995, 1999); these are measures based on joint distributions
that are sensitive to multidimensional generalizations of the Pigou–Dalton transfer (PDT) principles,

1 Fleurbaey and Peragine (2013) explore the potential conflicts between the ex-ante and ex-post approaches to compensation
and between different versions of compensation and the reward principle.
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such as uniform PDT or uniform majorization (Tsui 1999), and to transfers that change the dependence
structure—namely, so-called correlation-increasing switches (Tsui 1999). Thus, it is widely acknowl-
edged in the literature and more so in practical decision-making that well-being is a multidimensional
concept and cannot be reduced to a single proxy such as income.

Therefore, if the goal of public policy is to seek EOp, its measurement has to account for the multidi-
mensionality of well-being. To date, however, researchers on equality of opportunity have made only a
little progress on this mission.

Some empirical works jointly investigate the presence of unequal opportunities for multiple outcomes,
by treating those outcomes as separate identities. Examples include: Bourguignon et al. (2007), who
analyse income and schooling outcomes in Brazil; Ferreira and Gignoux (2011), who focus on differ-
ent income measures; and Peragine and Serlenga (2008), who analyse university graduation results and
later-life income. In addition to these works, Ferreira and Gignoux (2010) estimate IOp in Turkey by
considering PISA (Programme for International Student Assessment) scores in reading, math, and sci-
ence as outcomes of interest. The reports by Paes de Barros et al. (2009) and Son (2013) go beyond the
focus on income and educational outcomes by assessing equal opportunities in income, education, and
access to basic services such as sanitation for a sample of Latin American and Asian countries, respec-
tively. In spite of differences with respect to the outcome dimensions, the populations of interest and the
methodological approaches towards IOp measurement, these works treat the issue of multidimension-
ality in the same simplistic manner: each dimension of interest is analysed separately, while neglecting
any interdependencies between the outcomes of interest. Some other works attempt to circumvent mul-
tidimensionality by focusing on a unique indicator that arguably captures the relevant information for
the outcome of interest (see Yalonetzky 2012). For instance, it is acknowledged that health is a multi-
dimensional outcome that lends itself to empirical analysis from an equal-opportunity perspective. For
the purpose of reducing the dimensionality of the analytical problem, most works focus on self-assessed
health as the appropriate equilizandum (Li Donni et al. 2011; Rosa Dias 2009; Trannoy et al. 2010).
In spite of the well-acknowledged merits of this measure (Idler and Kasl 1995), the focus on a single
measure entails an information loss that could be countervailed by developing an appropriate multidi-
mensional measure of EOp.

To summarize, to date the existing EOp literature has not yet combined ‘the two aspects, individual
responsibility (translated into seeking equality in the domain of opportunities) and multidimensionality
of well-being’ (Ferreira and Peragine 2015) in a satisfying manner. The present paper aims at filling this
gap: we develop a normative approach to the measurement of IOp in a multidimensional setting—that
is, when the outcome of interest is a a multidimensional variable.

We focus on the ex-ante approach. Hence, in our model within each type there is a multidimensional
outcome distribution. Formally, types differ not only dimension by dimension, but also with respect to
the dependence structure between dimensions. In other words, in a multidimensional setting the effect
of circumstances may not only be that worse types have worse distributions of outcomes, but also that
individuals in worse types are more likely to be deprived jointly in several outcomes than in better types.
The latter concerns dependence, which is a truly distinctive feature of multidimensionality. What is
the extent of unfair opportunities if one takes into account both marginal distributions of well-being
dimensions and their dependence? Or, how does one measure IOp when joint distribution of outcomes
is considered? We develop tools that allow us to answer such questions. To lay the foundation of such
measurement, we use an axiomatic approach.

We consider three classes of welfare functions that endorse the ex-ante compensation principle and
cover major reward principles (i.e. neutral, agnostic, and averse) and link these classes to implementable
criteria (i.e. different versions of Lorenz dominance). Then we construct IOp measures that are induced
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by these three classes via the so-called AKS transformation (Atkinson 1970; Kolm 1969; Sen 1973). A
more detailed description of the setting and the results follows.

We have an ordering of the society (multidimensional) outcome distributions, which is represented by a
continuous social evaluation function. We start by characterizing the class of such functions on the basis
of axioms that express different versions of the reward and the ex-ante compensation principle. These ax-
ioms use basic transformations that define our concepts of inequality. In a multidimensional setting, the
defining inequality transformations are transformations that reduce spread in many dimensions (i.e. PDT
on each dimension with potentially different amounts of attributes transferred) and transformations that
change the dependence between dimensions (i.e. correlation-increasing or -decreasing switches—see,
for example, Tsui 1999). Different reward principles reflect different sensitivity to such transformations
when they happen within a type; in particular, a welfare function which respects utilitarian reward does
not change, since it does not pay attention to any inequality within type; a welfare function which is
agnostic is silent; and the one which respects averse reward goes up.

In Theorem 1 we show that the preference relation represented by the class of evaluation functions that
are monotone, additive (i.e. sum utilities within types and between types), symmetric, neutral to in-
equality within type (i.e. obey the utilitarian reward principle) but averse to inequality between types
(i.e. obey the ex-ante compensation principle) is implemented via CGLD, which applies standard gen-
eralized Lorenz dominance to each attribute separately and to a distribution such that each individual in
their type possesses the same amount of each attribute (i.e. perfect within-type equality). We further
extend this result to allow for more general aggregation procedures than additivity (Theorem 2). Then,
in Theorems 3 and 4 we characterize classes of evaluation functions that are, respectively, agnostic and
averse to inequality within type. Here, the implementable criterion is Lorenz dominance applied to the
sum of individual within-types utilities, where utility functions are described by a set of properties. This
definition of Lorenz dominance is welfaristic in a sense that it applies to the case in which individual
well-being is first evaluated by a utility function, similarly to the approach taken by, for example, Maa-
soumi (1986) and Dardanoni (1992). The better-off type has higher average welfare—that is, welfare is
understood as the sum of individual utilities within a type. For the case of aversion, Lorenz dominance
acts on a class of utility functions that are increasing, type-concave, concave, and submodular. The
two latter properties reflect the multidimensionality aspect. In the case of submodular functions it is
assumed that dimensions of well-being are substitutes; an extension to the case of complementary goods
is straightforward.

For inequality measures, the class generated by the class of welfare functions that is neutral to within-
type inequality is of a very simple form, namely the weighted sum of types’ means in each attribute
normalized by the value of the highest welfare. The latter is obtained for a distribution which is per-
fectly equal within and between types—that is, a matrix of population means. The weights assigned to
types preserve aversion to inequality between types—that is, worse type gets higher weight. When the
class of welfare functions used is averse to inequality within type, one cannot give an explicit formula
for related class of inequality measures; however, with the addition of a well-known property of ratio
scale invariance (Tsui 1995), we obtain a specific class of measures. Ratio scale invariance means that
attributes can be rescaled in any way; for example, it does not matter whether income is measured in
dollars or hundreds of dollars. The measures obtained with the previous class are only weakly relative—
that is, the attributes can only be scaled by the same factor. The within-type inequality-averse class of
measures consists of two components: one that reflects the aversion to inequality in the distribution of
attributes within a type (as measured by Tsui’s (1995) equality index); and another which reflects aver-
sion to inequality between types’ aggregate utilities. This means that when we put the value of Tsui’s
(1995) equality index to 1, we obtain a multidimensional IOp measure that focuses only on between-type
inequality. The parameters of this class reflect the dimension weights. This class of measures takes into
account the whole multidimensional distribution within a type, and in particular it is sensitive to how
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dependent the dimensions of well-being are. This result is particularly interesting from the point of view
of empirical applications.

Finally, we relate the obtained IOp measures to Lorenz dominance conditions. In the case of neutrality
within type, inequality indices are implemented by CGLD applied to outcome matrices normalized by
the value of highest welfare—that is, for the perfectly equal distribution. Recall that in the standard case
(Atkinson 1970) inequality and welfare rankings are intertwined, providing that a certain condition, such
as equality of means, is preserved. In other words, welfare ranking between distributions is the same
as inequality ranking between distributions normalized by the mean. Here, the welfare ranking of the
distributions is the same as the inequality ranking of the distributions normalized by the highest welfare.
For the case of inequality aversion within types, inequality ranking is implemented by a welfaristic
Lorenz dominance that applies to the same class of utility functions as in Theorem 4 for inequality-averse
welfare functions, and applies to outcome matrices normalized by the vector of attributes’ means.

