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Abstract

This study provides novel evidence on the relative effectiveness of computer-assisted lear-

ning (CAL) software and traditional teaching. Based on a randomized controlled trial in

Salvadoran primary schools, we evaluate three interventions that aim to improve learning

outcomes in mathematics: (i) teacher-led classes, (ii) CAL classes monitored by a techni-

cal supervisor, and (iii) CAL classes instructed by a teacher. As all three interventions

involve the same amount of additional mathematics lessons, we can directly compare the

productivity of the three teaching methods. CAL lessons lead to larger improvements in

students’ mathematics skills than traditional teacher-centered classes. In addition, tea-

chers add little to the effectiveness of learning software. Overall, our results highlight the

value of CAL approaches in an environment with poorly qualified teachers.

JEL classification: C93, I21, J24, O15.

Keywords: computer-assisted learning, productivity in education, primary education, teacher

content knowledge.
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1 Introduction

While net primary school enrollment rates in low-income countries climbed from 56% in 2000 to 81%

in 2019, the developing world still trails behind in terms of learning outcomes. Less than 15% of

primary school children in low-income countries pass minimum proficiency thresholds in reading and

math, compared to about 95% of pupils in high-income countries (World Bank, 2018, p.8). Public

schooling systems in developing countries face multiple challenges that curb their productivity.

These include a mismatch between national curricula and student abilities (Pritchett and Beatty,

2014), large and heterogeneous classes (Mbiti, 2016; Glewwe and Muralidharan, 2016), and low levels

of effort among poorly trained teachers (Chaudhury et al., 2006; Bold et al., 2017a). A promising

option to overcome these three barriers is to make greater use of computer-assisted learning (CAL).

CAL has several advantages over traditional teaching methods, as it allows for self-paced learning

that is tailored to the abilities of the student, provides instant feedback and is less sensitive to

the motivation and skills of teachers. Previous studies on the impact of technology-based teaching

methods on learning outcomes are encouraging. CAL interventions are usually found to improve

students’ test scores and seem to be particularly beneficial if the software is used to personalize

instructions.1

Yet, most studies evaluate CAL lessons that were offered as a supplement to regular classes,

meaning that beneficiaries experienced a considerable expansion of school time compared to the

untreated students in the control group. Thus, it is unclear whether learning gains are actually

attributable to the use of the software or if additional lessons conducted by a teacher might have

produced similar or even better results.2 In addition, there is little evidence on whether CAL

is a substitute for certified teachers or if it is a complement to them. Finally, previous research

has mostly evaluated specifically customized software which is available in a limited number of

languages. As a result, many policy-makers with an interest in implementing CAL cannot draw on

software that is readily available and has been successfully evaluated.

Based on a randomized controlled trial, this paper examines the relative effectiveness of primary

school math teachers and a freely available CAL software that features content in more than 30 lan-

guages. To disentangle the effects of additional teaching and the use of a learning software, the

experimental design features three different treatments: The first treatment comprises additional

math lessons instructed by a teacher (henceforth labeled as teacher). The second and third tre-

1Experimental studies on CAL interventions in low- and middle-income countries include Banerjee et al. (2007,
math in Indian primary schools), Carrillo, Onofa and Ponce (2011, language and math in Ecuadorian primary schools),
Yang et al. (2013, language and math in Chinese primary schools), Mo et al. (2015, math in Chinese primary schools),
Lai et al. (2015, language and math in Chinese primary schools) and Muralidharan, Singh and Ganimian (2019,
language and math with Indian secondary school pupils). They consistently report positive intent-to-treat estimates
on learning outcomes that range between 0.1σ and 0.4σ.

2To our knowledge, the only study that evaluates the effectiveness of CAL lessons as a substitute to regular
teaching was conducted by Linden (2008) in India. While attending additional CAL lessons raised math scores of
second and third graders, CAL had a negative impact when it substituted regular classes. As the author points
out, the study sample only covers NGO-run schools with well trained staff and innovative teaching methods. While
it is unclear whether these findings translate to the challenging contexts of public education systems in developing
countries, they still raise doubts about the inherent benefits of technology-based instruction.
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atments are additional math lessons based on CAL software; one group of classes is monitored by

technical supervisors (cal + supervisor), while the other group is taught by teachers (cal + tea-

cher). Teachers had to be officially qualified to teach math in primary schools, whereas supervisors

were laymen instructed to provide no content-related help to students. CAL lessons were taught

using an offline application of the “Khan Academy” platform, and the three treatment arms were

implemented by the Swiss-Salvadoran NGO Consciente.

We conducted the experiment between February and October 2018 with a sample of 198 primary

school classes spanning grades 3 to 6 in the rural district of Morazán, El Salvador. 29 out of 57

eligible schools were randomly selected for program participation. The 158 classes from these 29

schools were then randomly assigned to either Treatment 1 (i.e. teacher, 40 classes), Treatment 2

(i.e. cal + supervisor, 39 classes), Treatment 3 (i.e. cal + teacher, 39 classes) or a within-

school control group (40 classes). In non-program schools, a random sample of 40 classes was drawn

resulting in a “pure” control group that is not subject to potential treatment externalities.

Main Findings. Our analysis establishes four key findings. First, the additional CAL clas-

ses had a considerable impact on students’ math skills. Being assigned to additional CAL lessons

increased their math scores by 0.21σ (p-value=0.00) when overseen by a supervisor and by 0.24σ (p-

value=0.00) when instructed by teachers. These are intent-to-treat estimates reflecting an average

attendance rate of about 59%. Using the treatment assignment as instrumental variable for atten-

dance, we estimate that participating in all 46 additional CAL lessons (each lasting 90 minutes)

translates to average learning gains of 0.36σ (p-value=0.00) and 0.38σ (p-value=0.00), respectively.

This is equivalent to the average increase in math abilities over 1.2 school years.

Second, additional CAL lessons seem to have been more productive than the additional math

lessons instructed by a teacher. The intent-to-treat effect of being assigned to additional teacher-led

classes without CAL was 0.15σ (p-value=0.01). Hence, students assigned to cal + teacher out-

performed students assigned to teacher by 0.09σ (p-value=0.10); when analyzing percentage scores

instead of standardized IRT-scores the according p-value decreases to 0.06. The CAL treatment

overseen by technical supervisors (cal + supervisor) was also slightly more successful in raising

student learning than traditional teaching, even though this difference clearly falls short of statisti-

cal significance (p-value=0.24). The advantage of CAL lessons relative to teacher-centered lessons

was most pronounced in the domain of number sense and elementary arithmetic, and less so with

respect to geometry, measurement and data. Focusing on number sense and elementary arithmetic,

the difference between the CAL and non-CAL treatments increases to 0.11σ (p-value=0.06) for

CAL classes instructed by teachers and to 0.09σ (p-value=0.12) for the CAL lessons monitored by

supervisors.

Third, we present multifaceted evidence that points to a rather low productivity of teachers.

The difference in learning gains between within-program school control classes and those classes

receiving additional teacher-centered math lessons was close to zero and statistically insignificant

(p-value=0.78). Similarly, teachers did not provide much “value added” to the learning software: the

estimated impact for CAL lessons instructed by teachers is slightly higher than for CAL lessons con-
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ducted by supervisors but the difference is negligible and statistically insignificant (p-value=0.65).

Moreover, the productivity of teachers dropped as the complexity of concepts increased: The impact

of additional math lessons instructed by teachers decreased sharply with both the grade level and

the baseline achievement of their students, while the effect of the CAL-based lessons was largely

insensitive to students’ grades and initial ability levels. To gain a better understanding of the mecha-

nisms behind these findings, we conducted a comprehensive teacher math assessment covering the

primary school curriculum of El Salvador. This assessment documents very poor content knowledge

among the teachers hired by the NGO. Furthermore, regular math teachers in local primary schools

are even less proficient in their subject. Potential productivity gains resulting from an introduction

of CAL to regular classes may thus be larger than suggested by our estimates, since the NGO’s

contract teachers had better content knowledge and employed more modern pedagogical techniques

than regular math teachers.

Finally, we document substantial treatment externalities. At endline, students in within-program

school control classes outperformed pure control classes by 0.14σ (p-value=0.02), although they were

only indirectly exposed to the three treatments. In particular, we find evidence for spillovers from

the two CAL treatments. While we cannot comprehensively pin down the mechanisms at work,

suggestive evidence points toward social learning. At the same time, the data rejects hypothe-

ses operating via direct exposure of control students to the treatments (i.e. non-compliance) or

behavioral adjustments in response to the experimental design.

Contributions. This study makes several contributions to the literature on educational interven-

tions in developing countries. First, it improves our understanding of how CAL performs relative

to alternative teaching models. To our knowledge, this is the first well-identified study assessing

the value-added of CAL in a public school setting of a developing country. As opposed to Lin-

den (2008), who documents a negative value-added of CAL in NGO-administered schools in India,

our findings suggest that CAL has the potential to outperform traditional teacher-led instruction,

especially if teachers are poorly qualified. While CAL has been regularly praised in terms of its

individualized and interactive pedagogy (e.g. Banerjee et al., 2007; Muralidharan, Singh and Gani-

mian, 2019), our findings highlight that it may also be a promising approach to mitigate the adverse

effects of teachers’ inadequate content knowledge and pedagogical knowledge, that has been recently

documented for several developing countries (e.g. Bold et al., 2017a).

Second, we also present the first experimental test of the complementarities between teachers

and learning software. In our setting, teachers seem to play a marginal role in the success of

technology-based instruction, with CAL lessons being almost equally effective when provided by a

supervisor rather than a certified teacher. Thus, teachers and learning software are likely substitutes

and not complements. Only few experimental studies aspire to distinguish between complementary

and substitutable inputs entering the educational production function; notable exceptions are recent

papers by Mbiti et al. (2019) on the complementarity between school grants and teacher incentives

in Tanzanian primary schools, and by Attanasio et al. (2014) on the complementarity between

psychosocial stimulation programs and nutritional supplements in early childhood development.
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Third, we contribute to the broader literature on treatment externalities (e.g. Miguel and Kre-

mer, 2004; Baird et al., 2015). By including control classes from treatment schools as well as

spatially separated pure control classes from non-treatment schools into our experimental design,

this study provides a credible identification of potential externalities. Our findings underscore the

importance of appreciating the possibility of externalities in the design of experimental evaluation

studies, even when such effects appear unlikely at first sight. Moreover, the presence of positive

treatment externalities provide a strong rationale in favor of scaling the evaluated program.

Finally, this study adds to the accumulated evidence on the effectiveness of CAL by evaluating

a widely available off-the-shelf software. In contrast to software tested in previous evaluations,

Khan Academy is freely available and features extensive math contents in more than 30 languages.3

Since the employed software is arguably one of the most important features of a CAL intervention,

our findings bear direct policy relevance for educational decision-makers around the globe that are

looking for a readily available learning software suitable in non-English speaking countries.4

2 Context and Intervention

El Salvador is a lower middle-income country in Central America. The country’s net primary

enrollment rates are estimated at 80%, which is 7 percentage points below the average of lower

middle-income countries. While most children get to attend primary school, access becomes more

selective at later stages of an educational career with secondary and tertiary enrollment standing

at 67% and 28%, respectively.5

The department of Morazán is a poor and rural region in the northeast of the country with

roughly 200,000 inhabitants. An average person in Morazán lives on 3.80 USD per day and, ac-

cording to national definitions, almost 50% of the households face multifaceted poverty. With an

illiteracy rate of more than 20%, Morazán ranks second-last among all Salvadorian departments in

terms of educational attainment (Digestyc, 2018).

Our math assessments with 3,528 third to sixth graders conducted in February 2018 further

reveal that primary school children barely grasp the most elementary concepts in math. Figure 1a

shows that the share of correct answers to first and second grade questions increases from 27%

among third graders to 57% among sixth graders, who by then should have attended more than

1,000 math lessons. To put these numbers into context, we conducted the same test with 164 pupils

in Switzerland, who answered on average between 85% and 92% of the items correctly. Even the

worst performing Swiss third grader outperformed the median sixth grader in Morazán.

3The full version is available in 16 languages including Spanish, English, Chinese, French and Portuguese. A subset
of content is available in another about 20 languages including Russian, Hindi and Swahili. For further information
see the Khan Academy website https://www.khanacademy.org/ (last visit: 01.12.2019).

