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Abstract

Two approaches are considered to incorporate judgment in DSGE
models. First, Bayesian estimation indirectly imposes judgment via
priors on model parameters, which are then mapped into a judgmen-
tal interest rate decision. Standard priors are shown to be associated
with highly unrealistic judgmental decisions. Second, judgmental in-
terest rate decisions are directly provided by the decision maker, and
incorporated into a formal statistical decision rule using frequentist
procedures. When the observed interest rates are interpreted as judg-
mental decisions, they are found to be consistent with DSGE models
for long stretches of time, but excessively tight in the 1980s and late
1990s and excessively loose in the late 1970s and early 2000s.

Keywords: Monetary Policy; DSGE; Maximum Likelihood; Statistical Decision
Theory.
JEL Codes: E50; E58; E47; C12; C13.
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NON-TECHNICAL SUMMARY

The use of judgment is pervasive in central banking. Yet, modern dynamic
stochastic general equilibrium (DSGE) models have no consideration for it.
This paper is concerned with the question of how to incorporate central
bankers’ judgmental decisions in state of the art macroeconometric models.

We first derive the optimal monetary policy decision consistent with a
three-equation New Keynesian DSGE model, which constitutes the back-
bone of the current DSGE literature. We derive that the central bank has a
quadratic loss function, with a dual mandate of stabilizing inflation around a
target level and output around a reference equilibrium level. The optimal de-
cision rule minimizes the loss function subject to the constraints represented
by stochastic properties of the DSGE model economy.

We next show that Bayesian estimation of DSGE models is an indi-
rect way to introduce judgment in the monetary policy decision problem.
Bayesian estimation relies on a set of prior distributions for the model pa-
rameters, which are then combined with the likelihood function to arrive at
a posterior distribution by applying Bayes rule. The expectation of the cen-
tral banker’s loss function is computed using the posterior distribution. We
evaluate the priors by computing the expectation of the central banker’s loss
function using the prior (instead of the posterior) distribution and then mini-
mizing it with respect to the interest rate. Our interpretation is that choosing
priors is equivalent to endowing the central banker with specific judgmental
decisions. Our results are quite striking: Imposing standard priors from the
Bayesian DSGE literature is equivalent to assuming that the central banker
has extreme judgmental interest rate decisions, ranging from -10% to 45%.
We hope that our findings will raise awareness among economists and central
bankers that the choice of the priors for Bayesian estimation is not an in-
nocuous exercise, but it shapes the type of judgmental information which is
brought into the analysis and may have strong and unwarranted implications
for the decision process.
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We also propose an alternative, frequentist strategy to incorporate judg-
ment. Starting from an exogenous judgmental decision, the hypothesis that
this decision is optimal can be tested by checking whether the corresponding
first order condition evaluated at the estimated parameters are different from
zero. If the test fails to reject the null, the econometric evidence provided by
the DSGE model is compatible with the judgmental decision. Rejection of the
null hypothesis, on the other hand, suggests to marginally move away from
the judgmental decision in the direction of the maximum likelihood decision,
since we are testing the null hypothesis that the gradient is equal to zero. By
construction of the test statistic, marginal moves will be statistically signifi-
cant until the closest boundary of the confidence interval associated with the
gradient is reached. The interest rate decision incorporating judgment and
compatible with the DSGE model is the interest rate which sets the gradient
equal to the closest boundary of the confidence interval.

We estimate the model using U.S. data, taking as judgmental decision
of the central bank the observed interest rates. We find that there are long
stretches of time where the observed interest rate is consistent with the model.
There are periods, however, where the DSGE model prescribes considerably
different decisions, even though not as extreme as in the case of Bayesian
decisions. Our DSGE model would have prescribed a significantly looser
monetary policy in the 1980s and the late 1990s, and significantly tighter in
the late 1970s and early 2000s.
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1 Introduction

Central bankers face, in principle, a conceptually straightforward decision
problem: for a given stochastic process governing the economy (a model),
choose the interest rate which minimizes the expected loss. In practice, cen-
tral bankers’ decisions are a subjective combination of qualitative and quan-
titative information, rather than the result of a formal optimization problem.
We refer to those interest rate decisions as judgmental decisions. This paper
is concerned with the question of how to formally incorporate judgmental
decisions in modern dynamic stochastic general equilibrium (DSGE) models.

We make three main contributions, two methodological and one empirical.
First, we show that Bayesian estimation of DSGE models imposes implicit
choices of central bankers’ judgmental decisions, via the prior distribution of
model parameters. We find that standard priors from the DSGE literature
are associated with extreme and unrealistic judgmental decisions. Second,
we propose an alternative frequentist approach to incorporate judgmental
decisions in a DSGE framework, taking the judgmental decisions themselves,
rather than the prior distribution, as a primitive of the decision problem.
Third, estimating a DSGE model with U.S. data over the sample 1965-2007,
we find that the Federal Reserve judgmental decisions have been compatible
with the estimated DSGE model for slightly more than half of the sample.
On the contrary they have been excessively tight in the 1980s and late 1990s
and excessively loose in the late 1970s and early 2000s.

More concretely, suppose that the economic environment has the following
characteristics:

1. the DSGE model is a correctly specified representation of the macroe-
conomic stochastic process;

2. the underlying model parameters are known;

3. the central banker’s loss function is known.
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Under these assumptions, the DSGE model can be solved and the loss
function minimized with respect to the interest rate (the decision variable),
thus providing the optimal solution to the central banker’s decision problem.
In the real world, none of those assumptions holds, a fact which goes a
long way in explaining why judgment continues to play the dominant role in
arriving at interest rate decisions. In this paper, we show how to formally
include judgment in the central banker’s decision problem, by maintaining
two of the three assumptions above (1 and 3) and relaxing the hypothesis that
the underlying parameters of the model are known, but have to be estimated
from data.

Since our objective is not to improve on the DSGE modeling front, we
work with the simplest possible, yet meaningful, three-equation New Keyne-
sian DSGE model (Clarida et al. 1999, Gaĺı 2015, Woodford 2003). Utility
maximizing households and profit maximizing firms give rise to equilibrium
conditions that describe the stochastic evolution of output (IS equation) and
inflation (New Keynesian Phillips curve). The nominal interest rate is set
by a central bank following a Taylor-type rule. This simple three-equation
model has also the advantage that all the objects of interest can be obtained
analytically.

We next derive the optimal monetary policy decision by following the
standard approach in the literature (Clarida et al., 1999). The central bank
loss function is derived by taking the second order approximation of the util-
ity function, so representing a welfare function. It turns out to be quadratic in
inflation and output gap, in line with the spirit of a dual mandate of stabiliz-
ing inflation around a target level and output around a reference equilibrium
level. The optimal decision rule minimizes the loss function subject to the
constraints represented by the behavior of private agents in the economy. We
focus on the case of discretion, because of simplicity and because it better
reflects the real world central banks’ behavior.1

1For an empirical investigation supporting our choice see Chen et al. (2017).
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We compare two alternative empirical strategies to incorporate judgment
in the optimal monetary policy decision process.

First, we show how, in Bayesian estimation, judgment is indirectly in-
troduced with a prior distribution for the model parameters. The logic is
the following. In standard optimal monetary policy decision problems, the
central banker minimizes the expected loss function with respect to the inter-
est rate, where the expectation is computed using the posterior distribution.
We perform this analysis too, but we also propose to compute the expected
loss function using only the prior distribution. We refer to the interest rate
minimizing this expectation as the judgmental interest rate decision implied
by the priors.

