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Abstract This paper studies the incentives for interim voluntary disclosure of verifiable infor-

mation in probabilistic all-pay contests. Provided that the contest is uniformly asymmetric, full

revelation is the unique perfect Bayesian equilibrium outcome. This is so because the weakest type

of the underdog will try to moderate the favorite, while the strongest type of the favorite will try

to discourage the underdog– so that the contest unravels. Self-disclosure is optimal even though

a weak favorite or strong underdog may be induced to raise their efforts, i.e., show “dominant”

or “defiant”reactions. To avert Pareto inferior unraveling, the favorite may prefer to shut down

communication, but this is never the case for the underdog. We also consider partial information

release, cheap talk, Bayesian persuasion, information design, correlation, and continuous types.

Applications are discussed. The proofs employ novel arguments in monotone comparative statics

and an improved version of Jensen’s inequality.
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1. Introduction

In numerous economic environments, information is a key determinant for the fierceness of a

subsequent struggle or competitive interaction. Especially if the disclosure of evidence is apt to

clarify contestants’relative strength in a definite way, competition may soften quite suddenly and

dramatically. For instance, in a patent race, firms may choose to inform competitors about a

“disruptive” advancement so as to establish a role as a leader in innovation and to discourage

competitors. In litigation, parties try to avoid going to court by sharing hard evidence such as

expert reports and deposition protocols at an early stage. Candidates for top positions may find

themselves “designated”in a theoretically much larger field of competitors. In social and biological

conflict, the presentation of phenotype “indices”helps mitigating or even avoiding physical fights.

Last but not least, military conflict may be ended using a white flag. On the other hand, voluntary

disclosure may be less commonly observable in those cases when the release of information would

only tighten competition.

In this paper, we extend the standard model of a probabilistic contest (Rosen, 1986; Dixit,

1987) by allowing for pre-play communication of verifiable information (Okuno-Fujiwara et al.,

1990; van Zandt and Vives, 2007; Hagenbach et al., 2014). Contestants are assumed to differ in

their marginal cost of effort, which is private information for them. However, at a stage preceding

the contest, any player may interim, i.e., subsequent to having observed her type, choose to

disclose that information to her opponent. The focus of the present paper lies on contests that

are uniformly asymmetric in the sense that one of the two players is, subject to activity, interim

always strictly more likely to win than the other player.1 We identify a condition on the primitives

of the model that guarantees that the contest is uniformly asymmetric. As will be discussed, this

condition is consistent with both asymmetric technologies (e.g., O’Keeffe et al., 1984; Meyer,

1992; Franke et al., 2014) and heterogeneous type distributions (e.g., Amann and Leininger, 1996;

Maskin and Riley, 2000).

In this type of framework, we evaluate the incentives of individual types of each player to

voluntarily disclose their private information. Moreover, we characterize the perfect Bayesian

equilibrium of the resulting two-stage game. Our main result says that, provided that the contest

is uniformly asymmetric, the only outcome of the revelation game consistent with the assumption

of perfect Bayesian rationality is the one in which all the privately held information is unfolded

1The formal definition will be given in Section 3. While the focus lies on uniformly asymmetric contests, we also
explore more broadly the scope of the strong-form disclosure principle in other contests.
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prior to the contest. Thus, we find general conditions under which the strong-form disclosure

principle applies to a standard contest setting. This may be of interest because probabilistic

all-pay contests do not satisfy usual conditions suffi cient for the disclosure principle in the strong

form, according to which any perfect Bayesian or sequential equilibrium entails full revelation.2

Figure 1. Best-response curves in an asymmetric contest of complete information.

The analysis revisits Dixit’s (1987, p. 893) observation that, in an asymmetric contest of

complete information, the player more likely to win, the favorite, has a best-response function

that is locally strictly increasing at the equilibrium, whereas the player less likely to win, the

underdog, has a best-response function that is locally strictly declining at the equilibrium. For

example, in Figure 1, at the equilibrium (x◦1, x
◦
2), player 1’s best-response function β1 ≡ β1(x2)

is strictly increasing, while player 2’s best-response function β2 ≡ β2(x1) is strictly declining.

We extend Dixit’s (1987) observation to a setting with incomplete information. Thus, also in

our setting, there will be a favorite whose best-response mapping is locally strictly increasing at

the equilibrium, and an underdog whose best-response mapping is locally strictly declining at the

equilibrium. There are, however, important differences. Specifically, with incomplete information,

strategy spaces are multi-dimensional, reflecting the fact that each type of a given player may

choose a different effort level. Moreover, the comparative statics with respect to changes in the

information structure is in general monotone for one player only, which precludes the use of

existing methods.3

2The main complication is that best-response mappings are not monotone in a contest. Cf. Denter et al. (2014)
and Kovenock et al. (2015).

3Probabilistic contests of incomplete information have been studied for some time. Rosen (1986, fn. 7) still
complained that “few analytical results”were available. Early papers on the topic include, e.g., Linster (1993) and
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While the proof of the unraveling result is not entirely straightforward, there is a simple story.

Specifically, in view of the high effort level to be expected from a favorite that is left to speculate

about the underdog’s true ability, the weakest type of the underdog will have a strict incentive

to self-disclose, so as to moderate the favorite. But once this is accounted for, any silent type of

the underdog will be confronted with an even higher effort of the favorite. The weakest of those

remaining types will therefore choose to disclose her private information, too. As a result, there is

an unraveling on the underdog’s side. However, in the resulting contest with one-sided incomplete

information, the unraveling continues on the side of the favorite. Indeed, the respective strongest

type of the favorite has a strict incentive to self-disclose, so as to discourage the underdog. In the

end, full revelation of all private information is inevitable.

To evaluate welfare implications, we compare full revelation with a benchmark outcome in

which players do not have the option to disclose their private information. For a more structured

environment with one-sided incomplete information and an unbiased lottery technology, we show

that the unraveling is ex-ante strictly undesirable for a privately informed underdog. In other

words, full revelation obtains in this case just because the underdog has ex ante no means of

committing herself to not reveal her type.4 We go on and show that, depending on parameters,

the unraveling may even lead to a strictly Pareto inferior outcome. We call this outcome the

“disclosure trap.”However, such possibilities are not universal, i.e., there are examples in which

a privately informed contestant will appreciate disclosure not only interim, i.e., when being of

the marginal type, but also from an ex-ante perspective. Still, there are instances in which the

favorite, to avert the Pareto ineffi ciencies resulting from the unraveling, would prefer to shut down

communication. As we also show, however, this is never the case for the underdog.

The analysis is extended in a variety of ways. First, we check the robustness of the findings by

considering the possibility of partial information releases, such as through partitional disclosures

of the state space, randomized signals, and noisy signals. The key finding for noisy signals, e.g., is

that the “all-or-nothing”nature of disclosure matters for marginalized types only, who may need

Baik and Shogren (1995). The general framework with one-sided and two-sided private valuations is due to Hurley
and Shogren (1998a, 1998b). Wärneryd (2003) observed that the uninformed player in a common-value setting is
more likely to win than the informed player. Malueg and Yates (2004) analyzed a symmetric two-player Tullock
contest with two equally likely, but possibly correlated types. Schoonbeek and Winkel (2006) noted that individual
types may remain inactive. General results on the existence and uniqueness of Bayesian equilibrium have been
obtained by Einy et al. (2015) and Ewerhart and Quartieri (2020), in particular.

4The proof of this result relies on an improved version of Jensen’s inequality, which in turn is derived using the
theory of moment spaces (Dresher, 1953).
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a substantial incentive for becoming active. For all other types, however, marginal incentives

resulting from noisy signals tend to be strong enough to trigger voluntary disclosure. Next, we

look at cheap talk. In line with existing results for sender-receiver games in which interests are not

suffi ciently aligned, we find that “babbling”is a necessity under one-sided incomplete information.

Under two-sided incomplete information, we can still show that complete separation is impossible.

Thus, verifiable evidence indeed matters. We go on and study Bayesian persuasion. For the case

where an informed player has commitment power, we identify the optimal signal. We also study

a variety of design problems, complementing the analysis of Zhang and Zhou (2016). Finally,

we discuss the cases of correlated and continuous type distributions, where especially the case of

positive correlation helps sharpen the intuitions underlying our main result.

The economics literature has a long tradition of studying incentives for the voluntary disclosure

of private information. Seminal contributions by Grossman (1981) and Milgrom (1981) pointed

out that sellers, as a consequence of unraveling, will it find hard to withhold verifiable information

about the quality of their products. This argument, often referred to as the disclosure principle,

has since shaped the theoretical discussion about the pros and cons of disclosure regulation, as is

reflected by a very large body of literature.5

The present paper falls into the recent and quickly expanding literature concerned with the

disclosure of verifiable information in contests.6 Research in this literature has tended to focus on

either ex-ante voluntary disclosure, optimal disclosure policies, or interim voluntary disclosure.7

Ex-ante voluntary disclosure in probabilistic contests has been studied by Denter et al. (2014), in

particular. Assuming a probabilistic contest technology with one-sided incomplete information,

they showed that a “laissez-faire”policy regarding the informed player’s ex-ante disclosure decision

leads to lower expected lobbying expenditures than a policy of mandatory disclosure.8 The second

topic, optimal disclosure policies in contests, has recently seen a strong development. In particular,

5 In addition to the contributions already mentioned, see Verrecchia (1983), Dye (1985), Shin (1994), Seidmann
and Winter (1997), Benoît and Dubra (2006), and Giovannoni and Seidmann (2008), for instance. Milgrom (2008)
or Dranove and Jin (2010) offer surveys.

6Another form of pre-play communication, not considered in the present paper, is the costly signaling of unver-
ifiable information. See, e.g., Katsenos (2010), Slantchev (2010), Fu et al. (2013), Heijnen and Schoonbeek (2017),
and M. Yildirim (2017). We do, however, discuss cheap talk.

7Numerous additional research questions, related to learning, feedback, and motivation, for example, arise in
the analysis of dynamic contests of incomplete information. Such research questions have been dealt with in papers
by Clark (1997), H. Yildirim (2005), Krähmer (2007), Münster (2009), Zhang and Wang (2009), Aoyagi (2010),
Ederer (2010), and Goltsman and Mukherjee (2011), for instance.

8Relatedly, Wu and Zheng (2017) considered a symmetric two-player lottery contest with two equally likely,
independently drawn types for each player. In this framework, they showed that ex-ante disclosure decisions are
fully revealing if and only if the two possible type realizations are suffi ciently close to each other.
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effort-maximizing disclosure policies have been characterized by Zhang and Zhou (2016) and

Serena (2017) for probabilistic technologies, and by Fu et al. (2014), Chen et al. (2017) and Lu et

al. (2018) for deterministic technologies.9 The present analysis is concerned, however, with the

third topic, i.e., the interim voluntary disclosure in contests. As far as we know, there is only one

paper that has dealt with this issue on a comparable level of generality.10 Specifically, Kovenock

et al. (2015) showed that, regardless of whether valuations are private or common, the interim

information sharing game followed by an all-pay auction admits a perfect Bayesian equilibrium

in which no player ever shares her private information. The present analysis is complementary

to that of Kovenock et al. (2015) in the sense that, instead of the all-pay auction, we consider

a probabilistic contest. Overall, the review of the literature suggests that the specific research

question pursued in the present paper, viz. the analysis of incentives for the interim voluntary

disclosure of hard evidence in ex-ante asymmetric contests with probabilistic technologies and

two-sided incomplete information, has not been addressed in prior work.11

The remainder of this paper is structured as follows. Section 2 introduces the set-up. The

main result is stated in Section 3. Section 4 discusses contestants’incentives for interim volun-

tary disclosure. In Section 5, we provide examples for nonmonotone reactions to self-disclosure.

The scope of the strong-form disclosure principle is discussed in Section 6. Section 7 discusses

commitment and welfare issues. Partial information release is allowed for in Section 8. Section 9

considers cheap talk. Section 10 studies Bayesian persuasion and information design. Correlation

between types is allowed for in Section 11. An extension to continuous type spaces is outlined in

Section 12. Section 13 discusses applications. Section 14 concludes. Technical material has been

relegated to two appendices. Appendix A presents auxiliary results, while Appendix B contains

proofs and other material omitted from the body of the paper.

9Dubey (2013) studied a set-up with two-sided incomplete information about a binary type distribution and two
effort levels. Assuming that abilities are suffi ciently dispersed, he showed that incomplete (complete) information
engenders more effort if the prize is high (low). Einy et al. (2017) studied the value of public information in
Tullock contests with nonlinear costs. Optimal disclosure policies have been analyzed also in models of population
uncertainty. See Münster (2006), Myerson and Wärneryd (2006), Lim and Matros (2009), Fu et al. (2011), Feng
and Lu (2016), and Fu et al. (2016), among others.
10Epstein and Mealem (2013) considered a lottery contest with one-sided incomplete information, and character-

ized the perfect Bayesian equilibrium outcome in the case of two possible type realizations. While they considered
also an extension to more than two types, they did not characterize the perfect Bayesian equilibrium in that case.
11 In general, signals may have multiple audiences. E.g., in Board’s (2009) model, a direct benefit from disclosure

on the consumer side is balanced by the firm against the cost of tighter competition. The present paper, however,
focuses on the informational exchange between contestants in the absence of informational externalities.
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2. Set-up

Considered is an interaction over two stages, referred to as revelation stage and contest stage.

The modeling follows the literature on pre-play communication (Okuno-Fujiwara et al., 1990; van

Zandt and Vives, 2007; Hagenbach et al., 2014). We start with the contest stage, and continue

with the relevation stage.

2.1 The contest stage

Two players (or teams) i = 1, 2 exert efforts so as to increase their respective probability of

winning a contested prize that is commonly valued at V > 0. Contestant i’s effort (or bid) is

denoted by xi ≥ 0. It is assumed that player i’s payoff may be written as

Πi(x1, x2; ci) = pi(x1, x2)V − cixi, (1)

where pi(x1, x2) denotes i’s probability of winning, and ci > 0 contestant i’s marginal cost of

effort. Without loss of generality, the value of the prize will be normalized to V = 1. Following

Rosen (1986), we assume that

pi(x1, x2) =


γih(xi)

γ1h(x1) + γ2h(x2)
if x1 + x2 > 0

γi/(γ1 + γ2) if x1 + x2 = 0,
(2)

where γ1 > 0 and γ2 > 0 are parameters, while h : R+ → R+ is a continuous function that is

twice continuously differentiable at positive bid levels, with h(0) = 0, h′ > 0, and h′′ ≤ 0.12

This set-up includes, as an important special case, the example of the biased Tullock contest

(Tullock, 1975; Leininger, 1993; Clark and Riis, 1998), where the production function is given by

h(z) = hTUL(z; r) ≡ zr for an arbitrary parameter r ∈ (0, 1]. The lottery contest corresponds to

the case r = 1.

Each player i’s type is private information and drawn ex-ante from a probability distribution

12Relaxing the assumption of a concave production function would take us away from the main focus of this
paper. In contrast, the extension to player-specific production functions is easily accomplished, yet does not yield
additional insights.
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over the finite13 set Ci = {c1i , . . . , c
Ki
i }, where Ki ≥ 1, and

ci ≡ c1i < . . . < cKii ≡ ci (i ∈ {1, 2}). (3)

Thus, ci denotes the most effi cient, or strongest type, while ci denotes the least effi cient, or weakest

type of player i. The ex-ante probability of type cki is denoted by q
k
i ≡ qi(cki ), for k ∈ {1, . . . ,Ki},

with qki > 0. It will initially be assumed that players’types are independent.14

A bid schedule for player i ∈ {1, 2} is a mapping ξi : Ci → R+. The set of i’s bid schedules

is denoted as Xi. A pair of bid schedules ξ∗ = (ξ∗1, ξ
∗
2) ∈ X1 × X2 is a Bayesian equilibrium if,

for any type ci ∈ Ci of any player i ∈ {1, 2}, the effort level xi = ξ∗i (ci) maximizes type ci’s

expected payoff Ecj [Πi(xi, ξ
∗
j (cj); ci)], where Ecj [.] denotes the expectation over the realizations

of cj ∈ Cj , with j 6= i. Following Schoonbeek and Winkel (2006), a type ci ∈ Ci that chooses
an equilibrium effort ξ∗i (ci) > 0 (ξ∗i (ci) = 0) will be called active (inactive). The discontinuity

of the payoff functions at the origin implies that, at any Bayesian equilibrium, both players are

necessarily active with positive probability.15 By the same token, at least one player will have to

be active with probability one.

Lemma 1. The contest stage admits a unique Bayesian Nash equilibrium.16

Proof. See Appendix B. �

In the special cases of complete and one-sided incomplete information, the following notation

will be used. If (c1, c2) = (c◦1, c
◦
2) is public, then i’s equilibrium strategy will be written as

x◦i = x◦i (c
◦
1, c
◦
2). Further, if player i’s type ci = c#i is public, while player j’s type, with j 6= i,

remains uncertain, then equilibrium strategies will be written as x#i = x#i (c#i ) for player i and

ξ#j = ξ#j (.; c#i ) for player j, so that ξ#j (cj ; c
#
i ) is type cj’s equilibrium effort.17

13An extension to continuous type distributions is outlined in Section 12.
14For an extension to correlated type distributions, see Section 11.
15To see this, suppose that one player is active with probability zero. Then, any suffi ciently small positive bid is

a better response than the zero bid, but any positive bid is suboptimal. Hence, there is no best response in this
case.
16Lemma 1 extends to mixed strategies. Indeed, since each player is active with positive probability, and payoffs

functions are own-bid l.s.c. at the origin, expected payoffs against the opponent’s equilibrium strategy are strictly
concave over R+, so that it is suboptimal to randomize strictly.
17For completeness, we mention that our set-up is isomorphic to a model in which costs are commonly known

but valuations are private information for the contestants (e.g., Hurley and Shogren, 1998b). This can be seen by
normalizing payoff functions in the agent-normal form of the Bayesian contest game.
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2.2 The revelation stage

At a stage preceding the contest, players are given the opportunity to simultaneously and in-

dependently disclose their marginal costs. Initially, it will be assumed that private information

cannot be misrepresented. Further, we assume that the decision to self-disclose does not lead to

any direct costs.18

Ex-ante probability distributions are updated in response to the observation of verifiable in-

formation, and otherwise according to Bayes’rule whenever possible. Note that off-equilibrium

beliefs may arise, but only in the distinct case where a player chooses to conceal her private

information even though the equilibrium strategy entails disclosure by all types of that player.19

In any case, the contest stage begins with a pair of well-defined posterior beliefs (µ1, µ2) ∈
∆(C1)×∆(C2), where ∆(Ci) = {µi : Ci → [0, 1] s.t.