4Another off-the-shelf learning software that has been successfully evaluated is Mindspark (see Muralidharan,
Singh and Ganimian, 2019), which operates in English and Hindi for math and language training. Other studies
evaluate customized software that is not readily available, for instance Yang et al. (2013) or Lai et al. (2015).

5Enrollment statistics according to the World Development Indicators provided online by the World Bank, see
https://data.worldbank.org/indicator (last access: 26.10.2019)
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(a) Share of correct answers on 1st/2nd grade math
questions among Salvadoran and Swiss pupils.

(b) Assessed grade level in math among third to
sixth graders in Morazán early in their school year.

Figure 1: Math learning outcomes in Morazán (Panels a & b) and Switzerland (Panel a).
Note: Panel (b) illustrates the achieved proficiency in math (measured in grade levels) among third to sixth graders
in Morazán at the beginning of their school year. A student, each represented by a dot, needs to score at least 50%
correct answers on grade specific items in order to reach the next proficiency level. Since the test was administered in
the first weeks of their school year, a third grader answered first and second grade items and therefore may be assigned
to grade level 2, 1 or <1 depending on her performance. The size of the bubbles are proportional to the number of
students they represent. Further explanations are provided in Appendix A.1. Source: Baseline data, February 2018.

Several challenges that plague Morazán’s schooling system can help to explain its low producti-

vity. For instance, our monitoring data from school visits reveal high rates of teacher absenteeism so

that, on average, 25% of regular lessons are canceled. Low teacher motivation mixes with outdated

pedagogical techniques that basically follow the logic of “copy, learn by heart, and reproduce“. And

despite relatively small class sizes – the pupil-teacher ratio averages 28-to-1 at the national level

and 19-to-1 in our sample – heterogeneous student performance and an overambitious curriculum

make it difficult to teach at an appropriate level. As Figure 1b shows, third to sixth graders lag

considerably behind the official curriculum and this gap widens as children move up to higher grade

levels. Moreover, performance heterogeneity within classes is considerable. In the majority of clas-

ses, students’ math ability spans three grades or more (for further explanations see Appendix A.1).

In general, the public schooling system in El Salvador faces similar issues to those reported for other

low- and middle income countries.6

The Salvadoran Ministry of Education has recently put considerable effort into addressing lear-

ning deficiencies in public schools. While primary schooling has been typically confined to either

6The pupil-teacher ratio in middle-income countries averages 24-to-1, while it climbs to 40-to-1 in low income
countries (Unesco, 2019); in some contexts, such as rural India, it can even reach 90-to-1 (Mbiti, 2016). Besides the
large class size, students’ abilities and preparation levels are often very heterogeneous, which is also the case in our
data. For example, Muralidharan, Singh and Ganimian (2019) report for their sample of 116 Indian middle schools
that students’ ability in the median classroom spans four grades in both math and language, while we obtain 3 grade
levels for primary schools. Moreover, Pritchett and Beatty (2014) show that the pace of learning is very slow in
developing countries and that there is a mismatch between curriculum and student abilities. This is consistent with
what we observe in Figure 1b. Finally, low teacher motivation is a well-known issue: Chaudhury et al. (2006) find
that 19% of teachers in developing countries are absent during unannounced visits, while our monitoring data suggests
that 25% of classes in Morazán’s primary school are canceled.
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morning or afternoon lessons throughout El Salvador, the new SI-EITP policy7 aims to extend

school time over a full day and to complement traditional teaching with innovative learning appro-

aches (MINED, 2013). The government hopes that longer schooldays will not only boost learning

outcomes, but also shield children from the influence of criminal gangs. Within the scope of this

countrywide program, the Ministry of Education seeks to cooperate with NGOs in order to col-

lectively promote an open and flexible curriculum. While all schools received official instructions

to expand their school days, most of them have not put the policy into practice due to a lack of

resources to pay for further teaching staff.

Intervention. In this context, we evaluate the impact of an educational initiative on math abilities

of primary school children of grades 3 to 6. The program features three intervention arms, that

offer two additional lessons of 90 minutes per week and almost double the beneficiaries’ number

of math lessons during the program phase. The first intervention arm comprises additional math

lessons instructed by a teacher without using software. The second and third intervention arms are

additional math lessons based on computer-assisted learning software; one group of classes is taught

by teachers, while the other group is instructed by supervisors.

The CAL-lessons in the second and third intervention arm were based on an offline application

of the learning platform Khan Academy, which is known as K-Lite. This freely available software

provides a wide range of instructional videos and exercises for every difficulty level. While the

learning tool is not directly adaptive, it allows teachers to track the progress of each student and

assign appropriate contents based on prior performance. To tailor instruction to students’ learning

levels, a set of working plans covering different content units was prepared. Based on a placement

test, children received a plan that was viewed as accurate for their respective level and they could

then proceed to subsequent plans at their own pace. Since one computer was available per student,

each child could follow its individual learning path. Typically, students started with materials from

lower grades and then slowly progressed towards contents corresponding to their actual grades.

A similar methodology was used for the first intervention arm that features more traditional

math lessons instructed by a teacher. According to their initial math skills, children were arranged

in two different table groups where they worked on plans tailored to their ability. Teachers were

instructed to explain important concepts, correct students’ work at home and promote children (or

entire table groups) to subsequent plans when necessary. While this strategy only allows for a crude

approximation of teaching to each child’s ability level, it represents a degree of individualization

that can realistically be achieved without the help of technology.

To pay credit to the social component of learning, all treatments combined individualized le-

arning with educational games. For this purpose, a manual containing animation, concentration

and math games was developed. The manual compiles simple techniques to promote students’ col-

lective learning as well as their motivation to participate in class. Games were usually played at the

beginning or at the end of each session. While supervisors were instructed to use animation and

7SI-EITP stands for Sistema Integrado de Escuelas Inclusivas de Tiempo Pleno, which translates to Integrated
System of Inclusive Full Time Schools.
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concentration games, teachers were additionally introduced to a series of math games.

The contracted teachers were required to be officially qualified to instruct grade 3 to 6 children in

math. That is, they all possessed a university degree and had either completed a teacher education,

or another study program combined with a one-year pedagogical course. Teachers were selected

based on a brief math assessment and a job interview. They were employed on short-term contracts

and earned 300 USD per month for assuming four classes.8 For lessons that were canceled, teachers

received no remuneration. To optimize the comparability of treatments, all teachers were assigned

an equal number of CAL and non-CAL lessons. Before and during the intervention, teachers

were trained to operate the learning software and they reviewed mathematical concepts as well

as central pedagogical strategies including the use of educational games. Teaching was tightly

monitored by our partner NGO through monthly meetings and unannounced classroom visits during

the implementation phase.

The supervisors received only technical training and were paid substantially less than teachers,

that is 180 USD for taking care of four classes. They were required to have have minimal IT skills

and some experience in dealing with children, while teaching credentials and a specific educational

degree were not among the selection criteria. During the intervention, supervisors were instructed

to restrain from providing any content-specific help. Like teachers, supervisors were employed on

short-term contracts and were paid conditional on the number of classes they conducted.

3 Research Design

This study is built around an RCT to identify the causal impact of the three interventions arms. It

started in February 2018 with a baseline assessment and a survey covering all control and program

classes. The additional math classes began in April 2018 and were implemented until the end of the

school year in fall 2018.9 The endline tests took place in October 2018, six months after the start

of the intervention. Again, all program and control classes took part in the endline tests.

3.1 Sampling and Randomization

Our sampling and randomization scheme has three layers, as exemplified in Figure 2. Starting point

are all 302 primary schools in Morazán. In coordination with the NGO and the regional Ministry

of Education, we defined the following eligibility criteria for a preselection of primary schools:

• School size, eliminates 221 schools: A school was considered too small, if it had integrated

classes (across grades) or gaps in its grade structure (i.e. not at least one class per grade).

This guarantees that every eligible school has at least four different classes in grades 3 to 6,

and therefore can participate with at least (i) one cal+teacher, (ii) one cal+supervisor,

(iii) one teacher, and (iv) one control class;

8This corresponds to 8 × 90 minutes of teaching per week, or – including preparatory work – to a 60% job. A
smaller group of teachers only assumed two classes (i.e 4 × 90 minutes of teaching per week, or approx. a 30% job).

9The school year in El Salvador starts in mid-January and ends in November.
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Selection criteria: 
• Size 
• Security 
• Accessibility 
• Electricity 

 
T3:  

CAL + Teacher 
39 classes 

 

T1:  
Teacher 

40 classes 

Control: 
40 classes 

 

Preselection: 
57 Schools 
320 classes 

Excluded 
Schools: 
28 Schools 
162 classes 

Selected Schools: 
29 Schools 
158 classes 

Randomization Stage 2b 
• Cell-wise matching with control 

classes from program schools 
• Criteria: School Size, class size, 

grade level, computer access 

T2:  
CAL + Supervisor 

39 classes 

Test for 
spillovers Control: 

40 classes 
 

Population: 
Grades 3-6 

~300 Schools 

Randomization Stage 1 
Stratified by: 
• School size 
• Computer room 
• Population density 

Randomization Stage 2a 
• Rerandomization following Morgan & Rubin (2012) 
 
• Cutoff criterion: Between 9 and 11 classes per 

treatment and grade  

Figure 2: Sampling and randomization scheme.

• Security, eliminates 14 of the remaining 81 schools: Based on an assessment by the local

staff and the regional Ministry of Education, schools located in areas dominated by criminal

gangs were excluded due to security concerns;

• Accessibility, eliminates 7 of the remaining 67: Schools that are hardly accessible by car were

discarded. To inform this decision we relied on Google-Maps driving times and a validation

by local staff and the regional Ministry of Education;

• Electricity, eliminates 3 of the remaining 60 schools: Schools without a (close-by) power

supply did not qualify for the program.

After this pre-selection, 57 schools with a total of 320 eligible classes and about 6400 students

remained in the sample. In randomization stage 1, 29 of the 57 schools were randomly chosen to

participate in the program. To improve balance, the assignment was stratified by school size, local

population density and students’ access to a computer room.

In randomization stage 2a, we randomly assigned the 158 classes in the 29 selected program

schools to the control group or one of the three intervention arms. Following Morgan and Rubin

(2012) we re-run the randomization routine until the interventions were balanced across schools and

grades. This mechanism assigned 39 classes to cal+teacher, 39 classes to cal+supervisor,

40 classes to teacher, and 40 classes to the control group. We account for the re-randomization

procedure when comparing estimates within program schools by computing randomization inference

test statistics based on 2,000 random draws subject to the identical cut-off criterion. Our choice to

run 2,000 draws is guided by Young (2019, p. 572), who finds no appreciable change in rejection rates

beyond this threshold. To implement the randomization tests we rely on Stata’s ritest-package

developed by Hess (2017).

As prominently discussed in Miguel and Kremer (2004), interventions can have spill-over effects

on non-participating students from the same school or area. A unique feature of our design allows us
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to estimate the size of such treatment externalities. For this purpose, in randomization stage 2b, 40

additional control classes from non-treatment schools were included in the study. These additional

“pure” control classes are spatially separated from the intervention, and thus not affected by the

NGO’s work. The pure control classes were randomly selected from the 28 control schools by

matching them cell-wise to the distribution of control classes from program schools, accounting for

school size, grade level, class size and students’ access to computers.

This procedure yields five different groups of primary school classes, namely the 39 or 40 classes

assigned to each of the three treatment groups, 40 control classes from the 29 program schools, and

40 pure control classes from the 28 control schools.

3.2 Data

In the course of the evaluation, four types of data were gathered: (i) Math learning outcomes of

students were assessed before and after the intervention, (ii) socio-demographic statistics stem from

a survey that children answered prior to the baseline math assessment, (iii) administrative data

on schools was collected between October 2017 and February 2018, and (iv) monitoring data was

recorded during unannounced school visits throughout the program phase. Table 1 shows summary

statistics for the main variables collected before the start of the program as well as absence rates

at the endline and baseline assessment. In particular, it displays means and standard errors for the

different variables by treatment status, and tests whether the mean is equal across the five groups.

