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Purpose: The application of artificial intelligence (AI) has the potential to lead to 

huge progress in combination with Operations Research methods. In our study, we 

explore current approaches for the usage of AI methods in solving optimization prob-

lems. The aim is to give an overview of recent advances and to investigate how they 

are adapted to maritime logistics. 

Methodology: A structured literature review is conducted and presented. The iden-

tified papers and contributions are categorized and classified, and the content and 

results of some especially relevant contributions are summarized. Moreover, an eval-

uation, identifying existing research gaps and giving an outlook on future research 

directions, is given. 

Findings: Besides an inflationary use of AI keywords in the area of optimization, 

there has been growing interest in using machine learning to automatically learn 

heuristics for optimization problems. Our research shows that those approaches 

mostly have not yet been adapted to maritime logistics problems. The gaps identi-

fied provide the basis for developing learning models for maritime logistics in future 

research.  

Originality: Using methods of machine learning in the area of operations research is 

a promising and active research field with a wide range of applications. To review 

these recent advances from a maritime logistics' point of view is a novel approach 

which could lead to advantages in developing solutions for large-scale optimization 

problems in maritime logistics in future research and practice. 
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1 Introduction 

Artificial Intelligence (AI) is currently one of the major topics in research as 

well as in practice. It can be used to gain information from analyzing huge 

datasets, for example for anomaly detection or picture recognition. Simul-

taneously, Operations Research (OR) is a well-known field and its methods 

are commonly applied to use given information for developing optimal de-

cisions, e.g. regarding production or scheduling. Especially the Logistics 

sector uses OR regularly for optimizing their processes, e.g. for optimizing 

the routing of trucks (Hillier and Lieberman, 2010, p. 4). 

In the Logistics sector, Maritime Logistics is of particular importance. More 

than 11 million tons of containers and dry bulk were shipped across the 

oceans in 2018. Consequently, maritime transport is described as “the 

backbone of globalized trade” (UNCTAD, 2019). As a result, fast, efficient, 

and reliable transportation is necessary. Meanwhile, the advancing digital-

ization of the sector and the ever-increasing amount of available data are 

opening up new opportunities. Data collected on ships can be made usable 

by intelligent methods to extract information. A combination with well-

known OR methods offers the possibility to use synergies and advantages 

of both methods. 

In this work, we examine how the combination of OR and AI is discussed, 

evaluated, and applied in the scientific community. The objective of this 

paper is to identify opportunities for the combined application of OR and AI 

in Maritime Logistics, to generate an overview as well as to detect research 

gaps. This includes questions regarding application areas which are (prob-

ably) most suitable for utilizing OR and AI, as well as the discussion where 

the two methods overlap. 
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The paper is structured as follows: In Section 2 we give some theoretical 

background on OR and AI/Machine Learning, respectively. This is followed 

in Section 3 by describing our methodical approach to the literature review. 

After this we will present our findings and highlight some important publi-

cations in Section 4. In Section 5 we then identify some research gaps be-

fore we conclude and give an outlook on future research perspectives. 
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2 Theoretical Background 

2.1 Planning problems in maritime logistics 

There are many different planning problems in Maritime Logistics, which 

can be categorized by their area of application. 

Planning problems at sea are, for example, the strategic design of a con-

tainer liner network, i.e. on the selection of ports and routes as well as the 

operative decision about the vessel speed (e.g. Meng, et al., 2014). 

Various planning problems exist with regard to terminals and ports, since 

this is where Logistics at sea and Logistics on land meet. The planning of 

the positioning and the scheduling of a vessel at the berth, called Berth Al-

locating Problem (BAP), is a relevant planning problem. At the terminal, 

several planning problems regarding intralogistics and storage yard opti-

mization have to be addressed (Anwar, Henesey and Casalicchio, 2019). In 

particular, the routing of trucks, straddle carriers or AGVs (automated 

guided vehicles) and the efficient storage of containers to reduce move-

ments of cranes and reshuffling are analyzed in research (Stahlbock and 

Voß, 2007; Speer and Fischer, 2017; Böse, 2020). 

The connection of ports and terminals with the so-called Hinterland can be 

enabled through different modes of transport like truck, rail or inland ves-

sel. For all modes of transport different planning problems exist, like the 

decision which mode of transport to use or the routing of the vehicle. Fur-

thermore, repositioning of empty containers is an important aspect of plan-

ning problems in practice as well research (Braekers, Caris and Janssens, 
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2013, e.g.). Also, methods of revenue management can be applied to Mari-

time Logistics, for example for container shipping companies (Zurheide 

and Fischer, 2012). 

Generally speaking, all these problems are optimization problems and 

hence can be tackled with OR methods, while to use AI a large amount of 

data is necessary. These data can be supplied by public organizations or 

can be obtained from and stored by private organizations. For research, 

open data platforms are necessary to utilize AI. Automated identification 

systems (AIS), which record and store vessel positions and details like ships’ 

headings, is a popular data source for the scientific community (e.g. Ngu-

yen, et al., 2018). Furthermore, weather data can be used as well for routing 

optimization. In practice, most companies can theoretically utilize their 

own data, e.g. regarding customer inquiries. 

The use of AI is suitable for forecasting travel times (for vessels and trucks) 

and ship arrivals (Hill and Böse, 2017). Image recognition for identifying of 

number plates or container numbers can also be applied (e.g. LeCun, Ben-

gio and Hinton, 2015). 