We close the paper with an empirical application based on the National Longitudinal Study of Adoles-
cent to Adult Health (Add Health) in the USA, waves 1–4. We use self-reported personal earnings, years
of education, and body mass index (BMI) as outcomes and a set of circumstance variables. Aversion
to within-type inequality matters significantly in the evaluation of IOp. It constitutes more than half of
overall IOp. The results show how considering the dimensions jointly as opposed to considering them
separately significantly changes the evaluation of IOp. For example, univariate IOp for education and
BMI are, respectively, 0.06 and 0.021, whereas for income it is 0.47. In such a case, IOp when outcomes
are considered jointly equals 0.2. This comes from the fact that joint evaluation takes into account that
(1) some outcomes are distributed more equally than others; (2) rankings of types with respect to mean
outcomes values differ across outcomes (i.e. best income type is not necessarily best BMI type); and (3)
within type, individuals occupy different positions on respective dimensions (i.e. highly educated indi-
viduals are not necessarily individuals with the highest incomes). These are all factors that are missing
when the focus is limited to a single well-being outcome such as income.

The paper is structured as follows. Section 2 introduces the analytical framework. In Section 3 the basic
definitions and axioms are introduced and discussed. Section 4 contains the characterization theorems
for welfare functions, linking them to Lorenz dominance conditions, with each class as a separate sub-
section. The same structure continues in Section 5, where we state the results for classes of inequality
measures. Finally (Section 6), we link inequality measures to dominance conditions similar to those
introduced in Section 4. Section 7 applies the developed methods to the US data. There are many exten-
sions of the current framework and we discuss them all in Section 8, which concludes the paper.

2 The analytical framework

We follow Peragine (2004) and extend his ex-ante approach by allowing a multidimensional distribu-
tion of outcomes. We have a society consisting of N individuals, where each individual is completely
described by an outcome x, which in the present paper will be treated as a multidimensional variable
consisting of k attributes, and a set of traits that can be divided into: traits beyond the responsibility of in-
dividuals, called circumstances and represented by set variable O∈O ; and those for which the individual
is fully responsible, called effort and represented by w∈Θ⊆R+. We assume that O = {O1,O2, . . . ,On}
and its elements are sorted according to ordering ≺, that is Oi ≺ Oi+1 for i ∈ {1,2, . . . ,n− 1}. Fur-
thermore, we assume that all individuals have the same degree of access to the set Θ of possible values
of effort. Outcome is generated by a function g : O ×Θ→ Rk

+ that assigns individual outcomes to
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combinations of circumstances and effort: x = g(O,w).2 We assume that it is monotone in both circum-
stances and effort, that is g(Oi,w) < g(Oi+1,w) for i ∈ 1,2, . . . ,n−1, w ∈ Θ, g(Oi,w1) < g(Oi,w2) for
i ∈ 1,2, . . . ,n, and w1 < w2 ∈ Θ. By < we mean inequality with respect to each coordinate in Rk

+.

Given the ordering ≺, we can divide the society according to individuals’ circumstances, namely into
n types. We say that people in the same type have equal opportunities, as determined by the set of
circumstances they are given. Let Nh be the number of people in type h. We have Σn

h=1Nh =N. We denote
by Xh ∈ MNh×k the type h profile, that is outcome distribution within type h. Xh

i ,X
h
j are, respectively,

rows and columns of matrix Xh, and Xh
i j represents an outcome for a jth attribute for an ith individual

who sits in type h. Matrices Xh are arranged into matrix X in increasing order, that is rows 1, . . . ,N1
of X are rows of X1, rows N1 +1, . . . ,N1 +N2 are rows of X2, and so on. Finally, let Xµ be a matrix of
type means. Keep in mind that it represents the case of perfect within-type equality, but not between-
type equality. The distribution that represents both perfect within- and between-type equality is denoted
Xµ—that is, it is a matrix of population means.3 We have Xµ,Xµ ∈ MN×k—that is, these are matrices
such that we still maintain the same number of rows for each type.

Let D = {X ∈ MN×k(R+) : g is monotone in circumstances and effort} denote the set of possible out-
come profiles. We are interested in the ranking of outcome matrices from the set D— that is, we examine
a binary preference relation of an opportunity egalitarian social decision-maker. We assume that this re-
lation is a continuous ordering, hence it has its representation via a continuous social evaluation function
W : D→ R. I : D→ [0,1] is a corresponding inequality index. Formally, the relationship between W
and I is defined in the following way.

Definition 1. We say that an inequality measure IW is induced by a welfare function W if IW (X) =
1−δ(X) where δ(X) ∈ [0,1] satisfies equation W (X) =W (δ(X)Xµ).

The properties of both W and I will be delineated in the next sections. This is the so-called Atkinson–
Kolm–Sen approach (Tsui 1995) to constructing inequality measures, which ensures that they are nor-
matively significant—that is, under certain restrictions (e.g. equality of means or total sums) W (X) ≤
W (Y ) ⇐⇒ I(X)≥ I(Y ).

3 Definitions and axioms

We start by defining a general multidimensional transfer. This definition will then be used in subsequent
definitions and axioms imposed on the function W .

Definition 2. Transfer between types (TT). Let X ,Y ∈D and let Os≺Or. We say that X =Aε(Y,r,s, p,q)
is obtained by transfer between types (TT) from Y if Xh = Y h for all h /∈ {r,s} and X l

i = Y l
i for l ∈ {r,s}

and i /∈ {p,q}, with X r
p j = Y r

p jε j +Y s
q j(1− ε j) and X s

q j = Y s
q j(1− ε j)+Y r

p jε j where ε = (ε1, . . . ,εk) with
ε j ≥ 0.

Here Aε(Y,r,s, p,q) is a succint way to contain information about the most general transformation,
namely, (1) a transfer is made between types r,s; (2) potentially different amounts of each attribute
are transferred, that is ε is a vector with potentially different elements; and (3) ε is not restricted, there-

2 In other words, given a combination of effort and circumstances, function g completely determines the outcomes—that is,
all individuals with a given effort–circumstance bundle share the same outcomes. Richer models of EOp also include a ‘luck
component’ (Lefranc et al. 2008).

3 Although we do not deal with effort directly, in this framework if we needed we could also adopt Roemer’s (1998) statistical
solution. This solutions says that people who are at the same percentile of their outcome distribution exercised comparable
degree of effort, only here it is a percentile of a multidimensional distribution.
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fore it can be both a progressive and a regressive transfer. In the TT definition there is no direction of the
transfer. If, however, the transfer is to be made from a better to a worse type, we need to restrict ε. The
restriction on the sign of (1−ε j) ensures that indeed it is a transfer from type r to s both when Y r

p j >Y s
q j

and when Y r
p j < Y s

q j. This is summarized in Definition 3.

Definition 3. Pigou–Dalton transfer between types (PDTT). Let Os ≺ Or. For X ,Y ∈ D, we say that
X is obtained from Y by means of Pigou–Dalton transfer between types (PDTT) if X is obtained by TT
from Y and sgn(1− ε j) = sgn(Y r

p j−Y s
q j) holds—that is, ε is a transfer from type r to s.

When r = s the transfer takes place within the same type, but again allows for potentially different
proportions of each attribute to be transferred. A restriction on ε makes this a transfer from the richer to
the poorer individual within a given type. This is expressed in Definition 4, which is our key definition
for spread-reducing transfers.

Definition 4. Pigou–Dalton transfer (PDT). For X ,Y ∈ D, we say that X is obtained from Y by means
of PDT if X = Aε(Y, l, l, p,q), where ε = (ε1, . . . ,εk) with at least one εi > 0.

In a multidimensional setting, welfare and inequality are not only about the spread, but also about the
dependence structure between attributes. This is reflected in the definition of a correlation-increasing
transfer (Boland and Proschan 1988), where between two individuals one is assigned maximum values of
each attribute and the other is assigned minimum values. Such an operation clearly increases correlation
between dimensions. Although marginal distributions of attributes do not change, there is now ‘more
joint risk’—that is, there is higher likelihood that a given individual occupies higher or lower positions
in several dimensions. This is formally defined in Definition 5.

Definition 5. Correlation-increasing transfer (CIT). For all X ,Y ∈ D, if Xh = Y h for all h 6= l, we say
that Y l is obtained from X l by the CIT if Y l = C(X l, p,m), (with p < m) where C(X l, p,m) ∈ MNX

l ×k,
cp j = max(yp j,ym j), cm j = min(yp j,ym j) and ci j = yi j elsewhere.

These definitions will now be the basis of the axioms that are imposed on the function W . These axioms
are as follows.

Monotonicity (MON). For all X ,Y ∈ D, if Xh = Y h for all h 6= m, Xm
pq = Y m

pq + ε with ε > 0 and
X l

i j = Y l
i j for (i, j) 6= (p,q) then W (X)≥W (Y ).

Additivity (ADD). There exist functions Uh : Rk → R, for all h ∈ {1,2, . . . ,n}, assumed to be twice

differentiable (almost everywhere) in the variable Xh
i , such that W (X) = Σn

h=1Σ
NX

h
i=1Uh(Xh

i ) for all
X ∈ D.