∑Ki
k=1 µi(c

k
i ) = 1} denotes the set of beliefs

about player i ∈ {1, 2}. Ignoring zero-probability types, a unique Bayesian equilibrium exists by

Lemma 1. In particular, the expected continuation payoff from the contest stage is well-defined

for any type ci ∈ Ci, for i ∈ {1, 2}.20 By a (reduced-form) perfect Bayesian equilibrium, we mean
sets S1 ⊆ C1, S2 ⊆ C2 of revealing types, and off-equilibrium beliefs µ0i ∈ ∆(Ci) for any i ∈ {1, 2}
with Si = Ci, such that

Ecj [Πi(x
#
i , ξ

#
j (cj); ci)] ≥ Ecj [Πi(xi, ξ

∗
j (cj); ci)] (xi ≥ 0), (4)

for any ci ∈ Si, and

Ecj [Πi(ξ
∗
i (ci), ξ

∗
j (cj); ci)] ≥ Ecj [Πi(x

#
i , ξ

#
j (cj); ci)], (5)

for any ci ∈ Ci\Si. Note that we dropped, for convenience, the reference to the prior disclosure
decisions in the notation of the equilibrium bids.21

18 Introducing costs for disclosing information would not change our conclusions, provided those are not too large
compared to the benefits of self-disclosure identified below.
19A formal account of belief updating is provided in Appendix B.
20This is obvious for any ci ∈ Ci with µi(ci) > 0. Should, however, a type ci deviate by not disclosing so

that µi(ci) = 0 , then there may not be a best response if the thereby deluded opponent plays zero with positive
probability. In that case, we replace the continuation payoff by the supremum payoff feasible for ci.
21Type-dependent signal spaces and continuous strategy sets preclude a direct reference to the standard definition

of a perfect Bayesian equilibrium in a multi-stage game with observable actions (Fudenberg and Tirole, 1991, p.
331). Otherwise, however, the definition is standard.
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3. The unraveling theorem

This section is central to our analysis. We start by defining what we call uniformly asymmetric

contests. We then provide a suffi cient condition for a contest to be uniformly asymmetric. Finally,

we present the main result of this paper.

3.1 Uniformly asymmetric contests22

The following definition extends Dixit’s (1987) concept of asymmetry to contests of incomplete

information.

Definition 1. A probabilistic contest of incomplete information will be called uniformly asym-

metric if, for any pair of posterior beliefs µ1 ∈ ∆(C1), µ2 ∈ ∆(C2), at the contest stage

(i) all types c1 ∈ supp(µ1) are active; and

(ii) if all types c2 ∈ supp(µ2) are active as well, then

p1(ξ
∗
1(c1), ξ

∗
2(c2)) >

1

2
> p2(ξ

∗
1(c1), ξ

∗
2(c2)) ( c1 ∈ supp(µ1); c2 ∈ supp(µ2)). (6)

Here, as usual, supp(µi) = {ci ∈ Ci : µi(ci) > 0} denotes the support of player i’s posterior
belief µi, for i ∈ {1, 2}. Thus, in a uniformly asymmetric contest, two properties hold regardless
of posterior beliefs at the contest stage. First, player 1 is active with probability one. Second,

provided that player 2 is also active with probability one, player 1 is interim always (i.e., for all

type realizations) more likely to win than player 2.23

If the contest is of complete information (i.e., if K1 = K2 = 1), then being uniformly asym-

metric is equivalent to what Dixit (1987) called an asymmetric contest. Henceforth, we will refer

to player 1 as the favorite and to player 2 as the underdog.

3.2 A suffi cient condition

In this section, we derive a condition on the primitives of the model that is suffi cient for a contest

to be uniformly asymmetric. While this assumption is strong, it will allow us to capture a very

clear and robust intuition.
22We dropped the term “unfair” because, as pointed out by a referee, it had been used before with a different

meaning (e.g., Feess et al., 2008; Epstein el al., 2013).
23To understand why the activity of all types of player 2 is presupposed in property (ii) of the definition, it should

be noted that an inactive type of player 2 may, in general, dilute the marginal incentives of a strong player 1 so
much that the probability ranking (6) could easily break down.
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Assumption 1. The production function h has a finite curvature ρ.24 Moreover, the net bias

γ ≡ γ2/γ1 satisfies

γ < γ∗ ≡ π1 + 2π2 − 2

2− π1
·

 σ if σ ≤ 1

σ1/ρ if σ > 1,
(7)

where σ = c2/c1, and πi =
√
ci/ci for i ∈ {1, 2}.

Assumption 1 is a joint restriction on several parameters. The ratio σ captures player 1’s lowest

relative resolve (cf. Hurley and Shogren, 1998a, 1998b). E.g., if player 1 is interim always more

effi cient than player 2, then σ strictly exceeds one and corresponds to the worst-case relative cost

advantage of player 1 compared to player 2. The parameter πi reflects the predictability of player

i’s marginal cost, where i ∈ {1, 2}. A predictability equal to one (strictly lower than one) for a
player corresponds to complete information (incomplete information) about her type. The net

bias γ has an immediate interpretation, being weakly below one (weakly above one) meaning that

the contest technology is weakly biased against player 2 (against player 1). Finally, the curvature

ρ measures the degree of noise in the contest technology, with a higher (lower) ρ corresponding

to more (less) noise.25

The comparative statics of the cut-off value for the bias, γ∗, is straightforward. When positive,

γ∗ is strictly increasing in each of the three parameters π1, π2, and σ, as well as monotone declining

in ρ. Thus, the assumption is more likely to hold when the net bias discriminates more strongly

against player 2, when marginal costs are more predictable, when player 1’s lowest relative resolve

is larger, or when the production function has a lower curvature. As a result of the comparative

statics, we see that if Assumption 1 holds for a given contest of incomplete information, changes

to the information structure caused by pre-play disclosure decisions cannot invalidate it. For

instance, if the assumption holds for type sets C1 and C2, then it holds also for any pair of

nonempty subsets of those. Indeed, if either C1 or C2 is substituted by a nonempty subset, then

the parameters π1, π2, and σ all increase weakly, so that the cut-offvalue for the bias, γ∗, increases

weakly. A similar remark applies to updating of beliefs.26

24The curvature ρ = ρ(h) corresponds to the smallest ρ for which h is ρ-convex (cf. Anderson and Renault, 2003).
In the Tullock case, ρ(hTUL ) = 1/r. In the lottery case, r = 1, and hence ρ = 1. For background on generalized
concavity, see Caplin and Nalebuff (1991a, 1991b).
25 It should also be noted that the specific form of inequality (7) has been derived from the proof of Lemma 2

below and thus constitutes a suffi cient but not necessary condition for the contest to be uniformly asymmetric.
26 It is also noteworthy that Assumption 1 does not impose any activity conditions. In general, corner solutions are
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In the limit case of complete information and symmetric costs (i.e., c1 = c1 = c2 = c2),

Assumption 1 says that the technology is biased against player 2 (i.e., γ2 < γ1). Further, the

case of a biased contest with ex-ante symmetric type distributions (i.e., c1 = c2 ≤ c1 = c2), as

discussed, e.g., by Drugov and Ryvkin (2017), is not generally excluded by Assumption 1.27

Clearly, with Assumption 1 in place, player 1 is in a quite strong position relative to player 2.

As the following result shows, this implies that the contest, even though of incomplete information,

is structurally similar to the complete-information contest considered by Dixit (1987).

Lemma 2. (Suffi cient condition) Any incomplete-information contest that satisfies Assump-

tion 1 is uniformly asymmetric.

Proof. See Appendix B. �

3.3 Main result

We will use the term full revelation to characterize the perfect Bayesian equilibrium, or the perfect

Bayesian equilibrium outcome, in which all types disclose their private information. The main

result of the present paper is the following.

Theorem 1. (Strong-form disclosure principle) In any uniformly asymmetric contest with

pre-play communication of verifiable information, full revelation is the unique perfect Bayesian

equilibrium outcome.

Proof. See Appendix B. �

Theorem 1 states that the strong-form disclosure principle applies to any uniformly asymmetric

contest.

It is not hard to see that self-disclosure by all types is actually a perfect Bayesian equilibrium.

Indeed, it suffi ces to specify off-equilibrium beliefs so that a player that surprises her opponent by

concealing her private information is deemed being the worst-case type, i.e., the type that no other

type would like to masquerade as.28 In our setting, the worst-case types are the most effi cient

known to be consistent with the existence of a perfect Bayesian equilibrium with no revelation of private information
(Okuno-Fujiwara et al., 1990, Ex. 4). In our framework, however, this problem does not occur.
27 Indeed, in this case, γ∗ = (3π−2)π2

2−π , with π ≡ π1 = π2 =
√
σ. For example, for π = 0.8, we get γ∗ = 0.21.

However, as noted by a referee, in that case the additional assumption σ > 4/9 is needed to fulfill γ < γ∗.
28This useful terminology is, of course, borrowed from Seidmann and Winter (1997) and Hagenbach et al. (2014).
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underdog and the least effi cient favorite, respectively. Provided that off-equilibrium beliefs are

specified in that skeptical way (Milgrom, 2008), it is clearly optimal for all types of both players

to stick to self-disclosure.

Next, it should be noted that uniqueness is claimed for the equilibrium outcome rather than

for the disclosure strategies. The reason is simple. To reveal all private information, it would

suffi ce that, for each player, all types except one disclose their private information. If the residual

type that does not disclose happens to be the worst-case type (on at least one side of the contest),

then we have another perfect Bayesian equilibrium. However, the resulting multiplicity is trivial

if all equilibria are equivalent in terms of the outcome, which is precisely what the theorem says.

An overview discussion of the proof of the uniqueness claim in Theorem 1 will be provided in the

next section.

It is instructive to relate Theorem 1 to the literature on unraveling in auctions with interdepen-

dent valuations (Benoît and Dubra, 2006; Tan, 2016). There, incentives to reveal a private signal

are typically strongest at the bottom of the signal support for the common-value component. For

instance, should a bidder in an auction of art privately learn that a purportedly original painting

is not authentic, then she may have an incentive to share that information with the other bidders.

Thus, as in the present paper, voluntary disclosure is more likely to occur when it reduces the

opponent’s incentives for bidding too aggressively.29

4. Understanding the unraveling result

This section discusses the mechanics underlying Theorem 1. First, the disclosure decision of the

weakest type of the underdog is dealt with. Subsequently, we consider the disclosure decision of

the strongest type of the favorite.

4.1 Benefits of self-disclosure for the underdog

In this subsection, we study the incentives of the weakest type of the underdog to disclose her type,

given a candidate equilibrium in which all types conceal their information. Consider, consequently,

a contest with incomplete information in which player 2 has at least two possible type realizations.

Let ξ∗ = (ξ∗1, ξ
∗
2) denote the Bayesian equilibrium at the contest stage. For the weakest type

of the underdog c2, the probability of winning and the expected payoff are given by p∗2(c2) =

29 In particular, we conjecture that allowing for a common-value signal in the present set-up would lead to similar
conclusions as the literature on unraveling in auctions has identified.
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Ec1 [p2(ξ
∗
1(c1), ξ

∗
2(c2))] and Π∗2(c2) = Ec1 [Π2(ξ

∗
1(c1), ξ

∗
2(c2); c2)], respectively. Consider, next, the

Bayesian equilibrium (ξ#1 , x
#
2 ) in the contest with one-sided incomplete information that results

when the weakest type of the underdog reveals her type. Then, type c2’s probability of winning

and expected payoff are given by p#2 = Ec1 [p2(ξ
#
1 (c1), x

#
2 )] and Π#2 = Ec1 [Π2(ξ

#
1 (c1), x

#
2 ; c2)],

respectively. The following result summarizes the comparative statics of the equilibrium at the

contest stage with respect to the disclosure decision by the weakest type of the underdog.

Proposition 1. (Self-disclosure by the weakest type of the underdog) Suppose that, in

a uniformly asymmetric contest, the underdog has at least two possible type realizations. Then, a

unilateral disclosure by the weakest type of the underdog, c2,

(i) induces type c2 to strictly raise her effort, i.e., x
#
2 > ξ∗2(c2);

(ii) strictly raises type c2’s interim probability of winning, i.e., p#2 > p∗2(c2) (even against any

given type of player 1); and

(iii) strictly raises type c2’s expected payoff, i.e., Π#2 > Π∗2(c2).

Proof. See Appendix B. �

Thus, after revealing her relative weakness, the weakest type of the underdog behaves as if gaining

confidence. She bids more aggressively and wins with a strictly higher probability. Moreover, the

disclosure is always strictly beneficial for her. In the proof of the unraveling result, we will actually

need only part (iii) of Proposition 1. However, as explained below, parts (i) and (ii) are crucial

steps that need to be made in order to derive part (iii).

Note that the conclusions of Proposition 1 are immediate for any type of the underdog that is

inactive in ξ∗. Indeed, disclosure is the only way for such types to ensure an active participation, a

positive probability of winning, and a positive expected payoff. Thus, Proposition 1 shows that the

weakest type of the underdog has an incentive to disclose her type even when she foresees herself

being active after concealment. Through repeated application of Proposition 1, the underdog’s

side of the contest equilibrium is seen to unravel. Indeed, all types of the underdog except the

worst-case type, when in the position of the weakest type that is foreseen to conceal, will find it

strictly optimal to voluntarily disclose their private information. Thus, incomplete information is

effectively one-sided in any perfect Bayesian equilibrium.
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Next, we provide an overview over the proof of Proposition 1. Given two bid schedules

ξi, ξ̂i ∈ Xi, we write ξi �i ξ̂i if ξi(ci) ≥ ξ̂i(ci) holds for any ci ∈ Ci. Thus, (Xi,�i) is the set
of bid schedules equipped with the product order. As usual, we will write ξi �i ξ̂i if ξi �i ξ̂i
and there is ci ∈ Ci such that ξi(ci) > ξ̂i(ci).

30 Denote by X∗j ⊆ Xj the set of bid schedules

ξj for player j ∈ {1, 2} that admit, for any type ci ∈ Ci of player i 6= j, a unique maximizer

xi ≡ β̃i(ξj ; ci) ∈ R+ of the expected payoff function xi 7→ Ecj [Πi(xi, ξj(cj); ci)]. Given ξj ∈ X∗j ,
the bid schedule βi(ξj) = β̃i(ξj ; ·) : Ci → R+ will be called the best-response bid schedule against

ξj . In Appendix A, it is shown that, for any ξj ∈ X∗j , the best-response bid schedule βi(ξj) is
weakly declining in the type, and strictly so at positive bid levels. The mapping βi : X∗j → Xi

that maps a given bid schedule ξ∗j of player j to player i’s best-response bid schedule against ξ
∗
j

will be referred to as player i’s best-response mapping. In the case of complete information, the

best-response mapping satisfies monotonicity properties only on a strict subset of the opponent’s

strategy space.31 This is likewise so in the case of incomplete information, and we characterize

suitable domain restrictions suffi cient for strict monotone comparative statics in Apppendix B.

The fact that the weakest type of the underdog raises her effort after self-disclosure may be

unexpected. To understand this point, suppose that, instead of strictly raising her effort, the

weakest type of the underdog were to weakly lower her effort after disclosure, i.e., x#2 ≤ ξ∗2(c2),

as shown in the diagram on the right-hand side of Figure 2. Consider now the flat bid schedule

ψ2(x
#
2 ) ∈ X2 that prescribes an effort of x#2 for each type c2 ∈ C2 of the underdog. Then, since

there are at least two types for the underdog, and since the equilibrium bid schedule ξ∗2 is strictly

declining, we get ξ∗2 � ψ2(x
#
2 ). From the strict monotonicity of player 1’s best-response mapping,

after checking domain conditions, we therefore obtain ξ∗1 = β1(ξ
∗
2) � β1(ψ2(x

#
2 )) = ξ#1 , as shown

in the diagram on the left-hand side of Figure 2. Applying now the strictly declining best-response

mapping of the weakest type of the underdog, checking also here the domain condition, we arrive

at ξ∗2(c2) = β̃2(ξ
∗
1; c2) < β̃2(ξ

#
1 ; c2) = x#2 , which yields the desired contradiction. Thus, the

weakest type of the underdog indeed gains in confidence after self-disclosure.

30The subscript i in �i and �i will be dropped whenever there is no risk of ambiguity.
31See Dixit (1987). The comparative statics of complete-information contests has been studied by Jensen (2016)

and Gama and Rietzke (2017), in particular.
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Figure 2. A monotonicity argument.

Based upon this fact, it can be shown that self-disclosure strictly raises also the probability of

winning for the weakest type of the underdog. Ultimately, this is a consequence of what we call

the Stackelberg monotonicity of the complete-information model (see Appendix A). By this, we

mean the fact that an increase of player i’s bid, subject to an optimal response by the opponent j,

always raises player i’s winning probability (and strictly so in the interior). Intuitively, a higher

effort is rewarded in terms of higher winning probabilities.32 Applied to the present situation, this

says that a Stackelberg-leading player 2 that raises her bid from ξ∗2(c2) to x
#
2 strictly increases

her probability of winning. But type c2’s probability of winning with her bid ξ∗2(c2) in the

Stackelberg setting is already strictly higher than in the Bayesian equilibrium under two-sided

incomplete information, because player 1’s best-response bid schedule against the leader’s bid

ξ∗2(c2) is strictly lower than ξ
∗
1 in the product order. Combining these two insights, it follows that

indeed, the probability of winning for the weakest type of the underdog rises strictly subsequent

to self-disclosure. In fact, this is so even for any given type of the favorite.

Finally, we check that the weakest type of the underdog has a strict incentive to disclose

her private information. The proof we managed to come up with exploits, in the spirit of the

envelope theorem, type c2’s first-order condition in order to rewrite her expected payoff from the

contest as a monotone function of ex-post winning probabilities and bids. Given parts (i) and

(ii) of Proposition 1, this suffi ces to prove the claim. Unfortunately, however, developing a simple

32This property, for which we did not find a suitable reference, may be seen as an analogue of Dixit’s (1987,
Eq. 8) precommitment result. However, in contrast to that result, the Stackelberg monotonicity property holds
regardless of contestants’relative strengths.
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intuition for part (iii) seems to be more intricate.

4.2 Benefits of self-disclosure for the favorite

From the previous section, we know that, in any perfect Bayesian equilibrium, the type of the

underdog is public information at the contest stage. Let c#2 denote the commonly known cost

type of the underdog. Given this setting with one-sided incomplete information, we will study the

incentive of the strongest type of the favorite to disclose her private information to the underdog.

If type c1 decides to conceal her private information, then the ensuing contest is of one-sided

incomplete information, with equilibrium efforts ξ#1 (c1) ≡ ξ#1 (c1; c
#
2 ) and x#2 ≡ x#2 (c#2 ). Type

c1’s probability of winning and expected payoff are consequently given by p
#
1 = p1(ξ

#
1 (c1), x

#
2 )

and Π#1 = Π1(ξ
#
1 (c1), x

#
2 ; c1), respectively. If, however, type c1 decides to disclose her private

information, then the ensuing contest is of complete information, with equilibrium efforts x◦i ≡
x◦i (c1, c

#
2 ), for i = 1, 2. In that case, type c1’s probability of winning and expected payoff are given

by p◦1 = p1(x
◦
1, x
◦
2) and Π◦1 = Π1(x

◦
1, x
◦
2; c1), respectively. The following result summarizes the

comparative statics of the one-sided incomplete-information contest with respect to a revelation

by the strongest type of the favorite.