2.2 Operations Research 

OR is used to coordinate operations, processes, and activities in organiza-

tions, such as companies and military institutions (Hillier and Lieberman, 

2010, pp. 3–4). It can be defined as the development and application of 

quantitative models and methods for decision support (Kandiller, 2007; 

Eiselt and Sandblom, 2010). The aim is to find the optimal solution for a 

planning problem. These problems come, for example, from the field of 
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transport planning or personnel deployment planning (Hillier and Lieber-

man, 2010, p. 4).  

Mathematical models in OR can be distinguished into (amongst others) lin-

ear programming (LP), mixed integer programming (MIP) and non-linear 

programs (NLP) (Suhl and Mellouli, 2013, p. 12). Furthermore, also simula-

tions, Markov chains and game theory are methods and concepts of OR 

amongst others (Hillier and Lieberman, 2010). 

There are two categories of solution procedures. On the one hand, a model 

can be solved to optimality. This involves algorithms such as the Simplex 

procedure or the Branch and Bound method. These methods in most cases 

require a lot of time to compute the optimal solution for large realistic prob-

lems (Rothlauf, 2011, p. 68). On the other hand, there are heuristics. Their 

goal is not to find the optimal solution, but to achieve a good solution fast. 

However, it usually cannot be guaranteed that a heuristic solution is close 

to the optimal one (Rothlauf, 2011, p. 85). Often heuristics are developed 

specifically for a given problem. As a consequence, a wide range of different 

heuristics for different problems exists, e.g. the savings procedure for the 

VRP. Heuristics that can be applied to different problems are called me-

taheuristics. Examples are Tabu Search or Simulated Annealing (Suhl and 

Mellouli, 2013, p. 13). 

2.3 Artificial intelligence 

AI is concerned with making computers capable of emulating intelligent be-

havior (Holsapple and Jacob, 1994, p. 3). The overall goal is to make ma-

chines mimic “cognitive“ functions, such as “learning“ and “problem solv-
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ing“ (Russell and Norvig, 2009, p. 2). Approaches include statistical meth-

ods, computational intelligence, and traditional symbolic AI. Many differ-

ent tools are used in AI, and besides versions of search and mathematical 

optimization there are also methods based on logic, probability, and eco-

nomics. 

AI also includes evolutionary techniques, which use biologically inspired 

mechanisms leading to the evolution of new solutions, thus solving global 

optimization problems. Common approaches are the “Ant Colony Optimi-

zation” (Dorigo, 1992) or the “Particle Swarm Optimization” (Kennedy and 

Eberhart, 1995), where swarm intelligence is mimicked in a setting where 

different agents interact with one another while moving through the solu-

tion space based on simple mathematical formulae over the particle’s po-

sition and velocity to find local and global optima. 

Another approach are genetic algorithms, which use biologically inspired 

operators to generate high-quality solutions (Mitchell, 1997, p. 249). These 

algorithms are probabilistic methods based on a population-based process 

which relies on operators such as mutation, crossover and selection used 

to vary the individuals of that population. These individuals represent en-

coded solutions to the problem (Homberger, Bauer and Preissler, 2019, 

p. 143). Genetic algorithms have been successfully applied to solve learning 

and optimization problems. 

While there is no clear cut between AI and heuristic approaches from the 

field of OR,  genetic algorithms as well as evolutionary algorithms use tech-

niques to emulate AI and are therefore regarded as a subfield of AI (Hom-

berger, Bauer and Preissler, 2019, p. 136). 
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As a theoretical concept, AI has been around for some time, but just re-

cently AI has broken away from being just a theoretical concept to being 

applied to business problems. This is because of the wide availability of 

GPUs (graphics processing units), which allow to use parallel processing in 

a faster, cheaper and more powerful way. Their highly parallel structure 

makes them more efficient than general-purpose CPUs for algorithms 

where the processing of large blocks of data is done in parallel. Further-

more, the ascent of AI has to do with a deluge of any kind of data such as 

videos, images and geospatial data combined with practically infinite stor-

age available (Ongsulee, 2017). 

According to Arthur Samuel in 1959, Machine Learning (ML) as a subset of 

AI is the subfield of computer science that gives “computers the ability to 

learn without being explicitly programmed” (Muñoz Medina, 2014). It is par-

ticularly interesting in the area of optimization, as it addresses the study of 

algorithms that improve automatically through experience (Mitchell, 1997, 

p. 2). Machine learning is employed in a range of computing tasks where 

designing and programming explicit algorithms with good performance is 

difficult or infeasible. ML focuses on performing a task given some finite 

(and usually noisy) data, called „training data“ (Bengio, Lodi and Prouvost, 

2018, p. 2). It applies algorithms that analyze data, learn from it and make 

informed decisions based on the learned insights. ML can serve two pur-

poses. Firstly, instead of using extensive computations to find a solution, 

the expert uses ML to achieve a fast approximation. In this case, learning is 

used to build such approximations in a generic way, i.e. without deriving 

explicit algorithms. This method assumes expert knowledge of the prob-

lem. For the second purpose, this expert knowledge might not be sufficient 
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and known methods and algorithms may be dissatisfying. In that case ML is 

applied to learn from the decisions algorithms made and to learn out of this 

experience to find the best performing behavior (Bengio, Lodi and Prou-

vost, 2018, p. 3). 