While the treatment and control groups do not differ significantly on any observable dimension

at baseline, Table 1 shows a sizeable increase in the absence rates between baseline and endline

assessment. Before both rounds of data collection we updated comprehensive class lists of registered

pupils. This revealed that large numbers of children either migrated out of Morazán or discontinued

their education. We achieved an attendance of about 95% registered pupils in both rounds, but

since classes shrank during the school year, the overall attrition at endline almost hits the 10%

mark. Importantly, Table 1 does not point toward systematic differences in attrition.10 Moreover,

compliance with the protocol was very good in the sense that only 38 out of 3197 students (i.e.

1.2%) within our estimation sample switched between different classes, grades or schools.

3.2.1 Math learning outcomes

The math assessments include 60 items covering the primary school curriculum of El Salvador.

The weighting of questions across the three main topics (a) number sense & elementary arithmetic

(∼65%), (b) geometry & measurement (∼30%), and (c) data & statistics (∼5%) was closely aligned

with the national curriculum. Moreover, we verified the appropriateness of each question through

a careful mapping to the national curriculum and a feedback loop involving the regional Ministry

of Education and local education experts. The math problems presented to the children mostly

required a written answer (as opposed to a multiple choice format) and were inspired by El Salvador’s

10We examine this more closely in Table A.1 in the Appendix, confirming that the treatment status is not signifi-
cantly correlated with presence at the endline test.
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Table 1: Balance at baseline and absence rates during assessments

(1) (2) (3) (4) (5) (6)
Panel A: T1: Math T2: CAL T3: CAL Within School Pure Control

Math Scores (N=3528) w. Teacher w. Supervisor w. Teacher Controls Classes p-value

%-share correct answers 30.33 33.47 31.97 32.60 30.80 0.45
(1.80) (1.90) (2.07) (1.32) (2.00)

Std. IRT math score 0.01 0.18 0.08 0.08 0.00 0.72
(0.14) (0.14) (0.16) (0.10) (0.15)

Panel B: Sociodemographics (N=3528)

Female student 0.50 0.52 0.55 0.51 0.49 0.43
(0.03) (0.04) (0.04) (0.03) (0.04)

Student age =0.09 =0.01 0.02 =0.03 =0.03 0.70
(0.08) (0.09) (0.09) (0.06) (0.09)

Household size 5.56 5.61 5.57 5.55 5.50 0.92
(0.13) (0.12) (0.12) (0.08) (0.12)

Household assets index 0.55 0.55 0.54 0.56 0.56 0.88
(0.02) (0.02) (0.02) (0.02) (0.02)

Panel C: Class room variables and absence rates during assessments (N=198)

Class size 18.40 19.33 18.69 18.13 18.32 0.92
(1.37) (1.35) (1.37) (0.96) (1.54)

Female teacher 0.80 0.77 0.77 0.73 0.55 0.14
(0.10) (0.10) (0.10) (0.07) (0.11)

Absence rate at baseline (%) 3.88 3.15 5.39 4.39 3.38 0.59
(1.33) (1.16) (1.74) (0.95) (1.15)

Absence rate at endline (%) 9.09 9.72 10.50 9.99 8.10 0.72
(2.09) (2.04) (2.18) (1.63) (2.00)

Panel D: School variables (N=49) Treatment Pure Control

Schools Schools p-value

# classes grade 3–6 5.48 6.25 0.32
(0.43) (0.76)

Computer lab 0.79 0.75 0.73
(0.08) (0.13)

Local population density 0.18 0.19 0.63
(0.01) (0.02)

Notes: This table presents the mean and standard error of the mean (in parenthesis) for several characteristics of
students (Panels A & B), class rooms (Panel C), and schools (Panel D), across treatment groups. The student sample
consists of all students tested by the research team during the Baseline survey in February 2018. Column 6 shows the
p-value from testing whether the mean is equal across all treatment groups. IRT-scores are standardized such that
µ = 0 and σ = 1 for the pure control group. The household asset index measures what share of the following assets
a household owns: Books, electricity, television, washmachine, computer, internet and car. Local population density
is the municipality’s population density measured in 1000 inhabitans per km2. Standard errors are clustered at the
class level in Panels A & B, and at the school level in Panel C.
* p<0.10, ** p<0.05, *** p<0.01.
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official textbooks as well as various international sources of student assessments; the Appendix

Section B explains the design of our assessments step by step.

In the Appendix, we further present detailed statistics on the distribution of student test scores

and the difficulty of the items. Top or bottom coding is neither an issue with respect to students

nor the selected items: Table B.2 shows that virtually all of the items (except one for fifth graders

in the endline assessment) were at least once answered correctly or incorrectly. Likewise, Table B.1

documents that only about 0.5 percent of test-takers scored zero points, while nobody achieved the

maximum score. In general, the assessments seem to nicely capture the different performance levels,

with the scores being roughly normally distributed around a median of 30 percent (3rd graders) to

40 percent (6th graders) correct answers (see Figure B.2).

A particularly nice feature of our math assessments is that they allow us to project all outcomes

on a common ability scale by drawing on techniques from psychology called Item Response The-

ory (IRT)(e.g. de Ayala, 2009). This implies that we can directly compare children across grades

and express their learning gains between base- and endline assessment in terms of how many addi-

tional school years would be required to reproduce the same effect. The conversion of our estimates

into program effects measured in terms of additional school years is explained in the Appendix B.

3.2.2 Socio-demographic survey

The socio-demographic survey was distributed 15 minutes before the baseline math assessment

began. It asked students about their age, gender, household composition, household assets and

parental education. Since literacy can be an issue, questions were illustrated with pictures and the

enumerators helped children to understand and answer them correctly.

3.2.3 Administrative data on schools

In the run-up to the study we collected various administrative data on Morazán’s school. While the

government gathers thematically broad data on the school environment through a paper-and-pencil

survey administered to school principals, the data turned out to be of rather poor quality. To obtain

utilizable information on the class structure, enumerators had to call each school during the first

weeks of January, because the planning data from official sources was too unreliable. Moreover, the

paper-and-pencil surveys left many missing values, so that we had to discard most items due to an

insufficient coverage. We therefore decided to use a minimal set of school level variables, which were

either comprehensively available, relatively cheap to supplement, or essential for the study. These

include the number of grade 3 to grade 6 classes (school size), information on the presence of gangs

(security at school), accessibility measures based on Google-Map estimates and validated by local

staff, power supply according to the administrative survey and validated via phone calls, student

access to computer labs according to the administrative survey and validated via phone calls, and

local population density from the National Bureau of Statistics.
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3.2.4 Monitoring data

From May to September 2018, NGO staff made on average five unannounced school visits (about

1000 visits in total) to collect monitoring data. They covered both regular lessons as well as

program lessons and collected data on teacher attendance, student attendance, computer usage,

and the implementation of the additional math lessons in the afternoon.

4 Results

4.1 The Overall Program Effects

We begin by estimating intent to treat (ITT) effects of being assigned to one of the three pro-

grams (i.e. βT1, βT2, βT3) or the within-program school control classes (i.e. βCX) using

Y EL
ics = α+ βT1T1cs + βT2T2cs + βT3T3cs + βCXCXcs + δY BL

ics +X
′
icsγ + V

′
csλ+ φk + ε1ics, (1)

where Y EL
ics is the endline math score of student i in class c and school s; Math scores are either

measured as percentage of correct answers or the IRT-score normalized to µ = 0 and σ = 1 based on

the baseline score of the pure control group. The binary treatment indicators are defined as follows:

T1 equals one for those assigned to extra math lessons conducted by a teacher, T2 equals one for

those assigned to extra CAL lessons conducted by a supervisor, T3 equals one for those assigned

to extra CAL lessons conducted by a teacher, and CX equals one for those assigned to within-

program school control classes that are potentially subject to externalities. Our control variables

include Y BL
ics that stands for the baseline math score, Xics representing a set of student-level control

variables (i.e. age standardized by average grade age, gender, household size and household assets),

and Vcs comprising a set of classroom-level variables (i.e. indicator for grade level, class size and

teacher gender). Finally, φk stands for k strata fixed effects and ε1ics represents the error term.

The upper panel of Table 2 displays the program effect relative to pure control classes (i.e. β̂T1,

β̂T2, β̂T3 and β̂CX) and the lower panel of Table 2 presents estimates for the pairwise differences

between the three treatment groups in program schools. The lower panel reports p-values obtained

from a randomization inference test statistic based on 2,000 random draws subject to the identical

cut-off criterion as used in our re-randomization scheme (see Section 3). In the upper panel, however,

p-values are based on traditional clustered standard errors, since the assignment to program schools

and pure control schools did not involve re-randomization.11

Students who were assigned to one of the treatments perform significantly better in the end-

11Moreover, we cannot properly apply randomization inference to the upper panel due to missing information on
ability levels of non-selected classes from pure control schools. As we show in Appendix A.3, randomization inference
in the upper panel is based on draws that include on average 37% missing data points. Consequently, p-values obtained
from these randomization tests increase by a factor of about 5 to 10 compared to p-values from traditional inference
with clustered standard errors. While this is clearly too conservative, our main conclusion are not altered when
we apply randomization inference to the upper panel (see Table A.2). The only notable difference is that program
externalities, captured by βCX , turn insignificant with p-values around 0.13. When we apply traditional inference to
the lower panel, as shown in Table A.3, changes in p-values are very small and do not show a clear pattern.
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Table 2: ITT-Estimates on the effects of the different interventions on children’s math scores

Percent Correct IRT-Scores

(1) (2) (5) (6)

T1: Lessons with Teacher 2.904∗∗∗ 2.643∗∗ 0.165∗∗∗ 0.152∗∗

(0.005) (0.012) (0.006) (0.013)
T2: CAL-Lessons with Supervisor 4.095∗∗∗ 3.869∗∗∗ 0.226∗∗∗ 0.214∗∗∗

(0.000) (0.000) (0.000) (0.000)
T3: CAL-Lessons with Teacher 4.554∗∗∗ 4.328∗∗∗ 0.250∗∗∗ 0.238∗∗∗

(0.000) (0.000) (0.000) (0.000)
CX: Control Classes for Externalities 2.595∗∗ 2.407∗∗ 0.147∗∗ 0.137∗∗

(0.011) (0.017) (0.013) (0.020)

βT4 := βT2 − βT1 = 0 1.191 1.226 0.061 0.063

p-value (βT4=0) (0.214) (0.194) (0.268) (0.244)

βT5 := βT3 − βT1 = 0 1.650∗ 1.686∗ 0.084 0.086

p-value (βT5=0) (0.069) (0.059) (0.117) (0.102)

βT6 := βT3 − βT2 = 0 0.459 0.460 0.024 0.023

p-value (βT6=0) (0.618) (0.615) (0.650) (0.653)

Adjusted R2 0.66 0.67 0.69 0.70
Observations 3197 3197 3197 3197
Individual & Classroom Controls No Yes No Yes
Baseline Score Yes Yes Yes Yes
Stratum & Grade FE Yes Yes Yes Yes

Notes: In the upper panel (coef. βT1−βCX), p-values are based on traditional clustered standard errors. In the lower
panel (coef. βT4 − βT6), p-values are based on a two-sided randomization inference test statistic that the placebo
coefficients are larger than the actual; randomization inference is based on 2000 random draws.
* p<0.10, ** p<0.05, *** p<0.01.

line assessment than students assigned to the pure control classes. Compared to the pure control

students, participants assigned to extra classes with math teachers (i.e. T1) score 2.6 percentage

points or 0.15σ better, students assigned to CAL classes with supervisors (i.e. T2) score about

3.9 percentage points or 0.22σ better, and students assigned to CAL classes with a teacher (i.e. T3)

score 4.3 percentage points or 0.24σ better. Remarkably, students in control classes within program

schools (i.e. CX) also perform 2.4 percentage points or 0.14σ better than students in pure control

classes. As we discuss in section 5.1, our analysis points towards spillovers from CAL-lessons to

the within program school control classes, while we find no evidence for direct exposure of control

units (i.e. non-compliance) or behavioral changes at the level of the school administration or regular

teachers.

Finally, we test whether the observed gaps in the endline performance of students assigned to

one of the three treatments (defined as βT4, βT5, and βT6) are statistically different from zero.

