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Abstract

We consider the design of contests for n agents when the principal can choose
both the prize profile and the contest success function. Our framework includes
Tullock contests, Lazear-Rosen tournaments and all-pay contests as special cases,
among others. We show that the optimal contest has an intermediate degree of
competitiveness in the contest success function, and a minimally competitive prize
profile with n−1 identical prizes. The optimum can be achieved with a nested Tullock
contest. We extend the model to allow for imperfect performance measurement and
for heterogeneous agents. We relate our results to a recent literature which has asked
similar questions but has typically focused on the design of either the prize profile or
the contest success function.
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1 Introduction

Many economic interactions can be summarized as situations where a group of agents
compete for a set of prizes. Examples of such contests are: (i) competition for promotions
or bonuses among employees, (ii) elections where candidates campaign in an effort to win
political office, (iii) entrance exams where students compete for a limited number of places
in schools and universities, (iv) scientists competing for grants and prizes, and (v) sporting
events. What all of these contests have in common is that they are designed. In other
words, some principal chooses the rules of the contest as well as the prizes that can be won.
While the equilibrium behavior of agents in standard contests (Tullock contests, Lazear-
Rosen tournaments, all-pay contests) is by now well understood,1 the question of how the
principal should optimally design a contest has received only partial answers.

Several recent articles have analyzed the optimal allocation of prizes in specific classes
of contests. Examples include Schweinzer and Segev (2012) and Fu, Wang, and Wu (2019)
for Tullock contests, Drugov and Ryvkin (2020b) and Morgan, Tumlinson, and Várdy
(2019) for Lazear-Rosen tournaments, and Fang, Noe, and Strack (2020) and Olszewski and
Siegel (2020) for all-pay contests. While these papers have produced important insights,
sometimes the intuition obtained from one contest class does not translate well to a different
class. For example, from Clark and Riis (1998) and Schweinzer and Segev (2012) we learn
that in a nested Tullock contest with risk-neutral agents a winner-take-all (WTA) prize
structure is optimal if a pure-strategy equilibrium exists, while Fang et al. (2020) show
that in an all-pay contest the exact opposite is optimal, with all agents but one receiving
an equal positive prize. Furthermore, it is not clear if the principal should use a Tullock
contest or an all-pay contest, or even some other contest format which has not been studied
yet.2 Our paper proposes a general framework in which these contest design questions can
be analyzed, and which can provide an intuition for the different results in the literature.

In our model, the principal can choose any prize profile and any contest success function
(CSF), which includes the standard contest models as special cases. The objective of the
principal is to maximize the expected aggregate effort net of the sum of prizes. The
agents can be risk-neutral or risk-averse, and they have convex effort cost functions. Our
main result is that, even though the principal can choose from a large set of contests,
the optimum can be implemented by a nested Tullock contest (Clark and Riis, 1996).
The optimal prize profile has n − 1 equal positive prizes and one zero prize. The optimal
Tullock CSF is characterized by a precision parameter r∗(n) which is the largest r such that
a symmetric pure-strategy equilibrium still exists. Note that we do not restrict attention to

1For an excellent textbook treatment of the standard contests, see Konrad (2009).
2A broader question is whether the principal should use a contest at all, rather than some other

incentive mechanism. One setting in which contests are optimal within a larger set of mechanisms is
provided in Letina et al. (2020). In their model, contests are optimal because they give a lenient reviewer
the commitment to punish shirking agents.
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pure-strategy equilibria, but they emerge in the optimum. The precision parameter r∗(n)

increases in n and approaches infinity in the limit. In other words, the optimal Tullock CSF
approximates the all-pay CSF when the number of agents is large, but is less competitive
for smaller numbers of agents.

Our results provide a unifying perspective on the seemingly contradictory findings in
the literature. In line with Fang et al. (2020), we show that the minimally competitive
prize profile, with n − 1 identical positive prizes and one prize of zero, is optimal (see
also Glazer and Hassin, 1988; Letina et al., 2020). More generally, the message of Fang
et al. (2020) is that “turning up the heat” in an all-pay contest (which only admits mixed-
strategy equilibria), increases the dispersion of the equilibrium effort distributions, which
decreases the expected equilibrium effort that agents exert. Starting from the best all-pay
contest identified by Fang et al. (2020), our results show that it is optimal to turn down the
heat even more, by moving from the perfectly discriminating and very competitive all-pay
CSF towards a smoother and less competitive Tullock CSF (which can implement a pure-
strategy equilibrium). Our results are also in line with the seemingly contradictory intuition
of Schweinzer and Segev (2012), who argue that optimal Tullock contests should “turn up
the heat” by concentrating prizes on the top. This holds subject to the constraint that a
pure-strategy equilibrium exists in the contest. Our optimal Tullock contest is indeed as
competitive as possible without destroying the pure-strategy equilibrium. In other words,
“turning down the heat” should stop exactly at the point where a pure-strategy equilibrium
emerges. Such an insight can only be obtained in a setting like ours, where both the prize
profile and the CSF are endogenous and can be chosen without functional-form constraints.

In our baseline model, we assume that the principal perfectly observes the efforts by the
agents and that the agents are symmetric. To illustrate the flexibility of our approach, we
relax these assumptions in turn. We first provide a general result about optimal contests
with imperfect performance measurement. We illustrate this result with two examples, one
where the principal observes a noisy measure of efforts, and one where the principal observes
only the difference in efforts of two agents. Next, we consider agents with heterogeneous
effort cost functions. We derive the optimal contest for n = 2, and for n > 2 we provide
results for the case when heterogeneity is sufficiently small. In all our extensions, the
optimal contest has only one prize of zero, no dispersion among the positive prizes, and a
CSF that is less competitive than all-pay.

The model is introduced in Section 2. The optimal contest is derived in Section 3. The
extensions can be found in Section 4. Section 5 provides a more detailed overview of the
related literature, and Section 6 concludes. All proofs are in the Appendix.
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2 The Model

2.1 Environment

The basic model setup is the same as in Letina et al. (2020). There is a principal and a
set of agents I = {1, . . . , n}, where n ≥ 2. Each agent i ∈ I chooses an effort level ei ≥ 0,
incurs a cost of effort equal to c(ei), and obtains a monetary transfer ti ≥ 0. The payoff of
agent i is

πi(ei, ti) = u(ti)− c(ei).

The utility function u : R+ → R is twice differentiable, strictly increasing, weakly concave,
and satisfies u(0) = 0. The cost function c : R+ → R+ is twice differentiable, strictly
increasing, strictly convex, and satisfies c(0) = 0, c′(0) = 0, and limei→∞ c

′(ei) = ∞. The
outside option of agents is zero.

Let effort profiles be denoted by e = (e1, . . . , en) ∈ E = Rn
+ and transfer vectors by

t = (t1, . . . , tn) ∈ T = Rn
+. The payoff of the principal is

πP (e, t) =
n∑
i=1

ei −
n∑
i=1

ti.

2.2 Contests

As in Letina et al. (2020), a contest (y, µ) is defined by a prize profile y and a CSF µ. The
prize profile y = (y1, . . . , yn) is w.l.o.g. assumed to satisfy y1 ≥ . . . ≥ yn ≥ 0. Each effort
profile e results in some, possibly random, allocation of the prizes to the agents. Formally,
let T (y) be the set of all permutations of y. That is, t = (t1, . . . , tn) ∈ T (y) if and only if
there exists a bijective mapping s : I → I such that ti = ys(i), ∀i ∈ I. Then, t represents
the specific allocation where agent i obtains the s(i)-th prize. The probability that prize
allocation t is realized is governed by the CSF µ = (µe)e∈E, which maps each effort profile
e ∈ E into a probability measure µe ∈ ∆T (y). Hence µe(t) is the probability of obtaining
prize allocation t when the agents’ efforts are given by e.3

Example. When there are two agents, the prize profile is y = (y1, y2) with y1 ≥ y2 ≥ 0,
where y1 is the prize that the winner obtains and y2 is the prize that the loser obtains.
There are only two permutations of y. One is t′ = (y1, y2), which is the transfer vector
when agent 1 wins the contest, and the other is t′′ = (y2, y1), which is the transfer vector
when agent 2 wins. For any given effort profile e = (e1, e2), the probability that agent 1

wins is given by µe(t′), and the probability that agent 2 wins is µe(t′′) = 1− µe(t′). In an
3We assume that µe(t) is a measurable function of e, for each t, which implies that all expected values

in the following are well-defined.
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all-pay contest

µe(t′) =


1 if e1 > e2,

1/2 if e1 = e2,

0 if e1 < e2,

while in a Tullock contest with impact function f we have

µe(t′) =


f(e1)

f(e1) + f(e2)
if max{e1, e2} > 0,

1/2 else.

With more than 2 agents and thus multiple prizes, the function µ is a convenient way to
represent the probabilities with which prizes are allocated to agents, which encompasses
all conventional CSFs that the literature has studied. �

Given a contest (y, µ), the agents choose their efforts simultaneously, anticipating that
the prizes y will be distributed according to µ. Let σi ∈ ∆R+ be agent i’s mixed strategy
and let ei ∈ R+ represent pure strategies. Strategy profiles are given by σ = (σ1, ..., σn) ∈
(∆R+)n. We also use σ to denote the induced product measure in ∆E. We say that a
contest (y, µ) implements a strategy profile σ if it satisfies

Πi(σi, σ−i | (y, µ)) ≥ Πi(σ
′
i, σ−i | (y, µ)) ∀σ′i ∈ ∆R+,∀i ∈ I, (IC-A)

where Πi(σ | (y, µ)) = Eσ[Eµe [u(ti)]] − Eσi [c(ei)]. Each agent can always deviate to zero
effort and thus guarantee himself a payoff of at least zero. Therefore we can ignore the
agents’ participation constraints.

The principal chooses a contest (y, µ) which implements a strategy profile σ in order to
maximize her expected payoff. Formally, the principal’s problem is given by

max
σ,y,µ

ΠP (σ | (y, µ)) s.t. (IC-A), (P)

where ΠP (σ | (y, µ)) = Eσ[
∑n

i=1 ei] −
∑n

i=1 yi. A contest (y∗, µ∗) is optimal if there exists
σ∗ such that (σ∗, (y∗, µ∗)) solves (P).4

4Letina et al. (2020) study a related but different problem. They are interested in the design of
performance evaluation schemes when a reviewer observes the agents’ efforts and reports to the principal.
Since the preferences of the reviewer and the principal are misaligned, an additional incentive constraint is
required. Furthermore, Letina et al. (2020) optimize over a substantially larger class of mechanisms, but
show that a contest is optimal within that class.
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3 Optimal Contest

In this section, we will show that a specific Tullock contest solves the principal’s problem.
Tullock contests with n agents and a single positive prize are typically characterized by a
contest success function of the form

pi(e) =
f(ei)∑
j∈I f(ej)

, (1)

which determines the probability that agent i wins the prize as a function of the effort
profile. The impact function f is continuous, strictly increasing and satisfies f(0) = 0

(Skaperdas, 1996).5 If all agents exert zero effort, each of them wins with equal probability.
With more than one positive prize, the contest success function can be applied in a nested
fashion (see Clark and Riis, 1996). The first prize is allocated according to (1) among all
n agents, the second prize is allocated according to (1) restricted to those n − 1 agents
who have not received the first prize, and so on. In terms of our notation based on µ

introduced above, when all efforts are strictly positive a nested Tullock contest gives rise
to the allocation probabilities

µe(t1, . . . , tn) = µe(ys(1), . . . , ys(n)) =
n∏
k=1

[
f(es−1(k))∑n
j=k f(es−1(j))

]
, (2)

where s is the permutation generating t from y. The extension to the case where some
efforts are zero is straightforward.

Proposition 1 The following contest (y∗, µ∗) is optimal:

(i) The prize profile is y∗ = (x∗/(n− 1), . . . , x∗/(n− 1), 0), where x∗ is given by

u′
(

x∗

n− 1

)
= c′

(
c−1
(
n− 1

n
u

(
x∗

n− 1

)))
.

(ii) The CSF µ∗ is of the nested Tullock type (2) with

f(ei) = c(ei)
r∗(n) and r∗(n) =

n− 1

Hn − 1
,

where Hn =
∑n

k=1 1/k is the n-th harmonic number.