This exercise is reminiscent of the prior predictive checks advocated for
instance by Lancaster (2004), Geweke (2005), Geweke (2010), and Jarociński
and Marcet (2019) in time series models, and by Del Negro and Schorfheide
(2008), Lombardi and Nicoletti (2012), and Faust and Gupta (2012) in DSGE
models.2 It is important to stress that our interpretation is that choosing
priors is equivalent to endowing the central banker with specific judgmental
decisions. On the contrary the cited DSGE literature focus on the selection
of priors based on their ability to match some features of the data, like steady
state values and selected moments, or impulse response functions.

The second empirical strategy to arrive at the optimal decision is fre-
quentist in nature and relies on the following reasoning. It starts from an
exogenous judgment, formed by a judgmental decision and a confidence level.
Judgment is exogenous in the same sense of priors in Bayesian estimation.
Given the global convexity of the loss function, a necessary and sufficient
condition for the optimality of the central banker’s judgmental decision is
that its first derivative with respect to interest rate (also labeled as gradi-
ent henceforth) is equal to zero in population. Population parameters are

2Although not exactly classifiable into the category of prior predict checks, Reis (2009)
compares the response of endogenous variables to shocks computed on the basis of prior
means and posterior means within a DSGE model with sticky information.
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however unknown and the gradient can only be evaluated at their estimated
value. We estimate the model’s parameters by maximum likelihood. The gra-
dient evaluated at the judgmental decision and at the estimated parameters
will be different from zero with probability one. But the inference apparatus
associated with the maximum likelihood procedure (White, 1996) allows us
to test the null hypothesis that the judgmental decision is optimal by testing
whether the empirical gradient is statistically different from zero, using the
given confidence level. If the test fails to reject the null, we conclude that
the econometric evidence provided by the DSGE model is not sufficient to
suggest significant departures from the judgmental decision. Rejection of the
null hypothesis, on the other hand, suggests to marginally move away from
the judgmental decision in the direction of the maximum likelihood decision,
since we are testing the null hypothesis that the gradient is equal to zero.
By construction of the test statistic, marginal moves will be statistically sig-
nificant until the closest boundary of the confidence interval associated with
the gradient is reached. The implication of this reasoning is that the optimal
decision compatible with the data and the DSGE model is the interest rate
which sets the gradient not equal to zero (as in standard maximum likelihood
applications), but to the closest boundary of the confidence interval.

We implement the two empirical strategies using U.S. data. Not surpris-
ingly, we find that the Bayesian decisions differ from the observed ones and
from those obtained by maximum likelihood with judgment, at times quite
substantially. What is striking is that imposing standard priors from the
Bayesian DSGE literature is equivalent to assuming that the central banker
has extreme judgmental interest rate decisions, ranging from -10% to 45% in
annual terms. An important insight of our findings is that the choice of the
priors for Bayesian estimation is not an innocuous exercise, but it shapes the
type of judgmental information which is brought into the analysis and may
have strong and unwarranted implications for the decision process. Given the
widespread use of DSGE Bayesian estimation in the central banking commu-
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nity, we hope that our findings raise awareness about the hidden behavioral
assumptions implicit in this practice.

As regards the frequentist approach of incorporating judgment, we take as
judgmental decision the observed interest rates (but it could be implemented
with any other arbitrary judgment). One way to read the empirical results
of this paper is to check to what extent the history of Federal Reserve’s
decisions have been compatible with the three-equation DSGE model we are
estimating. We find that there are long stretches of time where the observed
interest rate is consistent with the model. There are periods, however, where
the DSGE model prescribes considerably different decisions, even though not
as extreme as in the case of Bayesian decisions. Our DSGE model would have
prescribed a significantly looser monetary policy in the 1980s and the late
1990s, and significantly tighter in the late 1970s and early 2000s.

One important caveat of our findings is that the analysis rests on the as-
sumption of correct model specification. In practice, the discrepancy between
the judgmental and the model based decisions may be due randomness, bad
judgment or model misspecification. In this paper, we cannot distinguish
among these possibilities.

In terms of the relationship of our paper with the literature, there are only
few contributions that consider judgment. Svensson (2005) explicitly models
the role of judgment in a monetary policy decision problem. He represents
judgment as the central bank’s superior ability to estimate the conditional
mean of stochastic deviations in the model equations. In particular, central
bankers are assumed to know the reduced form parameters governing the
dynamics of the economy, so that they don’t face any estimation issue. There
is also a group of papers which model judgment as the ability to produce
more accurate forecasts on the basis of a larger information set coming from
different sources (Tallman and Zaman in press, Boneva et al. 2019, Domit
et al. 2019 , Del Negro and Schorfheide 2013, and Monti 2010). All existing
approaches, unlike ours, build on a specific modeling of judgment. In this
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paper, instead, judgment is taken as an exogenous variable to the decision
problem, in the same spirit of the prior formulation in the Bayesian analysis.
In that we follow Manganelli (2009).

The paper is structured as follows. Section 2 presents the DSGE model.
Section 3 solves the decision problem of the central banker and shows how
to incorporate judgment. Section 4 contains the empirical evidence. Section
5 concludes.

2 Maximum likelihood estimation of a styl-
ized DSGE model

We first present a stylized New Keynesian DSGE model in its log-linearized
form. Next we show how to construct the likelihood function and derive the
asymptotic approximation to the variance covariance matrix of the model
parameters.

2.1 The model

The model we consider is mainly taken from Clarida et al. (1999) with
some elements from Smets and Wouters (2007), with households, interme-
diate and final good producers and a monetary and fiscal authority. The
macroeconomic variables of interest are output yt, the inflation rate πt, and
the nominal interest rate rt. The economy is driven by three exogenous
shocks: a price mark-up shock ut, a government spending shock gt and a
monetary policy shock εrt . The optimizing behavior of the agents in the
economy implies the following equilibrium conditions:

y∗t = − 1
σ

[rt − Etπt+1] + Ety
∗
t+1 −

ν

(ν + σ)∆Etgt+1 (1)

πt = βEtπt+1 + λ (σ + ν) y∗t + λut (2)
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where σ is the inverse elasticity of intertemporal substitution, ν the inverse
of the elasticity of work effort with respect to the real wage (or inverse Frisch
elasticity), β is the households’ discount factor, and λ = (1−ξp)(1−ξpβ)

ξp
, with

ξp the Calvo parameter that regulates the degree of price rigidities.
Equation 1 is the IS curve. It is expressed in terms of output gap y∗t ,

which is the difference between actual and potential output ynt . The latter
is defined as the counterfactual level of output that emerges in the absence
of price rigidities and in the absence of inefficient shocks, in our case the
price mark-up shock. It is equal to σ

(ν+σ)gt. Equation 2 is the new Keynesian
Phillips curve. These two equilibrium conditions can be used to solve the
model, together with the log-linear approximation of the Taylor rule:

rt = ρrt−1 + (1− ρ) (φππt + φy∗y
∗
t ) + φ∆y∗

(
y∗t − y∗t−1

)
+ σrε

r
t (3)

where ρ measures the interest rate smoothing, φπ the systematic response to
inflation, φy∗ to the output gap, and φ∆y∗ to the output gap growth. The
last term is a monetary policy shock and it is assumed to be i.i.d.N(0, 1).