Inequality neutrality within types (INWT). For all X ,Y ∈ D, if X is obtained from Y by PDT, then
W (X) =W (Y ).

For all X ,Y ∈D, if Xh = Y h for all h 6= l, X l =C(Y l, p,m), where C(·, p,m) is CIT for some p < m
then W (X) =W (Y ).

Inequality agnosticism within types (IAGWT). For all X ,Y ∈D, Xh = Y h for all h 6= l, X l is obtained
from Y l by PDT, then W is salient.

For all X ,Y ∈ D, Xi = Yi for all i 6= l ∈ {1,2, . . . ,n}, X l =C(Y l,h,m), where C(·,h,m) is CIT for
some h < m, then W is salient.

Inequality aversion within types (IAWT). For all X ,Y ∈ D, if X s = Y s for all i 6= l ∈ {1,2, . . . ,n}, Y l

is obtained from X l by PDT, then W (X)<W (Y ).
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For all X ,Y ∈D, if Xi = Yi for all i 6= l ∈ {1,2, . . . ,n}, X l =C(Y l,h,m), where C(·,h,m) is CIT for
some h < m then W (X)<W (Y ).

Inequality aversion between types (IABT) Let X ,Y ∈ D. Further, let Os ≺ Or, that is r 6= s. Then,
the monotonicity of function g ensures that for each effort level ω, r has better outcomes than s.
Now let X be a PDTT of Y . Then W (X)>W (Y ).

MON and ADD are technical properties and widely assumed in the literature. In ADD we define Uh as
independent of individuals in type h; this would be implied if we assumed axiomatically type symme-
try, namely, that function W is invariant with respect to transformations of individual bundles within a
type, but not between types (as in standard symmetry), because for the EOp framework it does matter
from which type an individual is. MON states that welfare function increases following an increase
in the value of one attribute for a single individual. ADD means that we consider utilitarian welfare
functions—that is, W is a sum of utilities. Please note that an individual utility function is a function of
many variables here. INWT, IAGWT, IAWT, and IABT are conceptual and specific to the EOp frame-
work. The first three are reward principles. INWT means that W is invariant to inequality-reducing
transformations within type, that is PDT and CIT. INWT expresses the utilitarian reward principle (see
Van de Gaer 1993), and hence expresses neutrality with respect to inequality within types. On the other
hand, IAGWT assumes nothing (i.e. it is agnostic) and IAWT expresses aversion with respect to inequal-
ity within types (inequality-averse reward principle). IABT is an ex-ante principle of compensation (e.g.
Fleurbaey and Peragine 2013; Peragine 2004), which says that a transfer from a better to a worse type
increases welfare.

We relax the assumption of additivity at one stage of aggregation of utilities; namely, we allow for
general aggregation between types.

Separability between types (SBT). There exists function ψ : Rn → R, and for all h = 1, . . . ,n there
exist functions uh :RNX

h →R and Uh :Rk→R assumed to be twice differentiable (almost every-

where), such that uh = ∑
NX

h
i=1Uh(Xh

i ) and W (X) = ψ(u1, . . . ,un).

The ethical requirement imposed on the aggregation procedure ψ is the one that expresses the princi-
ple of compensation: welfare does not decrease following a (cardinal) welfare transfer from the more
opportunity-endowed to the less opportunity-endowed types.

Inequality aversion between types’ welfare (IABT*). Let X ,Y ∈D. Further, let Os≺Or, that is r 6= s
and ε > 0. We have

ψ(u1, . . . ,un)< ψ(u1, . . . ,us + ε, . . . ,ur− ε, . . . ,un).

4 Welfare functions and dominance conditions

In this section we study three classes of social welfare functions and for each of them we give a domi-
nance condition which implements the ordering prescribed by a given class.

4.1 Neutrality

We start with the following class:

W AOEN = {W |MON,ADD,INWT,IABT}.

AOEN means ‘additive opportunity egalitarian neutral’, where the last term comes from neutrality em-
bedded in INWT.
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INWT brings us asymptotically to a matrix that has mean value for each attribute in a type; that is, type
distribution can be summarized by a vector of means. Indeed, in the case of INWT a social decision-
maker does not care about the distribution of outcomes within a type. This is expressed formally in
Lemma 1.

Lemma 1. Let X ∈ D and W satisfies INWT. Then W (X) =W (Xµ), where (Xµ)h
i j =

ΣNh
i=1Xh

i j
Nh

.

Proof. By INWT we know that W (X) = W (Y ) where Y is PDT of X . We will prove that Xµ is the
result of a sequence of PDT transformations of X . It suffices to show it for a given type h. We start
with averaging the values of attributes for individual i = 1 by the following sequence of transfers. Let
(X1)

h = Xh and (Xl+1)
h = Aε((Xl)

h,h,h,1, l +1), where εl+1 = ( l
l+1 , . . . ,

l
l+1). That is, in each step we

make a PDT transfer between individual i and individual l. We obtain that Xh
1 j = ΣNh

l=1
Xh

l, j
Nh

and then we
apply the same procedure to the next individual.

We now define component-wise Lorenz dominance. It performs standard Lorenz dominance for each
attribute separately—that is, it works on vector columns of matrix X .

Definition 6. Component-wise Lorenz dominance (CLD). For all increasingly ordered (within columns)
matrices X ,Y ∈MN×k(R+), we say that X component-wise Lorenz dominates Y ; that is

X �CLD Y ⇐⇒
Σl

i=1Xi j

ΣN
i=1Xi j

≥
Σl

i=1Yi j

ΣN
i=1Yi j

∀1≤l≤N∀1≤ j≤k

CLD can be generalized to the case when columns in both matrices do not have the same total sum.

Definition 7. Component-wise generalized Lorenz dominance (CGLD). For all increasingly ordered
(within columns) matrices X ,Y ∈MN×k(R+), we say that X component-wise generalized Lorenz domi-
nates Y ; that is

X �CGLD Y ⇐⇒ Σl
i=1Xi j ≥ Σl

i=1Yi j ∀1≤l≤N∀1≤ j≤k

We can now relate CGLD to a class of functionsW AOEN .

Theorem 1. For X ,Y ∈ D we have

Xµ �CGLD Yµ ⇐⇒ W (X)≥W (Y ) for all W ∈W AOEN

Proof. By ADD we have W (X) = ∑
n
h=1 ∑

NX
h

i=1Uh(Xh
i ). We now show that Uh(Xh

i ) = ∑
k
j=1Uh

j (X
h
i j),

dUh/dX > 0, and D2Uh is a zero matrix. MON implies dUh/dX > 0. Further, let Xh
i1 ,X

h
i2 be two

outcomes. From INWT and ADD, we have that Uh(Xh
i1)+Uh(Xh

i2) =Uh(Xh
i1 +ε ·(X

h
i2−Xh

i1))+Uh(Xh
i2−

ε · (Xh
i2−Xh

i1)) (by · we denote coordinate-wise multiplication of vectors). It is equivalent to
Uh(Xh

i1
)−Uh(Xh

i1
+ε·(Xh

i2
−Xh

i1
))

|ε·(Xh
i2
−Xh

i1
)| =

Uh(Xh
i2
−ε)−Uh(Xh

i2
)

|ε·(Xh
i2
−Xh

i1
)| . Moving to zero in the limit with the norm of ε, we obtain

equality of derivatives for arbitrary points Xh
i1 ,X

h
i2 , and therefore Uh(Xh

i ) = ∑
k
j=1Uh

j (X
h
i j), D2Uh as a zero

matrix. In the reverse implication, this functional form of W clearly satisfies ADD and MON. Since
every operation was invertible, we obtain that equality of gradients of Uh is equivalent to INWT.

Now to show that dUh/dX > dUh+1/dX ≥ 0, we use IABT. Let us assume that Xh
p < Xh+1

q . Since
function is additive, without loss of generality, we consider W which is a function of first dimension only.
Then by IABT we have Uh

1 (X
h
p1+ε ·(Y h

i −Xh
i ))−Uh

1 (X
h
p1)>Uh+1

1 (Xh+1
1 )−Uh+1

1 (Xh+1
1 +ε ·(Y h

i −Xh
i )).

Dividing it by |ε · (Y h
i −Xh

i )| and taking it to 0 in the limit gives us the result.
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Now let Xµ �CGLD Yµ. Using Theorem 1 (Peragine 2004) for any j and the first part of this proof, we get
that W (X) ≥W (Y ). Now by contradiction, let us assume that W (X) ≥W (Y ) and Xµ 6 �CGLDYµ. Then
let us take W (X) = Wj(X), where Wj is W restricted to jth dimension, which belongs to W AOEN . This
contradicts Theorem 1 (Peragine 2004).

Corollary 1. Let W ∈W AOEN . Then W is of the form

W (X) = Nb+
n

∑
h=1

Nh

∑
i=1

k

∑
j=1

ah
jX

h
i j

with ah
j > ah+1

j for all j.