To obtain an intuition for this result, start from condition (i), which characterizes the
optimal prize sum x∗ by a simple cost-benefit condition. The optimal prize profile y∗ has

5In Section 4.2, we will study an extension with individual-specific impact functions fi (Cornes and
Hartley, 2005).
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one zero prize and splits x∗ equally among the other n− 1 prizes.6 The optimality of this
prize structure is related to the reason why, in Fang et al. (2020), reducing inequality in the
prize profile is beneficial to the principal if the CSF is an all-pay contest. Reducing prize
inequality in the all-pay contest reduces dispersion of efforts chosen in the mixed strategy
equilibrium, and random effort choice is inefficient due to convex effort costs. Fang et al.
(2020) therefore conclude that it is optimal to move towards the least unequal prize profile
y∗ in all-pay contests (for both risk-neutral and risk-averse agents). Our result shows that
it is optimal to turn down the heat of the contest even more, and the only way to do so
is to make the CSF less competitive. With the optimal CSF characterized in condition
(ii) of our proposition, the contest actually implements a symmetric effort profile in pure
strategies (e∗, . . . , e∗), where

e∗ = c−1
(
n− 1

n
u

(
x∗

n− 1

))
is such that the agents’ expected payoff is zero. This is achieved by using a nested Tullock
contest with a finite randomness parameter r∗(n).7 The randomness parameter r∗(n) is
such that any increase in the competitiveness of the contest, either by making the prize
vector more unequal or by increasing r, would destroy the pure-strategy equilibrium.

If there are two agents and hence one positive prize, we obtain r∗(2) = 2. It is well-
known that this is the largest value of the parameter r for which the two-agent Tullock
contest still has a pure-strategy equilibrium. For the case of n risk-neutral agents and
cost functions of the monomial form, Schweinzer and Segev (2012) show that there is a
continuum of nested Tullock contests that all generate the first-best pure-strategy efforts,
for a given prize sum. That continuum is parametrized by the precision parameter r ∈
[n/(n−1), (n−1)/(Hn−1)], and the prizes are concentrated on the top as much as possible
so that the pure-strategy equilibrium still exists. Considering their special case, where the
first-best is achievable due to risk-neutrality, this multiplicity of optimal contests of course
carries over to our setting. In the general case with risk-averse agents, where the first-best
is not achievable, the optimal contest described in Proposition 1 has the highest possible
precision parameter r∗(n) = (n − 1)/(Hn − 1) from along the continuum.8 A higher r

6Part (i) of Proposition 1 is a corollary of Theorem 2 in Letina et al. (2020). This optimal prize profile
is actually uniquely optimal whenever the agents are risk-averse. If the agents are risk-neutral, then x∗

can be split arbitrarily among the first n− 1 prizes, but the CSF also has to be adjusted in that case.
7Readers familiar with the Tullock form may be surprised that f depends on the cost function c.

However, standard formulations of the Tullock contest assume linear cost functions, which is then equivalent
to a reformulation of our model where agents choose expenditure levels c(ei) directly. Note also that the
nested Tullock CSF is not the unique solution to the problem. As Letina et al. (2020) have shown, another
way to reduce competitiveness is to put an effort cap on an all-pay contest.

8This is also similar to the finding in Morgan et al. (2019), who show that in a large Lazear-Rosen
tournament, the optimal level of precision of the CSF is such that the agents are indifferent between
dropping out of the contest and participating.
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would make the contest too competitive and induce wasteful mixing in equilibrium. A
lower r would induce less effort, and, in contrast to Schweinzer and Segev (2012), the
weaker incentives cannot be compensated by a more unequal prize profile when the agents
are risk-averse.

To prove Proposition 1, we employ a novel approach that is of independent interest
and could prove useful in other settings. Instead of showing directly that no profitable
deviation exists, we fix an arbitrary deviation and ask for which levels of r this deviation
is not profitable. Using this approach, we can show that when r ≥ r∗(n), there are no
profitable deviations from the equilibrium effort to lower effort levels, and when r ≤ r∗(n),
there are no profitable deviations to higher effort levels. This is intuitive, because a higher
r implies a more precise contest in which shirking is less profitable, but not trivial to
demonstrate.

As already mentioned by Schweinzer and Segev (2012), the randomness parameter r∗(n)

is strictly increasing in n and satisfies limn→∞ r
∗(n) = ∞.9 In other words, the optimal

contest becomes more precise and more competitive as n grows, and it approximates an
all-pay contest in the limit when the contest becomes large.10

4 Extensions

4.1 Imperfect Performance Measurement

In this section, we show how our framework can be enriched to study the optimal contest
design problem in settings where the agents’ efforts are measured imperfectly. We do
not want to impose one specific measurement constraint, so we first introduce a general
information structure. We then derive conditions under which an optimal contest can be
described, and we illustrate the approach with two specific examples.

Suppose that, after the agents have chosen their efforts e, a signal s ∈ S is drawn
according to an effort-dependent probability measure ηe ∈ ∆S. Only this signal can be
used to evaluate the performance of the agents, i.e., the CSF must condition the prize
allocation on s rather than on e directly. For instance, in a firm the allocation of bonuses
among the sales force will typically depend on measures such as realized sales, which are
only noisy proxies for the agents’ actual efforts.

We denote η = (ηe)e∈E and call (S, η) the observational structure of the model. We
do not impose any assumptions on the set of signals S or the stochastic signal-generating
process η.11 Hence a large range of applications and examples can be modelled by different

9Our Appendix A.2 contains a formal proof of that claim.
10See Siegel (2009) for a general treatment of all-pay contests and Olszewski and Siegel (2016) for large

contests.
11We only need the regularity condition that ηe(A) is a measurable function of e for each measurable
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observational structures. Our previous setting with perfect performance measurement is
a special case where S = E and ηe is the Dirac measure on e. A second example is
the classical moral-hazard setting where each agent’s effort ei produces a random output
si such that Eηe [si] = ei. The CSF can condition only on the observable output vector
s ∈ S ⊆ Rn. It is possible to assume that the principal cares about output rather than
effort in this application, because her expected payoffs are unaffected by the noise with zero
mean. A third example is a setting where only an aggregate statistic of the effort profile
becomes observable. For instance, suppose there are two agents and only the difference
between their efforts but not the levels can be observed. This amounts to an observational
structure where S = R and ηe is the Dirac measure on e1 − e2. One could also model the
observation of ordinal performance ranks, or a blind review process where the individual
efforts are anonymized. Finally, the observational structure allows for stochastic signals
which are correlated across the agents like in Green and Stokey (1983) or Nalebuff and
Stiglitz (1983).

Given an observational structure (S, η), a contest is defined by (y, τ), where y is the
prize profile as before, and τ = (τ s)s∈S is the CSF describing how prizes are allocated to
the agents depending on the realized signal. Similar to before, τ s ∈ ∆T (y) denotes the
prize allocation associated with a specific signal realization s ∈ S. Given a contest (y, τ),
the payoff of agent i with strategy profile σ is

Πi(σ | (y, τ)) = Eσ [Eηe [Eτs [u(ti)]]]− Eσi [c(ei)] .

The contest implements σ if Πi((σi, σ−i) | (y, τ)) ≥ Πi((σ
′
i, σ−i) | (y, τ)) for all σ′i ∈ ∆R+

and i ∈ I. The principal maximizes

ΠP (σ | (y, τ)) = Eσ

[
n∑
i=1

ei

]
−

n∑
i=1

yi

by choosing a contest (y, τ) and a strategy profile σ to be implemented.
As the following result shows, optimal contests can sometimes be described despite the

generality of this framework.

Proposition 2 Fix an arbitrary observational structure (S, η). A contest with prize profile
y = (x∗/(n− 1), . . . , x∗/(n− 1), 0) is optimal if it implements (e∗, . . . , e∗).

A contest with a prize profile as characterized in Proposition 1 is optimal for any obser-
vational structure, provided that it still implements the optimal effort profile (e∗, . . . , e∗)

and therefore achieves the same maximal payoff for the principal as in the case of per-
fect observation. Intuitively, a coarser observational structure can always be replicated

subset A ⊆ S, to ensure that expected payoffs remain well-defined.
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when observation is perfect, by emulating the observational friction in the CSF. Hence, the
maximal payoff with perfect observation is an upper bound on the principal’s payoff with
imperfect observation.

Despite its simplicity, the result is a powerful tool for the design of optimal contests.
Whenever we can find a signal-contingent CSF that ensures implementation of (e∗, . . . , e∗)

with prize profile (x∗/(n − 1), . . . , x∗/(n − 1), 0), we can be sure to have constructed an
optimal contest for the given observational structure. We illustrate the applicability of this
tool in two simple examples.

Example. Consider a classical moral-hazard setting with two agents. The effort cost
function is given by c(ei) = γeβi for some γ > 0 and β > 1. The noise in output takes
a multiplicative (or log-additive) form: the output of agent i who exerts effort ei is given
by s̃i = eir̃i, where the pair of random variables (r̃1, r̃2) follows a bivariate log-normal
distribution,

(r̃1, r̃2) ∼ lnN

[(
ν1

ν2

)
,

(
σ2
1 σ12

σ12 σ2
2

)]
.

We show in Appendix A.4 that the optimal effort profile (e∗, e∗) can be implemented by a
contest with prize profile (x∗, 0) whenever the inequality

σ2
1 + σ2

2 − 2σ12 ≤ 2/(πβ2)

is satisfied, which just requires that the noise in output is not too strong. The contest that
achieves implementation of (e∗, e∗) – and is therefore optimal by Proposition 2 – allocates
the positive prize x∗ to agent 1 with a probability that is increasing in the realized ratio of
outputs s1/s2. More precisely, agent 1 receives the prize whenever s1/s2 is larger than a
log-normally distributed random number. Similar contests with multiplicative noise have
been studied in the literature.12 With this construction, the overall randomness in the
prize allocation can be adjusted to a level that guarantees implementation of (e∗, e∗).

Example. Consider a setting with two agents in which only the difference s = e1− e2 but
not the entire profile (e1, e2) can be observed. We show in Appendix A.4 that, despite this
constraint, the optimal effort profile (e∗, e∗) can always be implemented by a contest with
prize profile (x∗, 0). The contest that achieves implementation of (e∗, e∗) – and is therefore
optimal – allocates the positive prize to agent 1 with a probability that is increasing in the
observed difference s. More precisely, agent 1 receives the prize whenever s is larger than

12See, for instance, Jia, Skaperdas, and Vaidya (2013). We are not aware of an explicit treatment of the
multiplicative log-normal noise model in the literature, but of course it can be transformed into a specific
probit model with additive normal noise (Dixit, 1987).
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a uniformly distributed random number. Such contests with additive noise have also been
studied in the literature.13 An appropriate level of randomness in the allocation rule again
ensures that unilateral deviations from (e∗, e∗) are not profitable.

Of course, Proposition 2 is not always applicable. For instance, it is clear that only
zero effort can be implemented if the signals are completely uninformative (ηe = ηe

′ for all
e, e′ ∈ E). More generally, it will be impossible to implement the effort profile (e∗, . . . , e∗)

in a contest when the signals on which the prize allocation can be conditioned are too
coarse or too noisy. We leave a characterization of optimal contests for such environments
to future research.

4.2 Heterogeneous Contestants

Our framework can also incorporate heterogeneity in the abilities of the agents. To illustrate
this, we consider a variation of the basic model in which the payoff of agent i is given by

πi(ei, ti) = u(ti)− ci(ei),

where the cost functions ci satisfy our previous assumptions but can be different across
agents. For the case of two agents, we provide a result that generalizes Proposition 1 to
arbitrary cost functions.

Proposition 3 Suppose n = 2. For any profile of cost functions (c1, c2), the following
contest (y∗, µ∗) is optimal:

(i) The prize profile is y∗ = (x∗, 0), where x∗ is given by

(x∗, e∗1, e
∗
2) ∈ argmax

x,e1,e2≥0
e1 + e2 − x s.t. c1(e1) + c2(e2) = u(x).

(ii) The CSF µ∗ is of the Tullock type (1) with individual-specific impact functions

fi(ei) =
ci(ei)

r∗i

ci(e∗i )
r∗i−1

and r∗i = 1 +
ci(e

∗
i )

cj(e∗j)
, ∀i = 1, 2, j 6= i.

For the special case where c1(·) = c2(·) = c(·), we obtain e∗1 = e∗2 = e∗ and r∗i = 2, so
that the optimal impact functions are (up to an irrelevant multiplicative constant) given
by fi(ei) = c(ei)

2, exactly like in Proposition 1 for n = 2. With asymmetric cost functions,
by contrast, the implemented effort levels will typically not be identical for the two agents.