While we find that the two CAL treatments outperform additional math classes, only the difference
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between additional math classes and CAL classes conducted by a teacher is statistically significant

at the 10%-level: students assigned to cal+teacher outperform students assigned to teacher

by 1.7 percentage points or 0.085σ with p-values ranging from 0.059 to 0.117.

On the one hand, this is novel evidence that CAL delivers measurable learning gains in a

Latin American context using off-the-shelf learning software. And the impact of additional CAL

lessons is considerable: Expressing the impact estimates in terms of school years suggests that

the effect of the CAL interventions is equivalent to the average student’s progress in 0.6 to 0.7

school years (see Appendix B). On the other hand, traditional math classes conducted by teachers

are relatively ineffective compared to additional math lessons with CAL-software: In comparison

to the within program school control classes, boosting the supply of conventional math lessons by

roughly 80% delivered no measurable impact. Importantly, the performance difference between CAL

classes taught by teachers and additional teacher-centered math classes is statistically (marginally)

significant. We interpret this as suggestive evidence that the learning gains reported in a series of

CAL-evaluations can – at least partially – be attributed to the learning software and not necessarily

to the increase in number of math lessons.

4.2 Heterogeneity Analysis

We now examine effect heterogeneity along several dimensions. We first decompose program effects

by subtopics, before we explore effect heterogeneity along baseline ability, grade level and class size.

4.2.1 Program Effects by Subtopic

In this subsection, we explore the impact of the three interventions on learning outcomes by topics.

In accordance with the official curriculum, 65% of the items cover number sense and arithmetic

(NSEA), 30% of the items cover geometry and measurement (GEOM), and 5% of the items cover

data, probability and statistics (DSP). In particular, we re-estimate Equation (1) but calculate

separate math scores based on (i) NSEA-questions and (ii) GEOM- as well as DSP-questions.

The ITT-effects on students’ NSEA skills are shown in Table 3. We find that both CAL treat-

ments had a more pronounced effect on the NSEA score than on the overall math ability. Students

who were assigned to CAL classes with supervisors score 4.6 percentage points or 0.24σ higher in

NSEA questions than students assigned to pure control classes; this is an increase of about 10% to

20% compared to the overall impact reported in Table 2. The NSEA math score of students assigned

to CAL classes with teachers is 4.9 percentage points or 0.26σ higher than the score of students

assigned to pure control classes; again this effect is 10% to 15% larger compared to estimates based

on all questions. Since the impact on the NSEA math score remains about the same for students

receiving additional math classes instructed by teachers, the gap between CAL and conventional

teaching widens.

When we compare the learning gains attributed to CAL with the gains attributed to the addi-

tional math classes without software the differences range between 1.7 and 2.1 percentage points or

0.092σ and 0.115σ. The corresponding p-values lie in between 0.046 and 0.055 for the CAL classes
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Table 3: ITT-Estimates on the effects of the interventions on children’s NSEA-scores

Percent Correct IRT-Scores

(1) (2) (5) (6)

T1: Lessons with Teacher 3.174∗∗∗ 2.849∗∗∗ 0.166∗∗∗ 0.146∗∗

(0.002) (0.006) (0.006) (0.013)
T2: CAL-Lessons with Supervisor 4.907∗∗∗ 4.581∗∗∗ 0.258∗∗∗ 0.238∗∗∗

(0.000) (0.000) (0.000) (0.000)
T3: CAL-Lessons with Teacher 5.225∗∗∗ 4.895∗∗∗ 0.279∗∗∗ 0.259∗∗∗

(0.000) (0.000) (0.000) (0.000)
CX: Control Classes for Externalities 2.711∗∗∗ 2.463∗∗ 0.145∗∗ 0.130∗∗

(0.008) (0.012) (0.013) (0.020)

βT4 := βT2 − βT1 = 0 1.733 1.732∗ 0.092 0.091

p-value (βT4=0) (0.103) (0.093) (0.129) (0.115)

βT5 := βT3 − βT1 = 0 2.051∗∗ 2.047∗∗ 0.113∗ 0.112∗

p-value (βT5=0) (0.046) (0.047) (0.051) (0.055)

βT6 := βT3 − βT2 = 0 0.318 0.315 0.021 0.021

p-value (β6=0) (0.750) (0.752) (0.706) (0.714)

Adjusted R2 0.62 0.63 0.65 0.65
Observations 3197 3197 3197 3197
Individual & Classroom Controls No Yes No Yes
Baseline Score Yes Yes Yes Yes
Stratum & Grade FE Yes Yes Yes Yes

Notes: In the upper panel (coef. βT1−βCX), p-values are based on traditional clustered standard errors. In the lower
panel (coef. βT4 − βT6), p-values are based on a two-sided randomization inference test statistic that the placebo
coefficients are larger than the actual; randomization inference is based on 2000 random draws.
* p<0.10, ** p<0.05, *** p<0.01.

with teachers and between 0.093 and 0.129 for CAL classes with supervisors. Hence, when focusing

on NSEA questions, the overall pattern remains qualitatively similar to the estimations including

all subject domains, but the gap between the two CAL treatments and additional math classes in

the traditional sense (i.e. without the use of software) becomes more pronounced.

Table 4 shows the results that are based on GEOM- and DSP-items. Focusing on these topics

mitigates the impact of both CAL treatments. The effects compared to pure control classes remain

significant but they decrease considerably in magnitude. The results show, for instance, that addi-

tional CAL lessons conducted by a teacher increase the NSEA-score by about 5 percentage points,

while the increase in the combined GEOM- and DSP-score is only 3.5 percentage points. Since this

drop is less pronounced for those classes receiving additional math lessons instructed by a teacher,

the within treatment school comparisons yield insignificant effects.

These results show that computer-assisted learning software can be a valuable substitute to

traditional teaching, but its impact seems to be sensitive to the concepts that are taught. While
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Table 4: ITT-Estimates on the effects of the interventions on children’s GEOM & DSP -scores

Percent Correct IRT-Scores

(1) (2) (5) (6)

T1: Lessons with Teacher 2.433∗ 2.132∗ 0.155∗∗ 0.140∗

(0.055) (0.093) (0.035) (0.057)
T2: CAL-Lessons with Supervisor 3.207∗∗∗ 3.014∗∗ 0.196∗∗∗ 0.187∗∗∗

(0.009) (0.014) (0.006) (0.009)
T3: CAL-Lessons with Teacher 3.646∗∗∗ 3.472∗∗∗ 0.201∗∗∗ 0.193∗∗

(0.006) (0.008) (0.008) (0.010)
CX: Control Classes for Externalities 2.773∗∗ 2.561∗∗ 0.159∗∗ 0.149∗∗

(0.032) (0.048) (0.036) (0.050)

βT4 := βT2 − βT1 = 0 0.775 0.882 0.041 0.047

p-value (βT4=0) (0.498) (0.432) (0.543) (0.464)

βT5 := βT3 − βT1 = 0 1.213 1.340 0.046 0.053

p-value (βT5=0) (0.279) (0.221) (0.481) (0.412)

βT6 := βT3 − βT2 = 0 0.438 0.458 0.005 0.006

p-value (β6=0) (0.692) (0.669) (0.934) (0.926)

Adjusted R2 0.46 0.47 0.49 0.50
Observations 3197 3197 3197 3197
Individual & Classroom Controls No Yes No Yes
Baseline Score Yes Yes Yes Yes
Stratum & Grade FE Yes Yes Yes Yes

Notes: In the upper panel (coef. βT1−βCX), p-values are based on traditional clustered standard errors. In the lower
panel (coef. βT4 − βT6), p-values are based on a two-sided randomization inference test statistic that the placebo
coefficients are larger than the actual; randomization inference is based on 2000 random draws.
* p<0.10, ** p<0.05, *** p<0.01.

the lower-bound effects net of any spillovers are consistently significant for cal + teacher and

just at the edge of the 0.1-threshold for cal + supervisor, the measured differences seem pri-

marily driven by the pronounced improvements in the domains of number sense and elementary

arithmetic. The intervention was less successful in shifting abilities to solve questions on geome-

try, measurement, data and statistics: the point estimates decrease by about 30 percent, and the

p-values clearly exceed the 0.1-threshold for statistical significance. This sub-analysis also confirms

the strikingly low productivity of certified teachers: Whether we compare the performance across

items on basic arithmetic or items on geometry and data analysis, classes receiving additional math

lessons conducted by teachers do not perform better than control classes subject to externalities.

4.2.2 Effect Heterogeneity by Baseline Ability, Grade Level and Class Size

We continue the heterogeneity analysis by discussing Figure 3, which plots kernel-weighted locally-

smoothed means of the endline test score at each percentile of the baseline test score by treatment
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(a) Spillover vs. pure control classes (b) teacher vs. pure control classes

(c) cal + supervisor vs. pure control classes (d) cal + teacher vs. pure control classes

Figure 3: Endline test scores by treatment status and baseline percentiles.
Note: The figures present kernel-weighted local mean smoothed plots relating endline test scores to percentiles in the
baseline achievement by treatment status alongside 95% confidence bands.

status. Figure 3a shows that endline tests scores in the control group for spillovers are slightly

higher than those in the pure control group at all percentiles of the baseline test score, but the

95% confidence bands mostly overlap. Comparing pure control classes to the teacher classes in

Figure 3b shows that the latter outperform the former at low percentiles of the baseline score,

while there is no difference at higher percentiles. Both CAL intervention groups, as illustrated in

Figures 3c and 3d, achieve considerably higher endline scores than pure control classes across all

percentiles in the baseline achievement, although the gap seems to narrow at higher percentiles in

the cal + teacher group.

In a next step, we examine the functional relation between treatment effect and baseline achie-

vement more closely. Similarly, we further investigate whether the reported effects vary by grade

level or class size. To do so, we estimate

Y EL
ics = α+ βT1T1cs + βT2T2cs + βT3T3cs + βCXCXcs

+θ1(T1cs × V arics) + θ2(T2cs × V arics)

+θ3(T3cs × V arics) + θCX(CXcs × V arics)

+δY BL
ics +X

′
icsγ + V

′
csλ+ φk + ε2ics

(2)
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where (Tcs × V arics) is the interaction of the treatment dummy with the variable of interest (i.e.

baseline math score, grade level and class size). Except for the four interaction terms, Equation (2)

is identical to our benchmark estimation equation, i.e. Equation (1).

In terms of baseline math ability, the regression analysis confirms our visual analysis of Figure 3.

Regarding the effect of additional math classes instructed by teachers, the effect size and baseline

achievement are indeed negatively correlated (see column 1 in Table 5). This suggests that teachers

were more effective in improving the performance of children with low math ability than those

children who performed well in the baseline assessment. The regression also yields negative signs

for the interaction between the baseline math score and T2 (i.e. cal + supervisor) and T3

(i.e. cal + teacher), but the p-values do not reach the 10%-threshold. Hence, the benefit of

attending CAL-based lessons was independent of initial ability levels, while the effectiveness of

teachers without software was particularly low among well-performing students.

Table 5: Effect heterogeneity along baseline ability, grade level and class size.

Treatment indicators interacted with: Baseline Math Score Grade Level Class Size (log)
Dependent variable: Std. IRT-Score (1) (2) (3)

T1: Lessons with Teacher × Var. =0.105∗∗∗ =0.140∗∗∗ =0.436∗∗∗

(0.004) (0.000) (0.005)
T2: CAL-Lessons with Supervisor × Var. =0.014 =0.051 =0.110

(0.739) (0.252) (0.433)
T3: CAL-Lessons with Teacher × Var. =0.038 =0.058 =0.270∗

(0.285) (0.184) (0.052)
CX: Classes exposed to Externalities × Var. =0.005 =0.022 =0.118

(0.910) (0.688) (0.483)

Adjusted R2 0.70 0.70 0.70
Observations 3197 3197 3197
Baseline Score Yes Yes Yes
Individual & Classroom Controls Yes Yes Yes
Stratum & Grade Level FE Yes Yes Yes

Notes: p-values are based on class-level clustered standard errors and are shown in parentheses.
* p<0.10, ** p<0.05, *** p<0.01.