In machine learning, one differentiates between different learning meth-

ods. In supervised learning, training data consisting of input and target 

pairs is used to find a function that for every input has an output which is as 

close to the target as possible. Finding such a function is called learning and 

is solved via optimization problems, where the measure of discrepancy be-

tween the output and the target can be chosen depending on the task (Ben-

gio, Lodi and Prouvost, 2018, p. 6). The case where only the input is pro-

vided is called unsupervised learning. For example, the aim is to discover 

groups of similar examples in the data, called clusters, or to determine the 

distribution of the data within the input space, called density estimation 

(Bishop, 2006, p. 3). Another learning method is reinforcement learning, in 

which case an agent interacts with an environment through a Markov deci-

sion process. The problem is to find suitable actions to take in a given situ-

ation in order to maximize a reward, but, in contrast to supervised learning, 

here the learning algorithm is not given examples of optimal outputs. In-

stead it must find them through trial and error (Bishop, 2006, p. 3). A popu-

lar tool in ML is the decision tree, which is a decision support tool that uses 

a tree-like structure to create a model for decisions and their possible con-

sequences. A decision tree consists of nodes and branches. The crucial part 

in building a decision tree is deciding which features to choose and what 

conditions to use for splitting (branching). ML can be used to learn these 

features from data by recursively partitioning the source set into subsets 
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(Quinlan, 1987), which constitute the successor children of that node, fol-

lowing splitting rules based on classification features (Shalev-Shwartz and 

Ben-David, 2014, p. 255). 

One particularly interesting subfield of ML is Deep Learning (DL) (LeCun, 

Bengio and Hinton, 2015), a very young field of AI based on artificial neural 

networks. DL focuses on building large parametric approximators using 

deep neural networks (DNN), which are neural networks with a high num-

ber of layers. With these high dimensional networks one can achieve an un-

precedented flexibility to model highly complex, non-linear relationships 

between variables (Kraus, Feuerriegel and Oztekin, 2020, p. 628). It has only 

recently started to gather more attention, as the methods are dependent 

on the availability of both computational power as well as large datasets. 

But since nowadays large datasets are common in most businesses, Deep 

Learning is on the way to becoming the industry standard for predictive an-

alytics in OR (Kraus, Feuerriegel and Oztekin, 2020). Figure 1 illustrates the 

embedding of the discussed subfields of AI and the relation to OR. 
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In summary, in a broader sense AI does not only include algorithms from 

machine learning and deep learning, but one can also include intelligent 

algorithms and heuristics such as genetic algorithms or evolutionary algo-

rithms such as particle swarm optimization. 

2.4 Differentiation 

To understand how AI, and ML in particular, can be used to complement OR 

techniques to tackle optimization problems, one has to understand the dif-

ferences, but also the similarities between OR and ML.  

Machine Learning and OR both use iterative methods to solve problems of 

a practical nature. Optimization problems in OR can be formulated as a 

constrained maximization or minimization program, where the objective 

Figure 1: Subfields of AI and OR 
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function defines the measure of solution quality (Bengio, Lodi and Prou-

vost, 2018, p. 4). Many learning problems are also formulated as minimiza-

tion of a loss function, which generally is the measure of discrepancy be-

tween the output, meaning the predictions of the model being trained, and 

the target (Le Roux, Bengio and Fitzgibbon, 2011, p. 404). 

But even though they are closely related, especially through optimization, 

there are also aspects which separate these two areas, namely the methods 

used to tackle these problems. In general, while AI is used to extract infor-

mation out of a (big) dataset to gain knowledge, OR is used to support de-

cision making by using this knowledge. OR mainly focuses on solving opti-

mization problems through knowledge of the structure of the problem. It 

requires some insight into solving that kind of problem, which is then 

passed to the machine, but it is not based on a model obtained by training 

on a data set and does not adapt itself iteratively over time. An ML algo-

rithm on the other hand is an algorithm which adapts itself to data (Bishop, 

2006, p. 2). The core objective is to generalize from its experience, which 

means the ability to perform accurately on new examples after having ex-

perienced a training data set (Mohri, Rostamizadeh and Talwalkar, 2012, 

p. 7).  

While optimization algorithms can minimize the loss on a training set, ma-

chine learning is concerned with minimizing the loss on unseen samples, 

called test data. Because of this, alternative techniques have to be used in 

order to prevent the model from overfitting on the training data (Le Roux, 

Bengio and Fitzgibbon, 2011, p. 403). This is not to say that an OR solution 

method is in general worse than an ML method. In fact, OR methods might 
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be faster than an ML method, because they are perfectly suited for this ex-

act problem. But an ML method can be more flexible and generalize to a 

wider range of problems without the need for expert knowledge of struc-

tural properties. 

There are different possibilities to connect OR and AI methods to exploit 

their synergies. For example, Bengio, Lodi and Prouvost (2018) differentiate 

between three possible algorithmic structures and categorize approaches 

accordingly. In the category end-to-end learning, an AI is trained to develop 

a solution directly from the problem input. In our work, also heuristic solu-

tion methods like Genetic Algorithms are counted towards this category. 

The category Learning meaningful properties of optimization problems in-

cludes methods where AI is used to generate further information for the 

parametrization before the actual optimization. The third category Ma-

chine learning alongside optimization algorithms uses a structure in which 

the OR method repeatedly requests machine learning methods for further 

optimization. So, the two methods alternate in an iterative process, and 

this process ends when a good solution is found (Le Roux, Bengio and Fitz-

gibbon, 2011, p. 422). 

As seen above, because of the similarities of both areas as well as the differ-

ences in the methods applied, both areas can profit from each other by 

combining their knowledge to learn how to solve problems in an efficient 

way. 
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3 Methodology of Literature Review 

The structure of this literature review is based on the methodology of Tran-

field, Denyer and Smart (2003). 