13See, for instance, Lazear and Rosen (1981) and Hirshleifer (1989). Che and Gale (2000) provide a
general treatment of contests with additive uniform noise. They show that these contests often do not
have a symmetric pure-strategy equilibrium. The uniform distribution used in our construction is chosen
precisely to avoid this problem.
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Consequently, the winning probabilities can also not be identical in equilibrium, because
the agents have to be compensated for different effort costs. That this kind of biasing of a
contest is beneficial when agents are heterogeneous is well-known (see e.g. Ewerhart, 2017;
Franke, Leininger, and Wasser, 2018). Our result establishes the form of biasing that is
optimal when the principal is not restricted to a specific class of CSFs. To the best of our
knowledge, the asymmetric Tullock contest described in Proposition 3 has not been studied
before.

That the principal would optimally choose a zero prize yn = 0 continues to hold with
n > 2 asymmetric agents (see Lemma 7 in the Appendix). Generalizing the optimality
of n− 1 equal positive prizes faces the difficulty that some agents may have substantially
higher effort costs in equilibrium than others, and cannot be compensated for their costs
even if they win one of the identical prizes for sure. Our next result rests on the insight that
effort profiles for which the agents’ costs are so strongly heterogeneous cannot be optimal
if their cost functions are not strongly heterogeneous. To formalize this idea, we fix any
sequence of cost function profiles (cm1 , . . . , c

m
n )m∈N such that, for each i ∈ I, the sequence

(cmi )m∈N converges uniformly to a common cost function c as m→∞.

Proposition 4 Let (cm1 , . . . , c
m
n ) → (c, . . . , c) uniformly. Then, there exists m ∈ N such

that for all m ≥ m, a contest with n− 1 equal positive prizes and one zero prize is optimal.

The optimality of a minimally competitive prize profile is robust to heterogeneity even
with n > 2 agents, as long as the heterogeneity is not too large. Again, an optimal contest
will typically ask for different effort levels from different agents, and allocates the zero prize
with non-identical probabilities across the agents in equilibrium. While Proposition 4 only
states the existence of an optimal contest with n−1 identical prizes, it is easy to show that
those prizes and the optimal effort levels are characterized by a generalized version of the
optimization problem in part (i) of Proposition 3, namely

(x∗, e∗) ∈ argmax
x,e

n∑
i=1

ei − x s.t.
n∑
i=1

ci(ei) = (n− 1)u

(
x

n− 1

)
.

Given the complexity of the problem, we leave the question whether a suitably defined
asymmetric nested Tullock CSF can achieve the optimum to future research.

5 Related Literature

A contest is described by two dimensions: the prize profile and the CSF. The contest
design literature has typically treated the design of these two dimensions separately. We
will first discuss existing results on the optimal prize profile,14 an then existing results on

14For a survey on the optimal allocation of prizes in contests see Sisak (2009).
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the optimal CSF.
For the class of Tullock CSFs, Clark and Riis (1998) show that, if a symmetric pure-

strategy equilibrium exists for a WTA prize structure, then WTA is optimal. More gener-
ally, Schweinzer and Segev (2012) argue that prizes should be concentrated on the top as
much as possible so that a pure-strategy equilibrium still exists, always under the assump-
tion of risk-neutral agents. Fu, Jiao, and Lu (2015) focus on entry into Tullock contests
and also show that a single prize can be optimal. Feng and Lu (2018) study a multi-battle
Tullock contest and show that the optimal prize profile depends on the randomness of the
CSF. In particular, when randomness is significant, WTA is optimal.

For Lazear-Rosen tournaments, Drugov and Ryvkin (2020b) characterize the optimal
prize profile and show that the distribution of noise plays a crucial role. For light-tailed
shocks, WTA is optimal, while with heavy-tailed shocks, more equal prize-sharing becomes
optimal. For large tournaments, Morgan et al. (2019) show that when the distribution of
noise is optimally chosen (see below), any number of equal positive prizes is optimal.

For the class of all-pay CSFs, Fang et al. (2020) show that it is optimal to give equal
positive prizes to all agents but one, who receives a zero prize. More generally, their message
is that making an all-pay contest less competitive, by decreasing the dispersion in prizes,
increases the effort that agents exert. When agents are heterogeneous in an all-pay contest,
finding the optimal prize vector becomes difficult. Xiao (2016) shows that a WTA prize
profile is in general not optimal. By studying large all-pay contests, Olszewski and Siegel
(2020) are able to characterize the optimal prize profile under very general conditions and
show that prize sharing is optimal in general. When agents have heterogeneous private
types, Moldovanu and Sela (2001) show that WTA is optimal for weakly concave cost
functions, but that multiple prizes can be optimal for convex cost functions.

In some settings, the principal can also assign punishments in addition to prizes. Pun-
ishments can be effective tools for incentivizing effort in all-pay contests, as shown by
Moldovanu, Sela, and Shi (2012), Liu, Lu, Wang, and Zhang (2018) and Liu and Lu (2020).
Similar results for Tullock contests and Lazear-Rosen tournaments can be found in Amiad
and Sela (2016) and Akerlof and Holden (2012), respectively.

Most of the papers in this literature assume risk-neutral agents. Risk-aversion makes
more equal prize sharing better from the principal’s perspective, because it reduces the
amount of risk to which the agents are exposed. This was shown by Glazer and Hassin
(1988) for all-pay contests, Fu et al. (2019) for Tullock contests, and Drugov and Ryvkin
(2019) for Lazear-Rosen tournaments.

Instead of characterizing the optimal prize profile, several papers consider how changes
in the CSF affect equilibrium effort, for given prizes. For Tullock contests, Fu et al.
(2015) show that increasing randomness leads to more entry into the contest, at the cost of
potentially lower effort by the agents who enter. The optimal level of randomness trades
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off these effects. For two agents in a Tullock contest, Wang (2010) shows that increasing
randomness can be an optimal response to more heterogeneous agents. Drugov and Ryvkin
(2020a) show that, as a Lazear-Rosen tournament becomes more noisy, equilibrium effort
decreases. Morgan et al. (2019) analyze large Lazear-Rosen tournaments where noise is
a random variable from the location-scale family. They vary the scale parameter (the
randomness of the contest) and find that intermediate levels of randomness are optimal.
Olszewski and Siegel (2019) model college admissions as a large all-pay contest and show
how treating students with similar results equally, in essence making the all-pay contest
more random, can improve outcomes.

The contribution of our paper is to study jointly optimal choice of the prize profile and
the CSF. The contest theory literature has developed foundations for various functional
forms of the CSF (for a comprehensive survey, see Jia et al., 2013). Our main result
contributes to this literature by showing that, even when the principal can freely choose
among all conceivable contest success functions, it is optimal to use a Tullock contest.

6 Conclusion

In this paper, we provide a framework which enables us to study the optimal design of
contests without being restricted to a single class of contests. We show that when the
principal can choose any contest success function, the optimum can be achieved by an
appropriately chosen nested Tullock contest. The optimal prize vector features a single
zero prize and n− 1 equal positive prizes. We also show how our framework can be used in
cases where the measurement of the agents’ performance is imperfect, and when the agents
are heterogeneous in their abilities.

Our general message is that optimal contests exhibit a relatively small degree of com-
petitiveness, embodied by a minimally competitive prize profile and an imperfectly dis-
criminating CSF. The optimal degree of competition is achieved when a pure-strategy
equilibrium emerges. Reducing competitiveness beyond that point would decrease the ef-
forts that the principal can elicit, and increasing competitiveness would induce wasteful
mixing in equilibrium.

We conclude with a discussion of two important questions for future research. First,
we have focused on the optimal design of contests when the principal’s objective is the
maximization of total effort. However, contest mechanisms are also used for other purposes.
One important application is to incentivize development of innovations. Innovation contests
have been used both by governments (for example the 2012 EU Vaccine Prize) and by
private firms (such as the 2006 Netflix Prize). In innovation contests, the principal is
usually only interested in the best innovation and not in the total effort that the agents
have exerted. For this reason, the literature studying innovation contests usually assumes
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that the objective of the principal is to maximize the highest realization of the agents’
outputs.15 In future work, our framework could be extended to this setting by adjusting
the principal’s payoff function ΠP (σ | (y, µ)) in problem (P) appropriately.

Second, we have focused on the case where the agents have publicly known types. Future
work could extend the framework to the case with private types, as in Moldovanu and Sela
(2001, 2006). When agents have private types, contests can also be used as mechanisms
for the selection of the best agent. The usual application of such selection contests is to
promotions within firms.16 This could be incorporated into our framework by allowing
for private types of the agents and again adjusting the objective function of the principal
appropriately.

15Classical references are Taylor (1995) and Che and Gale (2003), while more recent examples are Erkal
and Xiao (2019), Lemus and Temnyalov (2019) and Benkert and Letina (2020). For a similar objective in
prediction contests see Lemus and Marshall (2019).

16For examples of selection contests see Meyer (1991), and Fang and Noe (2019) for a more recent
contribution.

15



References

Akerlof, R. J. and R. T. Holden (2012): “The Nature of Tournaments,” Economic
Theory, 51, 289–313.

Amiad, M. and A. Sela (2016): “The Optimal Allocation of Punishments in Tullock
Contests,” Mimeo.

Barvinek, E., I. Daler, and J. Francu (1991): “Convergence of Sequences of Inverse
Functions,” Archivum Mathematicum, 27, 201–204.

Benkert, J.-M. and I. Letina (2020): “Designing Dynamic Research Contests,” Amer-
ican Economic Journal: Microeconomics, forthcoming.

Chang, S.-H., P. C. Cosman, and L. B. Milstein (2011): “Chernoff-Type Bounds for
the Gaussian Error Function,” IEEE Transactions on Communications, 59, 2939–2944.

Che, Y.-K. and I. Gale (2000): “Difference-Form Contests and the Robustness of All-
Pay Auctions,” Games and Economic Behavior, 30, 22–43.

——— (2003): “Optimal Design of Research Contests,” American Economic Review, 93,
646–671.

Clark, D. J. and C. Riis (1996): “A Multi-Winner Nested Rent-Seeking Contest,” Public
Choice, 87, 177–184.

——— (1998): “Influence and the Discretionary Allocation of Several Prizes,” European
Journal of Political Economy, 14, 605–625.

Cornes, R. and R. Hartley (2005): “Asymmetric Contests with General Technologies,”
Economic Theory, 26, 923–946.

Dixit, A. (1987): “Strategic Behavior in Contests,” American Economic Review, 77, 891–
898.

Drugov, M. and D. Ryvkin (2019): “Optimal Prizes in Tournaments with Risk-Averse
Agents,” Mimeo.

——— (2020a): “How Noise Affects Effort in Tournaments,” Journal of Economic Theory,
forthcoming.

——— (2020b): “Tournament Rewards and Heavy Tails,” CEPR Discussion Paper No.
12368.

Erkal, N. and J. Xiao (2019): “Scarcity of Ideas and Optimal Prizes in Innovation
Contests,” Mimeo.

16



Ewerhart, C. (2017): “Revenue Ranking of Optimally Biased Contests: The Case of
Two Players,” Economics Letters, 157, 167–170.

Fang, D. and T. Noe (2019): “Less Competition, More Meritocracy?” Mimeo.

Fang, D., T. Noe, and P. Strack (2020): “Turning Up the Heat: The Discouraging
Effect of Competition in Contests,” Journal of Political Economy, 128, 1940–1975.

Feng, X. and J. Lu (2018): “How to Split the Pie: Optimal Rewards in Dynamic Multi-
Battle Competitions,” Journal of Public Economics, 160, 82–95.

Franke, J., W. Leininger, and C. Wasser (2018): “Optimal Favoritism in All-Pay
Auctions and Lottery Contests,” European Economic Review, 104, 22–37.

Fu, Q., Q. Jiao, and J. Lu (2015): “Contests with Endogenous Entry,” International
Journal of Game Theory, 44, 387–424.

Fu, Q., X. Wang, and Z. Wu (2019): “Multi-Prize Contests with Risk-Averse Players,”
Mimeo.

Glazer, A. and R. Hassin (1988): “Optimal Contests,” Economic Inquiry, 26, 133–143.

Green, J. R. and N. L. Stokey (1983): “A Comparison of Tournaments and Contracts,”
Journal of Political Economy, 91, 349–364.

Hirshleifer, J. (1989): “Conflict and Rent-Seeking Success Functions: Ratio vs. Differ-
ence Models of Relative Success,” Public Choice, 63, 101–112.

Jia, H., S. Skaperdas, and S. Vaidya (2013): “Contest Functions: Theoretical Foun-
dations and Issues in Estimation,” International Journal of Industrial Organization, 31,
211–222.

Konrad, K. A. (2009): Strategy and Dynamics in Contests, Oxford University Press.