The other two structural shocks are assumed to follow an AR(1) process,
evolving according to the following parameterization:

log gt = ρg log gt−1 + σgε
g
t (4)

log ut = ρu log ut−1 + σuε
u
t (5)

with εt ≡ [εgt , εut ]′ ∼ i.i.d.N(0, I).
Finally, we assume to observe the real GDP quarter-on-quarter growth

rate ∆ log yobst , the quarter-on-quarter GDP deflator inflation πobst , and the
effective federal funds rate robst for the period 1965q1 − 2007q3.3 The link
between model and observed variables is created through the following mea-

3See Appendix A for details.
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surement equations

∆ log yobst = yt − yt−1

πobst = πt

robst = rt

Define the vector of observables and the vector of econometric parameter
to be estimated:4

xt ≡ [∆ log yobst , πobst , robst ]′ (6)

θ ≡ [σg, σr, σu, ρg, ρu, σ, ν]′ (7)

Define also the vector of state variables st = [yt−1, gt, ut, rt, y
∗
t ]′ and the

vector of structural shocks innovations εt ≡ [εut , ε
g
t , ε

r
t ]′. Then the state space

representation of this economy is:

xt = φ(θ)st (8)

st = ψ0(θ)st−1 + ψ1(θ)εt (9)

for suitable choices of the matrices φ(θ), ψ0(θ) and ψ1(θ).

2.2 Estimation and asymptotics

Assuming that the structural shocks are jointly normally distributed, it is
possible to construct the log-likelihood function for this economy.

Let us first set up some notation, following the general framework of
White (1996).5 The history of observations available at time n is xn =

4In principle, abstracting from identification issues one can estimate all parameters.
Our choice of estimating 7 parameters only is explained in section 2.3.

5In the DSGE literature, the convention is to use upper case letters to denote levels of
variables and lower case letters for the logs. In econometrics, upper case letters denote the
random variable, while lower case letters denote the realization of the random variable.
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(x′1, ..., x′n)′. The observed data xt are assumed to be a realization of a
stochastic process with cdf Ft, so that Ft(x1

t , ..., x
v
t ) = P (X1

t < x1
t , ..., X

v
t <

xvt |xt−1), t = 1, 2, ... In our DSGE model xt is defined in (6), so that v = 3.
The log-likelihood function is `n(Xn, θ) ≡ n−1∑n

t=1 log ft(X t, θ), where
ft(·, θ) : Rvt → R+ is the pdf of the multivariate normal distribution and
θ ∈ Rp, p ∈ N, is a finite dimensional parameters vector. In our case,
θ is defined in (7) and therefore p = 7. The pdf ft(X t, θ) can be con-
structed recursively from the system (8)-(9), for a given initial value s0 (see
for instance chapter 10 of Fernandez-Villaverde et al., 2016). At each point
in time t, it is the pdf of a normal distribution with mean φ(θ)ψ0(θ)st−1

and variance [φ(θ)ψ1(θ)][φ(θ)ψ1(θ)]′. The maximum likelihood estimator is
θ(Xn) = arg maxθ `n(Xn, θ).

Assuming also that the conditions for consistency and asymptotic nor-
mality are satisfied (White, 1996) gives:

B−1/2A
√
n(θ(Xn)− θ) A∼ N(0, Ip) (10)

where A ≡ E(∇2`n(Xn, θ)), B∗ ≡ var(
√
n∇`n(Xn, θ)) and Ip is the iden-

tity matrix of dimension p. The asymptotic covariance matrix A−1BA−1 is
consistently estimated by Â−1

n B̂nÂ
−1
n , where:

Ân ≡ n−1
n∑
t=1
∇2 log ft(X t, θ(Xn))

B̂n ≡ n−1
n∑
t=1
∇ log ft(X t, θ(Xn))∇′ log ft(X t, θ(Xn))

2.3 Implementation

Estimating the model via maximum likelihood can be challenging, mainly
because of parameters identifiability issues, also in the context of our simple
model (see for instance Canova and Sala, 2009 and Iskrev, 2010 for details).
We refer to Mickelsson (2015), Andreasan (2010), and Ireland (2004) for
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details on maximum likelihood estimation of DSGE models.
To ensure that the estimated parameters are invariant to the optimization

algorithm used and to the parameters initial values, we restrict the number of
parameters to be estimated. To choose the subset, we first estimate all the 13
parameters in the model with Bayesian methods.6 We then use the modes of
the posterior distributions to initialize the maximum likelihood estimation.
We start by estimating the parameters related to the shocks and fixing the
others to the posterior modes. We progressively add the other parameters
until when different optimizers deliver the same estimates. At this point,
we test for different initial values. Our benchmark specification is reported
in Table 1.7 All the comparisons below between frequentist and Bayesian
approach are based on the same set of estimated parameters.

3 Optimal monetary policy with judgment

The problem of optimal monetary policy is to choose the interest rate rt which
minimizes the central banker’s expected loss. Following Gaĺı (2015), the loss
function is derived from the second order approximation of the households
utility function. It can be shown that it can be expressed in terms of inflation

6Identification issues are independent of the estimation methodology. Bayesian esti-
mation produces estimates for all parameters, even those not identified. In maximum
likelihood estimation, unidentified parameters cannot be estimated and must be given
specific values. In our simple model, the parameter β is clearly not identified given that
the posterior distribution is identical to the prior.

7There is another subset of parameters that fulfills our criteria. Our results hold also
with that alternative.
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and output gap.8 Hence, the central banker’s problem at time t is:

min
rt
L(θ, rt) ≡

1
2Et

{ ∞∑
i=0

βi
[
ωyy

∗2
t+i + ωππ

2
t+i

]}
(11)

s.t. πt+i = βEtπt+1+i + λ (σ + ν) y∗t+i + λut+i

where ωy = σ + ν and ωπ = ε
λ
.9 This problem can be solved analytically.10

Under discretion it gives the following first order condition for the interest
rate:

∇rL(θ, rt) ≡ rt − ht(θ) (12)

= 0

where

ht(θ) ≡
[
1 + (1− ρu)σε

ρu

]
ρuωyqλut + σν

(ν + σ) (ρg − 1) gt (13)

is a function of the model parameters.
If θ were known, the solution to the central banker’s problem is r̂t = ht(θ).

In other words, equation (12) establishes for every quarter a unique optimal
value for the interest rate. Any deviation from that would be sub-optimal,
so the central banker should always decide to set r̂t if she wants to minimize
her loss.

8See Gaĺı (2015), chapter 4, for details. This assumption slightly deviates from Clarida
et al. (1999). They assume an ad-hoc loss function with an identical functional form,
but where the weights on inflation and output gap are not function of the model’s deep
parameters. We have performed our analysis under that alternative environment and
results are qualitatively similar. We believe that the current specification is more consistent
with the rest of the analysis.

9ε is the elasticity of substitution among differentiated intermediate goods. It is related
to the steady state value of the mark-up shock U as follows: U = 1

ε−1 . We set it at 6, a
common value in the literature, which implies a steady state value of the net mark-up of
20%.

10See Appendix D.

ECB Working Paper Series No 2404 / May 2020 14



In this paper, though, we are interested in the situation when θ is un-
known and needs to be estimated from the data. We introduce additional
structure to the problem in the form of judgment. We assume that the cen-
tral banker has judgment summarized by the pair {r̃t, α}. The judgmental
decision r̃t ∈ R can be thought of as the decision the central banker would
take at time t on the basis of unmodeled private information. The other
component of judgment, α ∈ [0, 1], is the confidence level that the central
bank has on her judgmental decision. It also represents the probability used
to conduct the hypothesis testing at the base of our analysis that we discuss
in the following paragraphs.

Since the decision maker wishes to minimize the loss function in popula-
tion, she can test that the population gradient evaluated at the judgmental
decision is zero:

H0 : ∇rL(θ, r̃t) = 0 (14)

Given that the estimated parameters are now random variables, the em-
pirical gradient is too. Hence, hypothesis (14) can be tested by using the
test statistic ∇rLt(θ(Xn), r̃t) and noting that by the asymptotic properties
of θ(Xn) described in section 2.2:

√
nΣ−1

t ∇rL(θ(Xn), r̃t) ∼ N(0, 1) (15)

where Σ2
t ≡ ∇θht(θ)A−1

n BnA
−1
n ∇′θht(θ).11 We denote with ∇θht(θ) the vec-

tor of first derivatives of the first order condition (12) with respect to the
estimated parameters. Individual entries are reported in appendix F.