For the selection of the studies it is necessary to define the time horizon, 

keywords and to select databases. Considering the objective of the paper 

and the currentness of the topic, the time horizon is set from 2010 to today 

(March 2020). To find also most recent research results, the database arxiv 

(with not yet reviewed papers) was included in the search. Furthermore, the 

databases Scopus, Web of Science and IEEE are used, aiming at finding all 

relevant publications from different disciplines like management, Logistics 

and engineering. 

The following table describes the structure of the search strings used con-

sisting of four ‘and’ pillars with each of them having different terms com-

bined with ‘or’.  

Table 1: Search terms 

 AND AND AND AND 

OR 
Operations re-

search 

Artificial intelli-

gence 
Logistics Maritime 

OR Optimization Deep learning Transport Port 

OR  Machine learning Traffic 
Con-

tainer 

OR   Routing Ship 

OR   
Schedul-

ing 

Hinter-

land 
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The combinations of these terms in the query are searched in title, abstract 

and keywords of publications in the databases. In the next step, the publi-

cations were screened by analyzing title and abstract. It turned out that 

when using this precise search string, many articles were listed that focus 

on other topics. These papers either do not fit because of the method (not 

AI and OR) or of the research field (not Maritime Logistics). For example, 

some papers utilize AI and OR for software engineering using containers in 

the programming language Java, which is not related to containers in the 

maritime definition. Furthermore, many papers list AI in their keywords, but 

do not make clear what AI is used for. 

In total, more than 200 publications were found in the four databases (199 

Scopus + 55 IEEE + 49 Web of Science + 15 Arxiv). The above-mentioned 

screening and selection results in 40 publications, excluding duplicates (22 

Scopus + 5 IEEE + 15 Web of Science + 3 Arxiv). Furthermore, some snow-

balling was done to find additional publications. In the snowballing proce-

dure, the reference list of already found and selected papers is analyzed 

with regard to suitable further papers (backward snowballing). Further-

more, the papers citing a paper can also be analyzed (forward snowballing). 

These further papers are then evaluated and, if appropriate, are added to 

the literature review (Wohlin, 2014) Ten new publications were found 

through snowballing techniques. 
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4 Results of Literature Review 

4.1 Overview 

Most of the publications were published in the second half of the decade, 

which shows that the relevance of the topic has recently been increasing. 

Figure 2 shows the number of relevant publications. 

Figure 2: Development of Publications 

The application areas range across all fields of Maritime Logistics. Many 

publications use AI and/or OR for oversea routing. Authors utilize, for exam-

ple, Automatic Identification System (AIS) data for trajectory predictions to 

avoid ship collision or weather data to avoid heavy storms (e.g. Lee, et al., 

2018; Li, Liu and Yang, 2018; Virjonen, et al., 2018). Furthermore, some pa-

pers deal with Berth Allocation Problems (BAP) and related issues like quay 

crane scheduling or BAP for bulk terminals (Pratap, et al., 2015; e.g. Castilla 

Rodríguez, et al., 2020). The distribution of the application areas is shown 

in Figure 3. 
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As described in Section 2, there are different possibilities to combine the 

strengths of OR and AI. Following our categorization based on Bengio, Lodi 

and Prouvost (2018), there are three categories. For a better overview, end-

to-end learning is split into those papers using heuristics like genetic algo-

rithms or ant colony algorithms, and those that do not use evolutionary 

methods. End-to-end learning is used in most papers as can be seen in Fig-

ure 4. 

  

13
26%

3
6%

11
22%5

10%

10
20%

8
16%

Planning problems

Overseas routing (OsR)

Ship route planning (SRP)

BAP

Port terminals (PT)

Hinterland transportation (HT)

Others (O)

Figure 3: Planning problems (plan. prob.) of AI in Maritime Logistics 
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Figure 4: Combination of OR and AI in Maritime Logistics 

Regarding the different AI methods and algorithms, ant colony algorithms 

and genetic algorithms make up a large part of the methods used for prob-

lems in Maritime Logistics (see Figure 5). Deep learning is used in twelve 

publications. In the papers, different approaches of machine learning like 

k-nearest-neighbor or support vector machines are used (Zhang, et al., 

2016; e.g. Virjonen, et al., 2018). In addition, in some of the papers several 

methods are applied simultaneously or are compared. In this case, the 

dominant method is considered only once in Figure 5. All in all, it can be 

stated that intelligent heuristics dominate the usage of AI. For this reason, 

most publications use unsupervised algorithms. 
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Figure 5: AI procedure 

The following table gives an overview of the 50 papers that we analyzed. 

Moreover, it describes the categories Combination of AI & OR, AI methods 

used and the respective planning problem in more detail. 

Table 2: Papers analyzed 

Author Year 
Combination 

of AI & OR 
AI procedure 

Application area 

(Abbr. of plan. prob.) 

Tsou, et al. 2010a 
end-to-end 
learning 

Ant Colony 
Algorithm 

Collision Avoidance 
Path Planning (OsR) 

Tsou, et al. 2010b 
end-to-end 

learning 

Genetic Algo-

rithm 

Collision Avoidance 

Path Planning (OsR) 

Xu, et al. 2011 
end-to-end 

learning 

Back Propa-

gation Neu-

ral Network 

Vessel Trajectory 

Predictor (OsR) 

12
24%

10
20%

3
6%

12
24%

3
6%

2
4%

2
4%

3
6%

3
6%

AI procedure

Genetic Algorithm

Ant colony algorithm

Particle Swarm Optimization

algorithm
Deep Learning

Other machine learning procedures

Reinforcement learning
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Author Year 
Combination 

of AI & OR 
AI procedure 

Application area 

(Abbr. of plan. prob.) 