A similar pattern emerges when we study effect heterogeneity by grade level of the participating

students (see column 2 in Table 5). The effects of the CAL treatments do not significantly vary with

the grade level of students, but we find that additional math lessons taught by a teacher are least

effective in higher grades. This corroborates the finding that without the help of learning software,

teachers in Morazán seem to be least effective when explaining more complex concepts.

Finally, we find that large class sizes reduce the effectiveness of teachers (see column 3 in Table

5), no matter whether they use CAL software or not. Interestingly, this pattern does not emerge

for CAL classes instructed by a supervisors. This seems plausible, since supervisors were directed

to refrain from explaining math contents but solely provided technical assistance. Comparing the

point estimates of the interaction terms of the two treatments conducted by teachers, we find that
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the effect of traditional classes (θ̂1=0.436, p-value=0.005) is more sensitive to class size than the

effect of CAL-lessons instructed by teachers (θ̂3=0.270, p-value=0.052). Overall, this confirms the

notion that computer-based learning can mitigate the problems related to large class sizes (e.g.

Banerjee and Duflo, 2011; Muralidharan, Singh and Ganimian, 2019).

4.3 Program Attendance and IV-Estimates

Our benchmark analysis focuses on ITT-estimates that do not account for the actual attendance rate

of students in the additional math lessons. In this section, we therefore present data on the overall

compliance, examine the correlation between individual attendance rates and individual endline

scores, and finally discuss instrumental variable estimates for the impact of the three interventions

assuming full attendance.

(a) T1: Additional math lessons with teachers (b) T2 & T3: Additional CAL-lessons

Figure 4: Attendance of students in additional math lessons.

Figure 4 plots the distribution in attendance rates across all eligible students. With an average

attendance rate of 59%, participation of students was a weak spot of the program. Attendance rates

slightly varied across the three treatments, although the differences are statistically insignificant:

Additional CAL classes instructed by teachers achieved the highest participation (60%), followed by

additional classes instructed by teachers (59%) and CAL classes conducted by a supervisor (57%).

The individual attendance rate of students is strongly correlated with their performance in the

endline math assessment, as one would expect considering that the programs successfully increased

math learning outcomes. Figure 5 plots the residual endline IRT-score (net of all control variables

including baseline scores) on the y-axis, and the attendance rates of the students on the x-axis.

We aggregated the individual data points into 15 bins in order to improve readability, and plot the

correlation by treatment type. Figure 5a covers those students that were assigned to additional

math classes taught by teachers, while Figure 5b illustrates the correlation between attendance and

residual endline scores for the two CAL interventions.12

12Regressing endline IRT scores on attendance rates (continuous between 0 and 1), baseline scores, individual and
classroom controls yields the following correlations between attendance and performance: γ̂T1=0.42 (t-value=4.6);
γ̂T2=0.53 (t-value=3.8); γ̂T3=0.58 (t-value=3.8). Including a quadratic term we get: γ̂1

T1=−0.67 (t-value=−2.3),
γ̂2
T1=1.04 (t-value=3.5); γ̂1

T2=0.55 (t-value=1.1), γ̂2
T2=−0.03 (t-value=−0.1); γ̂1

T3=−0.40 (t-value=−0.9), γ̂2
T3=0.96

(t-value=2.1).
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(a) T1: Additional math lessons with teachers (b) T2 & T3: Additional CAL-lessons

Figure 5: Residual endline test scores and attendance in additional math lessons.
Note: The figures present the partial correlation between individual attendance rates and residual endline test scores
after controlling for baseline scores, individual and classroom characteristics. To ease readability, we aggregated
individual data points into 15 bins.

We next appraise the question, how much children would have learned had they fully participated

in the additional math lessons they were offered. To do so, we estimate an IV-model, with the first-

stage estimation being specified as

AttT=t
ics = α+ π1T1cs + π2T2cs + π3T3cs + δY BL

ics +X
′
icsγ + V

′
csλ+ φk + ε3ics for t ∈ [1, 2, 3] (3)

where AttT=t
i is student’s i attendance rate in treatment t and takes values between 0 and 1.

All other variables are defined as in the benchmark estimation equation, i.e. Equation (1). In the

second stage, we replace the binary treatment indicators with the predicted attendance rates from

stage 1, i.e. Âtt
T=t

ics , and estimate

Y EL
ics = α+ β1Âtt

T=1

ics + β2Âtt
T=2

ics + β3Âtt
T=3

ics + δY BL
ics +X

′
icsγ + V

′
csλ+ φk + ε4ics. (4)

In order to interpret β̂1, β̂2, and β̂3 as the treatment effects of attending all 46 additional math

lessons, we have to impose two (restrictive) properties that go beyond the standard monotonicity

and independence assumptions (see Angrist and Pischke, 2008; Muralidharan, Singh and Ganimian,

2019). First, the treatment effect needs to be homogenous across students. Second, the functional

form between attendance and math score gains has to be linear.

Our data suggest, that these two additional assumptions may be violated and that the IV-

estimates are potentially downward biased. Effect homogeneity seems questionable, since the im-

pacts of the interventions are homogenous (both CAL treatments) or decreasing (teacher) in

initial ability (see section 4.2.2), even though attendance rates are positively correlated with ba-

seline scores. Attending an additional math lesson thus had a stronger effect on low ability than

high ability students. Hence, the IV-estimates might undervalue the true effect under full participa-

tion. Moreover, the functional form between attendance and ability gains appears to be (slightly)

convex rather than linear, suggesting that children experienced increasing returns to attending the
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Table 6: IV-Estimates: Program effects with full participation

Percent Correct Std. IRT-Scores

(1) (2) (3) (4)

T1: Lessons with Teacher 5.204∗∗∗ 4.721∗∗∗ 0.283∗∗∗ 0.255∗∗

(0.001) (0.005) (0.004) (0.010)
T2: CAL-lessons with Supervisor 7.113∗∗∗ 6.762∗∗∗ 0.377∗∗∗ 0.357∗∗∗

(0.000) (0.000) (0.000) (0.000)
T3: CAL-lessons with Teacher 7.686∗∗∗ 7.275∗∗∗ 0.404∗∗∗ 0.379∗∗∗

(0.000) (0.000) (0.000) (0.000)

Kleibergen-Paap F-statistic 225.85 204.47 225.48 203.96
Adjusted R2 0.65 0.66 0.68 0.69
Observations 2570 2570 2570 2570
Baseline Score Yes Yes Yes Yes
Individual & Classroom Controls No Yes No Yes
Stratum & Grade Level FE Yes Yes Yes Yes

Notes: p-values are based on class-level clustered standard errors and are shown in parentheses.
* p<0.10, ** p<0.05, *** p<0.01.

additional math lessons. Again this would lead to a downward bias in the reported IV-estimates.

Table 6 presents the IV-estimates, that can be interpreted as the (potentially downward biased)

treatment effects of attending all 46 additional math lessons. Attending the full CAL program

during the intervention period leads to an increase in the endline score of about 7 percentage points

or 0.36σ to 0.40σ, which is about equivalent to the average student’s progress in 1.2 school years.13

This is comparable in magnitude to effects of technology-aided instructions found in India, where

Muralidharan, Singh and Ganimian (2019) report average learning gains in math of 0.6 standard

deviations for a 90 days attendance at CAL learning centers.

5 Discussion

5.1 Treatment Externalities

Our research design allows us to quantify spillovers on non-treated classes in program schools.

As discussed in section 4.1, we find positive and significant externalities: Students assigned to

control classes in program schools scored about 0.14σ higher in the endline assessment than students

assigned to pure control classes. This effect is comparable in magnitude to the treatment effect

for additional math lessons instructed by teachers. While we do not have rigorous experimental

evidence to pin down the mechanisms with certainty, the data we collected from different sources

allows for a discussion of what may (or may not) explain these externalities. In the following we

13We refrain from presenting F-tests that formally test whether the difference between the three interventions are
statistically significant because our re-randomization scheme for the within school assignment of treatments would
require randomization inference, which we cannot implement in the IV-setting.
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distinguish between three broad explanations: (i) direct exposure of control students, (ii) behavioral

adjustments to the experimental design, and (iii) social learning among peers.

Direct Exposure. We begin with examining the hypothesis that control students in program

schools may have been directly exposed to one of the treatments, either by (illicitly) participating

in the additional math lessons, by targeted migration and class changes, or by using CAL-software

in regular lessons or at home.

To prevent direct exposure of control students to the treatments, the implementing NGO in-

structed contract teachers and supervisors to confine access to children that were registered as

official participants. Our monitoring data shows that compliance with this directive was high, as

unauthorized participation was only recorded during 6 out of about 750 unannounced visits in

NGO-run math classes.

Likewise, we aimed to eliminate any incentives to change classes or schools and therefore barred

students that changed into treatment classes during the school year from attending the additional

math lessons. Only 38 (about 1%) students in our estimation sample changed classes or schools

during the program and excluding these students from the estimation models leaves the results

virtually unchanged.

Control students in program classes may also have been exposed to the learning software in

regular classes or at home. Again, our data suggests otherwise: The enumerators recorded computer

usage in only 5 out of about 1,000 regular class visits. Similarly, computer usage at home is

an unlikely candidate to account for treatment externalities: According to our socio-demographic

survey, only 576 students (about 18%) live in a household that owns a computer with internet access

and this asset class is not correlated with learning outcomes in the endline assessment.

Behavioral Adjustments to the Experimental Design. We now discuss the likelihood of

behavioral adjustments of teachers and students to the experimental design, namely unintended

incentives to improve performance at the school level or reactive behavior of the control group.

The presence of the NGO might have incentivized school staff to make a good impression, for

instance to be allowed to keep the IT equipment after the intervention or to be considered for

future collaborations. We first examine this reasoning by using class cancellation and attendance

rates as proxies for the effort by school staff/teachers, and then continue by testing whether a

more generous supply of computer hardware raised performance in control classes. Contrary to

expectations, cancellation rates appear to be slightly higher in program schools than in control

schools although the difference is not statistically significant (see columns 4 & 5 in Table 7).14

14The project could also have affected class cancellation rates directly, e.g. due to space limitations inducing the
conduction of the additional lessons at the expense of regular classes. Furthermore, differences in recorded cancellation
rates may (partly) be an artifact of the data collection process. To minimize transport expenses, we randomly selected
entire schools rather than classes to be visited on a given day. Thus, enumerators were faced with slightly different
settings in treatment and control schools: They had to record data from all classes on grades 3–6 in treatment schools,
and only about one to two classes during visits to control schools. One could hypothesize that, in control schools, data
collectors might have been inclined to wait patiently for the teacher to turn up (to be able to conduct the classroom
observations), while, in treatment schools, they may have moved on to the next class.
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Table 7: Externality channel (II): Motivation proxied with class attendance and cancellations.

Dependent variable: Student Attendance (%) Class Cancellations (%)

(1) (2) (3) (4) (5) (6)

Program Schools =0.311 =0.295 =0.978 6.884 6.534 8.215
(0.889) (0.893) (0.648) (0.237) (0.264) (0.140)

Adjusted R2 0.07 0.06 0.00 0.08 0.08 0.08
Observations 198 198 80 198 198 80
Control Classes Only No No Yes No No Yes
Classroom Controls No Yes Yes No Yes Yes
Grade Level FE Yes Yes Yes Yes Yes Yes
Stratum FE Yes Yes Yes Yes Yes Yes

Notes: p-values are based on school-level clustered standard errors and are shown in parentheses.
* p<0.10, ** p<0.05, *** p<0.01.

Similarly, student attendance rates do not point towards intensified efforts in program schools, as

the estimated differences in columns (1) and (2) of Table 7 yield p-values larger than 0.8. Finally, we

test whether a more generous furnishing of computer-labs by the NGO has pushed schools to better

performances that is not necessarily reflected in attendance and cancellation rates. Consistent with

the previous results, columns (3) and (4) in Table 8 show no relevant correlation between the number

of NGO computers installed in a school and the endline performance of students in control classes.

The difference between control classes within an outside treatment schools could also be driven

by a so-called John Henry Effect : a bias resulting from reactive behavior of the control group (e.g.

Glennerster and Takavarasha, 2013). In our setting, such a bias could result either from student

or from teacher behavior. As to the former, students in control classes might have worked harder

to make up for their disadvantage. Similarly, teachers could have redirected resources and effort

towards control classes to compensate them for their relative deprivation. For example, teachers

may have given more weight to math relative to other subjects when attending control classes.