Proposition 2. (Self-disclosure by the strongest type of the favorite) Suppose that, in a

uniformly asymmetric contest, the type of the underdog is public information, while the favorite

has at least two possible type realizations. Then, a unilateral disclosure by the strongest type of

the favorite, c1,

(i) induces the underdog to strictly lower her effort, i.e., x◦2 < x#2 ;

(ii) allows type c1 to strictly lower her effort, i.e., x
◦
1 < ξ#1 (c1);

(iii) strictly raises type c1’s probability of winning, i.e., p
◦
1 > p#1 ; and

(iv) strictly raises type c1’s expected payoff, i.e., Π◦1 > Π#1 .

Proof. See Appendix B. �

Thus, if the type of the underdog is public, then the self-revelation by the strongest type of the

favorite discourages the underdog. As a result, the strongest type of the favorite exerts a lower

effort, but still wins with higher probability. Clearly then, she finds it strictly optimal to reveal

her private information to the underdog. The proof of Proposition 2 employs the same methods
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that have been used before. However, given that informational incompleteness is one-sided, the

argument is of course much simpler in this case.33

As shown in Appendix B, an iterated application of Proposition 2 implies that also the fa-

vorite’s side unravels. Thus, in a uniformly asymmetric contest, full revelation is the only outcome

consistent with the assumption of perfect Bayesian rationality. But, as already discussed, disclo-

sure by all types of both players is indeed a perfect Bayesian equilibrium of the contest with

pre-play communication, which completes the proof of the uniqueness part of Theorem 1.34

5. Nonmonotone reactions to disclosure

This section presents two examples, intuitively capturing “dominant”and “defiant”reactions to

one-sided disclosure.35 The main motivation for having this section is to make transparent in

what sense our contribution is novel and important, and why analyzing disclosure in probabilistic

contests causes unexpected diffi culties that require new methods. The examples arise in a natural

way from the comparative statics of the Bayesian equilibrium at the contest stage with respect to

changes in the information structure.

5.1 Equilibrium responses to the underdog’s self-disclosure

While self-disclosure by the weakest type of the underdog tends to have an overall moderating

effect on the favorite, some types of the favorite may actually respond by bidding higher.

Example 1. (“Dominant reaction”)36 Consider the set-up specified in Table I. As can be seen,

after the self-disclosure by type c2 = c22 of the underdog, the weak type c1 = c21 of the favorite

raises her effort.

33Part (ii) of Proposition 2 can actually be shown to hold also in the case of two-sided incomplete information,
using an argument similar to the one used for Proposition 1. Beyond this observation, however, the analogy is
incomplete. In fact, we conjecture that parts (iii) and (iv) of Proposition 2 do not generalize to a setting with
two-sided incomplete information.
34Theorem 1 continues to hold when the revelation stage is replaced by a sequential-move model in which the

disclosure decision is made first by the favorite. But also in the case where the underdog moves first, we have
found (by a definite result for the lottery contest, and an extensive numerical search for more general technologies)
that full revelation remains the unique perfect Bayesian equilibrium outcome. Thus, even if disclosure decisions are
made sequentially, it does not seem possible for players in a uniformly asymmetric contest to escape the logic of
the unraveling result.
35Of course, we acknowledge the crucial role played by emotions in many real-world contests and tournaments

(e.g., Kräkel, 2008).
36All the numerical examples in this paper are based on the unbiased lottery contest.
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Table I. Equilibrium bids before and after the underdog’s self-disclosure.

Example 1 shows that the self-disclosure by the weakest type of the underdog need not cause

a generally soothing shift in the favorite’s bid schedule. Indeed, in response to learning that

the underdog is weak, only the strong type of the favorite decreases her bid, whereas the weak

type of the favorite raises her bid, as if being challenged. For intuition, note that there are two

countervailing effects. On the one hand, following the self-disclosure by the weakest type of the

underdog, the favorite’s belief regarding the underdog’s type collapses and henceforth assigns

probability one to the weakest type of the underdog. Clearly, this induces all of the favorite’s

types to lower their respective bids. On the other hand, the weakest type of the underdog will

raise her bid after having disclosed her type, which induces all of the favorite’s types to likewise

raise their respective bids. Since the two effects have opposite signs, the overall effect of the

underdog’s self-disclosure on the bid of a given type of the favorite is, in general, ambiguous.

Despite this flexibility, the model does impose some structure of the favorite’s reaction. First,

not all types of the favorite may simultaneously raise their bids in response to the self-disclosure

by the weakest type of the underdog.37 Indeed, this would be incompatible with our earlier

conclusion that the weakest type of the underdog necessarily raises her bid. Second, even a

dominant reaction of the favorite will never be strong enough to press the probability of winning

for the weakest type of the underdog weakly below her probability of winning under concealment.

5.2 Equilibrium responses to the favorite’s self-disclosure

37See, however, the discussion of positive correlation in Section 11.
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The following example demonstrates that, in analogy to the case just considered, a type of the

underdog may actually raise her effort after the favorite’s attempt to discourage her.

Example 2. (“Defiant reaction”) Consider the set-up specified in Table II. It can be seen

that, in response to the favorite’s attempt to discourage the underdog, only the two weaker types

of the underdog lower their respective efforts, whereas the strongest type of the underdog actually

raises her effort.

Table II. Equilibrium bids before and after the favorite’s self-disclosure.

In fact, the example illustrates another possibility, viz. that a type of the underdog may become

so discouraged that she decides to exert zero effort.38

5.3 Games of strategic heterogeneity

In parameterized games of strategic heterogeneity (Monaco and Sabarwal, 2016; Barthel and

Hoffmann, 2019), strategy spaces are multi-dimensional, and payoff functions allow for strategic

complements and substitutes at the same time. Under suitable constraints on bids, the incomplete-

information contests considered in the present paper would indeed satisfy the definition. Moreover,

the monotone comparative statics of the contest stage with respect to changes in the information

structure conducted above clearly draws on intuitions suggested by that literature. Quite notably,

38This possibility might be reminiscent of the drop-out identified by Parreiras and Rubinchik (2010). However,
in their setting, drop-out is caused by the presence of additional players, whereas in our setting, marginalization is
caused by disclosed information.
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however, existing conditions do not apply to our model. As Examples 1 and 2 have shown, the

relevant comparative statics of the Bayesian equilibrium is, in general, monotone for one player

only. In contrast, Monaco and Sabarwal’s (2016) conditions, like any of the conditions in the

literature that we are aware of, imply the monotone comparative statics of the entire equilibrium

profile. In fact, the contraction-mapping approach underlying Monaco and Sabarwal’s (2016, Th.

5) result need not go through when the contest is too asymmetric. The problem is that, as noted

by Wärneryd (2018) in a different context, the iteration of the best response in an asymmetric

contest need not be a contraction. Figure 1 in the Introduction illustrates the steepness in the

favorite’s best response for the case of complete information, but the situation is similar under

incomplete information. Therefore, we indeed cannot make use of existing methods.39

6. The scope of the strong-form disclosure principle

As explained in the previous section, the nonmonotonicity of the comparative statics with respect

to the release of evidence complicates the analysis, which makes it diffi cult to make predictions

about what happens in contests that are not uniformly asymmetric. Some limited conclusions are

feasible, however. We start with the case of one-sided incomplete information, and then turn to

the case of two-sided incomplete information.

6.1 One-sided incomplete information

If only one player is privately informed, then the strong-form disclosure principle does not require

any strong assumption.

Theorem 2. (Generic strong-form disclosure) Consider a Tullock contest with one-sided

incomplete information and generic cost types. Then, the conclusion of Theorem 1 continues to

hold true.

Proof. See Appendix B. �

This result is derived using a different strategy of proof than before. Specifically, for one-sided

asymmetric information, marginal analysis via total differentiation of first-order conditions proves

tractable, as we show more formally in Section 8. The argument is not entirely mechanic though,

39 In Appendix B, we provide a numerical example that shows that the iteration of the best response in Example
1 is not a contraction.
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mainly because the bid schedule of the informed player may tilt in response to the gradual release

of information.

The assumption of cost genericity might need some explanation. The reason for possible

exceptions is that the best-response mapping is hump-shaped, so that in the special case with

K2 = 2 (and only in that case), there may be two types of the informed player that choose the

same bid level. In the proof of Theorem 2, the only use of the Tullock assumption is to show that,

generically, two different types c2 ∈ C2 use different bids.40

In the remainder of this section, we present a collection of examples that illustrate how the

conclusion of Theorem 1 may fail if the contest is not uniformly asymmetric. I.e., we will find

parameter domains in which the contest with pre-play communication admits additional perfect

Bayesian equilibria in which full disclosure is not achieved. Given Theorem 2, all our examples

will feature two-sided incomplete information.

6.2 Two-sided asymmetric information

We start with the case of symmetric type distributions.

Proposition 3. (Symmetric type distributions) Consider an ex-ante symmetric lottery

contest with two equally likely type realizations. Then the strong-form disclosure principle applies

if c21/c
1
1 = c22/c

1
2 <

6
√
31+31
5 ≈ 12.8. Otherwise, i.e., if the inequality does not hold, then there

exists a perfect Bayesian equilibrium in which no type discloses her private information.

Proof. See Appendix B. �

Thus, if the types are relatively different, then the weak type has no incentive to reveal her private

information because it would inform the opponent’s weak type that there is no strong type around.

If the types are close, however, then the mollifying effect on the high type from disclosure would

be stronger than the challenging effect on the low type.

In general, i.e., when private information is two-sided, and type distributions are not identical,

the incentive to reveal one’s type follows a simple intuition, which however proves elusive when

one tries to capture it in a formal way. Intuitively, a type has an incentive to reveal her private

information if, by doing so, the probability that some type of the opponent feels challenged

declines. Challenged type are types that bid in a similar range. However, facing a challenging

40 It may therefore be speculated that Theorem 2 holds much more generally.
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type of the opponent does not, in general, imply that marginal costs are closeby. Rather, it is

the overall picture of forces that matters. We show this by displaying two examples where the

strong-form disclosure principle breaks down, in the absence of uniform asymmetry.

Example 3. (Straddling type distributions) We say that type distributions are straddling

if c11 < c12 < c21 < c22. An example is the contest specified in Table III. As can be seen, no type

has an incentive to reveal her private information. Therefore, the strong-form disclosure principle

does not hold in this example.

Table III. Straddling type distributions.

In this example, player 2’s strong type c12, which is sandwiched between player 1’s types, is rela-

tively likely to occur. This keeps player 1’s strong type c11 from revealing her private information,

since player 2’s strong type c12 will show a defiant reaction, while the marginalizing effect on player

2’s weak type c22 is unlikely to matter. Neither discloses player 1’s weak type c
2
1. Even though

there is a mollifying effect on player 2’s strong type, the defiant reaction of player 2’s weak type

c22, which is similar in strength to c
2
1, is definitely unwanted. The intuition for player 2’s types is

similar.
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Example 4. (Nested type distributions) Next, we consider the case where type distributions

are nested, i.e., where c11 < c12 < c22 < c21. In the example shown in Table IV, no type of any player

has an incentive to reveal her private information.

Table IV. Nested type distributions.

7. Commitment and welfare issues

In this section, we discuss the desirability of full revelation from an ex-ante perspective. First, we

study the impact of unraveling on the ex-ante utility of an informed contestant. Then, we explore

the social desirability of voluntary disclosure. Finally, we address the question if a contestant

would wish to shut down communication.

7.1 A commitment problem

While self-disclosure may be individually rational for some type of some player, other types of the

same player might subsequently suffer from an increased level of competition. It turns out that

this is indeed feasible. More specifically, it will be shown in this section that the unraveling may

lead to higher ex-ante levels of rent dissipation for both players and to a lower ex-ante probability

of winning for the underdog.
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To illustrate this point, we will compare the equilibrium scenario of full revelation (FR)

with the hypothetical benchmark of mandatory concealment (MC). Let CFR = E[c1x
◦
1(c1, c2) +

c2x
◦
2(c1, c2)] and CMC = E[c1ξ

∗
1(c1) + c2ξ

∗
2(c2)], respectively, denote total expected costs un-

der full revelation and under mandatory concealment.41 Further, for i ∈ {1, 2}, let pFRi =

E [pi(x
◦
1(c1, c2), x

◦
2(c1, c2))] and p

MC
i = E [pi(ξ

∗
1(c1), ξ

∗
2(c2))] denote player i’s ex-ante probability of

winning under full revelation and under mandatory concealment. Finally, likewise for i ∈ {1, 2},
let ΠFRi = pFRi −E[cix

◦
i (c1, c2)] and ΠMCi = pMCi −Eci [ciξ∗i (ci)] denote player i’s ex-ante expected

payoff under full revelation and mandatory concealment. A specific setting that allows to draw

some clear-cut conclusions is assumed in the following result.

Proposition 4. (Commitment problem) Consider a uniformly asymmetric, unbiased lottery

contest. Suppose that the type of the favorite is public information, whereas the underdog has at

least two possible type realizations. Assume also that, under mandatory concealment, all types are

active. Then,

(i) CFR > CMC (in both cases, expected costs split evenly between the players);42

(ii) the underdog’s (the favorite’s) ex-ante probability of winning is strictly lower (strictly higher)

under full revelation than under mandatory concealment, i.e., pFR2 < pMC2 ( pFR1 > pMC1 ); and

(iii) the ex-ante payoff for the underdog is strictly lower under full revelation than under mandatory

concealment, i.e., ΠFR2 < ΠMC2 .43

Proof. See Appendix B. �

The result above shows that the option to disclose private information may be undesirable for a

contestant. Intuitively, there is an externality that the disclosing marginal type imposes upon the

silent submarginal types. The externality is a virtual one only, because two type realizations of

the same contestant never coexist. Notwithstanding, the inability to commit leads to a situation

in which the privately informed player loses in expected terms by the unraveling.

41E[.] = Ec1,c2 [.] denotes the ex-ante expectation.
42Thus, the effort of the favorite is strictly higher under full revelation than under mandatory concealment. The

expected effort of the underdog, however, may either rise or fall, depending on parameters.
43The payoff comparison for the favorite is ambiguous, i.e., depending on parameters, it may be that ΠFR

1 ≥ ΠMC
1 ,

or as in Example 5 below, that ΠFR
1 < ΠMC

1 .
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7.2 Pareto-inferior unraveling

The following example illustrates the possibility that full revelation may actually be ex-ante

undesirable for both contestants.

Example 5. (“Disclosure trap”) The setting specified in Table V satisfies the assumptions of

Proposition 4, and hence, illustrates the conclusions of the proposition. More importantly, it can

be seen that the unraveling leads the contestants into a strictly Pareto inferior outcome.

Table V. Equilibrium bids under full revelation and mandatory concealment.

Thus, in contrast to the more common situation in which the receiver in a persuasion game, such

as an employer, a consumer, or a health insurer, tends to benefit from the unraveling, sometimes

even unduly so, this need not be the case in a contest.

7.3 Shutting down communication44

So far, we assumed that, if one player discloses, the other player automatically gets informed, and

this is commonly known. But in some situations, it may be possible to publicly commit to ignore

any information provided by one’s opponent.

Proposition 5. (The underdog never shuts down communication) Consider a uniformly

asymmetric, unbiased lottery contest. Suppose that the type of the underdog is public information,

44We are grateful to a referee for suggesting this extension to us.
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whereas the favorite has at least two possible type realizations. Then, the underdog’s ex-ante

expected payoff is strictly higher under full revelation than under mandatory concealment, i.e.,

ΠFR2 > ΠMC2 .

Proof. See Appendix B. �

Thus, the underdog would never prefer to publicly announce to ignore any information received.

The intuitive force behind this result is that the underdog can better target her effort, so that the

ex-ante winning probability increases. An analogous result for the favorite is not true, however.

Indeed, Example 5 above shows that the favorite may benefit from committing to ignore any

information released by the underdog.45

8. Partial information

So far, we assumed that disclosure is “all-or-nothing”. However, in many cases, contestants may

have more control over the information they choose to disclose than what has been assumed so far.

In this section, we therefore explore the value of partial information release. Specifically, we will

discuss partitional disclosures, randomized revelations, noisy signals with one-sided incomplete

information, and noisy signals with two-sided incomplete information.

8.1 Partitional disclosures of the state space

In a model with pre-play partitional disclosure of the state space, Hagenbach et al. (2014) identified

necessary and suffi cient conditions for the existence of a fully revealing sequential equilibrium

with “extremal” off-equilibrium beliefs that implements a given Nash equilibrium action profile

on and off the equilibrium path. Interestingly, our main result continues to hold provided that

contestants’message correspondences each contain an evidence base. For example, the disclosure

decision might alternatively establish an upper bound for the favorite’s cost parameter and a

lower bound for the underdog’s cost parameter, respectively. It should be immediate that the

unraveling argument underlying Theorem 1 extends, in a rather straightforward way, to the more

general framework of partitional disclosures. Thus, we complement the analysis of Hagenbach et

al. (2014) by providing conditions suffi cient for the uniqueness of the perfect Bayesian equilibrium

outcome in the special case of probabilistic all-pay contests.

45The value of commitment power will be further analyzed in Section 10.
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8.2 Randomized revelations

Theorem 1 has been formulated in a framework in which players choose pure strategies at the

revelation stage. But little changes if randomized strategies are allowed. This is especially easy

to see for the claim that full revelation is a perfect Bayesian equilibrium. Indeed, if a randomized

strategy at the revelation stage were to be a profitable deviation, then one of the pure strategies

in its support must be a profitable deviation, too, which is impossible by Theorem 1. Neither

the uniqueness of the equilibrium outcome is affected. To see this, consider for example the

decision of the weakest type of the underdog. Any pure decision regarding disclosure will lead to

a lottery over continuation payments, depending on the various scenarios created by the favorite’s

randomizations. The point to note is that, for any such scenario separately, the logic of Proposition

1 applies. As the weak type of the underdog benefits from self-disclosure in each of these scenarios,

she also benefits from self-disclosure in expectation. Moreover, even if the probability of not

disclosing her private information was small, there is still a gain for her when switching to self-

disclosure with probability one. As before, this argument extends to the other types of the

underdog and subsequently to the favorite’s side. Thus, Theorem 1 does extend to arbitrary

mixed strategies at the revelation stage and, in fact, using our earlier remarks regarding the

uselessness of randomization at the contest stage, even in the extensive form.

8.3 Noisy information: one-sided incomplete information

Suppose that player 1’s type c#1 is public, while player 2’s type c2 ∈ C2 = {c2 ≡ c12, . . . , c
K2
2 ≡ c2}

is private with K2 ≥ 2. By a marginal piece of evidence, we mean a (K2)-dimensional vector

δ2 = (δ12, . . . , δ
K2
2 ) such that

K2∑
k=1

δk2 = 0. The intuition is that δ2 turns i’s prior belief q2 ∈ ∆(C2)

about player 2’s type into a nearby posterior q̃2 ∈ ∆(C2) such that q̃2(ck2) = q2(c
k
2) + εδk2, where

ε > 0 is a small positive number. Given our assumption that all types have a positive ex-ante

probability, adding a marginal piece of evidence for small enough ε > 0 will always be feasible in

a comparative statics exercise.