Escario, 

et al. 
2012 

end-to-end 

learning 

Ant Colony 

Algorithm 

Optimal Trajectories 

of Autonomous Sur-

face Vessels (OsR) 

Kaveshgar, 

et al. 
2012 

end-to-end 

learning 

Genetic Algo-

rithm 

Quay Crane Sched-

uling Problem (BAP) 

Lalla-Ruiz, 

et al. 
2012 

Machine 

learning 
alongside op-

timization al-

gorithms 

Path Relink-

ing 

Berth Allcoation 

Problem (BAP) 

Rodriguez-

Molins, et 

al. 

2012 
end-to-end 

learning 

Genetic Algo-

rithm 

Berth Allcoation 

Problem (BAP) 

Wojtusiak, 

et al. 
2012 

Machine 

learning 

alongside op-

timization al-

gorithms 

Learnable 

Evolution 

Model (LEM) 

Variant of Vehicle 

Routing Prob-

lem  (HT) 

Expósito-
Izquierdo, 

et al. 

2013 
end-to-end 
learning 

Estimation of 
Distribution 

Algorithm 

Quay Crane Sched-
uling Problem (BAP) 

Lajjam, 

et al. 
2014 

end-to-end 

learning 

Ant Colony 

Algorithm 

Quay Crane Sched-

uling Problem (BAP) 

Ting, et al. 2014 
end-to-end 

learning 

Particle 

Swarm Opti-

mization 

Berth Allcoation 

Problem (BAP) 
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Author Year 
Combination 

of AI & OR 
AI procedure 

Application area 

(Abbr. of plan. prob.) 

Dobrkovic, 

et al. 
2015 

end-to-end 

learning 

DBSCAN, Ge-

netic Algo-

rithm, Ant 

Colony Algo-

rithm 

Estimating Ship Arri-

val with AIS (O) 

Gue, et al. 2015 
end-to-end 
learning 

Ant Colony 
Algorithm 

Ship Routing (SRP) 

Kambey, et 

al. 
2015 

end-to-end 

learning 

Ant Colony 

Algorithm 

Container Truck 

Hinterland (HT) 

Lazarow-

ska 
2015 

end-to-end 

learning 

Ant Colony 

Algorithm 

Oversea Routing 

(OsR) 

Orgaz, et 
al. 

2015 
end-to-end 
learning 

Genetic Algo-

rithm, Data 
Mining Case 

Based Rea-

soning 

Route Plan-
ning   (HT) 

Pratap, 

et al. 
2015 

end-to-end 

learning 

Genetic Algo-

rithm 

Robust Berth Allo-

cation for Bulk Ter-

minals (BAP) 

Supeno, et 

al. 
2015 

end-to-end 

learning 

Genetic Algo-

rithm 

Container Terminal 

Truck Scheduling 

(PT) 
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Author Year 
Combination 

of AI & OR 
AI procedure 

Application area 

(Abbr. of plan. prob.) 

Xue, et al. 2015 
end-to-end 

learning 

Ant Colony Al-

gorithm 

Container Drayage 

with Truck (HT) 

Daranda 2016 
end-to-end 

learning 
Neural Network 

Maritime Traffic Pre-

diction (O) 

Gómez, 

et al. 
2016 

end-to-end 

learning 
Neural Network 

Operational Param-

eter Forecasts in Au-

tomated Container 

Terminals (PT) 

Hottung, 

et al. 
2016 

end-to-end 

learning 

Biased Ran-

dom-Key Ge-

netic Algorithm 

Container Pre Mar-

shalling Problem 

(HT) 

Lisowski 2016 
end-to-end 

learning 
Neural Network 

Ship Trajectory Op-

timisation (OsR) 

Liu, et al. 2016 
end-to-end 

learning 

Particle Swarm 

Optimization, 

Artificial Fish 

Swarm Algo-

rithm 

Quay Crane Sched-

uling Problem (BAP) 
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Author Year 
Combination 

of AI & OR 
AI procedure 

Application area 

(Abbr. of plan. prob.) 

van Ries-

sen, et al. 
2016 

Machine 

learning 

alongside 

optimization 

algorithms 

Decision Tree 

Hinterland Trans-

port Mode Decision 

(HT) 

Yan, et al. 2016 
end-to-end 

learning 

Unsupervised 

Data Mining 

Vessel Movement 

Analysis and Pat-

tern Discovery (O) 

Zhang, 

et al. 
2016 

Learning 

meaningful 

properties of 

optimization 

problems 

Neural Net-

work, Support 

Vector Machine 

Service Mainte-

nance, Short-term-

traffic Forecast 

Ferry Terminal (PT) 

Garcia-

Flores, 

et al. 

2017 

Learning 

meaningful 

properties of 

optimization 

problems 

Not specified 

Demand Forecast-

ing Rail Scheduling 

at Container Port 

(HT) 
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Author Year 
Combination 

of AI & OR 
AI procedure 

Application area 

(Abbr. of plan. prob.) 