If such behavior arises within treatment schools, but not in geographically (and thereby socially)

separated schools, it could account for the observed treatment externalities. This mechanism has

similar implications, but is distinguishable from those discussed in the previous paragraph. While

the last paragraph explores the possibility of a general boost in student or teacher motivation across

all groups in treatment schools, the John Henry Effect would only operate for the control group.

As shown in columns (3) and (6) of Table 7, limiting the analysis to the control classes does not

alter our conclusions: The difference in class cancellation rates between program school control

classes and pure control classes is small and remains aloof from any conventional level of statistical

significance. The same applies for students’ attendance rates.

Social Learning among Peers. The treatment externalities may also stem from social learning

and peer effects, as participating students could have shared their knowledge and motivation with
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Table 8: Externality channel (I): Proxies for social learning and in-kind incentives

Dependent variable: Std. IRT Score Treatment Intensity Installed NGO computers

CX-indicator interacted with: All Treatments CAL Per Student Total
(1) (2) (3) (4)

CX: Control Classes for Externalities 0.146∗∗ 0.135∗∗ 0.142∗∗ 0.146∗∗

(0.019) (0.023) (0.020) (0.037)
CX: Control Classes for Externalities × Var. 0.010 0.015∗∗∗ 0.031 0.001

(0.290) (0.001) (0.950) (0.865)

Adjusted R2 0.73 0.74 0.73 0.73
Observations 1279 1279 1279 1279
Individual & Classroom Controls No No No No
Baseline Score Yes Yes Yes Yes
Stratum & Grade FE Yes Yes Yes Yes

Notes: Treatment intensity defined as share of treated students in a school. p-values are based on school-level clustered
standard errors and are shown in parentheses. * p<0.10, ** p<0.05, *** p<0.01.

their peers from other classes. Results in columns (1) and (2) of Table 8 suggest that this may

have been the case: What explains part of the performance differential between within-program

school control classes and pure control classes is the share of children that participated in the CAL

treatments. One explanation is that the learning gains produced by CAL were (partly) passed on by

the participants to their peers from non-treated classes. Another explanation for this pattern would

be that hosting many CAL classes came about with a more generous furnishing of computer-labs by

the NGO, which might have incentivized school staff to make a good impression with the NGO so

that they could keep the equipment even after the NGO-run program expired. However, as discussed

above, columns (3) and (4) in Table 8 show no relevant correlation between the number of NGO

computers installed in a school and the endline performance of students. Hence, the interpretation

that CAL beneficiaries passed on their learning gains to their peers seems more plausible than

behavioral adjustments in prospect of being donated new equipment. This finding is consistent

with a broad literature of peer-effects that documents how the performance of each student affects

achievements of their class-mates (see Sacerdote, 2011).

Although we cannot comprehensively pin down the channels through which the observed exter-

nalities operate, social learning among peers is the mechanism that can be reconciled best with

the data at hand. In contrast, we are confident to rule out direct exposure of control units to the

evaluated treatments, as the monitoring data documents excellent compliance with the experimen-

tal protocol. Behavioral adjustments to the experimental design may unfold in many ways, which

makes it difficult to track them exhaustively. We tested several potential channels operating via

school teachers’ and students’ attendance (a proxy for motivation), but the data consistently rejects

this set of claims. Considering that social learning remains as the most plausible explanation for

the observed treatment externalities further strengthens the case in favor of the CAL interventions.
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5.2 Cost-Effectiveness

Since all three interventions were assessed within the same context and framework, we can directly

compare their cost-effectiveness. The bulk of expenditures comes from salaries to teachers and

supervisors (65% for teacher, 41% for cal + supervisor, and 51% for cal + teacher). The

two computer treatments additionally entail costs for acquiring the IT equipment, shipping it to El

Salvador and maintaining it. Since our partner NGO acquired most computers as in-kind donations,

the factual IT-related costs incurred by the NGO (about 18 USD per computer) provide a poor

guidance for educational policy-makers aiming to implement CAL interventions at scale. To make

the cost-effectiveness calculations more insightful for a generic setting, we assume costs of 200 USD

per work station and an average of five years of usage time.

Based on these assumptions for the costs of the computer hardware, the cost accounting of

our partner NGO, and the guidelines developed by Dhaliwal et al. (2014), we estimate the cost

per child to be 44 USD for teacher, 43 USD for cal + supervisor and 56 USD for cal +

teacher. Assuming a linear dose-response-relationship, teacher can thus be expected to yield a

0.35σ increase in test scores per 100 USD, while investing the same amount of money in CAL lessons

would produce 0.49σ and 0.43σ, respectively. This implies that even when the computers have to

be acquired at a considerable price, the two CAL interventions outperform additional teacher-led

classes in terms of cost-effectiveness. Moreover, hiring lower-paid supervisors rather than certified

teachers to conduct the CAL classes might be slightly more cost-effective, as supervisor were paid

only about 60% of a teacher’s wage. Note, however, that these conclusions have to be interpreted

with care: Not only is precision impaired by the statistical uncertainty of our impact estimates, but

relative cost-effectiveness is also dependent on different contextual factors such as the local wage

levels, the wage premium for certified teachers or the availability of affordable hardware.

5.3 The Role of Teacher Ability

Multifaceted evidence derived in our analysis points to a relatively low productivity of teachers.

First, the difference in learning gains between within-program school control classes and classes

receiving additional teacher-centered math lessons are close to zero and statistically insignificant

(p-values around 0.7). Similarly, teachers do not seem to add much to the effect of computer-assisted

learning lessons: The estimated impact for CAL lessons instructed by teachers is slightly higher

than for CAL lessons conducted by supervisors but statistically speaking they are not distinguis-

hable (again the p-values are in the 0.7 range). Second, the heterogeneity analysis shows that the

productivity of teachers declines as the complexity of concepts increases: The impact of the additio-

nal math lessons instructed by a teacher is decreasing in both the grade level as well as the baseline

achievement of their students. Third, both CAL interventions (at least marginally) outperform the

additional math lessons instructed by teachers: The point estimates of the CAL interventions are

consistently larger, and the impact of neither cal + teacher nor cal + supervisor decreases

with student baseline performance or grade level. Hence it appears that in our setting, learning soft-

ware is more productive in teaching basic math than certified teachers, especially as the complexity
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Figure 6: Math proficiency among regular teachers and teachers hired for additional math lessons.
Note: The graph shows the share of correct answers on questions covering the official math curriculum of grades 2 &
3, grade 4, grade 5, and grade 6. This data was collected after the endline assessment for students in late 2018 and
early 2019. The sample includes all program teachers as well as a representative sample of regular primary school
teachers teaching math in grades 3 to 6 in the department of Morazán. Source: Brunetti et al. (2020).

of the contents increases.

In order to analyze the root cause of the low productivity of teachers, we asked the instructors

hired by the NGO to participate in an 90 minutes math assessment covering the primary school

curriculum of grades 2 to grade 6. Moreover, we administered the same assessment to a represen-

tative sample of regular math teachers of grade 3 to grade 6 classes which allows us to learn how

the contract teachers compare to the regular teaching staff (see Brunetti et al., 2020, for details

on the assessment). Figure 6 illustrates the main insights from this assessment: primary school

math teachers in the department of Morazán insufficiently master the contents they are supposed

to teach. The contract teachers hired by the NGO answered on average only 75% of the second

and third grade questions correctly and this share declines to 54% for the sixth grade questions.

Hence, even for the simplest questions, the average contract teacher does not meet the minimum

proficiency of 80% correct answers as advocated in recent World Bank contributions (see Bold et al.,

2017b; World Bank, 2018). This direct evidence on the lack of content knowledge conforms with

our finding on the teachers’ low productivity in conveying math concepts, especially those concepts

pertaining to higher grades.15

These insights raise the question, whether the teachers hired for the intervention have a particu-

larly low proficiency in math – which could explain why they are not part of the publicly employed

15Since the teachers performed considerably worse than expected, we also validated the questions by administering
the identical test (translated to German) to 16 Swiss primary school teachers, who achieved a median score of 90%
(i.e. 45 correct answers out of 50 questions).
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teaching staff. Figure 6 suggests otherwise: Regular teachers performed considerably worse than

the contract teachers, as they achieved on average only 56% correct answers on second and third

grade questions and alarmingly low 30% on items pertaining to the sixth grade curriculum.16

In view of drawing general conclusion for the effectiveness of additional math lessons instructed

by regular teachers, the results reported in Figure 6 are particularly grim. The relatively low

impacts found for the additional math lessons instructed by contract teachers may be even too

optimistic when aiming for a scale up with regular teachers, who have on average an even lower

math proficiency than the (much younger) contract teachers hired by the implementing NGO. At the

same time, these results highlight the value of learning software that can compensate for the poor

content knowledge of teaching staff: Earlier contributions on the value of computer-assisted learning

emphasized its advantages in terms of mitigating issues of large class sizes and the challenges of

“teaching at the right level” (e.g. Banerjee and Duflo, 2011; Muralidharan, Singh and Ganimian,

2019). While our heterogeneity analysis corroborates this line of reasoning, we further show that

computer-assisted learning can help to remedy shortcomings related to low teacher ability. Since

teachers are considered to be the most pivotal input to the learning production function (e.g. World

Bank, 2018, p. 80), these findings also raise the question, how teacher quality can be improved in

an effective manner.

6 Conclusion

Computer-assisted learning (CAL) is widely perceived as a promising approach to address the low

quality of teaching in developing countries. While encouraging, previous research is inconclusive

regarding the value of technology-based instruction relative to traditional teaching and and has little

to say on the complementarities between teachers and learning software. The evidence presented

in this paper suggests that CAL can not only produce substantial learning gains, but may also

outperform traditional instruction. In our setting, this relative advantage seems to be driven by

a mismatch between teacher preparation and the complexity of the concepts they have to teach:

Under traditional teaching models, it seems questionable that children are able to master what

their teachers fail to understand, while CAL allows them to make progress beyond their teachers’

content knowledge. Overall, our findings point to an alarmingly low productivity of teachers. Not

only is the effect of additional teacher-led instruction comparatively low (and might be partly if

not completely attributable to treatment externalities), but poorly trained teachers also do little to

improve the productivity of CAL lessons. In light of the fact that they do not master a large share

of the contents they are required to teach, these results are hardly surprising.

Promoting the targeted use of computers may therefore be an attractive option for governments

and NGOs operating in settings with low teacher quality. When teachers are struggling with

16Note that the implementing NGO administered a very short math assessment in the hiring process in order to
eliminate the least qualified candidates. Moreover, the hired teachers participated in several workshop to prepare
them for the teaching assignment. Since the assessment reported in Figure 6 was conducted after the intervention
finished, it is likely that the NGO’s selection process and the additional training for the contract teachers partly
explains the pronounced differences in content knowledge between the regular teachers and the contract teachers.
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the concepts they have to teach, learning software can be an important remedy allowing them

to improve the quality of their teaching. Another approach would be to invest in the skills of

teachers, for instance by offering professional development programs: Teachers may not make much

of a difference when they do not master what their students are supposed to learn. However,

vast empirical evidence from developed countries suggests that they can matter a great deal when

they are well prepared and adequately qualified (Rockoff, 2004; Chetty, Friedman and Rockoff,

2014). Hence, gaining a better understanding of how teachers’ preparedness, and particularly their

content knowledge, can be improved seems to be crucial for researchers as well as policy makers.

Since hardly any rigorous evidence on this aspect is available (see Muralidharan, 2017; Bold et al.,

2017a), we teamed up with the same implementing partner to examine in an ongoing study, whether

computer-assisted learning software can help to effectively improve the content knowledge of teachers

and therewith their productivity in the classroom (see Brunetti et al., 2019).
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Measure Spillover Effects.” PIER Working Paper No. 15-021. URL: www.ssrn.com/ (last access:
10.03.2020).

Banerjee, Abhijit and Esther Duflo. 2011. Poor Economics. London: Penguin Books.

Banerjee, Abhijit, Shawn Cole, Esther Duflo and Leigh Linden. 2007. “Remedying Education:
Evidence from Two Randomized Experiments in India.” The Quarterly Journal of Economics
122(3):1235–1264.