Lemma 3. (Necessary and suffi cient conditions) Suppose that player 1’s type c#1 is public,

while player 2’s type c2 ∈ C2 = {c2 ≡ c12, . . . , c
K2
2 ≡ c2} is private with K2 ≥ 2. Suppose also

that all types of player 2 are active. Then, there exists a positive and strictly hump-shaped (which

includes the possibility of strictly monotone increasing or strictly monotone decreasing) sequence

(ϕ1, . . . , ϕK2) such that, for any marginal piece of evidence δ2, any type c2 ∈ C2 strictly prefers
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disclosing δ2 over concealing δ2 if and only if
δ12
...

δK2
2

 ·


ϕ1

...

ϕK2

 < 0. (8)

Proof. See Appendix B. �

This lemma offers a necessary and suffi cient condition for letting any type c2 ∈ C2 prefer to

release a marginal piece of evidence δ2. As will be noted, the condition does not depend on c2,

which means that all types have the same preference for disclosure. Obviously, this is due to the

assumption of one-sided asymmetric information, which implies that a decline of x#1 is equally

desirable for all types of player 2.46 Note also that Lemma 3 does not require that the contest is

uniformly asymmetric. However, the interiority assumption is crucial. Indeed, inactive types may

not have a strict incentive to disclose a marginal piece of evidence if it does not change their state

of marginalization. Thus, marginalized types (with positive shadow costs) exhibit some inertia

with respect to the release of a marginal piece of evidence.

Condition (8) gets a simple interpretation in the Tullock case, where it turns out that we may

choose ϕk = ck2ξ
#
2 (ck2), for k ∈ {1, . . . ,K2}, to be the type-specific equilibrium costs. In an interior

equilibrium, these costs indeed exhibit the hump-shape described in Lemma 3 as a consequence

of the first-order condition. Thus, in the Tullock case, a marginal piece of evidence is preferred to

be disclosed if, roughly speaking, it makes extremal types (i.e., those with the lowest equilibrium

costs) more likely and central types (i.e., those with highest equilibrium costs) less likely.47

In addition to marginal analysis, it is also of interest to see players’incentives to release noisy

signals (not to be confused with randomized revelations). This question is, in general, harder to

address. The following result shows that the weakest type of the underdog, provided she is active,

has always a strict incentive to send a noisy signal that corresponds to a first-order increase over

her type space, provided that her own type will appear more likely.

Proposition 6. Consider an unbiased lottery contest, and assume that the type c#1 of player 1

46This contrasts with the case of two-sided asymmetric information, dealt with below, where preferences regarding
information release generally differ across types.
47 In Appendix B, we use Lemma 3 to prove Theorem 2.
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is public, while the type of player 2 is private information. Suppose that c2 > c#1 , and that type

c2 is active. Then a FOSD shift in the type distribution of player 2 that makes c2 strictly more

likely induces player 1 to strictly lower her effort x#1 .

Proof. See Appendix B. �

Here as well, the activity assumption is crucial to obtain the conclusion of voluntary disclosure.

Note, however, that Proposition 6 does not admit an unraveling conclusion.

8.4 Noisy information: two-sided incomplete information

Finally, we study a setting with two-sided incomplete information. As a complete analysis is

beyond the scope of the present paper, we focus on the case of an interior equilibrium in an

unbiased lottery contest with two types per player.

Proposition 7. (Two-sided incomplete information) Consider a uniformly asymmetric

contest. Then, in response to a marginal increase by ε in the probability of the underdog’s weak

type c22, we see that:

(i) the bid of the strong favorite declines, i.e., dx11/dε < 0;

(ii) the bid of the weak favorite increases, i.e., dx21/dε > 0;

(iii) the expected payoff of the weak underdog increases, i.e., dΠ∗2(c
2
2)/dε > 0.

Proof. See Appendix B. �

This proposition refines the analysis underlying Proposition 1, albeit in a special case. Thus, the

previous assumption that signals are all-or-nothing is seen to be salient for marginalized types

only. Provided that all types are active, that assumption does not seem to be crucial for obtaining

the conclusion of Theorem 1.

9. Cheap talk48

Up to this point, we assumed that all evidence released by the contestants is verifiable. The

present section considers the case of non-verifiable information (Crawford and Sobel, 1982). Thus,

in contrast to the setting considered above, pre-play communication is now assumed to take the

48We are indebted to the Editor for suggesting this important extension.

30



form that contestants are simultaneously called upon to send costless, unverifiable messages after

they observed their own types but before they choose their actions. As usual, this cheap-talk game

admits a “babbling”equilibrium in which messages carry no information regarding the senders’

types, and receivers ignore the messages. However, one may wonder if probabilistic contests

admit equilibria in which one player reacts effectively to the other player’s messages. Fey et al.

(2007) studied cheap talk in games with two-sided incomplete information, and identified a role for

complementarity vs. substitutability. For two-player all-pay auctions, Pavlov (2013) has shown

that cheap talk has no impact on equilibria in deterministic all-pay auctions. While interesting,

these contributions do not resolve our research question.

With one-sided incomplete information, all cheap talk in probabilistic contests is necessarily

ineffective, regardless of distributional assumptions. This follows from the usual straightforward

intuition. Indeed, suppose that messages m1 and m2 are sent with positive probability by two

types c1 and c2 of the privately informed sender so that the equilibrium effort of the receiver is

strictly lower for message m1 than for m2. Then, subject to activity,49 both types strictly prefer

sending m1 over sending m2. Thus, there cannot be an equilibrium in the cheap-talk game with

one-sided incomplete information in which messages have any impact on equilibrium efforts. This

delivers the next result.

Proposition 8. (“Babbling”) Consider a contest with one-sided incomplete information. Then,

all unverifiable messages sent by the informed player are ignored by the uninformed player.

Proof. See Appendix B. �

Thus, if just one player is in the possession of an informational advantage, cheap talk is necessarily

ineffective.50 Next, we study the conditions necessary for full separation.

Proposition 9. (Impossibility of full separation) Consider an unbiased lottery contest with

cheap talk pre-play communication. Then, any of the following conditions suffi ces to guarantee

that full separation cannot be achieved as a perfect Bayesian equilibrium:

(i) K1 = 1 and K2 ≥ 3;

49 If types can get marginalized, the argument complicates, but still goes through. See Appendix B.
50Notwithstanding, due to the hump-shape of the best-response mapping, messages may indeed carry information

about types. E.g., if c1 = 1, c2 = 1
4
, and c2 = 4, then we have x#1 = (

E[
√
c2]

c1+E[c2)
)2 = (

2q+(1−q) 1
2

1+4q+(1−q) 1
4

)2 = 4
25
, regardless

of posterior beliefs. However, in equilibrium, the receiver would not make use of that information.
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(ii) there is two-sided incomplete information, with c1 ≤ c2;

(iii) each player has two types, with c ≡ c1 = c2 and c ≡ c1 = c2;

(iv) each player i ∈ {1, 2} has a continuum of types distributed on [ci, ci] according to some

absolutely continuous and strictly increasing distribution function Fi ≡ Fi(ci), where 0 ≤ ci < ci.51

Proof. See Appendix B. �

Part (i) should be intuitive. With full separation, we have a complete-information contest. Hence,

player 1’s equilibrium bid is positive and strictly hump-shaped in c2 ∈ C2. Therefore, given what
we said above, at most two signals can be used in equilibrium. Part (ii) should also be intuitive.

Case (iii) reveals one reason why full separation is diffi cult to obtain. In that case, weak types may

prefer to overstate their abilities. Indeed, those types have little chances to win against a strong

opponent, but it helps them a lot to impress the opponent’s weak type, even if it means to entirely

give up (i.e., self-marginalize) against the opponent’s strong type. Only if the probability of being

matched with a weak opponent is very low, then lying is no longer optimal for the weak type.

Then, instead, understatement may become attractive for the effi cient opponent. In case (iv),

i.e., with continuous type distributions, the weakest type in the contest has always an incentive

to overstate her ability.52

In his analysis of sender-receiver games with two-sided incomplete information, Seidmann

(1990, Ex. 1) has shown that, in general, even if all types of the sender share the same preferences

over pure effort choices by the receiver, the sender types’ preferences regarding lotteries over

efforts may differ. This property can then be used to construct fully separable equilibria. Even

though the lottery contest with one-sided incomplete information has precisely this property, our

results above show that fully separating equilibria in simple contests are not feasible.53

Wrapping up, what we learn from Propositions 8 and 9 is that verifiable information, as

considered in the main part of the analysis, matters.

51For the modifications to the set-up necessary to deal with continuous type distributions, see Section 12.
52The strict incentive to overstate one’s abilities relates Proposition 9 to the applied literature (e.g., Alfano and

Robinson, 2014).
53As we checked numerically, Seidmann’s (1990) argument does not seem to apply to Tullock contests with

parameter r ∈ (0, 1].
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10. Bayesian persuasion and information design

Kamenica and Gentzkow (2011) considered a general setting with one sender and one receiver,

and an unknown state of the world, where the sender precommits to a signal about the state of

the world. Upon receiving the signal, the receiver rationally updates her belief about the state of

the world and takes an action. Depending on whether the commitment power lies with a player

or with the social planner, the approach is known as Bayesian persuasion or information design.

In this section, we consider both problems for contests. Information design in contests has been

studied before by Zhang and Zhou (2016), and we will review their contribution below.54

10.1 Bayesian persuasion

Consider a lottery contest with one-sided incomplete information, where the type c#1 of player 1

is public. Then the expected payoff to an active type c2 is given by

Π#2 (c2|µ2) =

(
1−
√
c2E[1c̃2 active

√
c̃2|µ2]

c#1 + E[1c̃2 active c̃2|µ2]

)2
, (9)

where 1c̃2 active is an indicator variable that equals one (zero) if ξ
#
2 (c̃2; c

#
1 ) > 0 (= 0) in the contest

with one-sided incomplete information and type distribution µ2 for player 2, and where E[.|µ2]
denotes the expectation given player 1’s belief µ2 ∈ ∆(C2) about 2’s types at the contest stage.55

The logic of marginalization is as follows. As the belief µ2 gives too much weight to strong types,

player 1 bids higher which induces weak types of player 2 to bid zero. The condition spelt out

in the following lemma ensures that marginalization does not occur for a persuasion model with

two types.

Lemma 4. (Interiority condition) Suppose that K2 = 2 and c#1 + c2 >
√
c2c2. Then, all types

c2 ∈ C2 of player 2 are active, regardless of player 1’s posterior belief µ2.

Proof. See Appendix B. �

Now, in the absence of communication, µ2 simply corresponds to the ex-ante distribution {q2(ck2)}
K2
k=1.

Bayesian persuasion allows player 2 to precommit to a signal, which induces a probability distri-

54Denter et al. (2014) compared no and full disclosure.
55The expected payoff of an inactive type is zero.
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bution τ2 ∈ ∆(∆(C2)) over posterior beliefs µ2 ∈ ∆(C2) that is subject to Bayes plausibility∫
µ2(c2)dτ2(µ2) = q2(c2) (c2 ∈ C2). (10)

Therefore, player 2’s problem reads

max
τ2 s.t. (10)

∫
Ec2

[
Π#2 (c2|µ2)

]
dτ2(µ2), (11)

where Ec2 [.] denotes, as before, the expectation with respect to the prior distribution on C2 given

by q2.

As a general solution of problem (11) is beyond the scope of the present analysis, we discuss

a simple example with K2 = 2. Then, with precommitment, the signal may lead to a probability

distribution τ2 over two distributions µA2 , µ
B
2 ∈ ∆(C2), with respective probabilities τA2 and τ

B
2

satisfying

τA2 µ
A
2 (c2) + τB2 µ

B
2 (c2) = q2(c2) (c2 ∈ C2). (12)

For instance, in the special case where c2 > c#1 > c2 then we might expect that player 2 benefits

if, compared to the prior, µA2 is biased towards c2, while µ
B
2 is biased towards c2. Intuitively, the

positive effect of overstatement on the weak type’s payoff would be combined with the likewise

positive effect of understatement on the strong type’s payoff.

Proposition 10. (Bayesian persuasion) Consider an unbiased lottery contest where player

1’s type c#1 is public, while player 2’s type c2 ∈ {c2, c2} is private with c2 > c2. Suppose also that

the interiority assumption of Lemma 4 holds. Then there exists a threshold value χ∗ ∈ [0, 1] such

that:

(i) If c#1 >
√
c2c2, then full disclosure is optimal;

(ii) if c#1 =
√
c2c2, then any signal is optimal;

(iii) if c#1 <
√
c2c2 and q2(c2) ≤ χ∗, then full concealment is optimal;

(iv) if c#1 <
√
c2c2 and q2(c2) > χ∗, then player uses a randomized signal with posterior beliefs

satisfying µA2 (c2) = χ∗ and µB2 (c2) = 1.

Proof. See Appendix B. �
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The rough intuition for the underlying effects here is that a stronger uninformed contestant

raises her efforts in response to uncertainty, whereas a weaker uninformed contestant lowers her

efforts in response to uncertainty (cf. Hurley and Shogren, 1998a). With c#1 >
√
c2c2, player

1 is comparably weak, so it makes sense for player 2 to inform player 1. In the knife-edge case

where c#1 =
√
c2c2, player 1 does not care about player 2’s type as each type chooses the same

bid level. Hence, any signal is optimal in that case. The situation gets more structured for

c#1 <
√
c2c2, where player 1 is comparably strong. In that case, the signal will never be fully

informative. Instead, either full concealment is optimal (if q2(c2) ≤ χ∗), or player 2 optimally

uses a randomized signal (if q2(c2) > χ∗). When a randomized signal is used, player 2 reveals

her type when strong with a probability τB2 strictly smaller than one, but never reveals her type

when weak. As we show in the proof of Proposition 10, player 2’s expected payoff Π̂2(µ2) in a

contest with posterior µ2, considered as a function of m, is concave left of some cut-off value m
∗

and convex right of m∗. In Appendix B, we provide a numerical example that shows that the

potentially unexpected case (iv) with χ∗ > 0 is indeed feasible.

10.2 Information design

Next, we assume that an informed contest designer chooses a signal so as to maximize some policy

objective. Upon receiving the realization of the signal, the uninformed player updates her belief

and the contest takes place. The following result characterizes the optimal signal for three specific

policy objectives, viz. maximizing total expected efforts, maximizing total expected payoffs, and

minimizing the expected quadratic distance of players’winning probabilities.

Proposition 11. (Information design) Consider an unbiased lottery contest where player 1’s

type c#1 is public, while player 2’s type c2 ∈ {c2, c2} is private. Suppose also that the interiority
assumption of Lemma 4 holds. Then, for a contest designer:

(i) maximizing total expected efforts, full disclosure (full concealment, any signal) is optimal if

c#1 <
√
c2c2 (if c

#
1 >

√
c2c2, if c

#
1 =

√
c2c2);

(ii) maximizing total expected payoffs, it is optimal to delegate the problem to player 2, i.e., to

use the signal characterized in Proposition 10;

(iii) minimizing Ec2 [(p1 − p2)2], it is optimal to use the signal characterized in part (i).

Proof. See Appendix B. �
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Part (i) says that, to maximize expected efforts, full disclosure is optimal if player 1 is comparably

strong (i.e., if c#1 <
√
c2c2), while full concealment is optimal if player 1 is comparably weak (i.e.,

if c#1 >
√
c2c2), with any signal being optimal in the knife-edge case where c

#
1 =

√
c2c2. Part

(i) is a straightforward reformulation of a well-known result due to Zhang and Zhou (2016).56

For parts (ii) and (iii), however, we have not found a suitable reference. Part (ii) is a statement

about decentralization. Part (iii) may not be too surprising. Indeed, under the assumptions

made, minimizing the expected quadratic distance turns out to be equivalent to maximizing total

expected efforts.

However, there is an intuitive tension between part (iii) and the discussion in Section 7.

Specifically, in a setting with a comparably strong player 1 in which both Assumption 1 holds

and c#1 <
√
c2c2, we find here that the optimal signal entails full disclosure, whereas Proposition

4(ii) implies mandatory concealment. To understand what is going on, note that Proposition

11 works with a quadratic distance of probabilities, whereas Proposition 4(ii) works with ex-ante

winning probabilities. Therefore, the policy objective considered here, intuitively speaking, places

overproportional weight on the most lopsided encounters, whereas the earlier discussion weights

all encounters according to their ex-ante probability of occurrence, which explains the difference

in conclusions.

An interesting policy objective is also the maximization of the expected highest bid. In general,

that problem may be diffi cult. Imposing Assumption 1, however, the problem simplifies. Indeed,

since player 1 is known to submit the highest bid, and ex-ante expected costs are identical for

both bidders, the problem becomes equivalent to the one considered in part (i) above.

11. Correlation

In this section, we discuss how Theorem 1 extends to the case of correlated types. We start with

a particularly clean case in which type distributions are negatively correlated.

Proposition 12. (Negative correlation) Suppose that Assumption 1 holds and that the condi-

tional belief µ2( ·| c2) ∈ ∆(C1) held by the underdog’s type c2 is first-order stochastically decreasing
56 In their case, however, private information is about valuations. Zhang and Zhou (2016) also offer an algorithm

for solving the case with K2 ≥ 3 types. With more than two types, if the uninformed player is strong enough,
full disclosure is optimal, otherwise pooling the highest two valuations together and fully separating the others
maximizes total efforts. The paper points out the diffi culties that arise in a setting with two-sided incomplete
information, namely the multi-dimensional state of nature of both contestants’valuations which complicates the
persuasion stage, the private information on two sides, where the simplifying step of the analysis of Kamenica and
Gentzkow (2011) cannot be applied and lastly, the equilibrium characterization which is in general not available.
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in c2 ∈ C2. Then, the conclusion of Theorem 1 continues to hold true.

Proof. See Appendix B. �

The intuition is simple. The assumption on conditional beliefs means that weaker types of the

underdog are more pessimistic, in the sense that they deem stronger types of the favorite more

likely. As a result, the best-response bid schedule of the underdog remains strictly declining in

the interior, so that the conclusions of the crucial Proposition 1 continue to hold true. Moreover,

once the side of the underdog has unraveled, any ex-ante correlation will be resolved, so that full

separation obtains as before via Proposition 2.

For similar reasons, the strong-form disclosure principle holds for general forms of correlation

provided that the degree of correlation is small enough. For strongly positively correlated types,

however, the situation may complicate. In fact, the literal conclusions of Proposition 1 may break

down, as the following example illustrates.

Example 6. (Positive correlation) Consider the contest specified in Table VI. Shown are the

equilibrium bids with and without disclosure by the weak type of the underdog. As can be seen,

disclosure induces both types of the favorite to bid higher. Hence, the weak type of the underdog

does not benefit from disclosing her type.