Margain, 

et al. 
2017 

end-to-end 

learning 

Ant Colony Al-

gorithm 

Capacitated Vehicle 

Routing Problem 

(HT) 

Protopapa-

dakis, et al. 
2017 

end-to-end 

learning 

Deep Learn-
ing, Deep 

Stacked Au-

toencoders 

Anomaly Detection 

(O) 

Gao, et al. 2018 
end-to-end 

learning 

Recurrent 

Neural Net-

work, Deep 
Learning 

Vessel Trajectory 

Predictor  (OsR) 

Hoseini, et 

al. 
2018 

end-to-end 

learning 

Hybrid Impe-

rialist Com-

petitive and 

Genetic Algo-

rithm 

Berth Allcoation 

problem (BAP) 

Lee, et al. 2018 

Learning 

meaningful 

properties of 

optimization 

problems 

Data Mining 

Techniques 

Vessel Speed Deci-

sion with Wind Data 

(OsR) 

Li, et al. 2018 
end-to-end 
learning 

Ant Colony 
Algorithm 

Ship Weather Rout-
ing (Oversea) (OsR) 

Li, et al. 2018 
end-to-end 

learning 

Ant Colony 

Algorithm 

Ship Weather Rout-

ing (Oversea) (OsR) 
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Author Year 
Combination 

of AI & OR 
AI procedure 

Application area 

(Abbr. of plan. prob.) 

Liu 2018 
end-to-end 

learning 

Genetic Algo-

rithm, Parti-

cle Swarm 
Optimization 

Shipping Route 

Planning (SRP) 

Müller 2018 
end-to-end 

learning 

Biased Ran-

dom-Key Ge-

netic Algo-

rithm 

Liner Ship Fleet Re-

positioning Problem 

(SRP) 

Nguyen, et 

al. 
2018 

end-to-end 

learning 

Deep Learning, 

Recurrent Neu-

ral Network 

Trajectory Recon-

struction, Anomaly 

Detection and Ves-

sel Type Identifica-

tion (O) 

Virjonen, 

et al. 
2018 

end-to-end 

learning 

K-Nearest 

Neighbour Al-

gorithm 

Ship Trajectory Pre-

diction (OsR) 

Kanović, et 

al. 
2019 

end-to-end 

learning 

Particle Swarm 

Optimization, 

Genetic Algo-

rithm 

Ship Lock Zone Con-

trolling (O) 
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Author Year 
Combination 

of AI & OR 
AI procedure 

Application area 

(Abbr. of plan. prob.) 

Larsen, 

et al. 
2019 

end-to-end 

learning 

Feedforward Neu-

ral Network, Deep 

Learning 

Load Planning Prob-

lem (O) 

Nguyen, et 

al. 
2019 

end-to-end 

learning 

Deep Learning, 

Recurrent Neu-

ral Network 

Anomaly Detection 

(O) 

Tang 2019 Not specified 

Bee Colony 

Evolutionary Al-

gorithm 

Scheduling of 

Transport Paths 

(PT) 

Verma, 

et al. 
2019 

end-to-end 

learning 

Reinforcement 

Learning 

Ship Load Sequenc-

ing in Ports (PT) 

Zhao and 

Shi 
2019 

end-to-end 

learning 

Recurrent Neu-

ral Network, 

Deep Learning 

Vessel Trajectory 

Predictor  (OsR) 

Castilla 

Rodríguez, 

et al. 

2020 

Learning 

meaningful 

properties of 

optimization 

problems 

Estimation of 

Distribution Al-

gorithm 

Quay Crane Sched-

uling Problem, Deci-

sion Support (BAP) 
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Author Year 
Combination 

of AI & OR 
AI procedure 

Application area 

(Abbr. of plan. prob.) 

Ham-

mouti, 

et al. 

2020 
end-to-end 

learning 

Genetic Algo-

rithm 

Berth Allcoation 

problem (BAP) 

Gkerekos, 

et al. 
2020 Not specified Not specified 

Oversea Routing 

(OsR) 

Hottung, 

et al. 
2020 

Learning 

meaningful 

properties of 

optimization 

problems 

Deep Neural 

Network 

Container Pre-Mar-

shalling Problem 

(HT) 

Iran-

nezhad, 

et al. 

2020 
end-to-end 

learning 

Reinforcement 

Learning 

Container Hinter-

land Transport (HT) 
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4.2 In depth-analysis of selected papers 

In the following, we highlight some approaches where Machine Learning is 

used in combination with OR to solve optimization problems in Maritime 

Logistics. We follow the distinction in Bengio, Lodi and Prouvost (2018) to 

survey how these techniques are applied. Note that the different sections 

are not necessarily disjoint. 

4.2.1 End-to-End Learning 

The first and most obvious approach is to tackle a given combinatorial op-

timization problem solely with ML techniques. The ML model acts alone 

and is trained to find solutions to the problem directly from the input. 

This is done in Nguyen, et al. (2018). The huge amount of AIS data, namely 

hundreds of millions of messages every day, provides a huge potential to 

extract, detect and analyze relevant information. The authors develop a 

deep learning model to provide an automatic system which can process 

and extract useful information in an unsupervised way. They train a varia-

tional recurrent neural network (RNN), which converts the noisy, irregular-

sampled AIS data to consistent and regularly-sampled hidden states that 

may correspond to specific activities such as “under way using engine”, “at 

anchor” or “fishing”. Higher levels, meaning task-specific layers of the RNN, 

correspond to task-specific layers, which are able to address different tasks 

such as trajectory reconstruction, anomaly detection or vessel type identi-

fication. In contrast to state-of-the-art methods, the model is able to jointly 

address multi-tasking issues (Nguyen, et al., 2018). 
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Another example is Müller (2018), where AI methods are applied to solve the 

liner shipping fleet repositioning problem (LSFRP). Liner shipping compa-

nies have large networks of connected ports to transport containers by op-

erating several services. These services are modified on a regular basis due 

to economic and seasonal trends. In that context, vessels are reassigned to 

other services and have to be repositioned. Repositioning vessels consider-

ing the costs for moving the vessels is defined as the LSFRP. For this prob-

lem, a biased random-key genetic algorithm (BRKGA) is developed. In con-

trast to other genetic algorithms, the random-key genetic algorithm aims 

at encoding the chromosomes with floating point values in the range of 

[0,1] instead of using integers to eliminate the offspring feasibility problem. 