Testing the null (14) is equivalent to testing whether the judgmental
decision r̃t is optimal. If the null is not rejected, statistical evidence is not
strong enough to suggest any deviation from r̃t. Rejection at the confidence
level α, however, implies that marginal moves away from r̃t in the direction
of the maximum likelihood decision do not increase the loss function with

11See appendix E for a formal derivation of this result.
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probability 1−α. Since any statistical procedure involves uncertainty, there
is still the possibility that moves toward the maximum likelihood increase
the loss function. However, this statistical risk is bounded above by the
chosen confidence level and happens only with probability less than or equal
to α, the probability of a Type I error. Iterating forward this reasoning leads
to the conclusion that the decision with judgment lies at the boundary of
the (1− α) confidence interval associated with (15). We refer to Manganelli
(2009) for details.

Given the observed sample realization xn and using (12), the decision
rule incorporating the central banker’s judgment is the one which, in case of
rejection, sets the gradient equal to the boundary of the confidence interval:

r̂t(xn|r̃t, α) =


ht(θ(xn)) + n−1/2Σ̂tcα/2 if zt < cα/2

r̃t if cα/2 ≤ zt ≤ c1−α/2

ht(θ(xn)) + n−1/2Σ̂tc1−α/2 if zt > c1−α/2

(16)

where zt ≡
√
nΣ̂−1

t (r̃t− ht(θ(xn))) is the sample realization of the asymptot-
ically normally distributed gradient in (15), Σ̂t is a consistent estimator of
the asymptotic variance and cα = Φ−1(α), Φ(·) being the cdf of the standard
normal distribution.

A plain English interpretation of this rule is the following. Check whether
the gradient (12) evaluated at the estimated parameters θ(xn) and at the
judgmental interest rate r̃t falls within the confidence interval. If it does,
retain the judgmental decision r̃t. If it doesn’t, choose the interest rate
that moves the empirical gradient to the closest boundary of the confidence
interval. A graphical representation of this reasoning is reported in Figure 1.

This decision coincides with the judgmental decision if there is not enough
statistical evidence against it, and shrinks towards the maximum likelihood
decision otherwise.
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4 Have Fed interest rate decisions been com-
patible with the DSGE model?

In this section we use the estimated models to compare the decisions that
a frequentist and a Bayesian decision maker would reach by following their
respective statistical approach. We take an historical perspective. We run a
counterfactual experiment aimed at evaluating how different central banker
types would have set the policy rate compared to the observed rate over our
sample.

We first need to describe how the Bayesian decision is constructed. The
econometrician has first to choose a prior distribution for the parameters θ of
the DSGE model. Let us denote it with p(θ). This prior distribution is then
combined with the likelihood function to arrive at a posterior distribution
p(θ|xn). The posterior distribution is finally used to compute the expectation
of (11), which is then minimized with respect to the interest rate. The
Bayesian decision is therefore:

r̂t(xn|p(θ)) = arg min
rt

∫
L(θ, rt)dp(θ|xn) (17)

This way of considering parameter uncertainty in the Bayesian framework
is common in the optimal monetary policy DSGE literature, like for instance
in Levin et al. (2006), Reis (2009), and Edge et al. (2010).

Turning to the frequentist decision with judgment discussed in section
3, the key input is the judgment, which is defined as a judgmental decision
and a confidence level associated with it. For the confidence level, we take a
standard 5% probability, which results in 95% confidence intervals. For the
judgmental decision, we take the observed interest rate.

It is important to stress that our framework could be implemented with
any arbitrary judgmental decision. Nevertheless, using the observed rate
gives us the advantage to make our counterfactual more comparable with
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the Bayesian case. But, most importantly, it clarifies the relationship of our
framework with the literature on optimal monetary policy. In fact, even
if parameter uncertainty has been considered in some Bayesian studies, it is
more common to analyze the counterfactual under optimal policy on the basis
of point estimates, either maximum likelihood values or a selected moment of
the posterior distributions. This is true in the three papers mentioned above,
where the case of no-parameter uncertainty is the baseline and the alternative
is a robustness check. But also in those papers where parameter uncertainty
is ignored tout court, like for instance Smets and Wouters (2002), Adjemian
et al. (2008), Justiniano et al. (2013), Chen et al. (2017), Bodenstein and
Zhao (2019), and Furlanetto et al. (2020).

Our counterfactual is similar in spirit, but it takes parameter uncertainty
explicitly into account in the frequentist case. It is a shrinkage towards the
maximum likelihood decision, i.e towards the decision that the literature
would emphasize first. It is worth noting that we can recover that decision
also within our framework. Obviously in the trivial case of completely ab-
stracting from considering parameter uncertainty. But also in the case in
which the policy maker sets α equal to 1. The confidence interval then col-
lapses to a single value, i.e. exactly the maximum likelihood decision. The
latter is reported as a blue-dotted line in the bottom panel of Figure 2.

Hence, given the observed FOMC interest rate decision, we ask the follow-
ing questions: Is this decision compatible with the DSGE model discussed
in this paper? If not, how can it be improved? This can be checked by
testing the null hypothesis (14) at each point in time, which in turn can be
implemented by setting up the confidence intervals for the empirical gradi-
ent ∇rL(θ(Xn), rt), where we have imposed rt = r̃t. The decision rule (16)
prescribes that if the empirical gradient falls within the confidence interval,
the judgmental decision is retained. If, instead, the empirical gradient falls
outside the confidence interval (that is, if the null hypothesis is rejected), the
optimal decision is the interest rate which moves the empirical gradient to
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the closest boundary of the confidence interval. This procedure is depicted
in the upper panel of Figure 2. A clear interpretation of that figure follows
by bearing in mind the procedure as described in Figure 1. The latter is
repeated for every quarter. One has to imagine a normal distribution with
zero mean and a different variance for every quarter t.

In order to fully appreciate the difference between the judgment and our
suggested optimal decision, we report in the bottom panel of the same figure
both those series in percentage annual terms. Our optimal decision deviates
from judgment 45% of times. Discrepancies are quite large at a time, reaching
values of 3.34% (0.83% in quarterly terms) in a single quarter (1972q1). The
mean deviation is 0.95%. Looking at the same panel in Figure 2, it is possible
to effectively visualize the shrinkage of our decision towards the maximum
likelihood.

The comparison between observed, frequentist and the Bayesian deci-
sions is reported in Figure 3, where the observed interest rates are plotted
together with the optimal decisions according to the DSGE model for the two
decisions.12 As already emphasized, when the maximum likelihood decision
incorporating judgment advocated in this paper coincides with the judgmen-
tal decision itself, the optimal decision is identical to the observed one. The
Bayesian decision, on the other hand, while correlating substantially with
the observed one (the correlation is 0.87), prescribes at times and on average
significant departures. For instance, in the mid-1970s the Bayesian interest
rate is up to 5 percentage points higher than the observed one, while in the
late 1990s it is 2 percentage point lower. The literature also shows sizable
effects of parameter uncertainty on the optimal policy outcomes compared
to the no-uncertainty case.

As for the comparison with the frequentist decision, differences are also
very large in those periods. But they are quite large also on average. The

12According to our estimated parameters, the implied weights in the loss function are
ωπ=407.76 and ωy=8.04. Hence, we are de facto considering the case of a strict inflation
targeting central bank, although this is not exactly equivalent to the case ωπ=1 and ωy=0.
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mean difference along the sample is 1.05%. We can overall conclude that the
discrepancies between the two estimates are qualitatively small (the correla-
tion is 0.94), but quantitatively sizable.