Bold, Tessa, Deon Filmer, Gayle Martin, Ezequiel Molina, Brian Stacy, Christophe Rockmore, Jakob
Svensson and Waly Wane. 2017a. “Enrollment without Learning: Teacher Effort, Knowledge and
Skill in Primary Schools in Africa.” Journal of Economic Perspectives 31(4):185–204.

Bold, Tessa, Deon Filmer, Gayle Martin, Ezequiel Molina, Christophe Rockmore, Brian Stacy,
Jakob Svensson and Waly Wane. 2017b. “What Do Teachers Know and Do? Does It Matter?
Evidence from Primary Schools in Africa.” World Bank Policy Research Working Paper No. 7956.
URL: www.worldbank.org/ (last access: 10.03.2020).
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Steffen. 2019. “How Effective Are Computer-Based Teacher Training Programs? Evidence from a
Randomized Controlled Trial in El Salvador.” AEA RCT Registry : https://doi.org/10.1257/
rct.4092-2.0 (last access: 05.03.2020).

Carrillo, Paul, Mercedes Onofa and Juan Ponce. 2011. “Information Technology and Student Achie-
vement: Evidence from a Randomized Experiment in Ecuador.” IDB Working Paper Series No.
223. URL: www.econstor.eu (last access: 10.03.2020).

Chaudhury, Nazmul, Jeffrey Hammer, Michael Kremer, Karthik Muralidharan and Halsey Rogers.
2006. “Missing in Action: Teacher and Health Worker Absence in Developing Countries.” Journal
of Economic Perspectives 20(1):91–116.

29

www.ssrn.com/
www.worldbank.org/
www.vwi.unibe.ch
https://doi.org/10.1257/rct.4092-2.0
https://doi.org/10.1257/rct.4092-2.0
www.econstor.eu


Chetty, Raj, John Friedman and Jonah Rockoff. 2014. “Measuring the Impacts of Teachers
II: Teacher Value-Added and Student Outcomes in Adulthood.” American Economic Review
104(9):2633–2679.

de Ayala, R.J. 2009. The Theory and Practice of Item Response Theory. New York: Guilford Press.

Dhaliwal, Iqbal, Esther Duflo, Rachel Glennerster and Caitlin Tulloch. 2014. Comparative Cost-
effectiveness Analysis to Inform Policy in Developing Countries: a General Framework with Ap-
plications for Education. In Education Policy in Developing Countries, ed. Paul Glewwe. Chicago
and London: University of Chicago Press pp. 285–338.

Digestyc, Direccion General de Estadistica y Censos El Salvador. 2018. “Encuesta de Hogares de
Direccion General de Estadistica y Censos 2017 (EHPM).” Online avaliable, URL: www.digestyc.
gob.sv (last access: 25.07.2018).

Glennerster, Rachel and Kudzai Takavarasha. 2013. Running Randomized Evaluations: A Practical
Guide. Princeton: Princeton University Press.

Glewwe, Paul and Karthik Muralidharan. 2016. Improving Education Outcomes in Developing
Countries: Evidence, Knowledge Gaps and Policy Implications. In Handbook of the Economics of
Education, ed. Eric Hanushek, Stephen Machin and Ludger Woessmann. Amsterdam: Elsevier
pp. 653–743.

Hess, Simon. 2017. “Randomization Inference with Stata: A Guide and Software.” The Stata
Journal 17(3):630–651.

Lai, Fang, Renfu Luo, Lixiu Zhang, Xinzhe Huang and Scott Rozelle. 2015. “Does Computer-
Assisted Learning Improve Learning Outcomes? Evidence from a Randomized Experiment in
Migrant Schools in Beijing.” Ecomomics of Education Review 47(1):34–48.

Linden, Leigh. 2008. “Complement or Substitute? The Effect of Technology on Student Achievement
in India.” infoDev Working Paper No. 17. URL: www.worldbank.org/ (last access: 10.03.2020).

Mbiti, Isaac. 2016. “The Need of Accountability in Education in Developing Countries.” Journal
of Economic Perspectives 30(3):109–132.

Mbiti, Isaac, Karthik Muralidharan, Maruicio Romero, Youdi Schipper, Constantine Manda and
Rakesh Rajani. 2019. “Inputs, Incentives, and Complementarities in Education: Experimental
Evidence from Tanzania.” The Quarterly Journal of Economics 134(3):1627–1673.

Miguel, Edward and Michael Kremer. 2004. “Worms: Identifying Impacts on Education and Health
in the Presence of Treatment Externalities.” Econometrica 72(1):159–217.

30

www.digestyc.gob.sv
www.digestyc.gob.sv
www.worldbank.org/


MINED, Ministerio de la Educacion de El Salvador. 2013. “Elementos para el Desarrollo del Modelo
Pedagogico del Sistema Educativo Nacional – Escuela Inclusiva de Tiempo Pleno.” Online avali-
able, URL: https://www.mined.gob.sv/jdownloads/Institucional/modelopedagogico.pdf
(last access: 14.01.2018).

Mo, Di, Linxiu Zhang, Jiafu Wang, Weiming Huang, Yao Shi, Matthew Boswell and Scott Rozelle.
2015. “Persistence of Learning Gains from Computer Assisted Learning: Experimental Evidence
from China.” Journal of Computer Assisted Learning 31:562–581.

Morgan, Kari and Donald Rubin. 2012. “Rerandomization to Improve Covariate Balance in Expe-
riments.” The Annals of Statistics 40(2):1263–1282.

Muralidharan, Karthik. 2017. Field Experiments in Education in Developing Countries. In Handbook
of Economic Field Experiments. Amsterdam: Elsevier pp. 323–385.

Muralidharan, Karthik, Abhijeet Singh and Alejandro Ganimian. 2019. “Disrupting Education?
Experimental Evidence on Technology-Aided Instruction in India.” American Economic Review
109(4):1426–1460.

Pritchett, Lant and Amanda Beatty. 2014. “Slow Down, You’re Going too Fast: Matching Curricula
to Student Skill Levels.” International Journal of Educational Development 40:276–288.

Rockoff, Jonah. 2004. “The Impact of Individual Teachers on Student Achievement: Evidence from
Panel Data.” American Economic Review Papers and Proceedings 94(2):247–252.

Sacerdote, Bruce. 2011. Peer Effects in Education: How Might They Work, How Big Are They
and How Much Do We Know Thus Far? In Handbook of the Economics of Education, ed. Eric
Hanushek, Stephen Machin and Ludger Woessmann. Amsterdam: Elsevier pp. 249–277.

Unesco, United Nations Educational, Scientific and Cultural Organization. 2019. “UNESCO In-
stitute for Statistics Database.” Online available, URL: http://data.uis.unesco.org/ (last
access: 04.12.2019).

World Bank. 2018. World Development Report 2018: Learning to Realize Education’s Promise.
Washington D.C.: World Bank.

Yang, Yihua, Linxiu Zhang, Junxia Zeng, Xiaopeng Pang, Fang Lai and Scott Rozelle. 2013. “Com-
puters and the Academic Performance of Elementary School-Aged Girls in China’s Poor Com-
munities.” Computers & Education 60(1):335–346.

Young, Alwyn. 2019. “Channeling Fisher: Ranomization Tests and the Statistical Insignificance of
Seemingly Significant Experimental Results.” The Quarterly Journal of Economics 134(2):557–
598.

31

https://www.mined.gob.sv/jdownloads/Institucional/modelo pedagogico.pdf
http://data.uis.unesco.org/


A Appendix: Additional Analysis

A.1 Learning Gap and Grade Level Heterogeneity in our Sample

In order to examine the learning gap and grade level heterogeneity in our sample of primary school
pupils, we convert their performance in the baseline assessment into a proficiency measure expressed
in grade levels. As point of origin, we calculate for each participant her share of correct answers by
item grade level. The score that a child obtains in our discrete proficiency measure is determined by
those grade specific set of items, where the child scores at least 50% correct answers. In order to be
assigned to a certain grade level, a participant needs to reach the 50%-threshold that corresponds
with said grade level and all preceding grades. For example, a fourth grader that scored 80% on
first grade items, 55% on second grade items and 40% on third grade items would be assigned to a
second grade proficiency level. If a participant did not achieve 50% correct answers on first grade
items, she is assigned to grade level <1.

Based on the previously specified measure, which is plotted in Figure 1b, we obtain a performance
gap of two grades between the best and worst student in the median class of our sample. By
construction the mean in the within-class performance range is lowest in third grade classes (about
1.3, i.e. the math abilities of students’ within the same class cover on average 2.3 grades) and
highest in sixth grade classes (about 2.4). A simple regression analysis also confirms that within-
class variation is substantial, as classroom fixed effects only account for about 25% of the total
variation at a certain grade level.

A.2 Attrition

In Table A.1 we examine whether the attrition at endline is correlated with the treatment status.
To do so, we present results based on Linear Probability Models in columns (1) to (3), and on Logit
Models in columns (4) to (6). The results unequivocal suggest, that the probability to miss the
endline test did not depend on the treatment status.

Table A.1: Differences in attrition across treatments

Dependent var.: Attrition at endline OLS Logit

(1) (2) (3) (4) (5) (6)

T1: Lessons with Teacher 0.018 0.017 0.224 0.224
(0.302) (0.318) (0.298) (0.293)

T2: CAL-Lessons with Supervisor 0.021 0.026 0.263 0.330
(0.203) (0.115) (0.202) (0.116)

T3: CAL-Lessons with Teacher 0.023 0.025 0.280 0.315
(0.226) (0.190) (0.215) (0.173)

CX: Control Classes for Externalities 0.019 0.022 0.236 0.282
(0.307) (0.237) (0.298) (0.228)

Baseline math score =0.002∗∗∗ =0.002∗∗∗ =0.024∗∗∗ =0.024∗∗∗

(0.000) (0.000) (0.000) (0.000)

Adjusted R2 0.00 0.01 0.01 - - -
Pseudo R2 - - - 0.00 0.02 0.02
Observations 3528 3528 3528 3528 3528 3528

Notes: p-values (in parentheses) are based on class-level clustered standard errors. * p<0.10, ** p<0.05, *** p<0.01.
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A.3 Method of Inference and Robustness of our Results

As explained in Section 4.1, we apply two methods of inference. When we assess the impact of the
different treatments relative to the children in pure control classes, the reported p-values are based
on class-level clustered standard errors. Inference on within program school comparisons between
the different treatments (including control classes subject to externalities), however, are based on
a randomization inference test statistic with 2,000 random draws subject to the identical cut-off
criterion as used in our re-randomization scheme.

This mixed estimation approach directly follows from our two-step randomization design (see
Figure 2). Randomization inference is indispensable when comparing experimental groups within
program schools since the underlying assignment process involved re-randomization. Conversely,
selection of program schools and pure control schools was not based on re-randomization, making
the use of randomization inference less critical.

Figure A.1: Full re-randomization (incl. steps 1, 2a, and 2b) and the
share of classes without data points (N=2000 draws).
Notes: This graph plots the distribution of the share of missing data points, when
we conduct randomization inference by reiterating both stages of our randomiza-
tion procedure. The large number of missing data points weakens the precision of
our estimates, which explains why the p-values in the upper panel of Table A.2
increase by a factor of 5 to 10 compared to the p-values in Table 2.