This concept was extended to the BRKGA [Gonçalves et al, 2011] by apply-

ing a different crossover strategy to generate the new population. While the 

proposed method is able to find good solutions for smaller instances, it is 

not able to compete with the current state-of-the-art heuristic for larger in-

stances of the LSFRP. Note that in an attempt to improve the algorithm, the 

author combines BRKGA with a local search heuristic, which improved the 

performance. This attempt therefore also fits in the section „Machine 

Learning alongside OR“, which highlights the fact that these categories 

should not be seen as mutually exclusive (Müller, 2018). 

Larsen, et al. (2019) believe that ML is useful to solve combinatorial optimi-

zation problems with incomplete information, because the application has 

to be able to make decisions on a tactical level, and the ML model is able to 

use the stochasticity of the problem to quickly predict tactical solutions un-

der uncertainty. They tackle the load planning problem (LPP). The problem 

is to decide how many of a given set of containers of different types can be 
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loaded on a given set of railcars of different types and how many of the rail-

cars of each type are needed. The decisions must be made without 

knowledge of the container weights since this information is not available 

at the time of assigning the containers. Furthermore, the problem requires 

solutions in real time, which cannot be generated for the stochastic nor the 

deterministic version of the problem using commercial solvers. In the train-

ing stage, the authors use solutions to the deterministic version of the prob-

lem, which can be formulated as a MILP, to train a neural network to predict 

the solution of the stochastic LPP. It is shown that the ML model is able to 

quickly find accurate solutions online, because some of the complexity of 

the problem is outsourced to the training stage (Larsen, et al., 2019). 

4.2.2 Learning meaningful properties of Optimization Problems 

& Machine Learning alongside OR 

In many applications, using only ML to find solutions is not the most suita-

ble approach. Rather, ML can be used to provide the optimization algorithm 

with valuable information to help solve the problem. This can be done in 

different ways. ML can either be applied to provide additional information 

to the optimization algorithm, which can be called „Learning meaningful 

properties of OR problems“, or ML is used alongside optimization algo-

rithms. The difference to the previous approach is that the same ML method 

is frequently called from a master algorithm to support lower level deci-

sions (Bengio, Lodi and Prouvost, 2018). 

The first approach is chosen in Lee, et al. (2018), where a speed optimiza-

tion problem is considered. The aim is to find a Pareto optimal solution by 
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considering the trade-off between minimizing fuel cost and maximizing ser-

vice level. Instead of using theoretical fuel consumption functions, data 

mining techniques are applied to weather archive data to estimate the real 

fuel consumption considering the variabilities in weather conditions. A Par-

ticle Swarm Optimization technique based solver which uses the weather 

impact data is applied to generate Pareto optimal solutions. A decision sup-

port system is developed for Liner operators to decide about sailing speeds 

of vessels for each leg considering customer requirements, showing the 

trade-off analysis between fuel consumption and service level. Numerical 

experiments then show that especially for long voyage legs where weather 

conditions are highly variable the improvement on fuel estimation is signif-

icant, which offers considerable cost improvements (Lee, et al., 2018). 

An example for the second approach is Hottung, Tanaka and Tierney (2020). 

They adopt the method of frequently calling an ML model for solving the 

Container Pre-marshalling Problem (CPMP). This problem is concerned 

with the re-ordering of containers in container terminals during off-peak 

times so that containers can be quickly retrieved when the port is busy. The 

goal is to find a minimal sequence of container movements that sort a set 

of container stacks according to the time each container is expected to exit 

the yard. While there are a number of exact methods to solve this problem, 

their computation time is too long to be used in a decision support system. 

This is why there is a large number of heuristics, which are highly special-

ized, costly and time-intensive to design. Hottung, Tanaka and Tierney 

therefore develop a so called Deep Learning Heuristic Tree Search (DLTS), 

which merges the heuristic approach of a tree search with DNNs for the 

CPMP to generate heuristics for branching and bounding in the search tree 
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without a deep understanding of the structures of the CPMP. The DNNs are 

trained offline via supervised learning on existing (near-)optimal solutions 

for the CPMP to learn solution strategies and lower bounds to the CPMP. In 

the tree search procedure the DNNs are then integrated to decide which 

branch to choose next and to prune the search tree. While DLTS does this 

with extraordinarily little expertise input from the user regarding the prob-

lem, it is able to outperform state-of-the-art heuristic solutions to the 

CPMP. This shows the huge potential in solving optimization problems with 

the help of ML (Hottung, Tanaka and Tierney, 2020). 

A similar approach is chosen in van Riessen, Negenborn and Dekker (2016). 