Finally, it is possible to establish a link between the judgmental decision
r̃t and the prior p(θ). The judgmental decision implied by the prior is the
optimal interest rate when the optimization problem in (17) is computed
with respect to the prior:

r̃t = arg min
rt

∫
L(θ, rt)dp(θ) (18)

This allows us to highlight some other important aspect of our analysis.
Our choice of priors follows the standards in the literature and is reported
in Table 1. We find it difficult to assess whether these are sensible priors
on the basis of our knowledge of the parameters. And we find it even more
difficult to convey to the decision maker (the central banker) the type of non
sample information that is incorporated in the Bayesian decision. Equation
(18), however, provides a simple way to evaluate the prior, by asking the
following question: What interest rate decision is associated with the prior
distribution over the DSGE parameters described in Table 1? This exercise
is similar in spirit to the prior predictive checks, as discussed in Lancaster
(2004), Geweke (2005), Geweke (2010), and Jarociński and Marcet (2019)
in time series models, and in Del Negro and Schorfheide (2008), Lombardi
and Nicoletti (2012), and Faust and Gupta (2012) in DSGE models. The
difference is that instead of checking whether the model and the priors are
compatible with specific moments of the observables, we compute the optimal
interest rate decision which minimizes the central banker’s expected loss using
the prior distribution.

The results of this exercise are reported in Figure 4 and are quite striking.
Imposing the standard priors of the literature is equivalent to endowing the
central banker (our decision maker) with nonsensical judgmental decisions.
The judgmental interest rate implied by our priors ranges from -10% in the
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beginning of 2000 to more than 45% in the beginning of the 1980.
These results should warn the reader about the hidden implications of

blindly applying Bayesian techniques. They impose implicit restrictions on
the behavior of the decision maker.

5 Robustness

The results obtained so far depend, among other things, on the empirical
Taylor rule, as specified in equation (3). Even though none of the estimated
parameters in that equation directly affects the solution of the model un-
der optimal policy, the specification has an impact on the other estimated
parameters.

Typically the literature does not address that issue. All papers cited in the
previous section are no exception. Nevertheless, we address it by assessing
the robustness of our results to different specifications of the Taylor rule.
This is to be sure that our counterfactual experiments satisfy as much as
possible the principle of Counterfactual Equivalence as in Beraja (2019). We
select two alternatives:

rt = ρrt−1 + (1− ρ)φππt + σrε
r
t (19)

rt = ρrt−1 + (1− ρ)
4 [φπ (πt + πt−1 + πt−2 + πt−3) + φ∆y (yt − yt−4)] + σrε

r
t

(20)

Specification (20) is often used in empirical papers, as for instance in Jus-
tiniano et al. (2013) and Christiano et al. (2014).

We estimate the models with those rules following the same procedure
used to estimate our baseline model. We report our results in Figure 5.
The upper panels show the gradients, the 95% confidence intervals, and the
resulting optimal decision for the model with equation (19) (left panel) and
(20) (right panel). The maximum likelihood estimate of the parameter σ
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continues to be very high for both Taylor rule specifications. This implies
that the solution of the model under optimal monetary policy continues to be
similar to the case of a strict inflation targeting central bank. That explains
why the gradients are similar to the one in our baseline case in Figure 2. As
for the confidence intervals, they depend on other factors too, so they do not
necessarily have to be similar.

Given the small differences in the gradients and despite the somewhat
large differences in the confidence intervals across different specifications,
the implied optimal decisions reached by the central bank under the three
Taylor rules do not show substantial discrepancies (Figure 5, bottom panel).
We conclude that our results do not depend on the Taylor rule selected to
estimate the model.

According to the log-marginal data density of the three models, our base-
line specification is by far the one that fits the data better. Those values are
−318.91 for our baseline model, −331.70 for the model with equation (19),
and −344.16 for the model with equation (20).

6 Conclusion

Judgment plays an important role in the decision making process of a central
bank. There are many quantitative and qualitative considerations which
eventually lead to a decision on interest rates. For the purpose of this paper,
we refer to the observed decisions as to the judgmental decisions. We then
ask whether these judgmental decisions are compatible with an off-the-shelf
DSGE model estimated with maximum likelihood. For a given loss function,
which is derived to be quadratic in inflation and output gap, the optimal
interest rate sets the gradient of the loss function equal to zero. Since the
gradient depends on unknown estimated parameters, it is possible to test
whether the gradient evaluated at the judgmental decision is equal to zero.
If it is, we conclude that the statistical evidence provided by the estimated
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DSGE model is not sufficiently strong to reject the judgmental decision. If on
the other hand the gradient is statistically different from zero, our statistical
decision rule prescribes to change the interest rate up to the point where the
gradient is no longer statistically different from zero, a point which coincides
with the closest boundary of the confidence interval.

We estimate this decision rule on US data from 1965 to 2007. We find
that the Federal Reserve judgmental decisions have been compatible with
the estimated DSGE model for slightly more than half of the sample. On the
contrary, the judgmental interest rate decisions were tighter than what the
model would have prescribed in the 1980s and late 1990s, and looser than
what the model would have prescribed in the late 1970s and early 2000s.

We compare our frequentist decision rule with decisions obtained with
standard Bayesian estimation methods. Bayesian optimal monetary policy
decisions are derived by minimizing the expected central banker’s loss func-
tion with respect to the interest rate, using the posterior distribution to
compute the expectation. We highlight how Bayesian estimation of DSGE
models incorporates judgment in an indirect way, via priors on statistical
parameters. Priors implicitly assume a judgmental decision, which is ob-
tained by minimizing the expected loss function with respect to the interest
rate, using the prior distribution to compute the expectation. We show how
standard priors from the mainstream DSGE literature are associated with
unrealistic judgmental decisions on interest rates.

ECB Working Paper Series No 2404 / May 2020 23



References

Adjemian, S., M. Darracq Pariés, and F. Smets (2008), A Quantitative Per-
spective on Optimal Monetary Policy Cooperation Between the US and the
Euro Area, Working Paper Series 884, European Central Bank.

Andreasan, A. (2010), How to Maximize the Likelihood Function for a DSGE
Model, Computational Economics, 35: 127-154.

Beraja, M. (2019), Counterfactual Equivalence in Macroeconomics, unpub-
lished manuscript.

Bodenstein, M. and J. Zhao (2019), Employment, Wages and Optimal Mon-
etary Policy, Journal of Monetary Economics, in press.

Boneva, L., N. Fawcett, R. M. Masolo, and M. Waldron (2019), Forecasting
the UK Economy: Alternative Forecasting Methodologies and the Role of
Off-model Information, International Journal of Forecasting, 35, 1, pages
100-120.

Canova, F. and L. Sala (2009), Back to Square One: Identification Issues in
DSGE Models, Journal of Monetary Economics, 56: 431-449.

Chen, F., T. Kirsanova, and C. Leith (2017), How Optimal is US Monetary
Policy?, Journal of Monetary Economics, 92: 96-111.

Christiano, L., R. Motto, and M. Rostagno (2014), Risk Shocks, American
Economic Review, 104(1): 27-65.

Clarida, R., J. Gali, and M. Gertler (1999), The Science of Monetary Policy:
A New Keynesian Perspective, Journal of Economic Literature, 37(4): 1661-
1707.

ECB Working Paper Series No 2404 / May 2020 24



Del Negro, M., and F. Schorfheide (2008), Forming Priors for DSGE Mod-
els (and How it Affects the Assessment of Nominal Rigidities), Journal of
Monetary Economics, 55(7): 1191-1208.