Proof. From proof of Theorem 1 we know that W (X) = ∑
n
h=1 ∑

Nh
i=1 ∑

k
j=1Uh

j (X
h
i j), and that gradients of

Uh
j are constant. From this, we obtain that each Uh

j is a linear function. Condition on coefficients ah
j

follows from dUh/dX > dUh+1/dX .

Theorem 1 states that if for each attribute the type-means distribution of X generalized Lorenz dominates
the type-means distribution of Y, then for all welfare functions in the class W AOEN X is more opportu-
nity egalitarian than Y . The converse is also true. Please note that the definition of Lorenz dominance
applies to increasingly ordered vectors, which means that in each column means (i.e. columns of Xµ)
are increasingly ordered. The interpretation of Lorenz dominance is meaningful only if the ordering is
the same in each column, otherwise it could be the case that the type which is considered better has
lower mean than a worse type for some attributes. In what follows we remove the constants. Corollary
1 further specifies the form of welfare functions that are in the class characterized by Theorem 1. These
functions are a weighted sum of utility functions that are linear and have higher weights for worse types
(to preserve IABT). Theorem 1 gives a simple prescription of how to implement unanimous welfare
rankings for the case of neutrality. First partition the society into types, then for each attribute compute
the distribution of means. Finally, apply generalized Lorenz dominance to the obtained distribution. The
result is restrictive—each dimension is treated separately, and therefore the obtained ranking has a mean-
ingful interpretation only when a better type has a higher mean than a worse type on each dimension.
This restrictiveness is driven by the powerful axiom INWT.

We will now extend Theorem 1 by allowing more general welfare aggregation procedures. That is, we
keep additivity for a within-type aggregation of individual utilities; however, we relax the assumption of
additivity of types. To this end, we define class W OEN = {W |MON,INWT,IABT∗,SBT}. Provided
that one accepts the IABT* axiom, unambiguous social ranking can be achieved in the case of general
aggregation of the types welfare.

Theorem 2. For X ,Y ∈ D we have W (X)≥W (Y ) for any W ∈W OEN if and only if Xµ �CGLD Yµ.

Proof. SinceW AOEN ⊂W OEN , then by Theorem 1 W (X)≥W (Y ) for any W ∈W OEN implies Xµ�CGLD

Yµ, so we only have to prove the second implication.

Let us assume Xµ �CGLD Yµ. By defining X∗ = (u1, . . . ,uN), Y ∗ = (v1, . . . ,vn) with ui = Uh(Xh
i ), vi =

Uh(Y h
i ) we obtain by Theorem 2 (Peragine 2004) that W (X)≥W (Y ) if and only if X∗µ �CGLD Y ∗µ . Hence

we obtain that Xµ �CGLD Yµ implies W (X) ≥W (Y ) for any W ∈ W OEN if and only if Xµ �CGLD Yµ
implies X∗µ �CGLD Y ∗µ .

We have ∑
h
i=1(Xµ)i j ≥ ∑

h
i=1(Yµ)i j,∀1≤h≤n∀1≤ j≤k. Assuming that Uh

j and ψ are increasing, we get

l

∑
i=1

ui ≥
l

∑
i=1

vi ∀1≤l≤n

9



which is equivalent to X∗µ �CGLD Y ∗µ . From MON we obtain that W is increasing in every variable. Since
ψ is increasing, it means that Uh

j are also.

4.2 Agnosticism

The CGLD characterized in the previous section is non-welfarist in the sense that the evaluation of
distributions depends directly on the values of the attributes. Different authors (e.g. Dardanoni 1992;
Maasoumi 1986) propose a welfarist approach to multidimensional aggregation. Namely, an individual
well-being derived from attributes is first evaluated through a utility function. This leads to the utility-
based majorization, such as the one below (see e.g. Tsui 1999).

Definition 8. Lorenz dominance For all h = 1, . . . ,n let uX
h = ∑

NX
h

i=1Uh(Xh
i ) (as in Definition 3). For all

increasingly ordered vectors, X strictly Lorenz dominates Y in class of functionsF , that is

X �LD(F ) Y ⇐⇒
l

∑
h=1

uX
h ≥

l

∑
h=1

uY
h ∀l=1,...,n∀Uh∈F

Lorenz dominance first aggregates individual utilities within type, and then compares partial sums of
such within-type aggregate utility vectors. Here we make the dependence onF explicit to underlie that
Lorenz dominance will be applied to different classes of utility functions.

We define the class of welfare functions that fulfil the agnostic version of the reward principle. Here,
AOEAG means ‘additive opportunity egalitarian agnostic’. We have

W AOEAG = {W |MON,ADD,IABT}

and the following class of utility functions

U ICLA = {U |Increasing,Type−Concave}

where by increasingness we understand dUh/dX > 0—that is, the function is increasing with respect to
attributes and type-concavity is defined as follows.

Definition 9. Type-concavity. Function Uh :Rk→R is type-concave if the better the type the lower its
first derivative. Formally, dUh/dX > dUh+1/dX > 0.

Theorem 3 combines the class of welfare functionsW AOEAG and Lorenz dominance applied to the class
U ICLA.

Theorem 3. X �LD(U ICAL) Y ⇐⇒ W (X)≥W (Y ) for all W ∈W AEOAG

Proof. We start by showing that W ∈W AOEAG if and only if it is of form

W (X) =
n

∑
h=1

NX
h

∑
i=1

Uh(Xh
i )

with dUh/dX > dUh+1/dX > 0. Obviously, ADD is equivalent to W (X) =∑
n
h=1 ∑

NX
h

i=1Uh(Xh
i ) and MON

is equivalent to dUh
i /dX > 0. We only need to show that IABT is equivalent to dUh/dX > dUh+1/dX .

Let us assume that r < s∈ {1, . . . ,n}, p∈ {1, . . . ,NX
r },q∈ {1, . . . ,NX

s }. We set ε = (ε1,1,1, . . . ,1). Then
by IABT we have

U r(X r
p·ε+X s

q ·(1−ε))−U r(X r
p)

1−ε1
>

U s(X s
q)−U s(X s

q ·ε+X r
p·(1−ε))

1−ε1
where by · we describe coordinate-

wise multiplication of vectors. Treating X.1 as variable (first coordinate of vector X), we now obtain
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dU r/dX.1 > dU s/dX.1 by moving ε1 to 1 in the limit. By setting ε = (1, . . . ,1,εi,1, . . . ,1) we obtain the
same result for arbitrary coordinates, which concludes this part of the proof.

Now, let us assume that X �LD(U ICAL) Y . Then ∑
l
h=1 uX

h ≥ ∑
l
h=1 uY

h ∀l=1,...,n. Since it applies for any
l ∈ {1, . . . ,n} then especially for l = n, so

n

∑
h=1

uX
h ≥

n

∑
h=1

uY
h ⇐⇒

n

∑
h=1

NX
h

∑
i=1

Uh(Xh
i )≥

n

∑
h=1

NY
h

∑
i=1

Uh(Y h
i ) ⇐⇒ W (X)≥W (Y )

We now turn to the second implication. We have W (X) ≥W (Y ) for any W ∈W AEOAG, and we want
to prove that X �LD(U ICAL) Y . In other words, we have ∑

n
h=1 uX

h ≥ ∑
n
h=1 uY

h and want to prove that this
implies ∑

l
h=1 uX

h ≥ ∑
l
h=1 uY

h for any l ∈ {1, . . . ,n}.

We proceed by contradiction. Let us assume that for some l ∈ {1, . . . ,n}, ∑
l
h=1 uX

h < ∑
l
h=1 uY

h . Lets
denote A = ∑

l
h=1 uY

h −∑
l
h=1 uX

h > 0. Define W2 with Uh
2 = Uh for h ≤ l and Uh

2 = A
2(∑n

h=l uY
h−∑

n
h=l uX

h )
UH .

Since ∑
l
h=l uY

h −∑
l
h=1 uX

h > 0 and A > 0 such W ′ is in W AEOAG and ∑
n
h=1 uX

h −∑
n
h=1 uY

h = A
2 −A < 0,

which contradicts the assumption that ∑
n
h=1 uX

h ≥ ∑
n
h=1 uY

h .

Theorem 3 states that in order to compare distributions of outcomes in terms of welfare functions that
are monotone, additive, and agnostic with respect to inequality within type but averse to inequality
between types, one can apply Lorenz dominance to type-aggregate utilities, where utility functions are
increasing and type-concave. Indeed, such utility functions are ‘salient’ about inequality within type,
but respect aversion to inequality between types. The reverse is true as well, namely, Lorenz Dominance
for such utility functions is the largest (in the sense of inclusion) ordering on D consistent with the class
W AEOAG.

4.3 Aversion

Now we will turn to the case when a policy-maker cares about both, namely, inequality between types
(IABT) and inequality within type (IAWT).