Their motivation is to derive real-time decision rules for suitable allocations 

of containers to inland services. To obtain this, first optimal solutions to 

problem instances are generated by an exact solving method, which is not 

suitable for real-time decisions because of the computation time as well as 

incomplete information. Then a decision tree is created using a supervised 

learning method, which learns decision rules for the allocation of a con-

tainer to a suitable service based on the container and order properties, 

such as the time of availability, the transportation lead time, and container 

mass. This set of rules can be used in real-time as a decision tool to provide 

a set of suitable services to a human planner. A case study shows that the 

developed decision support system is able to reduce inefficiency and there-

fore transportation costs without extensive IT development (van Riessen, 

Negenborn and Dekker, 2016). 

Another application of ML alongside optimization algorithms is done in 

Expósito-Izquierdo, et al. (2013). They apply an evolutionary algorithm, the 
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Estimation of Distribution (EDA) algorithm, to solve the Quay Crane Sched-

uling Problem (QCSP), where the goal is to minimize the handling times 

when performing the tasks of loading and unloading containers onto/from 

a container vessel. While EDAs are well suited for exploring the solution 

space and locating promising regions, they have certain shortcomings in 

finding local optimal solutions. To overcome these limitations, the authors 

combine their EDA with a local search algorithm, which is used to carry out 

the intensification of the schedules found. But since local search is a time-

consuming algorithm, it is only applied to a subset of solutions with the 

best objective function value. Their computational results show that this is 

a promising method to obtain high quality solutions in a competitive time 

frame (Expósito-Izquierdo, et al., 2013). 

This approach is continued in Castilla Rodríguez, et al. (2020). Their moti-

vation is to overcome the limitations of the previously developed algo-

rithm, namely the limitation to deterministic data and the assumption that 

there are no constraints with respect to internal delivery vehicles. They 

combine the previously developed intelligent evolutionary algorithm, 

which generates high quality schedules for the cranes, with a simulation 

model that incorporates uncertainty and the impact of internal delivery ve-

hicles. The proposed method allows to combine the strengths of mathe-

matical optimization algorithms which implement ML with real scenarios 

where non-deterministic scenarios may rule out highest quality solutions 

in theory, as these theoretically optimal solutions may be limited by other 

factors such as the availability of internal delivery vehicles. This again 
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shows that applying ML techniques to operational research problems pro-

vides more flexibility in real life scenarios, where decisions have to be made 

in real time and under uncertainty (Castilla Rodríguez, et al., 2020). 
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5 Conclusion and outlook 

A literature review of reports and journal papers on the combination of AI 

and OR in Maritime Logistics of the last ten years was conducted. The find-

ings are categorized by the different applications of AI in Maritime Logistics 

as well as the different techniques, and an overview on the current state of 

research is provided. This section recaps and presents future research di-

rections.  

The problems that occur when searching for new developments in the us-

age of Machine Learning for optimization problems are two-fold. On the 

one hand there is an inflationary use of AI keywords in the area of optimiza-

tion publications as this area gains more and more attention. On the other 

hand, even if AI methods are used, the descriptions of these methods are 

often condensed in a way that makes it difficult to understand the chosen 

models.  

Besides, it was shown that ML can be applied in different ways to tackle op-

timization problems. On the one hand, there is the setting of end-to-end 

learning, where ML models are trained to find solutions directly from the 

input. On the other hand, ML is also used alongside OR methods. AI meth-

ods are used to help with the branching and bounding decisions as well as 

with modelling uncertainty in decision making in a better way than stand-

alone OR models are able to. There are many publications in the area of OR 

which are concerned with modelling uncertainty, but which do not use ML 

methods. To adapt these models and apply ML techniques to better model 

uncertainty is a promising research gap for future research.  

Standard ML methods, especially evolutionary algorithms, are still the 

most common approach. But there is a rising interest in using deep learning 
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methods as a new technique to tackle optimization problems, which is due 

to the new possibilities that the wide availability of GPUs offers in terms of 

computation power. It is noteworthy that most of the approaches which 

use ML methods to tackle optimization problems in Logistics choose end-

to-end methods to get the solution directly from the input, rather than im-

plementing ML techniques in existing OR algorithms. But with the increas-

ing interest in deep learning, new approaches of combining these two areas 

become popular. Especially the approach chosen by e.g. Hottung et al. 

(2020) to implement deep neural networks into search trees appears to be 

promising. These deep learning techniques which allow to model highly 

complex non-linear relationships between variables offer a great perspec-

tive to support existing OR solution methods and will be an important fac-

tor in future research. 

Most of the applications of ML in Maritime Logistics rely on AIS data as their 

main input, which is due to the broad availability of these large datasets. 

This is also the reason why applications in other areas of Maritime Logistics 

apart from routing vessels are underrepresented. To use ML also at the in-

tersection of Logistics at sea and Logistics on land (terminals and hinter-

land), more data needs to be provided in order to create more possibilities 

for the application of models which rely on large datasets. There has also 

been a growing interest in combining ML and OR to let programs automat-

ically learn heuristics for optimization problems to avoid the costly and 

time-intensive development of highly specialized heuristics by humans. 

But our research also has shown that there are only a few attempts to trans-

fer these methods to problems in Maritime Logistics. This research gap may 

be due to the lack of IT infrastructure compared to other areas of Logistics, 
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but it also offers a great perspective for future research to apply these new 

ML approaches with the help of the ever-increasing amount of data availa-

ble to problems of Maritime Logistics.  

Although most of the approaches presented in this literature review are just 

the first steps in trying to apply ML to enhance the performance of solution 

methods for optimization problems, it has a huge potential to produce ef-

ficient solution strategies for optimization problems in the future. Hence, 

there are many opportunities for future research to exploit the possibilities 

of applying AI to optimization problems in Maritime Logistics. 
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