Del Negro, M., and F. Schorfheide (2013), DSGE Model-Based Forecasting,
In: G. Elliott and A. Timmermann (eds.), Handbook of Economic Forecast-
ing, Volume 2, Part A, p.57 – 140, (2013), Elsevier, New York.

Domit, S., F. Monti, and A. Sokol (2019), Forecasting the UK Economy with
a Medium-Scale Bayesian VAR, International Journal of Forecasting, 35, 4,
pages 1669-1678.

Edge, R., T. Laubach, and J. C. Williams (2010), Welfare-Maximizing Mon-
etary Policy Under Parameter Uncertainty, Journal of Applied Econometrics,
25(1): 129-143.

Faust, J., and A. Gupta (2012), Posterior Predictive Analysis for Evaluating
DSGE Models, NBER Working Papers 17906, National Bureau of Economic
Research, Inc.

Fernandez-Villaverde, J., J. Rubio-Ramirez, and F. Schorfheide (2016), So-
lution and Estimation Methods for DSGE Models, in H. Uhlig and J. Taylor
(eds.), Handbook of Macroeconomics, Vol. 2, 527-724, Elsevier, New York.

Furlanetto, F., P. Gelain, and M. Taheri Sanjani (2020), Output Gap, Mon-
etary Policy Trade-offs and Financial Frictions, Federal Reserve Bank of
Cleveland Working Paper.
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Appendices

A Data

In the estimation we use quarterly data on real GDP (GDPC1), GDP de-
flator (GDPDEF), and the federal funds rate (FEDFUNDS). All series are
available in FRED, the online database maintained by the Federal Reserve
Bank of St. Louis at https://fred.stlouisfed.org/. FRED’s acronyms are in
parenthesis. GDP growth rates is the quarter-on-quarter log-difference of
real GDP. Inflation is the quarter-on-quarter log-difference of the GDP de-
flator. The fed funds rate is divided by 4. All series are demeaned. In the
figure below we show them as they enter the estimation.
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Figure 1: Example of decision rule with judgment

Note: The decision rule with judgment tests whether the gradient of the loss function at
the judgmental decision r̃t is statistically different from zero. If it is, the optimal decision
is the one associated with the closest boundary of confidence interval (depicted in the
top two charts). If it is not, the judgmental decision is retained (bottom chart). The
maximum likelihood decision chooses the action setting the empirical gradient to zero. It
corresponds to a decision with judgment by setting α = 1, as in this case the confidence
interval degenerates to a point, the judgmental decision is always rejected and the closest
boundary always coincides with the empirical gradient being set to zero.
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Figure 2: Empirical gradient associated with the judgmental decision

Note: The figure reports in the upper panel the 95% confidence intervals associated with
the empirical gradient (dashed red line), the realized empirical gradient (blue line) and the
optimal decision (dashed-dotted black line). In the lower panel in % annual terms, the re-
alized interest rate (judgment, magenta-solid line), the optimal interest rate obtained from
the shrinkage (dashed-dotted black line), and the maximum likelihood decision (dotted
blue line).

ECB Working Paper Series No 2404 / May 2020 31



Figure 3: Rate levels implied by different estimation methodologies

Note: The figure reports the realized interest rates, together with the optimal interest rates
obtained from a maximum likelihood and a Bayesian estimation of the DSGE model.
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Figure 4: Judgmental decision associated with the prior distributions

Note: The figure reports the interest rate decision solving the optimization problem (18)
using only the prior distribution, together with the optimal interest rates obtained from a
maximum likelihood and a Bayesian estimation of the DSGE model.
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Figure 5: Robustness

Note: The figure reports the gradients and the implied interest rate levels obtained by
imposing imposing alternative interest rate rules.
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C The model

C.1 Production sector

Final good producers. This type of producers operate in a perfectly com-
petitive market. They produce the final good Yt, to be sold to households,
by combining a continuum of intermediate goods Yt (i), i ∈ [0, 1], according
to the technology

Yt =
[∫ 1

0
Yt (i)

1
1+Ut di

]1+Ut
(21)

where Ut determines the degree of substitutability across intermediate goods
in the production of the final good and hence the elasticity of demand for
each of these intermediates. It is modelled as an exogenous stochastic process

log 1 + Ut
1 + U

= log ut = ρu log ut−1 + σuε
u
t

where U is the steady state level of Ut and εut is an i.i.d.N(0, 1) innovation.13

The latter is defined as price mark-up shock.
Profit maximization and the zero profit condition imply that the price of

the final good, Pt, is a CES aggregate of the prices of the intermediate goods,
Pt(i)

Pt =
[∫ 1

0
Pt (i)−

1
Ut di

]−Ut
and that the demand function for intermediate good i is

Yt (i) =
(
Pt (i)
Pt

)− 1+Ut
Ut

Yt

Intermediate goods producers. A monopolistic competitive firm pro-
duces the intermediate good i using labor input Lt according to the following

13Throughout this Appendix, small case letters always indicate log-deviation from
steady state, while letters without subscript t indicate the steady state value.
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production function
Yt (i) = Lt (i) (22)

The cost minimization problem is

min
Lt(i)

£t (i) = W n
t Lt (i) +MCt [Yt(i)− Lt(i)]

where W n
t represents nominal wages, and MCt nominal marginal cost.

The first order condition is

∂£t (i)
∂Lt (i) : W n

t −MCt = 0 (23)

which also implies that W n/Pt = MCt/Pt = Mct, where Mct is real marginal
cost.

As for the pricing decision, following the formalism proposed in Calvo
(1983), each firm may reset its price only with probability 1−ξp in any given
period. Thus, each period a measure 1 − ξp of producers reset their prices,
while a fraction ξp keep their prices unchanged.

The above environment implies that the aggregate price dynamics is de-
scribed by the equation

Pt =
[
ξpP

− 1
Ut

t−1 + (1− ξp)
(
P
′

t

)− 1
Ut

]−Ut

where P ′t is the price set in period t by firms reoptimizing their price in that
period.

A firm reoptimizing in period t will choose the price P ′t that maximizes
the current market value of the profits generated while that price remains
effective. Formally, it solves the following problem

max
Pt(i)

Et
∞∑
k=0

ξkpβ
kΛt+k

Λt

[(
Pt (i)

k∏
s=1

Πt+s−1 −MCt+k

)
Yt+k (i)

]
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subject to the sequence of demand constraints

Yt+k (i) =
(
Pt (i)∏k

s=1 Πt+s−1

Pt+k

)− 1+Ut+k
Ut+k

Yt+k

for k = 0, 1, 2, ... where β and Λt are respectively the discount factor and
the marginal utility of the representative household that owns the firm, and
Πt+1 ≡ Pt

Pt+1
is the gross inflation rate. The first order condition associated

with the problem above takes the form

Et
∞∑
k=0

ξkpβ
kΛt+kY

′

t+k

[
P
′

t

k∏
s=1

Πt+s−1 − (1 + Ut+k)MCt+k

]
= 0 (24)

where P ′t is the optimally chosen price, which is the same for all producers,
and Y

′
t+k is the demand they face in t+ k.

C.2 Households

The economy is populated by a continuum of households. The representative
household j derives utility from consuming the final good Ct and disutility
from labor Lt. It maximizes its discounted expected utility

max
C(j)t,L(j)t

Et
∞∑
t=0

βt
[
Ct (j)1−σ

1− σ − Lt (j)1+ν

1 + ν

]

where σ > 0 is the inverse of the intertemporal elasticity of substitution,
ν > 0 is the inverse of the labor supply elasticity (or inverse Frisch elasticity).
The maximization is subject to the following budget constraint

PtCt (j) +Bt (j) + Tt = W n
t (j)Lt (j) +Rt−1Bt−1 (j) +Divt

where Tt is the lump-sum tax levied on households, Divt are dividends derived
from firms. Households have access to the bonds market where they can buy
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risk-free bonds Bt with a risk-free gross nominal return Rt ≡ (1 + rt), where
rt is the net nominal return.