Table VI. Positive affi liation.
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The logic of the example is that, without disclosure, the strong type of the favorite expects meeting

the strong type of the underdog that paradoxically bids lower than the weak type of the underdog.

Therefore, with disclosure, the strong type of the favorite raises her bid. In contrast, disclosure

does not substantially change the belief of the favorite’s weak type, but she expects meeting the

weak type with somewhat higher probability, which makes her bid higher.

Notwithstanding the complication illustrated by Example 6, there is a simple intuition sug-

gesting that the strong-form disclosure principle “generically” continues to hold with any type

of correlation. The point to note is that, even though the weakest type of the underdog need

not have a strict incentive to reveal her private information, the type of the underdog with the

lowest bid will always have such a strict incentive– unless we are in the unlikely scenario in which

positive correlation induces all types of the underdog to choose the same bid. The reason is that

the proof of Proposition 1 does not depend on the natural ordering of cost types. Thus, even

though the literal conclusions of Proposition 1 need not hold with arbitrary correlation, intuition

suggests that a straightforward variant of the proposition should oftentimes remain valid, in which

case an unraveling would be the necessary consequence.

12. Continuous type distributions

Benoît and Dubra (2006) have derived a general unraveling result for auctions and other Bayesian

games that allows for multiple players and metric types spaces. In this section, we use their

arguments to extend Theorem 1 to the case of continuous type distributions.57 In contrast to the

assumptions made so far, we will assume now that for i ∈ {1, 2}, player i’s marginal cost is drawn
from an interval [ci, ci], with 0 < ci < ci, according to some continuous distribution function

Fi. Note that Definition 1 extends to this case in a straightforward way, with the probability

ranking property (6) required for any pair of cost realizations in the support of players’posterior

beliefs. Thus, we may certainly consider a uniformly asymmetric contest with continuous type

distributions. The suffi cient condition reflected in Lemma 2 extends to this setting. As a solution

concept for the contest stage, and thereby to define expected payoffs from the strategic interaction

following pre-play communication, we use pure-strategy Nash equilibrium (Ewerhart, 2014). The

reduced-form definition of perfect Bayesian equilibrium remains unchanged. However, to ensure

57Contests with continuous type distributions have been considered, in particular, by Fey (2008), Ryvkin (2010),
Wasser (2013a, 2013b), and Ewerhart (2014).
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continuity properties of type-specific payoffs, we will have to restrict attention to the special case

of the lottery contest.

Proposition 13. (Continuous type distributions) Consider a uniformly asymmetric lottery

contest with continuous and independent type distributions. Then, in any perfect Bayesian equi-

librium of the contest with pre-play communication of verifiable information, both contestants’

types are almost surely revealed at the contest stage.

Proof. See Appendix B. �

13. Applications

In this section, we review our introductory examples and relate our findings back to those.

13.1 Research and development

Patent races can be financially exhausting. To stay in the race, firms must have a realistic

chance of winning. Drop-outs of followers may be caused, in particular, by the disclosure of

a breakthrough by the leader in the race. According to Fudenberg et al. (1983), the decision

between surrender and continuing in an ongoing contest depends on the possibility that a firm

can “leapfrog”and become the favorite in the race. This possibility is closely related to our analysis

above. Specifically, disclosure of breakthroughs by the leader may signal that leapfrogging is no

longer possible for the relatively weaker competitors, inducing them to exit the race, as in Example

2. The delegation conclusion in Proposition 11 suggests that a non-interventionalist position may

be optimal.

13.2 Pretrial discovery and settlement

Especially in the US, the outlook on the tremendous costs of going to court sets clear incentives

for parties of legal dispute to find agreeable terms at an early stage (Shavell, 1989). This is

particularly the case if, as suggested by Rosen (1988, p. 80), “judgement is shared by both

parties that one has the winning hand, and some of the costs of litigation are avoided in that

case.”Unraveling as captured by Theorems 1 and 2 is then to be expected especially on the side of

the stronger party. Anecdotal evidence suggests a strong link between the extent of information

revelation feasible during the pretrial phase and the symmetry or asymmetry of the conflict. If
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information is not shared voluntarily, parties can obtain evidence from the other side by means

of discovery devices such as interrogatories, requests, and depositions.

13.3 Promotion tournaments

Our theory might also help to explain why, in certain professional environments, there is sometimes

only a single candidate in an election or promotion. In general, this may be due to the exchange

of information (both verifiable and non-verifiable) between the candidates that ultimately induce

all but one candidate to back off. In firms or authoritarian systems, successors for positions

may be designated long before the start of the position.58 To stop communication between

candidates, designers of elections or promotion tournaments may therefore publicly announce to

treat applications confidential as long as possible, in line with our discussion of Proposition 4 and

Example 5.

13.4 Social and biological conflict

The empirical literature on social conflict (e.g., Hand, 1986) has identified signaling conventions

that resolve or avoid physical conflicts in dyadic social relationships depending on their nature.

For conflicts arising within dominance or subordination relationships, signals tend to be placating

or acquiescent. Within egalitarian or unresolved relationships, however, there may either be no

signals, or signals may indicate relative desire for some item on a case-by-case basis. Theorem

1 is in line with voluntary signaling in the first case, and our discussion of Proposition 3 and

Examples 3 and 4 with the ambiguity in the second case. Thus, the patterns underlying these

empirical observations are indeed reflected in our theory. A conceptual discussion of dominance

and defiance, with numerous examples from politics and history, can be found in Caygill (2013).

13.5 Military crisis and war

Our analysis may have implications for the role of communication as a means to avert military

crisis. Fearon (1995) uses historical case studies to argue that private information about resolve

and ability, incentives to hide or misrepresent these, and the lack of commitment power are im-

portant ingredients for a rationalist explanation for why war comes about. Acts of supplication

(Pedrick, 1982; van Kleef et al., 2006) may be seen as underdog tactics to avert imminent conflict.

Atomic weapon tests (Beardsley and Asal, 2009), the intimidation of witnesses (Maynard, 1994),

58E.g., Chen (2003) mentions the early designation of a successor in Imperial China as a tactic against sabotage
by weaker competitors.
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the announcement and use of military high-tech (such as chemical nerve agents against Russian

dissidents, pulsed microwave against European diplomats, supra-sonic missiles, etc.) are all exam-

ples of a show of force with clear intention to impress the other side. This is undesirable because

it leads to more armament and international conflict. Witness protection programs effectively

stop the communication. In more balanced settings, however, disclosure cannot be expected to

take place voluntarily, with weapons require contracts regarding regular inspections.

14. Concluding remarks

In this paper, we have identified general and robust conditions under which a probabilistic con-

test with verifiable pre-play communication admits full disclosure as the unique perfect Bayesian

equilibrium outcome. Given that the usual assumptions for the uniqueness of the fully revealing

equilibrium outcome (Milgrom, 1981; Okuno-Fujiwara et al., 1990; Seidmann and Winter, 1997;

van Zandt and Vives, 2007) fail to hold for contests, our results mean an extension of exist-

ing theory. In particular, the strong-form disclosure principle is more general than previously

perceived.

The analysis conducted in this paper has shown that incentives for voluntary disclosure in

contests depend on whether the release of information tends to tighten or ease competition. If

the contest is uniformly asymmetric, then the logic is particularly transparent. The extremal

weakest type of the underdog is never protected by a stronger type that would keep the favorite

in check. Therefore, it is always beneficial for her to reveal her type. Conversely, the extremal

strongest type of the favorite cannot hope to be mistaken for bidding lower than the underdog,

so that disclosure is likewise beneficial for her. Consistent with this logic, Theorem 1 captures a

situation in which parties to an imminent conflict are naturally inclined to disclose their private

information. Theorem 2 requires one-sided asymmetric information only, regardless of roles. The

logic here is that at least one of the extremal types, either the strongest or the weakest, will have

a strict incentive to disclose her private information. However, if either the contest fails to be

uniformly asymmetric or if the incomplete information is two-sided, then there may be a trade-off,

since revealing one’s type implies the risk that the opponent becomes an even match in terms of

bid levels.

Superficially, our main conclusion is just the opposite of the corresponding finding for the

all-pay auction. Specifically, Kovenock et al. (2015, Prop. 5) says that, with either private or
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common values, the interim information sharing game admits a perfect Bayesian equilibrium in

which no firm ever shares its information. As noted by a referee, there is an important caveat here

because the literature on all-pay auctions (Kovenock et al., 2015; Tan, 2016) has tended to focus

on symmetric type distributions, while our analysis has focused on asymmetric contests. However,

Proposition 3 suggests (in a somewhat non-robust way, though) that it is the contest technology

that matters. Indeed, the difference in conclusions might mirror a more general fact, viz. that an

all-pay auction that admits only equilibria in randomized strategies makes different demands on

a player than a probabilistic contest that admits an equilibrium in pure strategies. For example,

while the auction induces a hide-and-seek type of behavior for which keeping private information

secret seems advisable, the probabilistic contest induces players to think in trade-offs, which may

then entail even the voluntary disclosure of private information to the opponent. More work on

the relationship of these two “battle modes”in contests is certainly desirable.

Our analysis took us naturally to a formalization of several intuitive concepts for which, to

our knowledge, a flexible and all-encompassing framework in the realm of contest theory has been

lacking so far. These concepts include strategic attempts of individual types to either moderate

or discourage an opponent through pre-play communication of verifiable information, as well as

the possibility nonmonotone, “dominant”or “defiant”, reactions to such evidence. Clearly, these

findings are a bit unexpected given the absence of behavioral elements in our framework.59

In addition to the purely game-theoretic analysis of pre-contest communication with verifiable

and non-verifiable messages, we explored the role of disclosure policy and commitment power on

individual payoffs and social welfare, covering also questions such as ex-ante optimal design of

signals by an informed player or by a contest designer. Three policy conclusions seem to us as being

most salient. First, it may sometimes be optimal to prohibit the exchange of information. This

general theme of the anti-discrimination and diversity debate just reappears in our framework.

Second, it may be optimal to shut down communication. For instance, a government might prefer

closing the offi cial diplomatic channels in foreign policy, so as to avoid piecemeal destruction of

its ethical principles. Finally, it may be optimal to delegate disclosure policy to an informed

player. For example, in research and development, centrally enforced disclosure (e.g., of data sets,

software, and preliminary results put together by university members) may be counter-productive.

59The further analysis of such effects appears to us as a valuable route for future research. For example, it might
be interesting to understand why nonmonotone reactions to information disclosure are more common for worst-case
types.
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Given constraints in tractability, however, some of these conclusions have been derived under

somewhat restrictive assumptions. Needless to say, for example, it would be a great achievement to

be able to say anything nontrivial about information design in contests with two-sided incomplete

information. Another potential limitation of the present study is that our main result, while

addressing a sort of natural question from the perspective of the existing literature, may not

shed much light on traditional issues in competition policy such as the regulation of product

quality disclosure or optimal standards for financial reporting. We also concede that the empirical

validation of uniform asymmetry might remain challenging, even though suitable proxies for the

ability parameter (such as number of experts, size of research budgets, number of tanks, etc.) may

often be readily available. Notwithstanding, we believe that the theoretical advancement made

in this paper is important not only because, judging from our conversations, the mechanics of the

model are broadly in line with how people tend to think about the topic, but also because our

conclusions indeed seem to capture anecdotal evidence, e.g., from pre-trial discovery, promotion

tournaments, and conflict resolution. In addition, the methods developed in the course of the

analysis might prove useful for tackling further areas of application which rely on similar mechanics

but work under different assumptions.
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Appendix A. Auxiliary results

In this Appendix, we state and prove a number of auxiliary results. Lemma A.1 collects some

properties of a transformation introduced by Wärneryd (2003).60 Lemma A.2 establishes a basic

monotonicity property of the best-response bid schedule. Lemma A.3 provides bounds on the

bid distributions. Lemma A.4 establishes the Stackelberg monotonicity property of the complete-

information contest. Finally, Lemma A.5 offers an extension of Jensen’s inequality.

Lemma A.1 (Wärneryd’s transformation) Let Φ(z) = h(z)/h′(z), for any z > 0. Then, the

following holds true:

(i) limz↘0 Φ(z) = 0;

(ii) 1 ≤ Φ′ ≤ ρ;

(iii) (d lnh)/(d lnΦ) = 1/Φ′;

(iv) if xi > 0, then player i’s best-response mapping in the complete-information contest is

differentiable with
dxi
dxj

=
Φ(xi)

Φ(xj)

2pi − 1

Φ′(xi)− 1 + 2pi
, (13)

where i, j ∈ {1, 2} with j 6= i, and pi = pi(x1, x2).

Proof. (i) By assumption, h is differentiable in the interior of the strategy space, with h′ positive

and declining. Hence, limz→0 h′(z) ∈ (0,∞]. Moreover, by continuity, limz→0 h(z) = 0. The claim

follows. (ii) Note first that Φ′ = 1 − (hh′′/(h′)2) ≥ 1 by the concavity of h. To see that Φ′ ≤ ρ,

take some ρ > ρ such that hρ is convex. Then, in the interior of the strategy space,

ρ(ρ− 1)hρ−2
(
h′
)2

+ ρhρ−1h′′ ≥ 0. (14)

Recall that ρ ≥ 1. Hence, ρ > 1. Dividing (14) by ρhρ−2(h′)2 > 0, and rearranging, one obtains

Φ′ ≤ ρ. Taking the limit ρ→ ρ, the claim follows. (iii) A straightforward calculation shows that

d lnh(z)

d ln Φ(z)
=

(
dh(z)

h(z)

)/(
dΦ(z)

Φ(z)

)
=
h′(z)dz

h(z)
· Φ(z)

Φ′(z)dz
=

1

Φ′(z)
(z > 0), (15)

60See also Inderst et al. (2007).
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as claimed. (iv) The first-order condition characterizing the best response xi reads

pi(1− pi) = ciΦ(xi). (16)

Total differentiation of (16) delivers

(1− 2pi)dpi = ciΦ
′(xi)dxi, (17)

where

dpi =
pi(1− pi)

Φ(xi)
dxi −

pi(1− pi)
Φ(xj)

dxj (18)

= cidxi − ci
Φ(xi)

Φ(xj)
dxj . (19)

Plugging the expression in (19) into (17) and collecting terms, we obtain (13). �

Lemma A.2 (Monotonicity of best-response bid schedules) Let ξj ∈ X∗j and ci, ĉi ∈ Ci for
i 6= j such that ci > ĉi. Then, β̃i(ξj ; ci) ≤ β̃i(ξj ; ĉi), where the inequality is strict if β̃i(ξj ; ĉi) > 0.

Proof. Take an arbitrary bid schedule ξj ∈ X∗j of player j. The assertion is obvious for β̃i(ξj ; ci) =

0. Suppose instead that xi ≡ β̃i(ξj ; ci) > 0. Then, the necessary first-order condition for type ci

implies
∂Ecj [pi(xi, ξj(cj))]

∂xi
= ci. (20)

We will show first that player i’s marginal probability of winning, i.e., the left-hand side of Eq.

(20), is strictly declining in i’s bid. Indeed, because the best-response bid β̃i(ξj ; ci) exists, there

is a type cj ∈ Cj such that ξj(cj) > 0. A straightforward calculation shows, therefore, that

∂2Ecj [pi(xi, ξj(cj))]

∂x2i

=
∂

∂xi
Ecj

[
γiγjh

′(xi)h(ξj(cj))

(γih(xi) + γjh(ξj(cj)))
2

]
(21)

= Ecj

[
γiγjh(ξj(cj))

{
(γih(xi) + γjh(ξj(cj)))h

′′(xi)− 2γi(h
′(xi))2

}
(γih(xi) + γjh(ξj(cj)))

3

]
(22)

< 0, (23)
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which proves the claim. There are now two cases. Assume first that x̂i > 0. For this case, it is

claimed that x̂i > xi. To provoke a contradiction, suppose that x̂i ≤ xi. Then, since the marginal
probability of winning for player i is strictly declining in i’s bid,

ĉi =
∂Ecj [pi(x̂i, ξj(cj))]

∂xi
≥
∂Ecj [pi(xi, ξj(cj))]

∂xi
= ci, (24)

in conflict with ĉi < ci. Hence, x̂i > xi, as claimed. Assume next that x̂i = 0, i.e., type ĉi finds

it optimal to respond to ξj with a zero effort. But then, clearly, strictly higher marginal costs

induce type ci to do the same, i.e., xi = 0. The lemma follows. �

Lemma A.3 (Bounds on the bid distributions) Let ξ∗ = (ξ∗1, ξ
∗
2) be a Bayesian equilibrium

in an incomplete-information contest such that both players are active with probability one. Then,

γih(ξ∗i (ci)) ≤
1

πi
· γih(ξ∗i (ci)) +

1− πi
πi

· γjh(ξ∗j (cj)) (i, j ∈ {1, 2} s.t. j 6= i), (25)

h(ξ∗2(c2)) ≤
1

σ̂
· h(ξ∗1(c1)), (26)

where

σ̂ =

 σ if σ ≤ 1

σ1/ρ if σ > 1.
(27)

Proof. Take an arbitrary type ci ∈ Ci of player i. Since, by assumption, ξ∗i (ci) > 0, the necessary

first-order condition for type ci holds, i.e.,

Ecj

[
γiγjh

′(ξ∗i (ci))h(ξ∗j (cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j (cj)))
2

]
− ci = 0, (28)

where j 6= i. To prove the first claim, evaluate (28) at ci = ci. Then, making use of Lemma A.2
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and the concavity of h, we get

ci = Ecj

[
γiγjh

′(ξ∗i (ci))h(ξ∗j (cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j (cj)))
2
·
(
γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

)2]
(29)

= Ecj

 γiγjh
′(ξ∗i (ci))h(ξ∗j (cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j (cj)))
2
·
(

1 +
γih(ξ∗i (ci))− γjh(ξ∗i (ci))

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

)2
︸ ︷︷ ︸

monotone increasing in cj

 (30)

≥ Ecj
[

γiγjh
′(ξ∗i (ci))h(ξ∗j (cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j (cj)))
2

]
·
(
γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

)2
(31)

= Ecj

[
γiγjh

′(ξ∗i (ci))h(ξ∗j (cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j (cj)))
2

]
×
(
h′(ξ∗i (ci))

h′(ξ∗i (ci))

)
︸ ︷︷ ︸

≥1

·
(
γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

)2
(32)

≥ ci ·
(
γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

)2
. (33)

Dividing by ci > 0, and using πi =
√
ci/ci, we obtain

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))
≤ 1

πi
. (34)

Inequality (25) follows. To prove the second claim, one multiplies type ci’s first-order condition

(28) by Φ(ξ∗i (ci)), and subsequently takes expectations. This yields

Eci [ciΦ(ξ∗i (ci))] = Ec1,c2

[
γ1γ2h(ξ∗1(c1))h(ξ∗2(c2))