We define the following class of welfare functions, where AOEA means ‘additive opportunity egalitarian
averse’:

W AOEA = {W |MON,ADD,IAWT,IABT}

and the following class of utility functions:

U ICL = {U |Increasing,Type−Concave,Concave,Submodular}

Definition 10. Submodularity. Function Uh is submodular, if Uh(Xh
p) +Uh(Xh

q ) > Uh(Xh
p ∧ Xh

q ) +

Uh(Xh
p ∨Xh

q ) where Xh
p ∧Xh

q is a vector of elements max{Xh
p j,X

h
q j} and Xh

p ∧Xh
q of min{Xh

p j,X
h
q j}.

Note that Xh
p ∨Xh

q denotes component-wise maximum and Xh
p ∧Xh

q denotes component-wise minimum.
The function is submodular if it attains lower value if, between two individuals, one has lower (or higher)
value than the other for each attribute, than for any other distribution of attributes. Submodularity reflects
that association between dimensions matters, and if there is more of it the utility is lower.

Theorem 4 combines welfare functions and dominance criterion. Here, Lorenz dominance is applied to
utility aggregates where utility functions belong to classU ICL. It is then an implementable criterion for
the class of ‘additive opportunity egalitarian averse’ welfare functions.
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Theorem 4.
X �LD(U ICL) Y ⇐⇒ W (X)≥W (Y ) for all W ∈W AEOA

Proof. We start by showing that W ∈W AOEA if and only if it is of the form

W (X) =
n

∑
h=1

NX
h

∑
i=1

Uh(Xh
i )

with Uh being concave, type-concave, and submodular.

From Theorem 3 we must only show that IAWT is equivalent to submodularity and concavity of Uh.
We start by proving that the second part of IAWT (concerning CIT) is equivalent to submodularity of
Uh. Let X ,Y ∈ D, X i = Y i and Y l = C(X , i, i′) for some i 6= l ∈ {1 . . . ,n}. From IAWT we have that
W (X)>W (Y ), from which by ADD we obtain

Uh(Xh
i ∧Xh

i′ )+Uh(Xh
i ∨Xh

i′ )<Uh(Xh
i )+Uh(Xh

i′ )

which is the definition of submodularity.

Now we need to prove that the first part of IAWT is equivalent to concavity of Uh. First, we prove that
IAWT implies concavity. Without loss of generality let X l

p < X l
q and set ε as in definition of PDTT. Now

let X ,Y ∈ D, Yi = Xi for i 6= l ∈ {1, . . . ,n} and Y l = BX l . By IAWT we have W (X) < W (Y ), which is
equivalent to

Uh(εX l
p +(1− ε)X l

q)+Uh(εX l
q +(1− ε)X l

p)>Uh(X l
p)+Uh(X l

q),

Uh(εX l
p +(1− ε)X l

q)−Uh(X l
p)>Uh(X l

q)−Uh(εX l
q +(1− ε)X l

p)

from
εX l

p +(1− ε)X l
q−X l

p = (1− ε)(X l
q−X l

p) = X l
q− (εX l

q +(1− ε)X l
p)

Uh(εX l
p +(1− ε)X l

q)−Uh(X l
p)

||(1− ε)(X l
q−X l

p)||
>

Uh(X l
q)−Uh(εX l

q +(1− ε)X l
p)

||(1− ε)(X l
q−X l

p)||
now ε→ 1

DUh(X l
p)≥ DUh(X l

q)

For proof of the second implication, let us note that any PDTT can be decomposed into a sequence of
one-dimensional PDTTs. Hence, we can without loss of generality assume that εi = 1 for i 6= 1. We
denote Y as PDT of X . From IAWT then we have W (Y )>W (X) and we have

W (Y )>W (X) ⇐⇒ U l(ε ·X l
p +(1− ε) ·X l

q)+U l(ε ·X l
q +(1− ε) ·X l

p)>U l(X l
p)+U l(X l

q)

which follows from Jensen’s inequality, since by concavity of U l it is also concave in every dimension.
This concludes this part of the proof.

Now assume that X �LD(U ICL) Y . In exactly the same way as in the proof of Theorem 3 we obtain that
∑

n
h=1 uX

h ≥ ∑
n
h=1 uY

h , so we have W (X)≥W (Y ). Obviously, sinceW AEOA ⊂W AEOAG, then by Theorem
3 the second implication follows.

The following corollary states what is clear from the proof of Theorem 4, namely that if goods are com-
plements and not substitutes, the theorem still holds but for a different class of utility functions.

Corollary 2. In the definition of IAWT we change the sign of function W—that is, for all X ,Y ∈D if X is
obtained via CIT from Y , then W (X)>W (Y ) and in Definition 10 we change the sign of inequality—that
is, Uh(Xh

p)+Uh(Xh
q )>Uh(Xh

p ∧Xh
q )+Uh(Xh

p ∨Xh
q ) (i.e. function Uh is supermodular). Then Theorem

4 holds for
U ICL′ = {U |Increasing,Type−Concave,Concave,Supermodular}.
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5 Inequality of opportunity measures derived from welfare functions

In this section we first define the inequality of opportunity measures and then characterize, for each class
of social welfare functions the corresponding classes of measures.

Definition 11. I is an IOp measure if it satisfies the following properties

1. I is continuous.

2. I(Xµ) = 0, that is I is zero for perfect equality.

3. I(Y )< I(X) if Y is PDTT of X.

Measure I is relative if additionally I(XC) = I(X) for diagonal matrix C. If I(XC) = I(X) holds only
for C being diagonal matrix with equal elements on the diagonal, then we say that I is weakly relative.

In what follows we derive IOp measures for classes (1) W AOEN (i.e. neutrality); (2) W OEN (i.e. neu-
trality with general aggregation of types); and (3) W AOEA (i.e. aversion). Agnosticism puts too little
structure on the functions W to derive IOp measures or to study their properties.

5.1 Neutrality

Before we characterize the IOp measures for the class ofW AOEN welfare functions, please note that the
second point of Definition 11 does not state that I is zero only for Xµ. In fact, for welfare functions
satisfying INWT, the corresponding inequality measure I is zero for any X which has total sums equal
everywhere to that of Xµ. That is, if the index is indifferent to inequality within type, the total sum of
each attribute can be distributed in any way within type and the index should not change.

It is not clear that inequality measures induced from welfare functions W ∈W AOEN according to Def-
inition 1 satisfy Definition 11, but with slight restriction, namely W (X) 6= 0, this is indeed the case.
Also, since it was noted that I could be zero not only for Xµ, it is not obvious that the inequality
measure induced by a welfare function is well defined; that is, that δ in Definition 1 is uniquely de-
termined. It is true, however, as it follows from linearity (Corollary 1); that is, if W (Y ) =W (Xµ), then

W (δY ) = ∑
n
h=1 ∑

NY
h

i=1 ∑
k
j=1 ah

jδY = δ∑
n
h=1 ∑

NY
h

i=1 ∑
k
j=1 ah

jY = δW (Y ) = δW (Xµ) =W (δXµ).

Theorem 5. Let W ∈W AOEN with W (X) 6= 0 for any X ∈ D. Then we have the following set of results:

1. IW is given by 1− W (X)
W (Xµ) = 1− ∑h ∑i ∑ j ah

j X
h
i j

∑
n
h=1 Nh ∑

k
j=1 ah

j(Xµ)h
1 j

.

2. IW is given by 1− W (Xµ)
W (Xµ) = 1− ∑

n
h=1 Nh ∑

k
j=1 ah

j(Xµ)
h
1 j

∑
n
h=1 Nh ∑

k
j=1 ah

j(Xµ)h
1 j

.

3. IW is a weakly relative inequality measure.

Proof. From Definition 1, we have IW (X) = 1−δ(X), where δ(X) satisfies W (δ(X)Xµ) =W (X). Since
by Theorem 1 any W ∈W AOEN is affine, we have W (δ(X)Xµ) = δ(X)W (Xµ) = W (X) ⇐⇒ δ(X) =
W (X)
W (Xµ) , proving item 1. Now by Lemma 1 we obtain item 2.

To show item 3, we check whether I is in fact a weakly relative inequality measure. Since W is the
sum of affine functions, it is continuous and since W (Xµ) 6= 0 so is 1− W (X)

W (Xµ) . For fully egalitarian X of

course Xµ = X so W (X)
W (Xµ) = 1, from which IW (X) = 0. By IABT we have W (X)<W (Y ) if Y is PDTT of

13



X . Since PDTT does not change total sums in any dimension, we get that Xµ = Y µ. This ends the proof
that IW is an inequality measure. Using the fact that W is affine, we obtain that IW is weakly relative,
since in this case W (XC) = cW (X), where c is the value from the diagonal of C. To show that it is not a
relative index, we give a counterexample. Let n = 2, NX

1 = NX
2 = 1, j = 2. Set X1

11 = X1
12 = 1, X2

11 = 1,
X2

12 = 3. Also set a1
1 = a1

2 = 2,a2
1 = a2

2 = 1. Now W (X) = 8,W (Xµ) = 9, hence δ(X) = 8
9 . Set C diagonal

with c11 = 2,c22 = 1 and we have W (XC) = 11,W (XµC) = 12 hence δ(XC) = 11
12 6=

8
9 .