The constrained problem can be written as follows

max
Ct(j),Lt(j),Bt(j)

£t (j) = Et
∞∑
t=0

βt
{
Ct (j)1−σ

1− σ − Lt (j)1+ν

1 + ν

}
+βtΛt [W n

t (j)Lt (j) +Rt−1Bt−1 (j) +Divt − PtCt (j)−Bt (j)− Tt]

The first order conditions are the following

∂£t (j)
∂Ct (j) : βtCt (j)−σ − βtΛtPt = 0 (25)

∂£t (j)
∂Lt (j) : −βtLt (j)ν + βtΛtW

n
t (j) = 0 (26)

∂£t (j)
∂Bt (j) : βt+1Λt+1Rt − βtΛt = 0 (27)

Combining equations 25 and 27 we can derive the consumption Euler
equation (where we drop index j)

Et

[
β
(
Ct+1

Ct

)−σ Rt

Πt+1

]
= 1 (28)

The labor supply condition, from 25 and 26, writes as follows

Lνt
C−σt

= W n
t

Pt
(29)

C.3 Monetary and government policy

We assume that the monetary authority controls the nominal interest rate
and sets it according to a feedback rule, of the type that has been found to
provide a good description of actual monetary policy in the United States
at least since Taylor (1993). We chose the same specification of Smets and
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Wouters (2007), hence the policy rule features interest rate smoothing, gov-
erned by parameter ρ, a systematic response to inflation, measured by pa-
rameter φπ, a systematic response to the output gap, measured by parameter
φy∗ , and a response to the output gap growth with intensity φ∆y∗

Rt

R
=
(
Rt−1

R

)ρ [
Πφπ
t (Y ∗t )φy∗

]1−ρ ( Y ∗t
Y ∗t−1

)φ∆y∗

eσrε
r
t

where R is the steady state value of the nominal interest rate, Y ∗t is the
output gap (to be defined in the next section), and εrt ∼ i.i.d. N (0, 1) is a
monetary policy shock.

Public spending Et is determined exogenously as a time-varying fraction
Gt of output

Et =
(

1− 1
Gt

)
Yt (30)

where
log Gt

G
= log gt = ρg log gt−1 + σgε

g
t

with εgt an i.i.d.N(0, 1) innovation. The latter is defined as government
spending shock.

C.4 Equilibrium and Log-linearized model

Market clearing in the goods market requires

Yt = Ct + Et

Using expression 30

Yt = Ct +
(

1− 1
Gt

)
Yt

Yt
Gt

= Ct
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and taking logs
ct = yt − gt (31)

Log-linearizing the Euler equation 28 yields

ct = − 1
σ

[rt − Etπt+1] + Etct+1

and using 31

yt − gt = − 1
σ

[rt − Etπt+1] + Etyt+1 − Etgt+1

yt = − 1
σ

[rt − Etπt+1] + Etyt+1 −∆Etgt+1 (32)

Market clearing in the labor market requires

Lt =
∫ 1

0
L (i) di

Using 22 we have
Lt =

∫ 1

0
Y (i) di

Lt = Yt

∫ 1

0

(
Pt (i)
Pt

)− 1+Ut
Ut

di

where the second equality follows from 21 and goods market clearing. Taking
logs

lt = yt + dt

where dt ≡ log
∫ 1

0 (Pt (i) /Pt)−
1+Ut
Ut is a measure of price (and, hence, output)

dispersion across firms. In a neighborhood of the zero inflation steady state,
dt is equal to zero up to a first order approximation. Hence one can write the
following approximate relation between aggregate output and employment

lt = yt
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Turning to the price equations, the log-linear approximation of the price
setting equation for firms changing prices (equation 24) becomes

Et
∞∑
k=0

ξkpβ
k

[
p
′

t −
k∑
s=1

πt+s − ut+k −mct+k
]

= 0

Solving for the summation

1
1− ξpβ

p
′

t = Et
∑∞
k=0 ξ

k
pβ

k
[∑k

s=1 πt+s + ut+k +mct+k
]

= ∑0
s=1 πt+s + ut +mct + ξpβ

1−ξpβEt
∑1
s=1 πt+s +

+ξkpβkEt
∑∞
k=1 ξ

k−1
p βk−1

[∑k
s=1 πt+s+1 + ut+k +mct+k

]
= ut +mct + ξpβ

1−ξpβEt
[
p
′
t+1 + πt+1

]
Prices evolves as

0 = (1− ξp) p
′

t − ξpπt

from which we obtain the New Keynesian Phillips curve

πt = βEtπt+1 + λmct + λut (33)

where λ = (1−ξp)(1−ξpβ)
ξp

.
We now want to derive an expression for the output gap Y ∗t , namely the

difference between actual output Yt and the natural level of output Y n
t . The

latter is defined as the equilibrium level of output under flexible prices and no
price mark-up shocks. The model will be expressed then in terms of output
gap rather than actual output. We start by taking logs of equation 23. That
yields

logMct = logW n
t − logPt

From 29
ν logLt + σ logCt = logW n

t − logPt
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So
logMct = ν logLt + σ logCt

Using 22 and 31

logMct = ν log Yt + σ (log Yt − logGt)

logMct = (ν + σ) log Yt − σ logGt (34)

It follows that in the natural economy

logMc = (ν + σ) log Y n
t − σ logGt (35)

Given that in the natural economy logMc = −U , 35 implies the following
expression

log Y n
t = σ

(ν + σ) logGt −
U

(ν + σ) (36)

And in log-deviation from steady state

ynt = σ

(ν + σ)gt

Equation 34 minus 35 provides the relationship between marginal costs
and output gap log-deviation from steady state terms

mct = (ν + σ) y∗t

where y∗t = (yt − ynt ) is the output gap.
We can now re-write the IS curve (equation 32) in terms of output gap

y∗t + ynt = − 1
σ

[rt − Etπt+1] + Ety
∗
t+1 + Ety

n
t+1 −∆Etgt+1

y∗t = − 1
σ

[rt − Etπt+1] + Ety
∗
t+1 + Ety

n
t+1 − ynt −∆Etgt+1
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y∗t = − 1
σ

[rt − Etπt+1] + Ety
∗
t+1 + σ

(ν + σ)∆Etgt+1 −∆Etgt+1

y∗t = − 1
σ

[rt − Etπt+1] + Ety
∗
t+1 −

ν

(ν + σ)∆Etgt+1 (37)

And also the New Keynesian Phillips curve

πt = βEtπt+1 + λ (σ + ν) y∗t + λut (38)

Finally the log-linear approximation of the Taylor rule

rt = ρrt−1 + (1− ρ) (φππt + φy∗y
∗
t ) + φ∆y∗

(
y∗t − y∗t−1

)
+ σrε

r
t
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D Derivation of optimal simple rule

The central bank problem is

min
rt
L(θ, rt) ≡ min

y∗t ,πt

1
2Et

{ ∞∑
i=0

βi
[
ωyy

∗2
t+i + ωππ

2
t+i

]}

s.t. πt+i = βEtπt+1+i + λ (σ + ν) y∗t+i + λut+i

where ωy = σ + ν, ωπ = ε
λ
, and ε is the elasticity of substitution among

differentiated intermediate goods. It is related to the steady state value of
the mark-up shock U as follows: U = 1

ε−1 . Under discretion expectations are
taken as given so the Lagrangian is

min
y∗t ,πt
L(θ, rt) = 1

2
[
ωyy

∗2
t + ωππ

2
t

]
+ Ft + ηt [πt − λ (σ + ν) y∗t − ft]

where Ft ≡ 1
2Et

{∑∞
i=1 β

i
[
ωyy

∗2
t+i + ωππ

2
t+i

]}
and ft ≡ βEtπt+1+i + λut+i.