(γ1h(ξ∗1(c1)) + γ2h(ξ∗2(c2)))
2

]
(i = 1, 2), (35)

where Ec1,c2 [.] denotes the ex-ante expectation. Exploiting the fact that equilibrium bid schedules

are monotone declining (by Lemma A.2), and that Φ′ > 0, this implies

c2Φ(ξ∗2(c2)) ≤ Ec2 [c2Φ(ξ∗2(c2))] = Ec1 [c1Φ(ξ∗1(c1))] ≤ c1Φ(ξ∗1(c1)), (36)
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or, using that Φ(ξ∗2(c2)) > 0,
Φ(ξ∗1(c1))

Φ(ξ∗2(c2))
≥ c2
c1

= σ. (37)

There are two cases. Assume first that ξ∗1(c1) ≥ ξ∗2(c2). Then, using Φ′ ≤ ρ (see Lemma A.1), we
obtain

ln

(
h(ξ∗1(c1))

h(ξ∗2(c2))

)
=

∫ ξ∗1(c1)

ξ∗2(c2)
d lnh(z) (38)

=

∫ ξ∗1(c1)

ξ∗2(c2)

d lnh(z)

d ln Φ(z)
d ln Φ(z) (39)

=

∫ ξ∗1(c1)

ξ∗2(c2)

1

Φ′(z)
d ln Φ(z) (40)

≥ 1

ρ

∫ ξ∗1(c1)

ξ∗2(c2)
d ln Φ(z) (41)

=
1

ρ
ln

(
Φ(ξ∗1(c1))

Φ(ξ∗2(c2))

)
. (42)

Using (37), this implies

h(ξ∗2(c2)) ≤
1

σ1/ρ
· h(ξ∗1(c1)). (43)

Assume next that ξ∗1(c1) < ξ∗2(c2). Then using Φ′ ≥ 1 (taken likewise from Lemma A.1) delivers

ln

(
h(ξ∗2(c2))

h(ξ∗1(c1))

)
=

∫ ξ∗2(c2)

ξ∗1(c1)

d ln Φ(z)

Φ′(z)
≤
∫ ξ∗2(c2)

ξ∗1(c1)
d ln Φ(z) = ln

(
Φ(ξ∗2(c2))

Φ(ξ∗1(c1))

)
. (44)

Hence, in that case,

h(ξ∗2(c2)) ≤
1

σ
· h(ξ∗1(c1)). (45)

Thus, exploiting that ρ ≥ 1,

h(ξ∗2(c2)) ≤ h(ξ∗1(c1)) ·max

{
1

σ
,

1

σ1/ρ

}
(46)

= h(ξ∗1(c1))·

 1/σ if σ ≤ 1

1/σ1/ρ if σ > 1.
(47)

Clearly, this proves (26). �
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Lemma A.4 (Stackelberg monotonicity) Let x2 > x̂2 ≥ 0 and c1 ∈ C1 such that x1 =

β̃1(ψ2(x2); c1) and x̂1 = β̃1(ψ2(x̂2); c1). If x̂1 > 0 then,

(i) p2(x1, x2) > p2(x̂1, x̂2), and

(ii) Π1(x1, x2; c1) < Π1(x̂1, x̂2; c1);

Proof. (i) By assumption, x̂1 = β̃1(ψ2(x̂2); c1) > 0. Therefore, x2 > x̂2 implies p2(x̂1, x2) >

p2(x̂1, x̂2). Assume first that x1 ≤ x̂1. Then, clearly, p2(x1, x2) ≥ p2(x̂1, x2) and, hence,

p2(x1, x2) > p2(x̂1, x̂2), as claimed. Assume next that x1 > x̂1. Then, the necessary first-order

conditions associated with the respective optimality of x̂1 and x1 hold true. As for x̂1, we find

that
γ1h

′(x̂1)γ2h(x̂2)

(γ1h(x̂1) + γ2h(x̂2))
2 = c1. (48)

Multiplying by γh(x̂2)/h
′(x̂1), with γ = γ2/γ1 as before, yields

(p2(x̂1, x̂2))
2 =

c1γh(x̂2)

h′(x̂1)
. (49)

Similarly, one shows that the optimality of x1 implies

(p2(x1, x2))
2 =

c1γh(x2)

h′(x1)
. (50)

Recalling that h is strictly increasing and that h′ is weakly declining, we see that (p2(x1, x2))
2 >

(p2(x̂1, x̂2))
2. The claim follows.

(ii) As a consequence of the envelope theorem,

dΠ1(β̃1(ψ2(x2); c1), x2; c1)

dx2
=

∂Π1(x1, x2; c1)

∂x2

∣∣∣∣
x1=β̃1(ψ2(x2);c1)

(51)

= − γ1h(β̃1(ψ2(x2); c1))γ2h
′(x2)

(γ1h(β̃1(ψ2(x2); c1)) + γ2h(x2))2
(52)

< 0. (53)

Thus, player 1 indeed strictly benefits from the lowered effort of player 2. This proves the second

claim and, hence, the lemma. �
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Lemma A.5 (Improved Jensen’s inequality)61 Let g : (1,∞) × (1,∞) → R be a twice

continuously differentiable function with Hessian matrix

Hg(x, y) =

 ∂2g(x,y)
∂x2

∂2g(x,y)
∂x∂y

∂2g(x,y)
∂y∂x

∂2g(x,y)
∂y2

 , (54)

and let Y be a nondegenerate random variable with finite support in (1,∞). If

{
x > 1, y ≥ x2, dx > 0, dy > 0,

dy
dx

>
y − 1

x− 1

}
⇒ (dx dy) (Hg(x, y))

(
dx
dy

)
> 0, (55)

then

E
[
g
(
Y, Y 2

)]
> g

(
E[Y ], E[Y 2]

)
. (56)

Proof. By induction. Assume first that the random variable Y has precisely two possible

realizations y1, y2 ∈ (1,∞). Without loss of generality, y1 < y2. Consider the auxiliary mapping

f : [0, 1]→ R2 defined through

f(t) = (1− t)
(
y1
y21

)
+ t

(
y2
y22

)
(t ∈ [0, 1]). (57)

See Figure 3(a) for illustration. By assumption, g is strictly convex along the straight line de-

scribed by f .62 In particular, the composed mapping g ◦ f is strictly convex. Therefore, when t is
considered a random variable that assumes the value t = 0 with probability q1 = pr(Y = y1) > 0

and the value t = 1 with probability q2 = 1− q1 = pr(Y = y2) > 0, then

E[g(Y, Y 2)] = E[g(f(t))] (58)

> g(f(E[t])) (59)

= g
(
q1y1 + (1− q1)y2, q1y21 + (1− q1)y22

)
(60)

= g([E[Y ], E[Y 2]). (61)
61This auxiliary result is used in the proof of Proposition 4. It also helped us to see through the analysis of

sequentially taken disclosure decisions (see the extensions section). Alternative extensions of Jensen’s inequality
have been proposed by Pittenger (1990), Guljaš et al. (1998), and Liao and Berg (2017), in particular. However,
those results do not render the payoff comparisons made in the proof of Proposition 4.
62To see this, let x = (1− t)y1 + ty2 > 1, y = (1− t)y21 + ty22 ≥ x2, dx = y2− y1 > 0, and dy = y22 − y21 > 0. Then,

dy/dx = y2 + y1 > y2 + 1 ≥ (y − 1)/(x− 1), so that the precondition in (55) indeed holds true.
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This proves the claim in the case that Y has two realizations. Suppose that the claim has been

shown for K ≥ 2 realizations, and assume that Y has K + 1 realizations y1 < . . . < yK+1, with

respective probabilities qk = pr(Y = yk) > 0, where k = 1, . . . ,K + 1. Consider the random

variable Y ′ that attains value yk, for k = 2, . . . ,K + 1, with probability

q′k =
qk

1− q1
=

qk∑K+1
κ=2 qκ

. (62)

Thus, Y ′ follows a conditional distribution after learning Y 6= y1. In particular,

E[Y ] = q1y1 + (1− q1)E[Y ′], (63)

E[Y 2] = q1y
2
1 + (1− q1)E[(Y ′)2]. (64)

Moreover, by the induction hypothesis, inequality (56) holds for Y ′, i.e.,

E
[
g
(
Y ′, (Y ′)2

)]
> g

(
E[Y ′], E[(Y ′)2]

)
. (65)

As above, we define an auxiliary mapping

f̃(t) = (1− t)
(
y1
y21

)
+ t

(
E[Y ′]

E[(Y ′)2]

)
(t ∈ [0, 1]). (66)

Clearly, E[(Y ′)2] > E[Y ′]2. Therefore, as illustrated in Figure 3(b), the vector that directs from(y1
y21

)
to
( E[Y ′]
E[(Y ′)2]

)
is steeper than the vector that directs from

(y1
y21

)
to
( E[Y ′]
E[Y ′]2

)
. Hence, g is strictly

convex also along the linear path described by f̃ .63 Thus, g ◦ f̃ is strictly convex.
63 Indeed, letting x = (1 − t)y1 + tE[Y ′] > 1, y = (1 − t)y21 + tE[(Y ′)2] > x2, dx = E[Y ′] − y1 > 0, and

dy = E[(Y ′)2] − y21 > 0, we see that dy/dx = (E[(Y ′)2] − y21)/(E[Y ′] − y1) > (E[(Y ′)]2 − y21)/(E[Y ′] − y1) =
E[Y ′] + y1 > 1 + y1 = (y − 1)/(x− 1), so that the precondition in (55) holds true also in this case.
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Figure 3. Improving upon Jensen’s inequality.

Therefore, considering t as a random variable that assumes the value t = 0 with probability

q1 = pr(Y = y1) > 0 and the value t = 1 with probability 1− q1 > 0, relationships (63-66) imply

E[g(Y, Y 2)] = q1g(y1, y
2
1) + (1− q1)E[g(Y ′, (Y ′)2] (67)

> q1g(y1, y
2
1) + (1− q1)g

(
E[Y ′], E[(Y ′)2]

)
(68)

= E[g(f̃(t))] (69)

> g(f̃(E[t])) (70)

= g
(
q1y1 + (1− q1)E[Y ′], q1y

2
1 + (1− q1)E[(Y ′)2]

)
(71)

= g(E[Y ], E[Y 2]). (72)

Thus, the claim holds for K+1 realizations. This completes the induction, and thereby, the proof

of the lemma. �

Lemma A.664 Let g : (0, 1) × (0, 1) → R be a twice continuously differentiable function with

64This auxiliary result, a mirror image of Lemma A.5, is used in the proof of Proposition 5.
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Hessian matrix

Hg(x, y) =

 ∂2g(x,y)
∂x2

∂2g(x,y)
∂x∂y

∂2g(x,y)
∂y∂x

∂2g(x,y)
∂y2

 , (73)

and let Y be a nondegenerate random variable with finite support in (0, 1). If

{
x, y ∈ (0, 1), y ≥ x2, dx > 0, dy > 0,

dy
dx

<
1− y
1− x

}
⇒ (dx dy) (Hg(x, y))

(
dx
dy

)
> 0, (74)

then

E
[
g
(
Y, Y 2

)]
> g

(
E[Y ], E[Y 2]

)
. (75)

Proof. By induction. Assume first that the random variable Y has precisely two possible

realizations y1, y2 ∈ (0, 1). Without loss of generality, y1 < y2. Consider the auxiliary mapping

f : [0, 1]→ R2 defined through

f(t) = (1− t)
(
y1
y21

)
+ t

(
y2
y22

)
(t ∈ [0, 1]). (76)

By assumption, g is strictly convex along the straight line described by f .65 In particular, the

composed mapping g ◦ f is strictly convex. Therefore, when t is considered a random variable

that assumes the value t = 0 with probability q1 = pr(Y = y1) > 0 and the value t = 1 with

probability q2 = 1− q1 = pr(Y = y2) > 0, then

E[g(Y, Y 2)] = E[g(f(t))] (77)

> g(f(E[t])) (78)

= g
(
q1y1 + (1− q1)y2, q1y21 + (1− q1)y22

)
(79)

= g([E[Y ], E[Y 2]). (80)

This proves the claim in the case that Y has two realizations. Suppose that the claim has been

shown for K ≥ 2 realizations, and assume that Y has K + 1 realizations y1 < . . . < yK+1, with

respective probabilities qk = pr(Y = yk) > 0, where k = 1, . . . ,K + 1. Consider the random

65To see this, let x = (1− t)y1 + ty2 ∈ (0, 1), y = (1− t)y21 + ty22 ≥ x2, dx = y2 − y1 > 0, and dy = y22 − y21 > 0.
Then, dy/dx = y2 + y1 < 1 + y1 ≤ (1− y)/(1− x), so that the precondition in (74) indeed holds true.
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variable Y ′ that attains value yk, for k = 2, . . . ,K + 1, with probability

q′k =
qk

1− q1
=

qk∑K+1
κ=2 qκ

. (81)

Thus, Y ′ follows a conditional distribution after learning Y 6= y1. In particular,

E[Y ] = q1y1 + (1− q1)E[Y ′], (82)

E[Y 2] = q1y
2
1 + (1− q1)E[(Y ′)2]. (83)

Moreover, by the induction hypothesis, inequality (56) holds for Y ′, i.e.,

E
[
g
(
Y ′, (Y ′)2

)]
> g

(
E[Y ′], E[(Y ′)2]

)
. (84)

As above, we define an auxiliary mapping

f̃(t) = (1− t)
(
y1
y21

)
+ t

(
E[Y ′]

E[(Y ′)2]

)
(t ∈ [0, 1]). (85)

Clearly, E[(Y ′)2] > E[Y ′]2. Therefore, the vector that directs from
(y1
y21

)
to
( E[Y ′]
E[(Y ′)2]

)
is steeper

than the vector that directs from
(y1
y21

)
to
( E[Y ′]
E[Y ′]2

)
. Hence, g is strictly convex also along the linear

path described by f̃ .66 Thus, g◦ f̃ is strictly convex. Therefore, considering t as a random variable
that assumes the value t = 0 with probability q1 = pr(Y = y1) > 0 and the value t = 1 with

probability 1− q1 > 0, relationships (82-85) imply

E[g(Y, Y 2)] = q1g(y1, y
2
1) + (1− q1)E[g(Y ′, (Y ′)2] (86)

> q1g(y1, y
2
1) + (1− q1)g

(
E[Y ′], E[(Y ′)2]

)
(87)

= E[g(f̃(t))] (88)

> g(f̃(E[t])) (89)

= g
(
q1y1 + (1− q1)E[Y ′], q1y

2
1 + (1− q1)E[(Y ′)2]

)
(90)

= g(E[Y ], E[Y 2]). (91)

66 Indeed, letting x = (1 − t)y1 + tE[Y ′] ∈ (0, 1), y = (1 − t)y21 + tE[(Y ′)2] > x2, dx = E[Y ′] − y1 > 0, and
dy = E[(Y ′)2] − y21 > 0, we see that dy/dx = (E[(Y ′)2] − y21)/(E[Y ′] − y1) > (E[(Y ′)]2 − y21)/(E[Y ′] − y1) =
E[Y ′] + y1 > 1 + y1 ≥ (1− y)/(1− x), so that the precondition in (74) holds true also in this case.

54



Thus, the claim holds for K+1 realizations. This completes the induction, and thereby, the proof

of the lemma. �

Appendix B. Proofs

This Appendix contains formal proofs and technical details omitted from the body of the paper.

Proof of Lemma 1. This is a special case of a result in Ewerhart and Quartieri (2020). The

details are omitted. �

Formal description of the Bayesian updating. For each contestant i ∈ {1, 2}, there are
three basic scenarios .

(i) Suppose first that player i discloses ci ∈ Ci. Then, player i is believed to be of type ci with
probability one, i.e., µi(ci) = 1.

(ii) Next, suppose that player i does not disclose her type, and that player i’s decision to not

disclose is a possibility on the equilibrium path, i.e., Ci\Si 6= ∅. Then, ci is expected to be in the

set-theoretic complement of Si. Hence, by Bayes’rule,

µi(ci) =

 qi(ci)/
∑

c′i∈Ci\Si
qi(c

′
i) if ci ∈ Ci\Si

0 if ci ∈ Si.
(92)

(iii) Finally, suppose that player i does not disclose her type, and that i’s decision to not disclose

is an off-equilibrium event, i.e., Ci\Si = ∅. Then, the belief about player i may be specified as

an arbitrary probability distribution µi = µ0i over Ci.

Proof of Lemma 2. Lemma 2 is derived by combining several inequalities, all of which are

derived from the first-order conditions necessary for players’ bid schedules to be mutual best

responses. Property (ii) of Definition 1 will be checked first. Suppose that all types of both

players are active. There are two cases.

Case A. Suppose first that Supp(µ1) = C1 and Supp(µ2) = C2. We make use of Lemma A.3.

Letting i = 2 in (25) yields

γ2h(ξ∗2(c2)) ≤
1

π2
· γ2h(ξ∗2(c2)) +

1− π2
π2

· γ1h(ξ∗1(c1)). (93)
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Combining this with (26) delivers

γ2h(ξ∗2(c2)) ≤
{

1

π2
· γ
σ̂

+
1− π2
π2

}
︸ ︷︷ ︸

≡α

· γ1h(ξ∗1(c1)), (94)

where γ = γ2/γ1, as before. Letting i = 1 in (25), and plugging the result into (94) yields

γ2h(ξ∗2(c2)) ≤ α ·
{

1

π1
· γ1h(ξ∗1(c1)) +

1− π1
π1

· γ2h(ξ∗2(c2))

}
. (95)

To be able to solve for γ2h(ξ∗2(c2)), we assume for the moment that

1− α1− π1
π1

> 0. (96)

Then, rewriting (95), we obtain

γ2h(ξ∗2(c2)) ≤
{

α · 1π1
1− α · 1−π1π1

}
︸ ︷︷ ︸

≡λ

· γ1h(ξ∗1(c1)). (97)

Thus, γ2h(ξ∗2(c2)) ≤ λ · γ1h(ξ∗1(c1)). We claim that inequality (96) holds. Indeed, starting with

Assumption 1, we find that

γ <
π1 + 2π2 − 2

2− π1
· σ̂ (98)

⇔ γ

σ̂
+ 1 <

2π2
2− π1

(99)

⇔ (γ/σ̂) + 1

π2︸ ︷︷ ︸
=α+1

<
2

2− π1︸ ︷︷ ︸
=

π1
2−π1

+1

(100)

⇔ α <
π1

2− π1
(101)

⇔ 1− α(1− π1)
π1

>
α

π1
. (102)

Clearly, this implies (96). Moreover, it can be readily verified that (102) implies λ < 1. Therefore,

γ2h(ξ∗2(c2)) ≤ γ1h(ξ∗1(c1)). Using the monotonicity of equilibrium bid schedules (Lemma A.2
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above), this proves

γ2h(ξ∗2(c2)) ≤ γ1h(ξ∗1(c1)) (c1 ∈ C1, c2 ∈ C2). (103)

Clearly this proves property (ii) in Definition 1 for the case that all types of both players conceal

their private information.