Theorem 5 states that the index related to the class of welfare functionW AOEN is one minus the weighted
sum of type-means for each dimension normalized by the highest amount of welfare achievable (2 in the
theorem). Here types’ weights ah

j follow Corollary 1—that is, on each dimension j, we have ah
j > ah+1

j .
Higher weights are assigned to types that have higher mean on each dimension. This measure is a weakly
relative measure; that is, it does not change when all attributes are scaled by the same factor, but it is not
invariant when each attribute is scaled by its mean. This follows from linearity, which does not allow
for a stronger form of relativity.

5.2 Neutrality: general aggregation of types

To generalize Theorem 5 for W ∈W OEN , that is for more general aggregation of types, the following
lemma will be helpful.

Lemma 2. Let W ∈W OEN . Then W (X)=ψ(u1, . . . ,un), for uh =∑
Nh
i=1Uh(Xh

i ) and Uh(Xh
i )=∑

k
j=1 ahXh

i j+

bh. Additionally, ah
∂ψ
∂Uh

> ah+1
∂ψ

∂Uh+1
.

Proof. Take any X ∈D, let Y be obtained from X by means of within-type PDT for some vector ε > 0 and
assume l to be a type for which distributions X ,Y differ (for individuals r,s). Slightly abusing notation,
we write W (X) = ψ(Ul(X l

s ) +Ul(X l
r )). From INWT we have W (X)−W (Y ) = 0 hence ψ(Ul(X l

s ) +
Ul(X l

r ))−ψ(Ul(Y l
s )+Ul(Y l

r )) = 0. It is equivalent to:

ψ(Ul(X l
s )+Ul(X l

r ))−ψ(Ul(Y l
s )+Ul(Y l

r ))

Ul(X l
s )+Ul(X l

r )−Ul(Y l
s )−Ul(Y l

r )
·Ul(X l

s )+Ul(X l
r )−Ul(Y l

s )−Ul(Y l
r )

|ε|(X l
s −X l

r )
= 0

Taking |ε| → 0 we obtain:

∂ψ
∂u

(
Ul(X l

s )+Ul(X l
r )
)[ ∂u

∂X
(X l

s )−
∂u
∂X

(X l
r )

]
= 0

Therefore, either ψ is constant or ∂u
∂X (X

l
s ) =

∂u
∂X (X

l
r ), hence the derivative of the utility function is constant

and Ul is affine.

Now, again take any X ∈ D and let Y be PDTT of X , with some ε > 0, for types l,m and individu-
als r,s from those types respectively. Abusing notation in a similar way as before, we write W (X) =
ψ(Ul(X l

r ),Um(Xm
s )). From IABT

ψ(Ul(X l
r ),Um(Xm

s ))< ψ(Ul(Y l
r ),Um(Y m

s ))

Dividing both sides by |ε| and taking ε→ 0, we obtain the demanded condition.

Theorem 6. Let W ∈W OEN with W (X) 6= 0 for any X ∈ D. Then we have the following set of results.

1. IW is an inequality measure.

2. IW is not relative or weakly relative.
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Proof. We begin by checking the axioms. Continuity is obvious. If Y is fully egalitarian, then W (Y ) =
W (1Y µ), hence by MON δ(Y ) = 1 and IW (Y ) = 0. Finally, if Y is PDTT of X , then by IABT W (Y ) >
W (X) and since PDTT does not change total sums in any dimension, W (Y µ) = W (Xµ). Thus δ(X) >
δ(Y ) and IW (X)< IW (Y ). From this, IW is an inequality measure.

To show that IW is not weakly relative, let W (X) = ln(∏n
h=1(∑

Nh
i=1 ∑

k
j=1 ah

jX
h
i j))+ 2∑

k
j=1 a1

jX
1
i j) and let

n = 2, NX
1 = NX

2 = 1, j = 2. Set X1
11 = X1

12 = 1, X2
11 = 1, X2

12 = 3. Also set a1
1 = a1

2 = 2,a2
1 = a2

2 = 1.
Such W clearly satisfies conditions of Lemma 2, hence W ∈W OEA. Obviously (Xµ)1

11 = (Xµ)2
11 = 1,

(Xµ)1
12 = (Xµ)2

12 = 2. By simple calculation, W (X) = log(16) + 8 and W (δXµ) = log(18δ2) + 12δ
hence δ ≈ 0.71. Set C as a diagonal matrix with c11 = 2, c22 = 2. Now W (XC) = log(64)+ 16 and
W (δXµC) = log(72δ2)+24δ hence δ ≈ 0.69.

In Theorem 6 we are unable to give an explicit formula for inequality measures induced by classW OEN

as it is too general. However, it is possible to study the properties of IOp measures for this class, and
these are stated in Theorem 6.

5.3 Aversion

It is easy to see that in the case of W AOEA we would also be unable to derive a formula for the IOp
measure, but in this case we can find a subclass of welfare functions for which such explicit formula can
be given. This subclass will be defined by the following well-known property (Tsui 1995).

Ratio scale invariance (RSI). For all X ,Y ∈ D and diagonal matrix C we have W (X) = W (Y ) ⇐⇒
W (XC) =W (YC).

As seen by the definition of RSI, the subclass in question will consist of exactly those W ∈ W AOEA

for which IW is relative. Please note that for W AOEA, δ is uniquely defined, since there is no matrix
Y 6= Xµ with equal total sums in each dimension, such that W (Y ) =W (Xµ). We now state and prove the
following theorem, which is the main result of this paper.

Theorem 7. Let W ∈W AOEA, such that W satisfies RSI. Then we have the following set of results.

1. IW (X) is a relative inequality measure.

2. Utility functions Uh are of the form ah ∏
k
j=1
(
Xh

i j
)r j , ah < 0,r j < 0.

3. IW (X) is given by

IW (X) = 1−
( n

∑
h=1

wh
Uh
(
(Xµ)h

1

)
Uh
(
(Xµ)h

1

)) 1
∑

k
j=1 r j

where wh =
δh(X)Nhah
∑

n
h=1 Nhah

for δh(X) of the form

δh(X) =

[
1

Nh

Nh

∑
i=1

k

∏
j=1

( Xh
i j

(Xµ)h
1 j

)r j
]

where r j < 0.

4. For a matrix of type-means Xµ, δh = 1 for all h and IW measures only inequality between types.

Proof. First, we prove that IW is an inequality measure. Continuity is obvious. IW (Xµ) = 0, since for
δ = 1 W (Xµ) =W (δXµ) and by monotonicity of W , it is uniquely defined. Since PDT does not change
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the mean value of each dimension, IW (X)> IW (Y ) if Y is PDT of X is implied by IABT. Relativity easily
follows from the fact that W (X) =W (δXµ) ⇐⇒ W (XC) =W (δXµC).

Let us fix h. We now use theorem 6 in Tsui (1995) to obtain the expression for δh—that is, the equality
index for a single type h, defined as W (Xh) = W (δhXh

µ ). The class W ∈W AOEA satisfies conditions in
theorem 6, so it follows that utility functions are of the form Uh(Xh

i ) = ah ∏
k
j=1
(
Xh

i j
)r j with ah < 0,r j < 0

or ∑
k
j=1 r jlog

(
Xk

i j
)
, but as the second form does not satisfy IABT, 2 follows automatically. For this class

of utility functions, the obtained equality index for a single type is δh(Xh) =
[ 1

Nh
∑i ∏ j(

Xi j

(Xh
µ ) j

)r j
] 1

∑r j .

Now, relaxing the assumption of a single type, by ADD we have W (X1, . . . ,Xn) =W (δ1X1
µ , . . . ,δnXn

µ ),
with δh as above. We write

W (δXµ) =W (X) ⇐⇒ −
n

∑
h=1

Nhah

k

∏
j=1

(
δ(Xµ)h

1 j
)r j =−

n

∑
h=1

Nhah

k

∏
j=1

(
δh(Xµ)h

1 j
)r j ⇐⇒

⇐⇒ δ∑
k
j=1 r j

n

∑
h=1

Nhah

k

∏
j=1

(
(Xµ)h

1 j
)r j =

n

∑
h=1

Nhahδ
∑

k
j=1 r j

h

k

∏
j=1

(
δh(Xµ)h

1 j
)r j ⇐⇒

⇐⇒ δ =

( n

∑
h=1

wh
Uh
(
(Xµ)h

1

)
Uh
(
(Xµ)h

1

)) 1
∑

k
j=1 r j

as in the statement of the theorem.