The f.o.c.s are

∂Lt
∂y∗t

: −ωyy∗t − ηtλ (σ + ν) = 0 (39)

∂Lt
∂πt

: −ωππt + ηt = 0 (40)

Combining the two f.o.c.s we obtain

y∗t = −λ (σ + ν)ωπ
ωy

πt (41)

Using this to substitute y∗t in the Phillips curve 2 and solving forward we
obtain14

πt = ωyqλut (42)

where q = 1
λ2(σ+ν)2ωπ+ωy(1−βρu) = 1

λ2(σ+ν)2 ε
λ

+ωy(1−βρu) = 1
λ(σ+ν)2ε+ωy(1−βρu) .

14See appendix for derivations.
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Substituting this last expression into 41 it follows

y∗t = −λ (σ + ν)ωπ
ωy

ωyqλut

y∗t = −λ2 (σ + ν)ωπqut (43)

Finally using expression 42 and 43 in the Euler equation we derive the
optimality condition for the nominal interest rate as follows

rt −
[
1 + (1− ρu)σε

ρu

]
ρuωyqλut + σν

(ν + σ) (ρg − 1) gt = 0

To derive equation 42 we start by substituting expression 41 in the Phillips
curve 2

πt = βEtπt+1 −
λ2 (σ + ν)2 ωπ

ωy
πt + λut

[
1 + λ2 (σ + ν)2 ωπ

ωy

]
πt = βEtπt+1 + λut

Aπt = βEtπt+1 + λut

where A ≡ ωy+λ2(σ+ν)2ωπ
ωy

. Solving 1 step forward

πt = β

A
Etπt+1 + λ

A
ut

πt = β

A

[
β

A
Etπt+2 + λ

A
Etut+1

]
+ λ

A
ut

from 5, Etut+1 = ρuut, hence

πt = β2

A2Etπt+2 + β

A2λρuut + λ

A
ut
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Solving 2 steps forward

πt = β2

A2

[
β

A
Etπt+3 + λ

A
Etut+2

]
+ β

A2λρuut + λ

A
ut

πt = β3

A3Etπt+3 + β2

A3λρ
2
uut + β

A2λρuut + λ

A
ut

πt = β3

A3Etπt+3 +
(
β2

A2ρ
2
u + β

A
ρu + 1

)
λ

A
ut

Solving j →∞ steps forward

πt = βj

Aj
Etπt+j + λ

A
ut
∞∑
j=0

βj

Aj
ρju

The ratio βj

Aj
goes to 0 for j → ∞, while the series ∑∞j=0

βj

Aj
ρju converges

to 1
1− β

A
ρu

. Recalling the value of A ≡ ωy+λ2(σ+ν)2ωπ
ωy

πt = λ

A
ut

1
1− β

A
ρu

πt = λut
1

A− βρu

πt = λut
1

ωy+λ2(σ+ν)2ωπ
ωy

− βρu

πt = ωyqλut (44)

where q = 1
λ2(σ+ν)2ωπ+ωy(1−βρu) . The expression for 43 is obtained simply

substituting 44 into 41.
Finally, we can get the optimality condition for the nominal interest rate

by using in 42 and 43 in the IS curve 1

y∗t = − 1
σ

[rt − Etπt+1] + Ety
∗
t+1 −

ν

(ν + σ)∆Etgt+1
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−λ2 (σ + ν)ωπqut = − 1
σ
rt+

1
σ
ωyqλEtut+1−λ2 (σ + ν)ωπqEtut+1−

ν

(ν + σ)∆Etgt+1

rt = σλ2 (σ + ν)ωπqut + ωyqλρuut − σλ2 (σ + ν)ωπqρuut −
σν

(ν + σ)∆Etgt+1

rt −
[
1 + (1− ρu)σλ (σ + ν)ωπ

ρuωy

]
ρuωyqλut + σν

(ν + σ) (ρg − 1) gt = 0

rt −
[
1 +

(1− ρu)σλ (σ + ν) ε
λ

ρu (σ + ν)

]
ρuωyqλut + σν

(ν + σ) (ρg − 1) gt = 0

rt −
[
1 + (1− ρu)σε

ρu

]
ρuωyqλut + σν

(ν + σ) (ρg − 1) gt = 0
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E Derivation of the asymptotic distribution
of the gradient

The gradient evaluated at the maximum likelihood estimator and at the
judgmental decision r̃t is ∇rL(θ(Xn), r̃t) = r̃t − ht(θ(Xn)). A mean value
expansion around the population value θ gives:

r̃t − ht(θ(Xn)) = r̃t − ht(θ)−∇θht(θ̄)(θ(Xn)− θ)

where θ̄ lies between θ and θ(Xn). Since under the null hypothesis r̃t−ht(θ) =
0, multiplying by

√
n and using (10) gives the result.

F Gradient’s derivatives

In this appendix we show the individual entries of the vector ∇θht(θ), the
vector of the first derivatives with respect to the estimated parameters of the
central banker’s first order condition ∇rL(θ, rt). The size of that vector is
p = 7. We report here only 4 derivatives, with respect to ρg, ρu, σ, and ν,
because those with respect to the shock variances σg, σr, and σu, are all zero
in every quarter t.

∇ρght(θ) ≡
∂ht(θ)
∂ρg

= − νσ

σ + ν
gt

∂ht(θ)
∂ρu

= − εσ

ρu
[

θ
1−θ

(1−βρu)
(1−βθ) + ε (σ + ν)

]ut
+ εσ (1− ρu) + ρu

ρu
[

θ
1−θ

(1−βρu)
(1−βθ) + ε (σ + ν)

]ut
+β (σ + ν)2 (1− θ) (1− βθ) [εσ (1− ρu) + ρu]

θ
[
(σ + ν) (1− βρu) + ε(σ+ν)2(1−θ)(1−βθ)

θ

]2 ut
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∂ht(θ)
∂σ

= εσ (1− ρu) + ρu

(σ + ν)
[

θ
(1−θ)

(1−βρu)
(1−βθ) + ε (σ + ν)

]ut
+ ε (1− ρu)

θ
(1−θ)

(1−βρu)
(1−βθ) + ε (σ + ν)

ut

−
(1−θ)2(1−βθ)2(ν+σ)2[εσ(1−ρu)+ρu][2ε− βρuθ−θ

(1−θ)(1−βθ)(ν+σ) ]
θ

θ
[
ε(1−θ)(1−βθ)(σ+ν)2

θ
+ (1− βρu) (σ + ν)

]2 ut

−(ρg − 1) ν2

(σ + ν)2 gt

∂ht(θ)
∂ν

= εσ (1− ρu) + ρu

(ν + σ)
[

θ
(1−θ)

(1−βρu)
(1−βθ) + ε (ν + σ)

]ut
−

(1−θ)2(1−βθ)2(ν+σ)2[εσ(1−ρu)+ρu][2ε− βρuθ−θ
(1−θ)(1−βθ)(ν+σ) ]

θ

θ
[
ε(1−θ)(1−βθ)(ν+σ)2

θ
+ (1− βρu) (ν + σ)

]2 ut

−(ρg − 1)σ2

(ν + σ)2 gt
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