While randomization inference is also preferable for assignment processes based on plain (or
stratified) randomization (e.g. Young, 2019), its application is problematic in our case due to a
particular feature of our study design: Out of the 162 eligible classes in pure control schools, we
only collected data for a random sample of 40 classes. Implementing randomization inference for
both stages of the randomization process thus comes with the downside that each draw will contain
a considerable number of classes that did not participate in the assessments. As illustrated in Figure
A.1, re-iterating the full randomization procedure yields an average of 37% of classes without data
per draw. Even though missing data points in the replication procedure create an artificial loss of
statistical power, we present the respective estimates as a conservative reference point.
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Table A.2: ITT-Estimates on the effects of the different interventions on children’s math scores
with p-values based on clustered standard errors

Percent Correct IRT-Scores

(1) (2) (5) (6)

T1: Lessons with Teachers 2.904∗∗∗ 2.643∗∗ 0.165∗∗∗ 0.152∗∗

(0.005) (0.012) (0.006) (0.013)
T2: CAL-Lessons with Supervisor 4.095∗∗∗ 3.869∗∗∗ 0.226∗∗∗ 0.214∗∗∗

(0.000) (0.000) (0.000) (0.000)
T3: CAL-Lessons with Teacher 4.554∗∗∗ 4.328∗∗∗ 0.250∗∗∗ 0.238∗∗∗

(0.000) (0.000) (0.000) (0.000)
CX: Control Classes for Externalities 2.595∗∗ 2.407∗∗ 0.147∗∗ 0.137∗∗

(0.011) (0.017) (0.013) (0.020)

βT4 := βT2 − βT1 = 0 1.191 1.226 0.061 0.063

p-value (βT8=0) (0.203) (0.180) (0.267) (0.241)

βT5 := βT3 − βT1 = 0 1.650∗ 1.686∗ 0.084 0.086∗

p-value (βT9=0) (0.080) (0.063) (0.115) (0.093)

βT6 := βT3 − βT2 = 0 0.459 0.460 0.024 0.023

p-value (βT10=0) (0.606) (0.599) (0.637) (0.636)

Adjusted R2 0.66 0.67 0.69 0.70
Observations 3197 3197 3197 3197
Individual & Classroom Controls No Yes No Yes
Baseline Score Yes Yes Yes Yes
Stratum & Grade FE Yes Yes Yes Yes

Notes: p-values based on traditional clustered standard errors in parentheses.
* p<0.10, ** p<0.05, *** p<0.01.

To assess the robustness of our results with respect to the method of inference, we report three
versions of our benchmark analysis: In Table 2, the upper panel p-values are based on class-level
clustered standard errors, while we run randomization tests in the lower panel. Table A.2 replicates
these results, but inference is consistently based on class-level clustered standard errors. Finally,
Table A.3 presents all results with p-values based on a full randomization tests.

Reassuringly, our main conclusion do not depend on the method of inference. When we apply
traditional inference to the lower panel, as in Table A.3, changes in p-values are very small and do
not show a clear pattern. And despite losing a lot of power when applying randomization inference
to the upper panel, as in Table A.2, the only notable difference is, that the program externalities
captured by βCX turn insignificant with p-values around 0.13.
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Table A.3: ITT-Estimates on the effects of the different interventions on children’s math scores
with p-values based on randomization inference

Percent Correct IRT-Scores

(1) (2) (5) (6)

T1: Lessons with Teacher 2.904∗ 2.643∗ 0.165∗ 0.152∗

(0.073) (0.089) (0.083) (0.097)
T2: CAL-Lessons with Supervisor 4.095∗∗∗ 3.869∗∗ 0.226∗∗ 0.214∗∗

(0.009) (0.013) (0.015) (0.018)
T3: CAL-Lessons with Teacher 4.554∗∗∗ 4.328∗∗∗ 0.250∗∗∗ 0.238∗∗

(0.006) (0.006) (0.007) (0.011)
CX: Control Classes for Externalities 2.595 2.407 0.147 0.137

(0.117) (0.136) (0.120) (0.140)

βT4 := βT2 − βT1 = 0 1.191 1.226 0.061 0.063

p-value (βT4=0) (0.214) (0.194) (0.268) (0.244)

βT5 := βT3 − βT1 = 0 1.650∗ 1.686∗ 0.084 0.086

p-value (βT5=0) (0.069) (0.059) (0.117) (0.102)

βT6 := βT3 − βT2 = 0 0.459 0.460 0.024 0.023

p-value (βT6=0) (0.618) (0.615) (0.650) (0.653)

Adjusted R2 0.66 0.67 0.69 0.70
Observations 3197 3197 3197 3197
Individual & Classroom Controls No Yes No Yes
Baseline Score Yes Yes Yes Yes
Stratum & Grade FE Yes Yes Yes Yes

Notes: p-values based on a two-sided randomization inference test statistic that the placebo coefficients are larger
than the actual are shown in parentheses. The p-values were computed based on 2000 random draws.
* p<0.10, ** p<0.05, *** p<0.01.
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B Appendix: Measuring and Converting Learning Outcomes

To measure math skills of third to sixth graders, we conducted two standardized math assessments
during the school year 2018. Both assessments include 60 items and were designed as follows:

1. We summarized the Salvadoran math curriculum for grades 1–6 along the three topics (a.) num-
ber sense & arithmetic, (b.) geometry & measurement, and (c.) data & probability.

2. We then mapped test items from various sources on the Salvadoran curriculum. These sources
are (a.) official text books of El Salvador, (b.) publicly available items from the STAR17 eva-
luations in California, (c.) publicly available items from the VERA18 evaluations in Germany,
and (d.) exercises from the Swiss textbook MATHWELT.

3. We then gathered pilot data on 180 test items answered by 600 Salvadoran pupils in October
2017 and estimated the difficulty and discrimination parameters of test questions based on
Item Response Theory (e.g. de Ayala, 2009).
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Figure B.1: Stylized illustration of the assessment design.
Note: Each part covers 30 items, adding up to 60 items per wave.

4. Finally, we designed paper and pencil maths tests using insights from step 3. The 60 items are
selected such that they reflect the weighting in the official curriculum: 60–65% number sense
& arithmetic, 30% geometry & measurement, 5–10% data & probability. Most items required
a written answer, while the share of multiple choice questions varied between 10% and 15%
depending on grade level. Figure B.1 illustrates how the math assessments at baseline and
endline were structured and linked. Both assessments had two parts, with the first part being
answered by all children independent of their grade. Moreover, the grade specific second part
of 3rd/4th/5th graders in the endline assessment included many baseline questions of the
4th/5th/6th graders. This linking across grades and waves was essential to infer a commonly
scaled ability score, i.e. the IRT scores.

17Further information on the Standardized Testing and Reporting (STAR) programme in California is available
online: www.cde.ca.gov/re/pr/star.asp (last accessed: 14.01.2018).

18VERA is coordinated by the Institut für Qualitätsentwicklung im Bildungswesen (IQB), see www.iqb.hu-berlin.
de/vera (last accessed: 14.01.2018).
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Diagnostics. Table B.1 shows summary statistics on test items for each grade and wave of the
assessment. In Table B.2 and Figure B.2, similar statistics are displayed for students’ percentage
scores. As can be seen, our test is not subject to relevant floor or ceiling effects: Hardly any students
could not answer a single question on a given assessment and not a single student scored all items
correctly. Similarly, only one item was not endorsed by anyone and no question could be answered
by all students. On average, students gave correct answers to about 25-43% of the questions in a
test booklet (column 2 in Tables B.1 and B.2). Figure B.3a shows the corresponding IRT-based
test information function for the entire assessment, i.e. for all grades and waves combined (see
below for details on IRT). As can be seen, our test is very informative for students across all ability
levels. However, the assessment is skewed towards high difficulty levels, meaning that it allows to
differentiate very precisely among high-achieving, but less precisely among low-achieving students.
Ideally, the precision (or “information”) of an assessment is highest around Theta = 0 where most
students are located (see Figure B.3b). This implies that, on average, students should be able to
answer about 50% of the test items. This reflects our decision to construct the assessment based on
the official Salvadoran curriculum in spite of the mismatch between the curriculum and students’
actual ability levels. Consequently, most of the included items could be answered by less than half
of the students. While this curriculum-based approach allows for a more meaningful interpretation
of results, it represents a slight loss in terms of test information. Nevertheless, sufficient questions
of differing difficulty levels are covered to warrant the conclusion that, overall, our item battery
provides a fairly reliable measurement instrument.

(a) Baseline test (b) Endline test

Figure B.2: Distribution of percentage scores across students

Calculating IRT-Scores. Our math assessments allows us to project all outcomes on a common
ability scale by using Item Response Theory. Instead of summing up the correct answers to a total
score taken to represent a person’s ability, Item Response Theory proposes a probabilistic estimation
procedure. Ability is then viewed as a latent variable influencing the responses of each individual to
each item through a probabilistic process: The higher a person’s ability and the lower the difficulty
of a particular test item, the higher the probability of a correct answer. In the simplest form of
the model, the probability that individual i succeeds on item j can be expressed by the following
function:
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Table B.1: Item Diagnostic: The distribution of correct answers across items

Share of correct answers across items (in %)
a. Baseline Minimum Mean Median Maximum Share 0%a Share 100%b

3rd Graders 0.4 24.9 18.3 87.3 0.0 0.0
4th Graders 2.4 30.9 25.5 94.2 0.0 0.0
5th Graders 0.4 34.9 26.6 96.6 0.0 0.0
6th Graders 0.4 38.7 27.4 96.4 0.0 0.0

b. Endline Minimum Mean Median Maximum Share 0%a Share 100%b

3rd Graders 0.9 34.1 23.5 95.8 0.0 0.0
4th Graders 0.5 36.0 31.0 98.0 0.0 0.0
5th Graders 0.0 38.9 32.3 98.8 1.7 0.0
6th Graders 1.3 42.6 37.2 98.9 0.0 0.0

Notes: The share of correct answers bases on those students that participated in both assessments, and hence constitute
the main estimation sample. a. Share 0%: This column displays the share of items with zero correct answers. b.
Share 100%: This column displays the share of items that were answered correctly by all test-takers.

Table B.2: Item Diagnostic: The distribution of percentage scores across students

Percentage score across students (in %)
a. Baseline Minimum Mean Median Maximum Share 0%a Share 100%b

3rd Graders 0.0 24.9 21.7 78.3 0.9 0.0
4th Graders 0.0 30.9 28.3 83.3 0.6 0.0
5th Graders 0.0 34.9 35.0 80.0 0.2 0.0
6th Graders 1.7 38.7 38.3 80.0 0.0 0.0

b. Endline Minimum Mean Median Maximum Share 0%a Share 100%b

3rd Graders 0.0 34.1 33.3 83.3 0.8 0.0
4th Graders 0.0 36.0 35.0 91.7 0.2 0.0
5th Graders 0.0 38.9 38.3 81.7 0.1 0.0
6th Graders 0.0 42.6 40.0 90.0 0.1 0.0

Notes: The distribution of percentage scores bases on those students that participated in both assessments, and hence
constitute the main estimation sample. a. Share 0%: This column displays the share of students that answered zero
questions correctly. b. Share 100%: This column displays the share of students that answered all questions correctly.
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(a) IRT-based test information function (b) Distribution of student abilities (Theta)

Figure B.3: Test information figure and distribution of students’ abilities.

Pr(successij |bj , θi) =
exp{a(θi − bj)}

1 + exp{a(θi − bj)}
with θi denoting the ability of student i, and bj representing the difficulty of item j.

In this so-called one-parameter model, the probability that an individual endorses a particular
item is thus a logistic function of the distance between the ability level of that individual and the
difficulty of the item. Ability levels for each person and difficulties for all items can be computed
through joint maximum likelihood estimation. IRT has many advantages over classical test theory.
It tends to produce more reliable ability estimates, allows to link the scores of different individuals
in different tests through overlapping items, and can help to better understand and improve the
quality of a test (e.g. de Ayala, 2009).

As illustrated in Figure B.1 a selection of items overlap (i) between the baseline and endline
assessments and (ii) across test booklets of different grades within an assessment wave. This allowed
us to project the performance in the baseline and endline assessment onto a common scale through
the estimation of an IRT one-parameter model. This procedure yields for every student i two ability
estimates, namely one for the baseline assessment, i.e. θBL

i , and one for the endline assessment,
i.e. θEL

i . The latter serves as outcome variable in the regression models that are labeled with
“IRT-Scores”.

Converting IRT scores to school year equivalents. To allow for an intuitive interpretation,
IRT scores can be represented as school year equivalents. For this purpose, we re-scale ability
estimates based on between-grade ability differences among pure control students at the time of
the endline assessment; that is they are divided by the average difference between adjacent grades,
which we calculated to be 0.31. That means, that the average ability difference between third and
fourth graders, fourth and fifth graders, and fifth and sixth graders in October 2018 equaled 0.31.

The estimated program effects can then be interpreted as a proportion of the children’s average
progress during one school year. Note, however, that ability differences between grades do not
only represent what children learn in their regular math classes at school but also reflect age-based
cognitive development, learning at home or spillovers from other subjects (e.g. literacy or science).
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