Theorem 7 states that inequality indices related to the class of inequality-averse, both within and be-

tween types, welfare functions are weighted sums of normalized types’ utilities; that is,
Uh
(
(Xµ)h

1

)
Uh
(
(Xµ)h

1

) , where

weights are Tsui’s (1995) equality indices computed within type. Inequality between types, on the other
hand, is preserved by the fact that better types (i.e. types that have higher average utility), obtain lower
weight in the measure due to its concavity. Less formally, one can view this measure as composed of
two components, one for the distribution of attributes within type and one for the distribution of utilities
between types. When there is no within-type inequality (i.e. Xµ), then within-type Tsui equality index
is equal to 1 and IW records pure inequality between types (point 4). Welfare function W ∈W AOEA is
ratio-scale invariant, averse to CIT, and sensitive to PDT. These properties are ensured by the form of
utility function with negative parameters ah,r j. This is the result of Tsui (1995) and Aczél (1988) that
we use.4 Parameters r j are dimensions’ weights. The higher r j (less negative) the lower the degree of
concavity in a given dimension and the lower inequality weight attached to this dimension. To see this,
let us assume that r1 = · · ·= rk = r. We obtain the following:

d
dr

IW (X) = ln(δ(X))δ(X)
1

Nr

[
∑
h

∑
i

ln
(

Uh(Xh
i )

Uh((Xµ)h
1)

)
Uh(Xh

i )

Uh((Xµ)h
1)

]
≤ 0

The sign of this derivative depends negatively on ∑h ∑i

[
ln
( Uh(Xh

i )

Uh((Xµ)h
1)

) Uh(Xh
i )

Uh((Xµ)h
1)

]
. Note that this expres-

sion is a definition of generalized entropy of vector of utilities Uh(Xh
i j), h = 1, . . . ,n, i = 1, . . . ,Nh with

parameter α = 1. In this special case, generalized entropy is simply the Theil T index. As the Theil T
index is non-negative, we obtain that increase in r results in decrease of inequality. Please note that since
r < 0, an increase in r means decreasing the dimensions’ weights.

4 For functions W that increase in CIT, the form of utility function would be the same with different parameters, namely
ah > 0,r j > 0,∑ j r j ≤ 1.
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6 Inequality of opportunity measures and dominance conditions

In this section, we show how IOp measures are related to implementable dominance conditions. Since
inequality measures are derived from welfare functions, their relationship to dominance criteria follows
from the link between welfare functions and dominance conditions established in Theorems 1–4. The
difference is that the scale factor needs to be removed; recall that in the standard case (Atkinson 1970),
inequality and welfare rankings are the same if, for example, the mean income is fixed. Here we have
similar results, corresponding to the different reward principles.

Theorem 8. Let W ∈W AOEN with W (X) 6= 0 for any X ∈ D. Then we have the following set of results:

1. IW (X)≤ IW (Y ) ⇐⇒ X ′µ �CGLD Y ′µ, where X ′hi j =
Xh

i j
W (Xµ) , Y ′hi j =

Y h
i j

W (Y µ) .

2. If for all j, ∑
n
h=1 ∑

Nh
i=1 Xh

i j = ∑
n
h=1 ∑

Nh
i=1Y h

i j then W (Y )≤W (X) ⇐⇒ IW (Y )≥ IW (X).

Proof. We need to show that ∀ W ∈W AOEN IW (X)≤ IW (Y ) ⇐⇒ X �CLD Y . By Theorem 1 we have
W (X ′)≥W (Y ′) ⇐⇒ X ′µ �CGLD Y ′µ hence W (X)

W (Xµ) ≥
W (Y )
W (Y µ) ⇐⇒ X ′µ �CGLD Y ′µ and IW (X)≤ IW (Y ) ⇐⇒

X ′µ �CGLD Y ′µ. Since 2 is a special case of 1, it follows from it.

Theorem 8 states that the ranking of distributions according to IOp measures related to the class of
welfare functions W AOEN is equivalent to the ranking of distributions according to CGLD, which acts on
normalized matrices that are perfectly equal within type—that is, which acts on normalized Xµ. Here,
the normalization factor is the value of the highest welfare; that is, this is achieved for the most equal
distribution Xµ. Please note that it would not suffice to normalize attributes by their means because, as
stated in Theorem 5 (point 3), the inequality measure is only weakly relative—that is, it is not invariant
when attributes are scaled by different factors such as different means. If, however, outcome matrices
X and Y have equal total sums for each attribute, then there is no need for any normalization (Theorem
8, point 2). For the case of general aggregation of types we obtain the same result, which is stated in
Theorem 9.

Theorem 9. Let W ∈W OEN with W (X) 6= 0 for any X ∈ D. Then we have the following set of results:

1. IW (X)≤ IW (Y ) ⇐⇒ X ′µ �CGLD Y ′µ, where X ′hi j =
Xh

i j
W (Xµ) , Y ′hi j =

Y h
i j

W (Y µ) .

Proof. SinceW AOEN ⊂W OEN then IW (X)≤ IW (Y ) =⇒ X ′µ �CGLD Y ′µ. To obtain a reverse implication,
note that by Theorem 2, X ′ �CGLD Y ′ =⇒ W (X ′) ≥W (Y ′) for all W ∈W OEN . Since by construction
total sums in each dimension of X ′,Y ′ are equal, it means that δ(X ′) ≥ δ(Y ′), and therefore IW (X) ≤
IW (Y ), for any W.

We now formulate a result which shows that inequality ranking induced by inequality-averse IOp mea-
sures is implemented by the ranking of Lorenz dominance on some modified outcome distributions.

Theorem 10. Let W ∈W AOEA, such that W satisfies RSI. Then we have the following set of results.

1. IW (X)≤ IW (Y ) ⇐⇒ XCX �LD(F ) YCY , where the classF is as in Theorem 4, namely,U ICL.

2. The class U ICL here is restricted to utility functions of the form defined in point 2 of Theorem 7,
namely, Uh = ah ∏

k
j=1
(
Xh

i j
)r j , where |ah|> |ah+1| when

− 1
Nh

∑
Nh
i=1 ∏

k
j=1
(
Xh

i j
)r j <− 1

Nh+1
∑

Nh+1
i=1 ∏

k
j=1
(
Xh+1

i j

)r j .
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3. These utility functions act on values of the attributes normalized by attributes’ means; that is,
CX ,CY are diagonal matrices with cX

j j =
N

∑
n
h=1 ∑

Nh
i=1 Xh

i j

, cY
j j =

N
∑

n
h=1 ∑

Nh
i=1 Y h

i j

.

Proof. Note that by RSI IW (XCX) = IW (X). By definition of CX ,CY we have XµCX = Y µCY since both
of those have all values equal to 1. Assume XCX �LD(F ) YCY . By Theorem 4 and RSI we have

W (δ(X)XµCX) =W (XCX)≥W (YCY ) =W (δ(Y )Y µCY ).

Since XµCX = Y µCY we have δ(X) ≥ δ(Y ) and therefore IW (X) ≤ IW (Y ). Since every operation was
invertible, it concludes the proof.

The inequality ranking induced by IOp indices which are related to the W AOEA class of welfare functions
is equivalent to Lorenz dominance with two modifications. First, Lorenz dominance applies to the class
of utility functions that are increasing, type-concave, concave, and submodular (U ICL). This class is
further restricted by RSI, which gives the form as in point 2. Higher types’ weights |ah| (please note that
ah is negative) are assigned to types that have lower average utility − 1

Nh
∑

Nh
i=1 ∏

k
j=1
(
Xh

i j
)r j (i.e. Uh with

ah = −1). This ensures that type-concavity holds globally. Second, Lorenz dominance acts on vectors
of attributes normalized by their means—that is, CX is a normalization matrix with diagonal elements
one over the attribute mean. Please note that because in the aversion scenario the distribution within type
matters, the relevant distributions which are compared by the Lorenz criterion cannot be summarized by
Xµ.

7 Empirical application

We will now illustrate the methods developed in the paper with an empirical application. To this end,
we use the US National Longitudinal Study of Adolescent to Adult Health (Add Health) to evaluate
inequality of opportunity in the USA for the case of three dimensions of individual outcomes: education,
health, and income. Add Health is a four-wave panel study that focuses on health-related behaviours and
their causes. Initial information was collected in 1994/95 on adolescents in grades 7–12 (N = 20; 745)
drawing on a stratified sample of 80 high schools in the USA. The sampling was conducted so as to
ensure a nationally representative sample of adolescents enrolled in grades 7–12 in 1994/95. In addition
to in-depth interviews with adolescents, questionnaires were administered to school representatives,
parents, and roughly 90,000 students of the sampled schools. Importantly, the survey data are linked to
additional contextual data from other data sources, such as the Census of Population and Housing, the
School District Databook, or the Statistics of the US Bureau of the State Government Finances. In the
two most recent waves (N = 15; 170 and N = 15; 701, respectively) all respondents observed in Wave 1
had achieved the age of consent.