Case B. Supp(µi)  Ci for some player i ∈ {1, 2}. The conclusion remains valid even if not all
types conceal. To understand why, note that disclosure by some types means that, in the relevant

information set at the contest stage, the sets C1 and C2 are replaced by nonempty subsets,

respectively. Therefore, player 1’s lowest relative resolve σ = c2/c1 rises weakly. Given that the

curvature ρ ≥ 1 stays unchanged, this implies that σ̂(σ, ρ) rises weakly as well. Further, player

1 and 2’s predictabilities π1 and π2 fall weakly, while the net bias γ stays the same. Therefore,

Assumption 1 continues to hold, and the argument detailed under case A goes through as before.

This concludes the proof of property (ii) of Definition 1.

It remains to verify property (i) of the definition of uniform asymmetry, i.e., that all types of

player 1 are active. Suppose not. Then, all types of player 2 are active. Denote by ∅ 6= C∗1 ( C1

the set of active types of player 1, and by q∗1 =
∑

c1∈C∗1
q1(c1) the ex-ante probability that player

1 is active. Then, since any positive bid wins against an inactive type with probability one, the

corresponding terms in player 2’s first-order condition vanish, so that

∑
c1∈C∗1

q1(c1)
γ2h

′(ξ∗2(c2))γ1h(ξ∗1(c1))

(γ1h(ξ∗1(c1)) + γ2h(ξ∗2(c2)))
2

= c2 (c2 ∈ C2). (104)

In the modified contest, player 1’s type set C1 is replaced by the subset C∗1 , the probability

distribution q1(.) is replaced by q∗1(c1) = q1(c1)/q
∗
1, and player 2’s type set C2 is replaced by

C2
q∗1

=

{
c2
q∗1

∣∣∣∣ c2 ∈ C2} . (105)

Denote by ξ∗1|C∗1 the restriction of the mapping ξ
∗
1 : C1 → R+ to C∗1 , and by ξ

∗
2|q∗1 : C2q∗1

→ R+ the

bid schedule for player 2 in the modified contest that satisfies ξ∗2|q∗1 ( c2q∗1
) = ξ∗2(c2) for any c2 ∈ C2.

We claim that (ξ∗1|C∗1 , ξ
∗
2|q∗1 ) is a Bayesian equilibrium in the modified contest. Indeed, quite

obviously, the first-order condition of any active type of player 1 holds in the modified contest.
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Moreover, dividing (104) by q∗1 > 0, we get

∑
c1∈C∗1

q1(c1)

q∗1

γ2h
′(ξ∗2(c2))γ1h(ξ∗1(c1))

(γ1h(ξ∗1(c1)) + γ2h(ξ∗2(c2)))
2

=
c2
q∗1

(c2 ∈ C2), (106)

i.e., also the first-order condition of any type of player 2 holds in the modified contest. Since

all types of both players are active in (ξ∗1|C∗1 , ξ
∗
2|q∗1 ) and since, in addition, the expected payoff

against a player that is always active is strictly concave in the own bid, this proves the claim,

i.e., (ξ∗1|C∗1 , ξ
∗
2|q∗1 ) is indeed a Bayesian equilibrium in the modified contest. Next, one notes that,

since Assumption 1 holds for the original contest, Assumption 1 holds also for the modified contest

(because π1 and σ rise weakly, while γ, ρ, and π2 stay the same). From the first part of the proof,

applied to the modified contest, it therefore follows that

γ2h(ξ∗2(c2)) ≤ γ1h(ξ∗1(c1)) (c1 ∈ C∗1 , c2 ∈ C2). (107)

Now, by assumption, some types of player 1 remain inactive in the original contest. Since, by

Lemma A.2, ξ∗1 is monotone declining, this clearly implies ξ
∗
1(c1) = 0. Consequently, the marginal

productivity at the zero bid level h′(0) = limε↘0
h(ε)
ε is finite. Moreover, type c1’s marginal payoff

at the zero bid level is weakly negative, i.e.,

Ec2

[
γ1h

′(0)

γ2h(ξ∗2(c2))

]
≤ c1. (108)

Plugging (107) into (108), we see that

h′(0)

h(ξ∗1(c1))
≤ c1 (c1 ∈ C∗1 ). (109)

Moreover, Assumption 1 implies

γ2
γ1

= γ <
π1 + 2π2 − 2

2− π1︸ ︷︷ ︸
≤1

· σ̂(σ, ρ)︸ ︷︷ ︸
≤σ

≤ σ =
c2
c1
. (110)

Multiplying inequality (109) by (γ/q∗1) > 0, exploiting (110), and taking expectations over all
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c1 ∈ C∗1 , we get ∑
c1∈C∗1

q1(c1)

q∗1

γ2h
′(0)

γ1h(ξ∗1(c1))
<
c2
q∗1
. (111)

Thus, in the modified contest, the marginal expected payoff of type (c2/q
∗
1) at the zero bid level

is strictly negative. But this is impossible given that she is active and her expected payoff against

ξ∗1|C∗1 is strictly concave. The contradiction shows that, indeed, all types of player 1 are active in
the original contest. �

Proof of Theorem 1. We start by showing that self-disclosure by all types of both players

constitutes a perfect Bayesian equilibrium. To this end, we specify off-equilibrium beliefs µ01 ∈
∆(C1) and µ02 ∈ ∆(C2) as follows. The underdog expects a favorite that does not disclose her

private information to be of type c1 = c1 with probability one. Thus, µ01(c1) = 1 if c1 = c1,

and µ01(c1) = 0 otherwise. Similarly, the favorite expects an underdog that does not disclose her

private information to be of type c2 = c2 with probability one. Thus, µ
0
2(c2) = 1 if c2 = c2, and

µ02(c2) = 0 otherwise. To check the equilibrium property, consider first an arbitrary type c1 ∈ C1
of the favorite. If c1 complies with equilibrium self-disclosure, and is matched with some type

c2 ∈ C2 of the underdog, then c1 receives a complete-information equilibrium payoff of

Π◦1(c1, c2) = Π1(x
◦
1(c1, c2), x

◦
2(c1, c2); c1) (112)

= Π1(β̃1(x
◦
2(c1, c2); c1), x

◦
2(c1, c2); c1). (113)

If, however, c1 chooses to not disclose then, given the off-equilibrium beliefs specified above, an

underdog of type c2 expects the favorite to be of the worst-case type c1 and, having revealed her

own type c2, chooses an effort of x◦2(c1, c2). Responding optimally to type c2’s bid, the deviating

favorite of type c1 chooses an effort of β̃1(x
◦
2(c1, c2); c1) at the contest stage, and consequently

receives a payoff of

Πdev1 (c1, c2) = Π1(β̃1(x
◦
2(c1, c2); c1), x

◦
2(c1, c2); c1). (114)

A straightforward application of Monaco and Sabarwal (2016, Th. 3) shows that, given Assump-

tion 1, x◦2(c1, c2) ≤ x◦2(c1, c2).
67 We claim that Π◦1(c1, c2) ≥ Πdev1 (c1, c2). Indeed, if x◦2(c1, c2) <

67For a self-contained argument, it suffi ces to replicate earlier arguments. Indeed, suppose that x◦2(c1, c2) >
x◦2(c1, c2). Clearly, all equilibrium efforts are positive under complete information. Therefore, using Lemma 2(ii),
player 1’s domain condition holds at (x◦2(c1, c2); c1), so that, by Lemma 3(i), x

◦
1(c1, c2) > x◦1(c1, c2). Moreover,

using Lemma 2(ii) another time, player 2’s domain condition is seen to hold at (x◦1(c1, c2); c2), so that by Lemma
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x◦2(c1, c2) then, by Lemma A.4(ii), Π◦1(c1, c2) > Πdev1 (c1, c2). Moreover, if x◦2(c1, c2) = x◦2(c1, c2)

then Π◦1(c1, c2) = Πdev1 (c1, c2), which proves the claim. Taking expectations over all c2 ∈ C2 yields

Ec2 [Π◦1(c1, c2)] ≥ Ec2
[
Πdev1 (c1, c2)

]
(c1 ∈ C1). (115)

Hence, a deviation is not profitable for any type c1 ∈ C1. On the other hand, if any type of

the underdog deviates, and the favorite interprets this as a tactic of the strongest type of the

underdog, then one can show in complete analogy that the equilibrium condition holds.68 It

follows that self-disclosure by all types of both players is indeed a perfect Bayesian equilibrium.

Next, suppose there is a perfect Bayesian equilibrium in which not all private information is

revealed. Then, for at least one player i ∈ {1, 2}, the set of types concealing their signal, Ci\Si,
has at least two elements. By suitably redefining C1 and C2, we may assume without loss of

generality that all types conceal their types. Suppose first that K2 ≥ 2. Then, Proposition 1

implies that the weakest type of the underdog has a strict incentive to unilaterally deviate at the

revelation stage, in conflict to the equilibrium assumption. Suppose next thatK2 = 1. Then, since

there is incomplete information, K1 ≥ 2. But, again, this cannot be part of a perfect Bayesian

equilibrium by Proposition 2. Thus, either way, we obtain a contradiction, and the claim follows.

This proves the theorem. �

Best-response monotonicity. We will say that player 1’s domain condition holds at (ξ2; c1) ∈
X∗2 × C1 if (i) β̃1(ξ2; c1) > 0, and (ii) p1(β̃1(ξ2; c1), ξ2(c2)) >

1
2 for any c2 ∈ C2. Thus, player 1’s

domain condition at (ξ2; c1) requires that type c1’s best-response bid against ξ2 is interior, and

wins with a probability strictly exceeding one half against any of player 2’s types. Similarly, we

will say that player 2’s domain condition holds at (ξ̂1, c2) ∈ X∗1 ×C2 if (i) β̃2(ξ̂1; c2) > 0, and (ii)

p2(ξ̂1(c1), β̃2(ξ̂1; c2)) <
1
2 for any c1 ∈ C1. Thus, player 2’s domain condition at (ξ̂1; c1) requires

that type c2’s best-response bid against ξ̂1 is interior, and wins with a probability strictly below

one half against any of player 1’s types. Using these definitions, we obtain the following useful

result.

Lemma B.1 (Strict monotonicity of best-response mappings)

(i) Let ξ2, ξ̂2 ∈ X∗2 with ξ2 � ξ̂2, and let c1 ∈ C1. If player 1’s domain condition holds at (ξ2; c1),

3(ii), x◦2(c1, c2) < x◦2(c1, c2), which yields the desired contradiction.
68The details are omitted.
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then β̃1(ξ2; c1) > β̃1(ξ̂2; c1). In particular, if player 1’s domain condition holds at (ξ2; c1) for

every c1 ∈ C1, then β1(ξ2) � β1(ξ̂2).

(ii) Let ξ1, ξ̂1 ∈ X∗1 with ξ1 � ξ̂1, and let c2 ∈ C2. If player 2’s domain condition holds at (ξ̂1; c2),

then β̃2(ξ1; c2) < β̃2(ξ̂1; c2). In particular, if player 2’s domain condition holds at (ξ̂1; c2) for

every c2 ∈ C2, then β2(ξ1) ≺ β2(ξ̂1).

Proof. (i) Let ξ2, ξ̂2 ∈ X∗2 with ξ2 � ξ̂2, and c1 ∈ C1. By assumption, player 1’s domain

condition holds at (ξ2; c1). We wish to show that x1 ≡ β̃1(ξ2; c1) > β̃1(ξ̂2; c1) ≡ x̂1. To provoke

a contradiction, suppose that x̂1 ≥ x1. From the domain condition, we have x1 > 0. Therefore,

both x1 and x̂1 are positive, so that the corresponding first-order conditions imply

Ec2

[
γ1h

′(x1)γ2h(ξ2(c2))

(γ1h(x1) + γ2h(ξ2(c2)))
2

]
= Ec2

[
γ1h

′(x̂1)γ2h(ξ̂2(c2))

(γ1h(x̂1) + γ2h(ξ̂2(c2)))
2

]
= c1. (116)

Fix some c2 ∈ C2 for the moment. Letting x = γ1h(β̃1(ξ2; c1)) and y = γ2h(ξ2(c2)), the domain

condition implies x > y. Clearly, the mapping y 7→ y/(x + y)2 is strictly increasing over the

interval [0, x]. Therefore, noting that ξ2 � ξ̂2 implies y ≥ ŷ ≡ γ2h(ξ̂2(c2)), we see that

γ1h
′(x1)γ2h(ξ2(c2))

(γ1h(x1) + γ2h(ξ2(c2)))
2
≥ γ1h

′(x1)γ2h(ξ̂2(c2))

(γ1h(x1) + γ2h(ξ̂2(c2)))
2

(c2 ∈ C2), (117)

with strict inequality for at least one c2 ∈ C2. Moreover, from x̂1 ≥ x1,

γ1h
′(x1)γ2h(ξ̂2(c2))

(γ1h(x1) + γ2h(ξ̂2(c2)))
2
≥ γ1h

′(x̂1)γ2h(ξ̂2(c2))

(γ1h(x̂1) + γ2h(ξ̂2(c2)))
2

(c2 ∈ C2). (118)

Combining (117) and (118), and subsequently taking expectations , we arrive at

Ec2

[
γ1h

′(x1)γ2h(ξ2(c2))

(γ1h(x1) + γ2h(ξ2(c2)))
2

]
> Ec2

[
γ1h

′(x̂1)γ2h(ξ̂2(c2))

(γ1h(x̂1) + γ2h(ξ̂2(c2)))
2

]
, (119)

in conflict with (116). The contradiction shows that x1 > x̂1, as claimed. Moreover, if player 1’s

domain condition holds for any c1 ∈ C1, then β̃1(ξ2; c1) > β̃1(ξ̂2; c1) for any c1 ∈ C1, which indeed
implies β1(ξ2) � β1(ξ̂2).

(ii) The proof is similar. Let ξ1, ξ̂1 ∈ X∗1 with ξ1 � ξ̂1, and c2 ∈ C2. By assumption, player 2’s
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domain condition holds at (ξ̂1; c2). Suppose that x2 ≡ β̃2(ξ1; c2) ≥ β̃2(ξ̂1; c2) ≡ x̂2. Then, from

the domain condition, x̂2 > 0. Hence,

Ec1

 γ2h
′(x̂2)γ1h(ξ̂1(c1))(

γ1h(ξ̂1(c1)) + γ2h(x̂2)
)2
 = Ec1

[
γ2h

′(x2)γ1h(ξ1(c1))

(γ1h(ξ1(c1)) + γ2h(x2))2

]
= c2. (120)

Fix some c1 ∈ C1, and let x̂ = γ2h(β̃2(ξ̂1; c2)) and ŷ = γ1h(ξ̂1(c1)). By the domain condition,

x̂ < ŷ. Moreover, the mapping ŷ 7→ ŷ/(x̂ + ŷ)2 is strictly declining for ŷ ≥ x̂. Hence, given that

ξ̂1 ≺ ξ1 implies ŷ ≤ y ≡ γ1h(ξ1(c1)), we see that

γ2h
′(x̂2)γ1h(ξ̂1(c1))(

γ1h(ξ̂1(c1)) + γ2h(x̂2)
)2 ≥ γ2h

′(x̂2)γ1h(ξ1(c1))

(γ1h(ξ1(c1)) + γ2h(x̂2))
2 (c1 ∈ C1), (121)

with strict inequality for some c1 ∈ C1. Moreover, from x̂2 ≤ x2,

γ2h
′(x̂2)γ1h(ξ1(c1))

(γ1h(ξ1(c2)) + γ2h(x̂2))2
≥ γ2h

′(x2)γ1h(ξ1(c1))

(γ2h(ξ1(c1)) + γ2h(x1))2
(c1 ∈ C1). (122)

Combining (121) and (122), and taking expectations, we arrive at

Ec1

 γ2h
′(x̂2)γ1h(ξ̂1(c1))(

γ1h(ξ̂1(c1)) + γ2h(x̂2)
)2
 > Ec1

[
γ2h

′(x2)γ1h(ξ1(c1))

(γ1h(ξ1(c1)) + γ2h(x2))2

]
, (123)

in contradiction to (120). It follows that, indeed, x̂2 > x2. In particular, provided that player

2’s domain condition holds for any c2 ∈ C2, it follows that β2(ξ1) ≺ β2(ξ̂1). This concludes the

proof. �

This lemma shows that the domain conditions are suffi cient to ensure that a type’s best-response

bid and a player’s best-response bid schedule, respectively, move in a strictly monotone way to

changes in the opponent’s bid schedule. For example, in the case of player 1, the best-response

bid of type c1 will strictly rise in response to an increase of player 2’s bid schedule. If player

1’s domain condition holds at all of her types, then we get a strict order relation even between

the best-response bid schedules. Similar comparative statics properties hold for player 2, whose

best-response mapping is, however, strictly declining under the assumptions of Lemma B.1. In
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sum, the contest with two-sided incomplete information exhibits, subject to domain conditions,

comparative statics properties analogous to those of the complete-information contest.

Proof of Proposition 1. The conclusions of Proposition 1 are immediate if ξ∗2(c2) = 0. Suppose

that ξ∗2(c2) > 0. Since, by Lemma A.2, the equilibrium bid schedule ξ∗2 is weakly declining,

actually all types of player 2 are active in ξ∗2. Using Lemma A.2 another time, one sees that ξ
∗
2

is even strictly declining. These observations will be tacitly used below. We now prove the three

assertions made in the statement of the proposition.

(i) First, it is shown that self-disclosure induces the weakest type of the underdog to strictly

raise her bid, i.e., ξ∗2(c2) < x#2 . To provoke a contradiction, suppose that ξ
∗
2(c2) ≥ x#2 . Then,

because ξ∗2 is strictly declining and there are at least two possible type realizations for player 2,

we get ξ∗2 � ψ2(x
#
2 ). We claim that player 1’s domain condition holds at (ξ∗2; c1), for any c1 ∈ C1.

To see this, take some c1 ∈ C1. Then, from Lemma 2(i), β̃1(ξ∗2; c1) = ξ∗1(c1) > 0. Further, since all

types of player 2 are active in ξ∗2, Lemma 2(ii) implies that p1(ξ
∗
1(c1), ξ

∗
2(c2)) >

1
2 for any c2 ∈ C2,

which proves the claim. We may, therefore, apply Lemma B.1(i) so as to obtain

ξ∗1 = β1(ξ
∗
2) � β1(ψ2(x

#
2 )) = ξ#1 . (124)

Next, it is claimed that player 2’s domain condition holds at (ξ#1 ; c2). Since (ξ#1 (.), x#2 ) is an

equilibrium in the contest with one-sided incomplete information, we have x#2 > 0, i.e., player 2

is active with probability one. Applying Lemma 2(ii) shows, therefore, that p2(ξ
#
1 (c1), x

#
2 ) < 1

2

holds true for any c1 ∈ C1. Since β̃2(ξ
#
1 ; c2) = x#2 , this means that p2(ξ

#
1 (c1), β̃2(ξ

#
1 ; c2)) <

1
2 ,

for any c1 ∈ C1. I.e., player 2’s domain condition at (ξ#1 ; c2) is indeed satisfied. Therefore, using

relationship (124) and Lemma B.1(ii), we see that

ξ∗2(c2) = β̃2(ξ
∗
1; c2) < β̃2(ξ

#
1 ; c2) = x#2 , (125)

in contradiction to ξ∗2(c2) ≥ x
#
2 . Thus, ξ

∗
2(c2) < x#2 , as claimed.