Lazear, E. P. and S. Rosen (1981): “Rank-Order Tournaments as Optimum Labor
Contracts,” Journal of Political Economy, 89, 841–864.

Lemus, J. and G. Marshall (2019): “Dynamic Tournament Design: An Application to
Prediction Contests,” Mimeo.

Lemus, J. and E. Temnyalov (2019): “Diversification and Information in Contests,”
Mimeo.

Letina, I., S. Liu, and N. Netzer (2018): “Delegating Performance Evaluation,” Uni-
versity of Zurich, Department of Economics, Working Paper No. 266.

——— (2020): “Delegating Performance Evaluation,” Theoretical Economics, 15, 477–509.

17



Liu, B. and J. Lu (2020): “Optimal Prize Design in Rank-Order Contests,” Mimeo.

Liu, B., J. Lu, R. Wang, and J. Zhang (2018): “Optimal Prize Allocation in Contests:
The Role of Negative Prizes,” Journal of Economic Theory, 175, 291–317.

Meyer, M. A. (1991): “Learning from Coarse Information: Biased Contests and Career
Profiles,” The Review of Economic Studies, 58, 15–41.

Moldovanu, B. and A. Sela (2001): “The Optimal Allocation of Prizes in Contests,”
American Economic Review, 91, 542–558.

——— (2006): “Contest Architecture,” Journal of Economic Theory, 1, 70–96.

Moldovanu, B., A. Sela, and X. Shi (2012): “Carrots and Sticks: Prizes and Punish-
ments in Contests,” Economic Inquiry, 50, 453–462.

Morgan, J., J. Tumlinson, and F. Várdy (2019): “The Limits of Meritocracy,”
Mimeo.

Nalebuff, B. J. and J. E. Stiglitz (1983): “Prizes and Incentives: Towards a General
Theory of Compensation and Competition,” The Bell Journal of Economics, 14, 21–43.

Olszewski, W. and R. Siegel (2016): “Large Contests,” Econometrica, 84, 835–854.

——— (2019): “Pareto Improvements in the Contest for College Admissions,” Mimeo.

——— (2020): “Performance-Maximizing Large Contests,” Theoretical Economics, 15, 57–
88.

Pinelis, I. (2002): “L’Hospital Type Rules for Monotonicity, with Applications,” Journal
of Inequalities in Pure and Applied Mathematics, 3, article 5, 5 pp. (electronic).

Schweinzer, P. and E. Segev (2012): “The Optimal Prize Structure of Symmetric
Tullock Contests,” Public Choice, 153, 69–82.

Siegel, R. (2009): “All-Pay Contests,” Econometrica, 77, 71–92.

Sisak, D. (2009): “Multiple-prize Contests – The Optimal Allocation of Prizes,” Journal
of Economic Surveys, 23, 82–114.

Skaperdas, S. (1996): “Contest Success Functions,” Economic Theory, 7, 283–290.

Taylor, C. R. (1995): “Digging for Golden Carrots: An Analysis of Research Tourna-
ments,” American Economic Review, 85, 872–890.

Wang, Z. (2010): “The Optimal Accuracy Level in Asymmetric Contests,” The B.E.
Journal of Theoretical Economics, 10, 1–18.

Xiao, J. (2016): “Asymmetric All-Pay Contests with Heterogeneous Prizes,” Journal of
Economic Theory, 163, 178–221.

18



A Proofs

A.1 Proof of Proposition 1

We first state without proof a result which is due to Letina et al. (2020), and which
characterizes the optimal effort profile as well as all optimal prize profiles.17 Statement (i)

of Proposition 1 follows immediately from this lemma.

Lemma 1 (Letina et al., 2020) A contest is optimal if and only if it satisfies conditions
(i) and (ii):

(i) The prizes satisfy y∗n = 0 and
∑n

k=1 y
∗
k = x∗, where x∗ is given by

u′
(

x∗

n− 1

)
= c′

(
c−1
(
n− 1

n
u

(
x∗

n− 1

)))
.

If the agents are risk-averse, then the prize profile is unique and given by

y∗ = (x∗/(n− 1), . . . , x∗/(n− 1), 0).

(ii) The contest implements (e∗, . . . , e∗), where e∗ is given by

e∗ = c−1
(
n− 1

n
u

(
x∗

n− 1

))
.

Consider now a contest with prize profile y∗ = (x∗/(n − 1), ..., x∗/(n − 1), 0) and CSF
µ∗ of the nested Tullock form (2). We will show that, for an appropriate choice of f , the
effort profile (e∗, . . . , e∗) is an equilibrium. The proof proceeds in three steps. In Step 1, we
derive the agents’ payoff function in the nested contest. Step 2 introduces the specific value
r∗(n) stated in the proposition. In Step 3, we then complete the proof that the resulting
contest indeed implements the desired effort profile.

Step 1. Let p(ei) denote the probability that agent i wins none of the n − 1 positive
prizes, given that all other agents exert effort e∗. Furthermore, let u∗ be the utility derived
from a positive prize. Then, the expected payoff of agent i, when all other agents exert e∗,
is given by

Πi(ei) = [1− p(ei)]u∗ − c(ei)

=

[
1− (n− 1)!f(e∗)n−1∏n−1

k=1 [f(ei) + (n− k)f(e∗)]

]
u∗ − c(ei)

17The result in Letina et al. (2020) is more general as it allows for a possibly binding budget constraint
of the principal.
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=

[
1−

n−1∏
k=1

(n− k)f(e∗)

[f(ei) + (n− k)f(e∗)]

]
u∗ − c(ei)

=

[
1−

n−1∏
k=1

(n− k)f(e∗)

[f(ei) + (n− k)f(e∗)]

](
n

n− 1

)
c(e∗)− c(ei).

Now suppose f(ei) = c(ei)
r for some r ≥ 0. It is easy to see that Πi(0) = Πi(e

∗) = 0 for
any r. We will show in the next two steps that Πi(ei) ≤ 0 for all ei when r = r∗(n) =

(n − 1)/(Hn − 1), where Hn =
∑n

k=1 1/k is the n-th harmonic number. This implies that
(e∗, . . . , e∗) is an equilibrium.

Step 2. Consider any ei > 0 (we already know the value of Πi for ei = 0). To determine
the sign of Πi(ei), we can equivalently examine the sign of

Πi(ei)

[
n− 1

nc(e∗)

]
=

[
1−

n−1∏
k=1

(n− k)c(e∗)r

[c(ei)r + (n− k)c(e∗)r]

]
−
(
n− 1

n

)
c(ei)

c(e∗)
.

Make the change of variables y∗ = c(e∗)r and y = c(ei)
r to obtain

F (y|r) :=

[
1−

n−1∏
k=1

(n− k)y∗

[y + (n− k)y∗]

]
− n− 1

n

(
y

y∗

)1

r
.

After the additional variable substitution x = y∗/y we obtain

F (x|r) :=

[
1−

n−1∏
k=1

(n− k)x

[1 + (n− k)x]

]
− n− 1

n

(
1

x

)1

r
.

Showing that F (x|r) ≤ 0 for all x > 0, x 6= 1, is then sufficient to ensure that the contest
with parameter r implements the optimum.

Fix any x and let us look for r(x) such that F (x|r(x)) = 0. Since F is strictly increasing
in r whenever x ∈ (0, 1), we obtain that F (x|r) ≤ 0 for any fixed x ∈ (0, 1) whenever
r ≤ r(x), so r(x) gives an upper bound on the possible values of r. Similarly, since F
is strictly decreasing in r whenever x ∈ (1,∞), we obtain that F (x|r) ≤ 0 for any fixed
x ∈ (1,∞) whenever r ≥ r(x), so r(x) gives a lower bound on the possible values of r.
Thus it is sufficient to find a value r∗ such that r(x) ≥ r∗ for all x ∈ (0, 1) and r(x) ≤ r∗

for all x ∈ (1,∞).
Rewriting the equation F (x|r(x)) = 0, we have

[
1−

n−1∏
k=1

(n− k)x

[1 + (n− k)x]

]
=
n− 1

n

(
1

x

) 1

r(x)
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log

[
1−

n−1∏
k=1

(n− k)x

[1 + (n− k)x]

]
= log

(
n− 1

n

)
− 1

r(x)
log(x)

1

r(x)
log(x) = log

(
n− 1

n

)
− log

[
1− (n− 1)!xn−1∏n−1

k=1 [1 + (n− k)x]

]
1

r(x)
log(x) = log

[
n− 1

n

∏n−1
k=1 [1 + (n− k)x]∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1

]

r(x) =
log(x)

log

[
n− 1

n

∏n−1
k=1 [1 + (n− k)x]∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1

]
.

Denote

g(x) =
n− 1

n

∏n−1
k=1 [1 + (n− k)x]∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1

so that

r(x) =
log(x)

log(g(x))
.

Note that g(x) > 0 for any x > 0. We will first show that limx↗1 r(x) = limx↘1 r(x) =

r∗(n) = (n − 1)/(Hn − 1). Note that for x = 1 both the denominator and the numerator
of r(x) equal zero. Hence we use l’Hôpital’s rule. Observe that

(log(g(x)))′ =
g′(x)

g(x)

=

(
∂

∂x

∏n−1
k=1 [1 + (n− k)x]

)(∏n−1
k=1 [1 + (n− k)x]− (n− 1)!xn−1

)
(∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1
)∏n−1

k=1 [1 + (n− k)x]

−

(∏n−1
k=1 [1 + (n− k)x]

) ∂

∂x

(∏n−1
k=1 [1 + (n− k)x]− (n− 1)!xn−1

)
(∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1
)∏n−1

k=1 [1 + (n− k)x]

=

(∏n−1
k=1 [1 + (n− k)x]

) ∂

∂x
((n− 1)!xn−1)(∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1
)∏n−1

k=1 [1 + (n− k)x]

−
((n− 1)!xn−1)

(
∂

∂x

∏n−1
k=1 [1 + (n− k)x]

)
(∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1
)∏n−1

k=1 [1 + (n− k)x]

=

(∏n−1
k=1 [1 + (n− k)x]

)
(n− 1) ((n− 1)!xn−2)(∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1
)∏n−1

k=1 [1 + (n− k)x]
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−
((n− 1)!xn−1)

(∑n−1
k=1(n− k)

∏
j 6=k [1 + (n− j)x]

)
(∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1
)∏n−1

k=1 [1 + (n− k)x]
.

We evaluate this at x = 1, that is,

(log(g(x)))′|x=1 =

(∏n−1
k=1 [1 + (n− k)]

)
(n− 1)(n− 1)!(∏n−1

k=1 [1 + (n− k)]− (n− 1)!
)∏n−1

k=1 [1 + (n− k)]

−
(n− 1)!

(∑n−1
k=1(n− k)

∏
j 6=k [1 + (n− j)]

)
(∏n−1

k=1 [1 + (n− k)]− (n− 1)!
)∏n−1

k=1 [1 + (n− k)]

=
n!(n− 1)(n− 1)!

(n!− (n− 1)!)n!

−
(n− 1)!

(∑n−1
k=1(n− k)

∏
j 6=k [1 + (n− j)]

)
(n!− (n− 1)!)n!

= 1−

(∑n−1
k=1(n− k)

∏
j 6=k [1 + (n− j)]

)
(n− 1)n!

= 1−
n!

(∑n−1
k=1

n− k
n− k + 1

)
(n− 1)n!

=

n− 1−
(∑n−1

k=1

n− k
n− k + 1

)
n− 1

=
1 +

∑n−1
k=1

n− k + 1

n− k + 1
−
∑n−1

k=1

n− k
n− k + 1

− 1

n− 1

=
1 +

∑n−1
k=1

1

n− k + 1
− 1

n− 1

=
Hn − 1

n− 1
.

Thus we have

lim
x↗1

r(x) = lim
x↘1

r(x) =
1/x

(log(g(x)))′

∣∣∣∣
x=1

=
n− 1

Hn − 1
.

To complete the proof of Proposition 1 , it is now sufficient to show that r(x) is weakly
monotonically decreasing on (0, 1) and on (1,∞). We will do this in the next step.

Step 3. To show monotonicity of r(x), we will apply a suitable version of the l’Hôpital
monotone rule. Proposition 1.1 in Pinelis (2002) (together with Corollary 1.2 and Remark
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1.3) implies that r(x) = log(x)/ log(g(x)) is weakly decreasing on (0, 1) and (1,∞) if

(log(x))′

(log(g(x)))′
=

g(x)

xg′(x)

is weakly decreasing.18 We will thus show that(
g(x)

xg′(x)

)′
=

[g′(x)x− g(x)]g′(x)− xg(x)g′′(x)

(xg′(x))2
≤ 0.