For the multidimensional outcome variable, we use self-reported personal earnings, years of education,
and BMI in year 2008. The sample includes individuals age 24–32. Summary statistics are provided in
Table 1.

Circumstance variables are derived from Wave 1, when the vast majority of respondents was younger
than 18 years. We consider eight binary variables: race (white), maternal education (at least some col-
lege), paternal education (at least some college), biological sex (male), parental smoking (at least one
smoker in the household), the marital status of parents (single-parent household), ability during child-
hood (above median Picture Vocabulary Test (PVT)), and parental income (above median household
income). Table 2 presents the summary statistics.
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Table 1: Summary statistics for outcome variables
N Mean SD

Personal income (k$) 12.041 33,994.609 41,619.066
BMI 12.119 70.857 7.610
Years of education 12.284 14.120 2.202

Notes: means and standard deviations are weighted to correct for sampling procedure and sample attrition through waves 3
and 4.

Source: authors’ compilation based on data from the Add Health survey, waves 1–4.

Table 2: Summary statistics for circumstance variables
N Mean SD

Race: white 12.282 0.704 0.457
Female 12.288 0.494 0.500
Educ. mother: >HS 12.285 0.354 0.478
Educ. father: >HS 12.283 0.297 0.457
Smoker in household 10.657 0.531 0.499
No father in household 12.288 0.421 0.494
PVT above median 11.718 0.530 0.499
Gross household-income above median 9.403 0.507 0.500

Notes: means and standard deviations are weighted to correct for sampling procedure and sample attrition through waves 3
and 4.

Source: authors’ compilation based on data from the Add Health survey, waves 1–4.

There is considerable sample attrition. Wave 1 starts with 20,000 individuals, and 12,000 of them were
interviewed in Wave 4. The analysis uses a pre-configured set of sampling weights to correct for this.
Furthermore, there is selective item non-response for certain variables, which brings down estimation
sample size to 8,726 individuals. To correct for non-response for different outcomes, the sample is
re-weighted with respect to the socio-demographic characteristics such as race, maternal education,
region of residence, and biological sex. Hence, the results are representative for the US population of
adolescents enrolled in grades 7–12 in year 1994/95. Table 3 contains evidence to this effect. Despite
sample reductions, the characteristics of each estimation sample do not differ significantly from the
initial Add Health sample.

Table 3: Robustness to selective attrition (t-test)
Estimation sample Full sample Difference

N Mean SD N Mean SD p-value
Education mother 8,726 0.297 0.457 18,908 0.286 0.452 0.072
Household income 8,726 0.704 0.456 18,913 0.698 0.459 0.324
Race 8.726 2.498 0.927 18,924 2.495 0.925 0.784
Religion 8.726 0.494 0.500 18,922 0.491 0.500 0.663

Notes: means and standard deviations are weighted to correct for sampling procedure and sample attrition through waves 3
and 4.

Source: authors’ compilation based on data from the Add Health survey, waves 1–4.

With eight binary circumstance variables, the maximum number of types is 192 in the most finely grained
partition. Type partitions of increased granularity are created by sequentially introducing circumstance
variables in the following order: (1) race, (2) sex, (3) maternal education, (4) paternal education, (5)
household income, (6) parental smoking, (7) whether parents split, (8) child PVT outcome (above or
below median). We first check the requirements of the same means rankings, which is necessary for
the interpretation of CGLD and thus IAOEN

W measure. This condition is trivially satisfied for all models
in which we consider a single outcome. It is also satisfied for models with only binary partition (i.e.
only two types) for all outcome combinations (i.e. single outcomes, bidimensional outcomes, and joint
three-dimensional outcome). However, already with a partition larger than two types, type rankings
differ across dimensions. For this reason, in what follows we use the IAOEA

W measure, which does not
involve such restrictiveness.

19



Figure 1 shows the values of IAOEA
W for three outcomes and varying type partitions, up to 192 types. For

each partition, type weights are the following: for type h weight ah is set as 196−h. We consider IAOEA
W

for the case when δ = 1 and IAOEA
W measures between-type inequality only, and IAOEA

W without such a
restriction. First, we note that the measure without restriction is non-zero when the whole sample is a
type. This comes from the fact that IAOEA

W takes into account inequality within type, which in this case
exists. Second, IAOEA

W increases with type partition, which replicates the well-known lower bound result
by Ferreira and Gignoux (2011). This can also be viewed as an empirical confirmation that the measure
is well defined. Third, aversion to within-type inequality is a strong driver of the results—more than
half of IOp detected with 192 types is already present in the case where there is only one type. This is
evident also when one compares the values of IAOEA

W to the special case of δ = 1 (red bars in Figure 1).
IOp as measured by between-type inequality only is consistently less than half of IAOEA

W (blue bars in
Figure 1). Aversion to within-type inequality does matter for the evaluation of IOp.

Figure 1: Estimates of IAOEA
W for joint outcomes

Source: authors’ compilation based on data from the Add Health survey, waves 1–4.

We will now consider in more detail the issue of multidimensionality in the computation of IOp. Figures
2–4 show the values of IAOEA

W computed for each outcome separately. These are cases of standard
unidimensional IOp. IOp computed dimension by dimension differs significantly. Let us look closer at
the case of maximum partition—that is, for 192 types. First, we consider the case of δ = 1, so no within-
type inequality—comparison of red bars in Figures 1–4. The values of IOp for education and BMI are,
respectively, 0.054 and 0.016, whereas for income it is 0.19. IAOEA

W with δ = 1 equals 0.086—in between
the low IOp for education and BMI and the high IOp for income. This indicates the re-ranking of types
with respect to mean values on each dimension, something we detected when checking the existence
condition for CGLD. In other words, when dimensions are considered jointly, lower type position on
one dimension is compensated via a higher position on another dimension, and a joint measure takes
this into account. These differences are even more pronounced when additionally within-type inequality
aversion is taken into account—comparison of blue bars in Figures 1–4. For 192 types, the values of IOp
for education and BMI are, respectively, 0.06 and 0.021, whereas for income it is 0.47! Joint inequality
IAOEA
W equals 0.2. Here, this medium value of IOp for joint outcomes as compared to separate outcomes

is—on top of types’ means re-rankings—caused by changes to within-type inequality. These changes
are of two types, namely an outcome which is most unequal (income) is paired with outcomes which are
distributed more equally (education and BMI) and/or high-income individuals are only to some extent
best in education and BMI dimension. The former type of changes relates to the fact that when going
from one dimension to three dimensions we take into account three marginal distributions. The latter
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type of changes relates to the fact that when going from one dimension to three dimensions, dependence
structure between dimensions begins to matter.

Figure 2: Estimates of IAOEA
W for BMI

Source: authors’ compilation based on data from the Add Health survey, waves 1–4.

Figure 3: Estimates of IAOEA
W for years of education

Source: authors’ compilation based on data from the Add Health survey, waves 1–4.
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Figure 4: Estimates of IAOEA
W for income

Source: authors’ compilation based on data from the Add Health survey, waves 1–4.

8 Concluding remarks

In this paper we develop a normative approach to the measurement of ex-ante IOp in a multidimen-
sional setting—that is, when the individual outcome is represented by a multidimensional variable. We
characterize axiomatically three classes of social welfare functions, all endorsing ex-ante compensation
but each of them reflecting a specific reward principle: (1) utilitarian, (2) agnostic, and (3) averse. The
first class is implemented via generalized Lorenz dominance applied to each attribute separately. The
agnostic and inequality-averse classes are implemented by Lorenz ordering of type-aggregate utilities.
The class of utility functions used in the inequality-averse scenario is submodular; hence it captures the
dependence between attributes. We also develop normative inequality indices (Atkinson 1970; Kolm
1969; Sen 1973) for the classes of welfare functions and studied their properties. Finally, we propose
an empirical application of the methods developed in the paper: by using the Add Health survey in the
USA we evaluate IOp in the USA for the case of three dimensions of individual outcomes: education,
health, and income.

There are numerous theoretical extensions of this framework and this paper should be considered a
starting point in the topic of extending EOp theory to a multidimensional setting. First, in this paper
we focus on the ex-ante approach. A development of the present paper will study the multidimensional
extension of the ex-post approach in all its variants (see Fleurbaey 2008; Fleurbaey et al. 2017; Peragine
2004; Roemer 1998). Second, we work with fixed population distributions. A natural extension is to
allow for both changes in X and the partitions of N into types (see, e.g. Peragine 2004). Third, in the
multidimensional case some attributes may not be transferable. It would be interesting to extend our
results in this direction along the lines of Bosmans et al. (2009) and Muller and Trannoy (2012). These
will be the subject of future research.
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