For this, it is sufficient to show the following three conditions:

(a) g′(x) > 0,

(b) g′′(x) ≥ 0,

(c) g′(x)x− g(x) ≤ 0.

We will verify these conditions in the following three lemmas. To do this, consider the
function g. We can write

n−1∏
k=1

[1 + (n− k)x] = (n− 1)!xn−1 + an−2x
n−2 + an−3x

n−3 + · · ·+ a1x+ 1

= (n− 1)!xn−1 + γ(x),

where a1, . . . , an−2 are strictly positive coefficients (that depend on n), so that γ is a
polynomial of degree n− 2 which is strictly positive for all x > 0.19 We can then rewrite

g(x) =
n− 1

n

(n− 1)!xn−1 + γ(x)

γ(x)
.

Lemma 2 Condition g′(x) > 0 is satisfied.

Proof. Observe that

g′(x) =
n− 1

n

(n− 1)(n− 1)!xn−2γ(x)− (n− 1)!xn−1γ′(x)

γ(x)2

=
n− 1

n

(n− 1)!xn−2[(n− 1)γ(x)− xγ′(x)]

γ(x)2
,

18Proposition 1.1 is applicable because log(x) and log(g(x)) are differentiable on the respective intervals
and limx→1 log(x) = limx→1 log(g(x)) = 0 holds. The remaining prerequisite (log(g(x)))′ = g′(x)/g(x) > 0
also holds, because g(x) > 0 and g′(x) > 0 according to Lemma 2 below.

19To avoid confusion, the formula should be read as γ(x) = 1 for n = 2 and as γ(x) = a1x for n = 3.
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and, since

(n− 1)γ(x) = (n− 1)an−2x
n−2 + (n− 1)an−3x

n−3 + . . .+ (n− 1)a1x+ n− 1 and

xγ′(x) = (n− 2)an−2x
n−2 + (n− 3)an−3x

n−3 + . . .+ a1x,

it follows that (n− 1)γ(x)− xγ′(x) > 0, which implies that g′(x) > 0. �

Lemma 3 Condition g′′(x) ≥ 0 is satisfied.

Proof. Observe that

g′′(x) =
(n− 1)(n− 1)!

n

[
(n− 1)xn−2γ(x)− xn−1γ′(x)

γ(x)2

]′
,

so that g′′(x) ≥ 0 is equivalent to

0 ≤
[

(n− 1)xn−2γ(x)− xn−1γ′(x)

γ(x)2

]′
=

[(n− 2)(n− 1)xn−3γ(x) + (n− 1)xn−2γ′(x)− (n− 1)xn−2γ′(x)− xn−1γ′′(x)]γ(x)2

γ(x)4

− [(n− 1)xn−2γ(x)− xn−1γ′(x)]2γ(x)γ′(x)

γ(x)4

=
[(n− 2)(n− 1)xn−3γ(x)− xn−1γ′′(x)]γ(x)2

γ(x)4

− [(n− 1)xn−2γ(x)− xn−1γ′(x)]2γ(x)γ′(x)

γ(x)4

=
γ(x)xn−3

γ(x)4
[
(n− 2)(n− 1)γ(x)2 − x2γ′′(x)γ(x)− 2(n− 1)xγ(x)γ′(x) + 2x2γ′(x)2

]
.

The expression in the square bracket is a polynomial of degree (2n − 4). We will show
that all coefficients of this polynomial are positive, which implies that the polynomial, and
hence also g′′(x), is non-negative.

Using the auxiliary definitions a0 = 1 and aκ = 0 for κ < 0, the coefficient multiplying
x2n−j in this polynomial, for any 4 ≤ j ≤ 2n, is given by

j−2∑
k=2

(n− 2)(n− 1)an−kan−j+k −
j−2∑
k=2

(n− k)(n− k − 1)an−kan−j+k

−
j−2∑
k=2

2(n− 1)(n− k)an−kan−j+k +

j−2∑
k=2

2(n− k)(n− j + k)an−kan−j+k

=

j−2∑
k=2

(n2 − 3n+ 2)an−kan−j+k −
j−2∑
k=2

(n2 − 2nk − n+ k2 + k)an−kan−j+k
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−
j−2∑
k=2

2(n2 − nk − n+ k)an−kan−j+k +

j−2∑
k=2

2(n2 − nj + jk − k2)an−kan−j+k

=

j−2∑
k=2

(2 + 4nk − 3k2 − 3k − 2nj + 2jk)an−kan−j+k.

Let ϕ(n, j, k) = 2 + 4nk − 3k2 − 3k − 2nj + 2jk. We will show in several steps that∑j−2
k=2 ϕ(n, j, k)an−kan−j+k ≥ 0. For n = 2 and n = 3, this condition can easily be verified

directly. Hence we suppose that n > 3 from now on.
Observe that for any k there is k′ = j − k such that an−kan−j+k = an−k′an−j+k′ . Hence

we first consider the case where j is odd, so that we can write

j−2∑
k=2

ϕ(n, j, k)an−kan−j+k =

j−1
2∑

k=2

[ϕ(n, j, k) + ϕ(n, j, j − k)]an−kan−j+k.

Since ϕ(n, j, k) + ϕ(n, j, j − k) is an integer, we can think of this expression as a long
sum where each of the terms an−kan−j+k appears exactly |ϕ(n, j, k) + ϕ(n, j, j − k)| times,
added or subtracted depending on the sign of ϕ(n, j, k) + ϕ(n, j, j − k). Now note that∑(j−1)/2

k=2 [ϕ(n, j, k) + ϕ(n, j, j − k)] = 0 holds. This follows because we can write

j−1
2∑

k=2

[ϕ(n, j, k) + ϕ(n, j, j − k)]

=

j−2∑
k=2

ϕ(n, j, k)

=

j−2∑
k=2

(2− 2nj) + (4n− 3 + 2j)

j−2∑
k=2

k − 3

j−2∑
k=2

k2

= (j − 3)(2− 2nj) + (4n− 3 + 2j)
j(j − 3)

2
− 3

(j − 3)(2j2 − 3j + 4)

6

= (j − 3)

(
2− 2nj + 2nj − 3j

2
+ j2 − j2 +

3j

2
− 2

)
= 0.

Thus, for each instance where a term an−k′an−j+k′ is subtracted in the long sum, we can
find a term an−k′′an−j+k′′ which is added. We claim that the respective terms which are
added are weakly larger than the terms which are subtracted. This claim follows once we
show that both ϕ(n, j, k) +ϕ(n, j, j − k) and an−kan−j+k are weakly increasing in k within
the range of the sum. In that case, the terms which are subtracted are those for small k
and the terms which are added are those for large k, and the latter are weakly larger. The
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same argument in fact applies when j is even, so that we can write

j−2∑
k=2

ϕ(n, j, k)an−kan−j+k

=

j−2
2∑

k=2

[ϕ(n, j, k) + ϕ(n, j, j − k)]an−kan−j+k + ϕ(n, j, j/2)a2n−j/2.

Importantly, for the last term we have

ϕ(n, j, j/2) = 2− 2nj − 3

(
j

2

)2

+
j

2
(4n− 3 + 2j)

= 2− j23

4
− j 3

2
+ j2

= 2 + j

(
j

4
− 3

2

)
> 0,

so that the last and largest term a2n−j/2 = an−j/2an−j/2 is indeed also added.
We first show that ϕ(n, j, k) + ϕ(n, j, j − k) is weakly increasing in k in the relevant

range. We have

ϕ(n, j, k) + ϕ(n, j, j − k)

= (2− 2nj − 3k2 + k(4n− 3 + 2j)) + (2− 2nj − 3(j − k)2 + (j − k)(4n− 3 + 2j))

= 4− 4nj − 3(2k2 + j2 − 2jk) + j(4n− 3 + 2j).

Treating k as a real variable, we obtain

∂

∂k
[ϕ(n, j, k) + ϕ(n, j, j − k)] = −3(4k − 2j)

= −6(2k − j) > 0

for all k < j/2, so the claim follows.
We now show that an−kan−j+k is weakly increasing in k in the relevant range. Formally,

we show that an−kan−j+k ≤ an−k−1an−j+k+1 for any k < j/2. Observe that we can write

a1 =
n−1∑
k1=1

(n− k1),

a2 =
n−2∑
k2=1

n−1∑
k1=k2+1

(n− k2)(n− k1),
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...

aj =

n−j∑
kj=1

n−j+1∑
kj−1=kj+1

· · ·
n−1∑

k1=k2+1

(n− kj)(n− kj−1) . . . (n− k1).

Intuitively, each summand in the definition of aj is the product of j different elements
chosen from the set {(n − 1), (n − 2), . . . , 1}, and the nested summation goes over all the
different possibilities in which these j elements can be chosen. Using simplified notation
for the nested summation, we can thus write (where α, β, λ, and η take the role of the
indices of summation, like k in the expression above):

an−k =
∑

(n− αn−k)(n− αn−k−1) . . . (n− α1),

an−j+k =
∑

(n− βn−j+k)(n− βn−j+k−1) . . . (n− β1),

an−k−1 =
∑

(n− λn−k−1)(n− λn−k−2) . . . (n− λ1),

an−j+k+1 =
∑

(n− ηn−j+k+1)(n− ηn−j+k) . . . (n− η1).

Rewriting the inequality an−kan−j+k ≤ an−k−1an−j+k+1 using this notation, we obtain∑
(n− αn−k)(n− αn−k−1) . . . (n− α1)(n− βn−j+k)(n− βn−j+k−1) . . . (n− β1)

≤
∑

(n− λn−k−1)(n− λn−k−2) . . . (n− λ1)(n− ηn−j+k+1)(n− ηn−j+k) . . . (n− η1).

Observe that each summand of the LHS sum is the product of (n−k)+(n−j+k) = 2n−j
elements, all of them chosen from the set {(n− 1), (n− 2), . . . , 1}. The first n− k elements
are all different from each other, and the last n − j + k elements are all different from
each other. Thus, since n − k > n − j + k when k < j/2, in each summand at most
n− j+ k elements can appear twice. Furthermore, the LHS sum goes over all the different
combinations that satisfy this property. Similarly, each summand of the RHS sum is the
product of (n − k − 1) + (n − j + k + 1) = 2n − j elements, all of them chosen from the
same set {(n− 1), (n− 2), . . . , 1}. The first n− k − 1 elements are all different from each
other, and the last n− j + k+ 1 elements are all different from each other. Thus, (weakly)
more than n− j + k elements can appear twice in these summands.20 Since the RHS sum
goes over all the different combinations that satisfy this property, for each summand on the
LHS there exists an equal summand on the RHS. This shows that the inequality indeed
holds. �

Lemma 4 Condition g′(x)x− g(x) ≤ 0 is satisfied.
20The inequality n−k−1 ≥ n− j+k+1 can be rearranged to k ≤ j/2−1, which follows from k < j/2,

except if j is odd and k = (j − 1)/2. Thus, typically, up to n− j + k+1 elements can appear twice. If j is
odd and k = (j − 1)/2, up to n− k − 1 elements can appear twice, which is identical to n− j + k in that
case.
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Proof. We have

g′(x)x− g(x) =
n− 1

n

[
(n− 1)!xn−1[(n− 1)γ(x)− xγ′(x)]

γ(x)2
− (n− 1)!xn−1 + γ(x)

γ(x)

]
,

and therefore g′(x)x− g(x) ≤ 0 if and only if

0 ≥ (n− 1)!xn−1[(n− 1)γ(x)− xγ′(x)]− (n− 1)!xn−1γ(x)− γ(x)2

= (n− 1)!xn−1(n− 2)γ(x)− (n− 1)!xnγ′(x)− γ(x)2

= (n− 1)![(n− 2)an−2x
2n−3 + (n− 2)an−3x

2n−4 + · · ·+ (n− 2)a1x
n + (n− 2)xn−1

− (n− 2)an−2x
2n−3 − (n− 3)an−3x

2n−4 − · · · − a1xn]− γ(x)2

= (n− 1)![an−3x
2n−4 + 2an−4x

2n−5 + · · ·+ (n− 3)a1x
n + (n− 2)xn−1]− γ(x)2

= (n− 1)![an−3x
2n−4 + 2an−4x

2n−5 + · · ·+ (n− 3)a1x
n + (n− 2)xn−1]

−
n+1∑
j=4

j−2∑
k=2

an−kan−j+kx
2n−j − ρ,

where ρ ≥ 0 is some positive remainder of γ(x)2. To show g′(x)x− g(x) ≤ 0, it is therefore
sufficient to ignore ρ and show that the overall coefficient on x2n−j in the last expression is
not positive. That is, it is sufficient to show that, for all j ∈ {4, . . . , n+ 1},

(n− 1)!(j − 3)an−j+1 −
j−2∑
k=2

an−kan−j+k ≤ 0.

Observe that the sum has exactly (j − 3) elements. Then, it is sufficient to show that, for
all k ∈ {2, . . . , j − 2},

(n− 1)!an−j+1 ≤ an−kan−j+k. (3)

To demonstrate condition (3), we will first write the values of the coefficients aj in a
different way. Instead of summing over all possibilities in which j different elements from
the set {(n− 1), (n− 2), . . . , 1} can be chosen, we can sum over the n− j − 1 elements not
chosen, and divide the factorial (n− 1)! by the product of these elements. This yields

an−2 =
n−1∑
k1=1

(n− 1)!

n− k1
,

an−3 =
n−2∑
k2=1

n−1∑
k1=k2+1

(n− 1)!

(n− k2)(n− k1)
,

...
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an−j =

n−j+1∑
kj−1=1

n−j+2∑
kj−2=kj−1+1

· · ·
n−1∑

k1=k2+1

(n− 1)!

(n− kj−1)(n− kj−2) . . . (n− k1)
,

...

a1 =
2∑

kn−2=1

3∑
kn−3=kn−2+1

· · ·
n−1∑

k1=k2+1

(n− 1)!

(n− kn−2)(n− kn−3) . . . (n− k1)
.

Rewriting condition (3), we then have

n−j+2∑
λj−2=1

n−j+3∑
λj−3=λj−2+1

· · ·
n−1∑

λ1=λ2+1

((n− 1)!)2

(n− λj−2)(n− λj−3) . . . (n− λ1)

≤

n−k+1∑
αk−1=1

n−k+2∑
αk−2=αk−1+1

· · ·
n−1∑

α1=α2+1

(n− 1)!

(n− αk−1)(n− αk−2) . . . (n− α1)


×

n−j+k+1∑
βj−k−1=1

n−j+k+2∑
βj−k−2=βj−k−1+1

· · ·
n−1∑

β1=β2+1

(n− 1)!

(n− βj−k−1)(n− βj−k−2) . . . (n− β1)

 .
Observe that for each summand on the LHS, the denominator is a product of j−2 different
elements from the set {(n−1), (n−2), . . . , 1}. In fact, the LHS sum goes over all the different
possibilities in which these j−2 elements can be chosen. On the RHS, after multiplication,
the denominator of each summand is a product of (k−1)+(j−k−1) = j−2 elements from
the same set, where replication of some elements may be possible (but is not necessary).
Since the RHS sum goes over all these different possibilities, for each summand on the LHS
there exists an equal summand on the RHS. This shows that the inequality holds. � �

A.2 Comparative Statics of r∗(n)

Claim 1: r∗(n+ 1) > r∗(n). Consider any n ≥ 2. By definition of r∗(n) we have

r∗(n) =
n− 1

Hn − 1
=

(n− 1)(Hn+1 − 1)

(Hn − 1)(Hn+1 − 1)
,

r∗(n+ 1) =
n

Hn+1 − 1
=

n(Hn − 1)

(Hn+1 − 1)(Hn − 1)
.

Since Hn − 1 > 0 for any n ≥ 2, r∗(n+ 1) > r∗(n) holds if and only if

n(Hn − 1)− (n− 1)(Hn+1 − 1) > 0.

We have

n(Hn − 1)− (n− 1)(Hn+1 − 1) = n(Hn −Hn+1) +Hn+1 − 1
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= − n

n+ 1
+

n+1∑
k=2

1

k

=
n+1∑
k=2

(
1

k
− 1

n+ 1

)
> 0.

Claim 2: limn→∞ r
∗(n) =∞.

lim
n→∞

r∗(n) = lim
n→∞

n− 1

Hn − 1

= lim
n→∞

n− (n− 1)

(Hn+1 − 1)− (Hn − 1)

= lim
n→∞

1

1/(n+ 1)

=∞,

where the second equality follows from the Stolz-Cesàro Theorem.

A.3 Proof of Proposition 2

Fix an arbitrary observational structure (S, η) and suppose that a contest (y, τ) with prize
profile y = (x∗/(n− 1), . . . , x∗/(n− 1), 0) implements (e∗, ..., e∗). By contradiction, assume
that (y, τ) is not optimal, i.e., there exists a contest (ỹ, τ̃) that implements some strategy
profile σ and

ΠP (σ | (ỹ, τ̃)) = Eσ

[
n∑
i=1

ei

]
−

n∑
i=1

ỹi

> ΠP ((e∗, . . . , e∗) | (y, τ)) = ne∗ − x∗.

Construct a contest (ỹ, µ) for the setting with perfect observation by defining

µe(t) = Eηe [τ̃ s (t)]

for all t ∈ T (ỹ) and all e ∈ E. We then obtain

Πi(σ
′ | (ỹ, µ)) = Eσ′ [Eµe [u(ti)]]− Eσ′i [c(ei)]

= Eσ′ [Eηe [Eτ̃s [u(ti)]]]− Eσ′i [c(ei)]

= Πi(σ
′ | (ỹ, τ̃))
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for all profiles σ′ and all i ∈ I. Hence (ỹ, µ) implements σ with perfect observation because
(ỹ, τ̃) implements σ with imperfect observation. We obtain

ΠP (σ | (ỹ, µ)) = Eσ

[
n∑
i=1

ei

]
−

n∑
i=1

ỹi

= ΠP (σ | (ỹ, τ̃)) > ne∗ − x∗,

in contradiction to Lemma 1. �

A.4 Examples of Imperfect Performance Measurement

A.4.1 First Example

Consider the moral-hazard example with multiplicative log-normal noise. Suppose that
the condition σ2

1 + σ2
2 − 2σ12 ≤ 2/(πβ2) is satisfied. Consider a contest with prize profile

y∗ = (x∗, 0) in which x∗ is given to agent 1 if and only if r̃s̃1/s̃2 ≥ 1, where r̃ ∼ lnN [νr, σ
2
r ]

is a log-normal random variable with parameters

νr = ν2 − ν1 and σ2
r =

2

πβ2
− (σ2

1 + σ2
2 − 2σ12).

This allows for σ2
r = 0, by which we mean that r̃ is degenerate and takes the value eνr with

probability one. We now proceed in two steps. Step 1 derives an expression for agent i’s
expected payoff as a function of the effort profile e. Step 2 shows that ei = e∗ is a best
response when agent j 6= i chooses ej = e∗.

Step 1. Given an effort profile e, the probability that agent 1 wins the prize is

p(e) = Pr
[
r̃s̃1
s̃2
≥ 1

]
= Pr

[
r̃r̃1e1
r̃2e2

≥ 1

]
= Pr

[
r̃2
r̃r̃1
≤ e1
e2

]
.

Since the variables r̃1, r̃2 and r̃ are log-normally distributed, it follows that the compound
variable r̃2/(r̃r̃1) is also log-normal, with location parameter ν = ν2− ν1− νr = 0 and scale
parameter σ2 = σ2

1 + σ2
2 − σ12 + σ2

r = 2/(πβ2). The cdf of the log-normal distribution is
given by F (x) = Φ ((log x− ν)/σ), where Φ is the cdf of the standard normal distribution.
Thus we can write

p(e) = Φ

(
log(e1/e2)β

√
π

2

)
.

For the probability that agent 2 wins the prize we obtain

1− p(e) = 1− Φ

(
log(e1/e2)β

√
π

2

)
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= Φ

(
− log(e1/e2)β

√
π

2

)
= Φ

(
log(e2/e1)β

√
π

2

)
.

Hence the expected payoff of agent i = 1, 2 is

Πi(e) = Φ

(
log(ei/ej)β

√
π

2

)
u(x∗)− c(ei)

= Φ

(
log(ei/ej)β

√
π

2

)
2γe∗β − γeβi ,

where we have used that u(x∗) = 2c(e∗) by Lemma 1.
Step 2. Suppose ej = e∗ and consider the choice of agent i 6= j. We immediately obtain

Πi(e
∗, e∗) = 0. We will now show that Πi(ei, e

∗) ≤ 0 always holds, i.e.,

Φ

(
log(ei/e

∗)β

√
π

2

)
≤ 1

2

( ei
e∗

)β
for all ei ∈ R+. After the change of variables x = log(ei/e

∗)β
√
π/2 this becomes the

requirement that

Φ(x) ≤ 1

2
ex
√

2/π (4)

for all x ∈ R. Inequality (4) is satisfied for x = 0, where LHS and RHS both take a value of
1/2. Furthermore, the LHS function and the RHS function are tangent at x = 0, because
their derivatives are both equal to 1/

√
2π at this point. It then follows immediately that

inequality (4) is also satisfied for all x > 0, because the LHS is strictly concave in x in this
range, while the RHS is strictly convex. We now consider the remaining case where x < 0.
We use the fact that Φ(x) = erfc(−x/

√
2)/2, where

erfc(y) =
2√
π

∫ ∞
y

e−t
2

dt

is the complementary error function (see e.g. Chang, Cosman, and Milstein, 2011). After
the change of variables y = −x/

√
2 we thus need to verify

erfc(y) ≤ e−2y/
√
π (5)

for all y > 0. Inequality (5) is satisfied for y = 0, where LHS and RHS both take a value
of 1. Now observe that the derivative of the LHS with respect to y is given by −2e−y

2
/
√
π,

while the derivative of the RHS is −2e−2y/
√
π/
√
π. The condition that the former is weakly
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smaller than the latter can be rearranged to y ≤ 2/
√
π, which implies that (5) is satisfied for

0 < y ≤ 2/
√
π. For larger values of y, we can use a Chernoff bound for the complementary

error function. Theorem 1 in Chang et al. (2011) implies that

erfc(y) ≤ e−y
2

for all y ≥ 0. The inequality e−y2 ≤ e−2y/
√
π can be rearranged to y ≥ 2/

√
π. This implies

that (5) is satisfied also for y > 2/
√
π.

A.4.2 Second Example

Consider the example where only the effort difference s = e1−e2 can be observed. Consider
a contest with prize profile y∗ = (x∗, 0) in which x∗ is given to agent 1 if and only if s+r̃ ≥ 0,
where r̃ ∼ U [−c(e∗)/c′(e∗), c(e∗)/c′(e∗)] is a uniform random variable.

Observe that c(e∗)/c′(e∗) < e∗ holds due to strict convexity of c and c(0) = 0. We can
therefore write the probability that agent 1 wins the prize, holding the effort e2 = e∗ fixed,
as a piecewise function

p(e1) =


1 if e1 > e∗ + c(e∗)

c′(e∗)
,

1
2

+ 1
2
c′(e∗)
c(e∗)

(e1 − e∗) if e∗ − c(e∗)
c′(e∗)

≤ e1 ≤ e∗ + c(e∗)
c′(e∗)

,

0 if e1 < e∗ − c(e∗)
c′(e∗)

.

Then, the expected payoff of agent 1 is given by

Π1(e1) = p(e1)u(x∗)− c(e1) = p(e1)2c(e
∗)− c(e1).

It follows that Π1(e
∗) = 0. We now consider the three types of deviations from e∗.

Case 1: e1 < e∗ − c(e∗)/c′(e∗). It follows immediately that Π1(e1) ≤ 0 in this range,
which implies that these deviations are not profitable.

Case 2: e∗− c(e∗)/c′(e∗) ≤ e1 ≤ e∗+ c(e∗)/c′(e∗). Observe that Π′1(e1) = c′(e∗)− c′(e1)
in this range. Hence the first-order condition yields the unique solution e1 = e∗. Since
Π′′1(e1) = −c′′(e1) < 0, this is indeed the maximum over this range.

Case 3: e1 > e∗ + c(e∗)/c′(e∗). We have Π1(e1) < Π1(e
∗ + c(e∗)/c′(e∗)) for this range.

Hence, by the arguments for the previous case, these deviations are not profitable either.
We conclude that e1 = e∗ is a best response to e2 = e∗. The argument for agent 2 is

symmetric, which implies that the contest implements (e∗, e∗).
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A.5 Proof of Proposition 3

We will first derive three lemmas which hold under cost heterogeneity for any number n of
agents.

Lemma 5 For any contest (y, µ) that implements a strategy profile σ, there exists a contest
(y, µ̃) that implements the pure-strategy profile ē = (ē1, . . . , ēn) where ēi = Eσ [ei] ∀i ∈ I.

Proof. Suppose (y, µ) implements σ. Define a probability measure η ∈ ∆T (y) by η(t) =

Eσ [µe(t)] for all t ∈ T (y). Further, for each i ∈ I, define a probability measure η(i) ∈ ∆T (y)

by η(i)(t) = Eσ
[
µ(0,e−i)(t)

]
for all t ∈ T (y). Now construct (y, µ̃) as follows. For e = ē, let

µ̃e = η. For e = (ei, ē−i) with ei 6= ēi, let µ̃e = η(i). For all other e, let µ̃e = µe. We will
show that (y, µ̃) implements ē, because ēi is a best response to ē−i for each i ∈ I. Indeed,

Πi(ē | (y, µ̃)) = Eη[u(ti)]− ci(ēi)

= Eσ[Eµe [u(ti)]]− ci(Eσ[ei])

≥ Eσ[Eµe [u(ti)]]− Eσ[ci(ei)]

≥ Eσ[Eµ(0,e−i) [u(ti)]]

≥ Eσ[Eµ(0,e−i) [u(ti)]]− ci(e′i)

= Eη(i) [u(ti)]− ci(e′i)

= Πi((e
′
i, ē−i) | (y, µ̃)),

for all e′i 6= ēi, where the first inequality follows from convexity of ci, and the second
inequality follows because (y, µ) implements σ. �

Since the principal is indifferent between the mixed-strategy effort profile σ and its pure-
strategy expectation ē, holding fixed the prize profile y, we can without loss of generality
restrict attention to contests which implement a, possibly asymmetric, pure effort profile.21

For any such contest, we obtain the following result.

Lemma 6 If a contest (y, µ) implements a pure-strategy effort profile ē, it holds that

1

n− 1

n∑
i=1

ci(ēi) ≤ u

(
x

n− 1

)
,

where x =
∑n

k=1 yk.

Proof. Since (y, µ) implements ē, for each i ∈ I it must hold that

ci(ēi) ≤ Eµē [u(ti)]− Eµ(0,ē−i) [u(ti)] .

21Lemma 5 generalizes Lemma 4 in Letina et al. (2020) to arbitrary costs functions, but restricted to
the class of contests, while Letina et al. (2020) consider arbitrary incentive contracts.
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Summing over all i ∈ I, we obtain

n∑
i=1

ci(ēi) ≤
n∑
i=1

Eµē [u(ti)]−
n∑
i=1

Eµ(0,ē−i) [u(ti)]

=
n∑
i=1

Eµ(0,ē−1) [u(ti)]−
n∑
i=1

Eµ(0,ē−i) [u(ti)]

=
n∑
i=2

Eµ(0,ē−1) [u(ti)]−
n∑
i=2

Eµ(0,ē−i) [u(ti)]

≤
n∑
i=2

Eµ(0,ē−1) [u(ti)]

≤
n∑
i=2

u
(
Eµ(0,ē−1) [ti]

)
≤

n∑
i=2

u

(
x

n− 1

)
= (n− 1)u

(
x

n− 1

)
,

where the first equality holds because the sum of expected utilities from money is the same
for all effort profiles in a contest, the third inequality follows from concavity of u, and the
fourth inequality follows from concavity of u together with the fact that

∑n
i=2 Eµ(0,ē−1) [ti] ≤∑n

i=1 yi = x. �

Our next result shows that we can restrict attention to contests in which the smallest
prize is zero.

Lemma 7 For any contest (y, µ) that implements a pure-strategy effort profile ē, there
exists a contest (ỹ, µ̃) with ỹ = (ỹ1, . . . , ỹn−1, ỹn) = (y1, . . . , yn−1, 0) that also implements ē.

Proof. Suppose that (y, µ) implements ē. Denote by pki (e) the probability that agent i
obtains prize yk when the effort profile is e, as induced by µ. The fact that the contest
implements ē implies that

n∑
k=1

pki (ē)u(yk)− ci(ēi) ≥
n∑
k=1

pki (0, ē−i)u(yk) ≥ u(yn) ∀i ∈ I. (6)

Now consider another contest (ỹ, µ̃) with ỹ = (ỹ1, . . . , ỹn−1, ỹn) = (y1, . . . , yn−1, 0) and any
CSF µ̃ that induces p̃ki (ē) = pki (ē) for all i, k ∈ I, and p̃ni (ei, ē−i) = 1 whenever ei 6= ēi. By
construction, we have for all i ∈ I,

n∑
k=1

p̃ki (ē)u(ỹk)− ci(ēi) =
n−1∑
k=1

pki (ē)u(yk)− ci(ēi)
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≥ [1− pni (ē)]u(yn)

≥ 0

= u(ỹn),

where the first inequality follows from (6). Hence, (ỹ, µ̃) also implements ē. �

From now on we consider the special case of n = 2. It follows from Lemma 6 that
any contest (y, µ) with y = (x, 0) that implements a pure-strategy effort profile ē must
satisfy c1(ē1) + c2(ē2) ≤ u(x). Since restricting attention to such contests is without loss of
generality by Lemmas 5 and 7, the problem

max
x,e1,e2≥0

e1 + e2 − x s.t. c1(e1) + c2(e2) ≤ u(x)

describes an upper bound on the payoff that the principal can achieve. Obviously, any
solution (x∗, e∗1, e

∗
2) to this problem must satisfy the constraint with equality, and it must

be strictly positive. We complete the proof by showing that the contest described in the
proposition achieves that bound, by implementing the effort profile (e∗1, e

∗
2) using prize x∗.

Lemma 8 Suppose n = 2. The contest (y∗, µ∗) implements the effort profile (e∗1, e
∗
2).

Proof. Consider a tuple (x∗, e∗1, e
∗
2) as described in the proposition. Using a Tullock CSF

with individual-specific impact functions fi(ei) = ci(ei)
ri/ci(e

∗
i )
ri−1 for any ri > 1, it follows

that the probability that agent i wins the prize x∗ with effort profile e = (ei, ej) is

pi(ei, ej) =
ci(ei)

ri/ci(e
∗
i )
ri−1

ci(ei)ri/ci(e∗i )
ri−1 + cj(ej)rj/cj(e∗j)

rj−1

=
ci(ei)

ricj(e
∗
j)
rj−1

ci(ei)ricj(e∗j)
rj−1 + cj(ej)rjci(e∗i )

ri−1

= 1− cj(ej)
rjci(e

∗
i )
ri−1

ci(ei)ricj(e∗j)
rj−1 + cj(ej)rjci(e∗i )

ri−1
.

To simplify notation, let ci = ci(ei) and c∗i = ci(e
∗
i ). Then we can write agent i’s optimiza-

tion problem as maxci≥0 U(ci, c
∗
j), where Ui(ci, c∗j) = pi(ci, c

∗
j)u(x∗) − ci. We obtain after

some simplifications

∂Ui(ci, c
∗
j)

∂ci
= ri

[
(c∗i )

ri−1c∗jc
ri−1
i

(crii + (c∗i )
ri−1c∗j)

2

]
u(x∗)− 1 (7)

and

∂2Ui(ci, c
∗
j)

∂c2i
=

riu(x∗)(c∗i )
ri−1c∗j

(crii + (c∗i )
ri−1c∗j)

3

[
(ri − 1)cri−2i (crii + (c∗i )

ri−1c∗j)− 2ric
2(ri−1)
i

]
. (8)
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We immediately obtain Ui(0, c
∗
j) = 0 and ∂Ui(0, c

∗
j)/∂ci < 0, so that ci = 0 is a local

maximum. Using that c∗i + c∗j = u(x∗), it also follows immediately that Ui(c∗i , c∗j) = 0. Now
let ri = r∗i = 1 + c∗i /c

∗
j . From (7) we obtain

∂Ui(c
∗
i , c
∗
j)

∂ci
=

(
c∗i + c∗j
c∗j

)[
(c∗i )

2(r∗i−1)c∗j
(c∗i )

2(r∗i−1)(c∗i + c∗j)
2

]
(c∗i + c∗j)− 1 = 0, (9)

so that the first-order condition is satisfied at ci = c∗i . By (8), the sign of ∂2Ui/∂c2i is equal
to the sign of (ri − 1)cri−2i (crii + (c∗i )

ri−1c∗j) − 2ric
2(ri−1)
i , which for ri = r∗i = 1 + c∗i /c

∗
j can

be rearranged to

c
r∗i−2
i (c∗i )

r∗i − (r∗i + 1)c
2(r∗i−1)
i . (10)

Using (10) we thus obtain that ∂2Ui/∂c2i ≤ 0 if and only if

c
r∗i
i ≥

(
1

r∗i + 1

)
(c∗i )

r∗i .

It follows that ci = c∗i is also a local maximum. Furthermore, the sign of ∂2Ui/∂c2i changes
only once as ci increases from 0 to∞, and hence both ci = 0 and ci = c∗i are global maxima
of the function Ui(ci, c

∗
j). Therefore, c∗i is a best response of agent i to c∗j , which implies

that the contest implements (e∗1, e
∗
2). � �

A.6 Proof of Proposition 4

We first state some additional properties that hold for any given profile of effort cost
functions (c1, . . . , cn). By Lemmas 5 and 7, we can restrict attention to the implementation
of pure-strategy effort profiles by contests with yn = 0. This allows us to show that the
principal’s optimization problem has a solution.

Lemma 9 An optimal contest exists.

Proof. When optimizing over contests that implement a pure-strategy effort profile e
and have yn = 0, it is without loss of generality to assume that an agent who deviates
unilaterally from e obtains yn = 0 with probability one, which is the harshest possible
punishment. Thus constraint (IC-A) can be written as

n∑
k=1

pki u(yk)− ci(ei) ≥ 0 ∀i ∈ I, (11)

where pki denotes the probability that agent i obtains yk when the effort profile is e. The
principal therefore maximizes

∑n
i=1 ei −

∑n
i=1 yi by choosing e = (e1, . . . , en) ∈ Rn

+, y =
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(y1, . . . , yn) ∈ Rn
+ and p = (pki )i,k ∈ [0, 1]n

2 , subject to (11) and the constraints that yn = 0

and p is a well-defined probability system. The allocation probabilities after multilateral
deviations from e can be chosen arbitrarily. Using notation x =

∑n
k=1 yk, constraint (11)

implies ei ≤ c−1i (u(x)) for all i ∈ I. This implies
∑n

i=1 ei −
∑n

i=1 yi ≤
∑n

i=1 c
−1
i (u(x))− x.

Since u is weakly concave and each ci is strictly convex with limei→∞ c
′
i(ei) =∞, there exists

X > 0 such that
∑n

i=1 c
−1
i (u(x)) − x < 0 whenever x > X, so that a contest with x > X

cannot be optimal. It is therefore without loss to impose yi ∈ [0, X] and ei ∈ [0, c−1i (u(X))]

for all i ∈ I. Continuity of u and each ci then implies that the constraint set is compact.
Since the principal’s objective is continuous, a solution exists. �

The next result provides a lower bound on maximal profits. Fix any T > 0 and define

Π = max
x∈[0,T ]

[
c−11 (u(x))− x

]
,

which exists and satisfies Π > 0 due to our assumptions on c1 and u.

Lemma 10 There exists a contest (y, µ) that implements a pure-strategy effort profile e
such that ΠP (e | (y, µ)) = Π.

Proof. Let x∗ = arg maxx∈[0,T ]
[
c−11 (u(x))− x

]
and e∗1 = c−11 (u(x∗)). Consider a contest

with prize profile y = (x∗, 0, . . . , 0). If the effort profile e is such that e1 = e∗1, then agent 1

receives the prize x∗ while all other agents receive a zero prize. For any other effort profile,
agent 2 receives x∗ and all other agents receive a zero prize. It follows that this contest
implements (e∗1, 0, . . . , 0) and yields the payoff e∗1 − x∗ = Π to the principal. �

The next result states that it is without loss to focus on the implementation of effort
profiles that are not too heterogeneous relative to the cost functions. The proof proceeds
like the proof of Lemma 5 in Letina et al. (2020) and is therefore omitted.

Lemma 11 For any contest (y, µ) that implements a pure-strategy effort profile ē such that

1

n

n∑
i=1

ci(ēi) > ck

(
1

n

n∑
i=1

ēi

)
∀k ∈ I,

there exists a contest (y′, µ′) that implements the pure-strategy effort profile ê given by
ê1 = . . . = ên = 1

n

∑n
i=1 ēi, and yields the same expected payoff to the principal.

Now consider a sequence (cm1 , . . . , c
m
n )m∈N such that (cm1 , . . . , c

m
n )→ (c, . . . , c) uniformly.

Let (ēm, (ym, µm))m∈N be a corresponding sequence of optimal solutions, i.e., (ym, µm) im-
plements ēm = (ēm1 , . . . , ē

m
n ) and solves the principal’s problem when the cost functions are

(cm1 , . . . , c
m
n ). Given the above results, we can assume that ΠP (ēm | (ym, µm)) ≥ Πm > 0,
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where Πm = maxx∈[0,T ] [(c
m
1 )−1(u(x))− x]. We can also assume that

1

n

n∑
i=1

cmi (ēmi ) ≤ max
k∈I

cmk

(
1

n

n∑
i=1

ēmi

)
. (12)

We will write êm = (1/n)
∑n

i=1 ē
m
i for the average effort and xm =

∑n
i=1 y

m
i for the total

budget of the contest at step m in the sequence. We first show that the total budget must
be bounded.

Lemma 12 There exists B ∈ R such that xm ≤ B for all m.

Proof. Since (ym, µm) implements ēm, we must have

ΠP (ēm | (ym, µm)) ≤

[
n∑
i=1

(cmi )−1(u(xm))

]
− xm.

Using Theorem 2 in Barvinek, Daler, and Francu (1991), it can be shown that (cmi )−1

converges uniformly to c−1 for all i.22 Thus, for every ε > 0 there exists m′ ∈ N such that
for all m ≥ m′ and all i,

|(cmi )−1(u(xm))− c−1(u(xm))| < ε/n,

which implies
∑n

i=1 |(cmi )−1(u(xm))− c−1(u(xm))| < ε, and therefore∣∣∣∣∣
(

n∑
i=1

(cmi )−1(u(xm))

)
− xm −

(
nc−1(u(xm))− xm

)∣∣∣∣∣ < ε. (13)

Since u is weakly concave and c is strictly convex with limei→∞ c
′(ei) = ∞, there exists

B̃ > 0 such that nc−1(u(x)) − x < −ε for all x > B̃. Therefore, if for any m ≥ m′ it was
the case that xm > B̃, inequality (13) would imply that (

∑n
i=1(c

m
i )−1(u(xm))) − xm < 0,

which in turn implies ΠP (ēm | (ym, µm)) < 0. This is in contradiction to the assumption
that ΠP (ēm | (ym, µm)) ≥ Πm > 0. Hence we know that xm ≤ B̃ for all m ≥ m′. Now
simply let B = max{x1, . . . , xm′−1, B̃}. �

For the remainder of the proof, we fix any B ∈ R such that xm ≤ B for all m.

22The theorem is directly applicable and implies our claim after we extend the functions c and cmi to R
by defining cmi (e) = c(e) = e for all e < 0.
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Lemma 13 The sequence

κm = max
k∈I

cmk (ēmk )− 1

n

n∑
i=1

cmi (ēmi )

converges to zero as m→∞.

Proof. For every m ∈ N, let

δm = max
k∈I

cmk (êm)− 1

n

n∑
i=1

cmi (ēmi ) and ψm = max
i∈I

cmi (ēmi )−max
k∈I

cmk (êm),

and hence κm = δm + ψm. We will show that limm→∞ δ
m = limm→∞ ψ

m = 0, which
immediately implies that limm→∞ κ

m = 0. For the sequence δm, note that

δm =

[
max
k∈I

cmk (êm)− c(êm)

]
+

[
1

n

n∑
i=1

c(ēmi )− 1

n

n∑
i=1

cmi (ēmi )

]
+

[
c(êm)− 1

n

n∑
i=1

c(ēmi )

]
.

By uniform convergence of cmi to c, ∀i ∈ I, we have

lim
m→∞

(cmi (êm)− c(êm)) = 0 and lim
m→∞

(cmi (ēmi )− c(ēmi )) = 0 ∀i ∈ I, (14)

and thus

lim
m→∞

max
k∈I

(cmk (êm)− c(êm)) = 0 and lim
m→∞

(
1

n

n∑
i=1

cmi (ēmi )− 1

n

n∑
i=1

c(ēmi )

)
= 0.

In addition, by convexity of c we have c(êm) − 1
n

∑n
i=1 c(ē

m
i ) ≤ 0 for all m ∈ N, and by

condition (12) we have δm ≥ 0 for all m ∈ N. Hence, we must also have

lim
m→∞

(
c(êm)− 1

n

n∑
i=1

c(ēmi )

)
= 0, (15)

as otherwise for some large m we would have δm < 0, a contradiction. This concludes that
limm→∞ δ

m = 0. For the sequence ψm, we have

ψm = max
k∈I

(c(êm)− cmk (êm)) + max
i∈I

[cmi (ēmi )− c(ēmi ) + c(ēmi )− c(êm)] .

Hence, by (14), a sufficient condition for limm→∞ ψ
m = 0 is

lim
m→∞

(c(ēmi )− c(êm)) = 0 ∀i ∈ I. (16)

To establish (16), we first claim that there exists ẽ > 0 such that ēmi ∈ [0, ẽ] for all i ∈ I
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and all m ∈ N. The fact that (ym, µm) implements ēm implies cmi (ēmi ) ≤ u(B) for all i ∈ I.
Now fix any ũ > u(B). By uniform convergence of each cmi to c it follows that there exists
m′ ∈ N such that for all m ≥ m′,

|cmi (ēmi )− c(ēmi )| ≤ ũ− u(B) ∀i ∈ I,

which then implies c(ēmi ) ≤ ũ and therefore ēmi ≤ c−1(ũ). Now just define ẽ as the maximum
among c−1(ũ) and the finite number of values ēmi for all i ∈ I and m < m′. We next claim
that limm→∞(ēmi − êm) = 0 holds for all i ∈ I. By contradiction, assume there exists
i ∈ I and ε > 0 such that for all m′ ∈ N there exists m ≥ m′ so that |ēmi − êm| ≥ ε.
Define Ei = {(e1, . . . , en) ∈ [0, ẽ]n | |ei − 1

n

∑n
j=1 ej| ≥ ε}. The set Ei is compact and the

function χ(e) = 1
n

∑n
j=1 c(ej) − c

(
1
n

∑n
j=1 ej

)
is continuous on Ei, with χ(e) > 0 due to

strict convexity of c and ε > 0. Hence ε̃ = mine∈Ei
χ(e) exists and satisfies ε̃ > 0. We

have thus shown that there exists ε̃ > 0 such that for all m′ ∈ N there exists m ≥ m′ so
that χ(ēm) = −(c(êm) − 1

n

∑n
i=1 c(ē

m
i )) ≥ ε̃, contradicting (15). Finally, (16) now follows

immediately because ēmi ∈ [0, ẽ] and êm ∈ [0, ẽ] and c is continuous on [0, ẽ]. �

Next we show that the sum of effort costs is bounded away from zero for large m.

Lemma 14 There exist m′ ∈ N and c > 0 such that
∑n

i=1 c
m
i (ēmi ) ≥ c for all m ≥ m′.

Proof. Let Πm = maxx∈[0,T ] Π
m
1 (x) with Πm

1 (x) = (cm1 )−1(u(x)) − x be the lower profit
bound for the cost functions (cm1 , . . . , c

m
n ) as defined earlier. Hence ΠP (ēm | (ym, µm)) ≥ Πm

holds for all m ∈ N. Similarly, let Π∞ = maxx∈[0,T ] Π1(x) with Π1(x) = c−1(u(x)) − x be
the bound when the cost functions are (c, . . . , c). We first claim that limm→∞Πm = Π∞.
The claim follows immediately once we show that Πm

1 converges uniformly to Π1 on [0, T ].
Again using Theorem 2 in Barvinek et al. (1991), it can be shown that (cm1 )−1 converges
uniformly to c−1 on [0, u(T )]. Thus for every ε > 0 there exists m′′ ∈ N such that for all
m ≥ m′′,

|Πm
1 (x)− Π1(x)| = |(cm1 )−1(u(x))− c−1(u(x))| < ε

for all x ∈ [0, T ], which establishes uniform convergence. Now fix any ε with 0 < ε < Π∞

and define Π̃ = Π∞ − ε > 0. Hence there exists m′′′ ∈ N such that for all m ≥ m′′′,

n∑
i=1

ēmi ≥ ΠP (ēm | (ym, µm)) ≥ Πm ≥ Π̃ > 0.

Define

cm = min
e∈E

n∑
i=1

cmi (ei) s.t.
n∑
i=1

ei = Π̃.
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We then obtain that
∑n

i=1 c
m
i (ēmi ) ≥ cm for all m ≥ m′′′. Similarly, define

c∞ = min
e∈E

n∑
i=1

c(ei) s.t.
n∑
i=1

ei = Π̃,

noting that c∞ > 0. It again follows from uniform convergence of cmi to c for each i ∈ I
that limm→∞ c

m = c∞. Fix any ε′ such that 0 < ε′ < c∞ and define c = c∞ − ε′ > 0. It
follows that there exists m′ ∈ N such that for all m ≥ m′,

n∑
i=1

cmi (ēmi ) ≥ cm ≥ c,

which completes the proof. �

We can now combine Lemmas 13 and 14 to obtain the following result.

Lemma 15 There exists m ∈ N such that for all m ≥ m,

max
k∈I

cmk (ēmk ) ≤ 1

n− 1

n∑
i=1

cmi (ēmi ).

Proof. By Lemma 14, there exist m′ ∈ N and c > 0 such that
∑n

i=1 c
m
i (ēmi ) ≥ c for all

m ≥ m′. In addition, from the limiting statement about κm in Lemma 13 we can conclude
that there exists m′′ ∈ N such that for all m ≥ m′′,

max
k∈I

cmk (ēmk )− 1

n

n∑
i=1

cmi (ēmi ) ≤ c

n(n− 1)
.

Thus for all m ≥ m = max{m′,m′′} we obtain

max
k∈I

cmk (ēmk )− 1

n− 1

n∑
i=1

cmi (ēmi ) = max
k∈I

cmk (ēmk )− 1

n

n∑
i=1

cmi (ēmi )− 1

n(n− 1)

n∑
i=1

cmi (ēmi )

≤ c

n(n− 1)
− 1

n(n− 1)

n∑
i=1

cmi (ēmi )

≤ 0. �

Now consider any fixed m ≥ m, with m from Lemma 15. Combined with Lemma 6 we
can conclude that the contest (ym, µm) and the effort profile ēm satisfy

max
k∈I

cmk (ēmk ) ≤ u

(
xm

n− 1

)
. (17)

We now show that ēm can also be implemented in a contest with the same budget and
n− 1 identical prizes, given the cost functions (cm1 , . . . , c

m
n ).
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Lemma 16 Fix any m ≥ m. There exists a contest (y, µ) which implements ēm and has
the prize profile y = (xm/(n− 1), . . . , xm/(n− 1), 0).

Proof. We construct the allocation rule µ as follows. If e = ēm, the zero prize is given to
agent i with probability pi ≥ 0, while all other agents obtain one of the identical positive
prizes. Below we will determine the values pi such that

∑n
i=1 pi = 1. If e = (ei, ē

m
−i)

with ei 6= ēmi for some i ∈ I, the deviating agent i obtains the zero prize for sure and all
other agents obtain one of the identical positive prizes. For all other effort profiles e, the
allocation of the prizes can be chosen arbitrarily. First define p̃i implicitly by

(1− p̃i)u
(

xm

n− 1

)
= cmi (ēmi ).

Since the LHS of this equation describes the expected payoff of agent i who expects to obtain
the zero prize with probability p̃i, it follows that the contest (y, µ) indeed implements ēm

if pi ≤ p̃i holds for all i ∈ I. The fact that cmi (ēmi ) ≤ u(xm/(n − 1)) for all i ∈ I due to
(17) guarantees p̃i ≥ 0. Lemma 6 also implies that

n∑
i=1

cmi (ēmi ) =
n∑
i=1

(1− p̃i)u
(

xm

n− 1

)
=

(
n−

n∑
i=1

p̃i

)
u

(
xm

n− 1

)
≤ (n− 1)u

(
xm

n− 1

)
,

which guarantees that
∑n

i=1 p̃i ≥ 1. It is therefore possible to find equilibrium punishment
probabilities pi such that 0 ≤ pi ≤ p̃i ∀i ∈ I and

∑n
i=1 pi = 1. �

In sum, whenever m ≥ m, we can replace the optimal contest (ym, µm) by a contest
with n− 1 identical prizes that implements the same effort profile and generates the same
payoff for the principal. �
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