(ii) Next, it is shown that, after disclosure, the probability of winning for the weakest type of

the underdog rises strictly, i.e.,

p#2 = Ec1 [p2(ξ
#
1 (c1), x

#
2 )] > Ec1 [p2(ξ

∗
1(c1), ξ

∗
2(c2))] = p∗2. (126)
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In fact, we will prove the somewhat stronger statement

p2(ξ
#
1 (c1), x

#
2 ) > p2(ξ

∗
1(c1), ξ

∗
2(c2)) (c1 ∈ C1). (127)

Take some type c1 ∈ C1. It is claimed first that β̃1(ψ2(ξ
∗
2(c2)); c1) > 0, as shown in the left

diagram of Figure 4. Indeed, because player 2 is always active in ξ∗2, the mapping x1 7→
Ec2 [Π1(x1, ξ

∗
2(c2); c1)] is strictly concave on R+, and vanishes at x1 = 0. Therefore, the opti-

mality of ξ∗1(c1) > 0 implies Ec2 [Π1(ξ
∗
1(c1), ξ

∗
2(c2); c1)] > 0. But the flat bid schedule ψ2(ξ

∗
2(c2))

is everywhere weakly lower than ξ∗2. Therefore, Ec2 [Π1(ξ
∗
1(c1), ψ2(ξ

∗
2(c2)); c1)] > 0, i.e., type c1 is

able to realize a positive payoff against the flat bid schedule ψ2(ξ
∗
2(c2)). Since ξ

∗
2(c2) > 0, it follows

that type c1’s best-response bid against ψ2(ξ
∗
2(c2)) is positive, as claimed. Next, from the previous

step, we know that x#2 > ξ∗2(c2). Invoking Lemma A.4(i), and noting that ξ
#
1 = β1(ψ2(x

#
2 )), it

follows that

p2(ξ
#
1 (c1), x

#
2 ) > p2(β̃1(ψ2(ξ

∗
2(c2)); c1), ξ

∗
2(c2)) (c1 ∈ C1). (128)

Next, comparing the strictly declining equilibrium bid schedule ξ∗2 = β2(ξ
∗
1) with the flat bid sched-

ule ψ2(ξ
∗
2(c2)), and recalling that there are at least two types, we obtain ξ

∗
2 � ψ2(ξ

∗
2(c2)). More-

over, as seen above, all types of player 2 are active. Hence, by Lemma 2(ii), p1(ξ∗1(c1), ξ
∗
2(c2)) >

1
2

for any c1 ∈ C1 and any c2 ∈ C2, so that via β̃1(ξ∗2; c1) = ξ∗1(c1), player 1’s domain condition is seen

to hold at (ξ∗2; c1), for any c1 ∈ C1. Therefore, by Lemma B.1(i), ξ∗1 = β1(ξ
∗
2) � β1(ψ2(ξ

∗
2(c2))),

as illustrated in Figure 4.69 In particular,

ξ∗1(c1) ≥ β̃1(ψ2(ξ∗2(c2)); c1) (c1 ∈ C1). (129)

Therefore,

p2(β̃1(ψ2(ξ
∗
2(c2)); c1), ξ

∗
2(c2)) ≥ p2(ξ∗1(c1), ξ∗2(c2)) (c1 ∈ C1). (130)

Combining (128) and (130) yields (127). In particular, this proves p#2 > p∗2, as claimed.

69The figure shows an example where x#2 < ξ∗2(c2). In general, we may also have that x
#
2 ≥ ξ∗2(c2).
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Figure 4. Proof of Proposition 1(ii).

(iii) Finally, we show that the weakest type of the underdog has a strict incentive to disclose

her type. Clearly, the equilibrium effort x#2 is positive. One can check that type c2’s first-order

condition is equivalent to

Ec1

[
p2(ξ

#
1 (c1), x

#
2 )−

(
p2(ξ

#
1 (c1), x

#
2 )
)2]

= c2Φ(x#2 ). (131)

Exploiting (131), we obtain for type c2’s expected payoff from self-disclosure,

Π#2 = Ec1

[(
p2(ξ

#
1 (c1), x

#
2 )
)2]

+ c2

(
Φ(x#2 )− x#2

)
. (132)

In a completely analogous fashion, we can convince ourselves that concealment grants type c2 a

payoff of

Π∗2(c2) = Ec1

[
(p2(ξ

∗
1(c1), ξ

∗
2(c2)))

2
]

+ c2 (Φ(ξ∗2(c2))− ξ∗2(c2)) . (133)

Now, from (127), we see that

Ec1

[(
p2(ξ

#
1 (c1), x

#
2 )
)2]

> Ec1

[
(p2(ξ

∗
1(c1), ξ

∗
2(c2)))

2
]
. (134)

Moreover, from Lemma A.1, Φ′ ≥ 1, so that the mapping x2 7→ Φ(x2)−x2 is monotone increasing
in x2. But, as shown above, ξ∗2(c2) < x#2 . It follows that the weakest type of the underdog has

indeed a strict incentive to reveal her type. This proves the final claim, and concludes the proof

of the proposition. �

Proof of Proposition 2. Since x◦1 and x
◦
2 are equilibrium efforts under complete information,
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we have x◦1 > 0 and x◦2 > 0. Similarly, one notes that x#2 > 0. Moreover, by Lemma 2(i), all types

of player 1 are active in ξ#1 , so that by Lemma A.2, the bid schedule ξ
#
1 is strictly declining. We

now prove the four assertions made in the statement of Proposition 2.

(i) It is claimed that x◦2 < x#2 . To provoke a contradiction, suppose that x
◦
2 ≥ x#2 . Lemma

2(ii) implies p1(x◦1, x
◦
2) >

1
2 , so that in view of x

◦
1 = β̃1(x

◦
2; c1), player 1’s domain condition holds

at (x◦2; c1). Hence, by Lemma B.1(i), if even x
◦
2 > x#2 , then

x◦1 = β̃1(x
◦
2; c1) > β̃1(x

#
2 ; c1) = ξ#1 (c1). (135)

If, however, x◦2 = x#2 , then it is immediate that x
◦
1 = ξ#1 (c1). Thus, either way, we arrive at

x◦1 ≥ ξ#1 (c1), so that ψ1(x
◦
1) � ψ1(ξ

#
1 (c1)). Moreover, given that player 1 has at least two types,

and that ξ#1 is strictly declining, ψ1(ξ
#
1 (c1)) � ξ#1 . Hence, ψ1(x

◦
1) � ξ#1 . Lemma 2(ii) implies

that p2(ξ
#
1 (c1), x

#
2 ) < 1

2 for any c1 ∈ C1. Thus, recalling that x
#
2 = β̃2(ξ

#
1 ; c#2 ), player 2’s domain

condition holds at (ξ#1 ; c#2 ). Therefore, using Lemma B.1(ii), we arrive at

x#2 = β̃2(ξ
#
1 ; c#2 ) > β̃2(ψ1(x

◦
1); c

#
2 ) = x◦2, (136)

a contradiction. It follows that x◦2 < x#2 , as claimed.

(ii) Next, it is shown that x◦1 < ξ#1 (c1). From the previous step, we know that x#2 > x◦2. Via

Lemma 2(ii), we see that p1(ξ
#
1 (c1), x

#
2 ) > 1

2 . Thus, the domain condition for player 1 holds at

(x#2 ; c1). Lemma B.1(i) implies, therefore, that

ξ#1 (c1) = β̃1(x
#
2 ; c1) > β̃1(x

◦
2; c1) = x◦1. (137)

Thus, the effort of the strongest type of the favorite will indeed be strictly lower after self-

disclosure.

(iii) Given part (i) above, we have x◦2 < x#2 . Recalling that x
◦
1 > 0, Lemma A.4(i) implies

p2(x
◦
1, x
◦
2) < p2(ξ

#
1 (c1), x

#
2 ), so that p1(x◦1, x

◦
2) > p1(ξ

#
1 (c1), x

#
2 ). Thus, type c1 indeed wins with

a strictly higher probability after self-disclosure.

(iv) The claim that Π◦1 > Π#1 follows now directly from Lemma A.4(ii). This completes the

proof. �
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Details on Example 1. The following numerical example shows that monotone comparative

statics results availabe for games of strategic heterogeneity do not apply to Example 1. Let

β1(ξ2) = β1(ψ2(ξ2(c2))) denote player 1’s best-response bid schedule against ψ2(ξ2(c2)), where

ξ2 ∈ X∗2 . Monaco and Sabarwal (2016, Th. 5) required that β1(ξ̂2) � ξ∗1, where ξ̂2 = β2(ξ̂1) and

ξ̂1 = β1(ξ
∗
2). A computation shows that ξ̂1(c1) = 0.1016, ξ̂1(c1) = 0.0715, and ξ̂2(c2) = 0.0194.

As a result, β1(ξ̂2)(c1) = 0.4208 > 0.1592 = ξ∗1(c1) and β1(ξ̂2)(c1) = 0.2919 > 0.1042 = ξ∗1(c1). It

follows that β1(ξ̂2) � ξ∗1, in conflict with the required condition. Thus, it is indeed not feasible to
apply existing methods to obtain Proposition 1.

Proof of Theorem 2. Without loss of generality, we may assume that the equilibrium is

interior. Then, the vector {ck2Φ(xk2)}
K2
k=1 is strictly hump-shaped as a consequence of the first-

order condition

pk2(1− pk2) = ck2Φ(xk2) (k ∈ {1, . . . ,K2}),

and the strict declining monotonicity of the bid schedule {xk2}
K2
k=1. Now, the “all-or-nothing”

disclosure by a type ĉ2 ∈ C2 may be seen as a continuous accumulation of identical pieces of

evidence δ2 with δ2(ĉ2) = 1 and δ2(c2) = 1
K2−1 for any c2 ∈ C2\{ĉ2}. Suppose first that K2 ≥ 3.

Then, there exists an extremal type ĉ2 ∈ {c2, c2} such that, for the just defined marginal piece of
evidence, the condition in Lemma 3 is fulfilled. Specifically, ĉ2 = c2 if c

#
1 >

√
c2c2, and ĉ2 = c2 if

c#1 ≤
√
c2c2. Clearly, this condition remains valid on the entire path. Hence, there is one extremal

type that strictly prefers to disclose. Suppose next that K2 = 2. Then the same argument goes

through provided that c#1 6=
√
c2c2. This proves the claim. �

Proof of Proposition 3. Consider an ex-ante symmetric, unbiased lottery contest specified by

c11 = c12 ≡ c < c ≡ c21 = c22 and q1(c) = q2(c) = q1(c) = q2(c) = 1
2 .
70 Assumption 1 does not

hold. However, for c/c suffi ciently large, all types concealing their private information is a perfect

Bayesian equilibrium. To understand why, note that the effi cient type of player 1 has expected

payoffs from not disclosing of

Ec2 [Π1(ξ
∗
1(c), ξ

#
2 (c2)); c] =

1

8
+

c2

2(c+ c)2
. (138)

This is strictly increasing in c/c, reflecting a mitigating effect of uncertainty. Suppose that the

70This case is isomorphic to Malueg and Yates (2004).
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effi cient type c of player 1 reveals her private information. If c/c ≥ 9, this marginalizes the

ineffi cient type of player 2, i.e, ξ#2 (c, c) = 0. As a result, two equally effi cient opponents meet

with probability one half, so that player 1’s expected payoff is

Ec2 [Π1(x
#
1 (c), ξ#2 (c2; c)); c] =

5

9
. (139)

Therefore, not disclosing is optimal for the effi cient type if c/c ≥ 6
√
31−31
5 ≈ 12.8.

For the ineffi cient type of player 1, we compare the expected payoff from not disclosing,

Ec2 [Π1(ξ
∗
1(c), ξ

∗
2(c2)); c] =

1

8
+

c2

2(c+ c)2
, (140)

with the expected payoff in the contest with one-sided private information,

Ec2 [Π1(x
#
1 (c), ξ#2 (c2; c)); c] =

(
√
c+
√
c)2(c+ c)

2(c+ 3c)2
, (141)

which is always strictly lower. �

Proof of Proposition 4. (i) Let c#1 ∈ C1 denote the public type of the favorite. For the unbiased
lottery contest, an interior equilibrium may be easily derived from the corresponding first-order

conditions (Hurley and Shogren, 1998a; Epstein and Mealem, 2013; Zhang and Zhou, 2016). In

our set-up, this yields equilibrium bids

x#1 =

(
E
[√
c2
]

c#1 + E [c2]

)2
, and (142)

ξ#2 (c2) =

√
x#1
c2
− x#1 (c2 ∈ C2), (143)

where we dropped, for convenience, the subscript c2 from the expectation operator. Using these

68



expressions, total expected costs under mandatory concealment are easily derived as

CMC = c#1 x
#
1 + E[c2ξ

#
2 (c2)] (144)

= (c#1 − E[c2])x
#
1 + E[

√
c2]

√
x#1 (145)

=
(c#1 − E[c2])E[

√
c2]

2

(c#1 + E[c2])2
+

E[
√
c2]

2

c#1 + E[c2]
(146)

=
2c#1 E[

√
c2]

2

(c#1 + E[c2])2
. (147)

Note that this formula entails, in particular, the complete-information case where c2 is public as

well. Therefore, being an expectation over such complete-information scenarios, total expected

costs under full revelation amount to

CFR = E

[
2c#1 c2

(c#1 + c2)2

]
. (148)

To compare the two expressions, we apply Lemma A.5 with Y =

√
c2/c

#
1 and g(x, y) = g1(x, y) ≡

2x2

(1+y)2
. The Hessian of the mapping g1 is given by

Hg1(x, y) =


4

(1 + y)2
− 8x

(1 + y)3

− 8x

(1 + y)3
12x2

(1 + y)4

 . (149)

It suffi ces to show that, for any x > 1, y ≥ x2, dx > 0, dy > 0 such that dy
dx
> y−1

x−1 , the quadratic

form

(dx dy) (Hg1(x, y))

(
dx
dy

)
=

4

(1 + y)2
dx
2 − 16x

(1 + y)3
dxdy +

12x2

(1 + y)4
dy
2 (150)

=
4dx

2

(1 + y)2

(
1− x

1 + y

dy
dx

)(
1− 3x

1 + y

dy
dx

)
(151)
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attains a positive value. To see this, one checks that

x

y + 1
· dy
dx

>
x

y + 1
· y − 1

x− 1︸ ︷︷ ︸
increasing in y

≥ x

x2 + 1
· x

2 − 1

x− 1
=
x2 + x

x2 + 1
> 1. (152)

Clearly then, the right-hand side of (151) is positive. This proves the claim. It follows that

CFR = E

[
2(c2/c

#
1 )

(1 + (c2/c
#
1 ))2

]
>

2E

[√
c2/c

#
1

]2
(1 + E[c2/c

#
1 ])2

= CMC, (153)

i.e., total expected costs are indeed strictly higher under full revelation than under mandatory

concealment. In particular, given that, by Eq. (35), expected costs in the lottery contest are the

same across contestants, and given that the favorite’s type is public, the favorite exerts a higher

effort under full revelation than under mandatory concealment.

(ii) From (142) and (143), player 1’s probability of winning is easily determined as

pMC1 = E

[
x#1

x#1 + ξ#2 (c2)

]
= E

[√
x#1 c2

]
=

E
[√
c2
]2

c#1 + E [c2]
, (154)

under mandatory concealment, and by

pFR1 = E

[
c2

c#1 + c2

]
(155)

under full revelation. Again, we apply Lemma A.5 for Y =

√
c2/c

#
1 , using this time the mapping

g(x, y) = g2(x, y) ≡ x2

1+y . The corresponding Hessian reads

Hg2(x, y) =


2

1 + y
− 2x

(1 + y)2

− 2x

(1 + y)2
2x2

(1 + y)3

 . (156)
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Suppose that x > 1, y ≥ x2, dx > 0, and dy > 0. Then, clearly,

(dx dy) (Hg2(x, y))

(
dx
dy

)
=

2dx
2

1 + y

(
1− x

1 + y

dy
dx

)2
≥ 0. (157)

Moreover, from relationship (152), inequality (157) is even strict, which implies strict convexity

of g2 along the relevant linear path segment. Thus, we have

pFR1 = E

[
(c2/c

#
1 )

1 + (c2/c
#
1 )

]
>

E

[√
c2/c

#
1

]2
1 + E[c2/c

#
1 ]

= pMC1 , (158)

and, consequently, also pFR2 < pMC2 .

(iii) Since expected costs are equal across players in the lottery contest, ex-ante expected

payoffs for the underdog are given by ΠFR2 = pFR2 − CFR

2 under full revelation, and by ΠMC2 =

pMC2 − CMC

2 under mandatory concealment. As seen above, pFR2 < pMC2 and CFR > CMC. Hence,

ΠFR2 < ΠMC2 , as claimed. �

Proof of Proposition 5. The underdog’s expected profits under mandatory concealment (i.e.,

the underdog “closes her eyes”) and under full revelation (i.e., the underdog “opens her eyes”),

respectively, are easily derived as

ΠMC
2 =

E[
√
c1]

2E[c1]

(E[c1] + c#2 )2
, (159)

ΠFR
1 = E

[
c21

(c1 + c#2 )2

]
. (160)

To compare the respective expressions for ΠMC and ΠFR, we apply Lemma A.6, in which the

support of the random variable Y is assumed to be (0, 1), with Y =

√
c1/c

#
2 and g(x, y) =

g3(x, y) ≡ x2y

(1+y)2
. The Hessian of the mapping g3 is given by

Hg3(x, y) =

 2y

(y+1)2
2x(1−y)
(y+1)3

2x(1−y)
(y+1)3

−2x
2(2−y)
(y+1)4

 . (161)

It suffi ces to show that, for any x, y ∈ (0, 1), y ≥ x2, dx > 0, dy > 0 such that dy
dx

< 1−y
1−x , the
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quadratic form

(dx dy) (Hg3(x, y))

(
dx
dy

)
=

2y

(1 + y)2
dx
2 +

4x(1− y)

(y + 1)3
dxdy −

2x2(2− y)

(y + 1)4
dy
2 (162)

=
2dx

2

(1 + y)2

(
1− x

1 + y

dy
dx

)(
y +

x(2− y)

1 + y

dy
dx

)
. (163)

attains a positive value. To see this, one checks that

x

y + 1
· dy
dx

<
x

y + 1
· 1− y

1− x︸ ︷︷ ︸
decreasing in y

≤ 3x

x2 + 1
· 1− x2

1− x =
x2 + x

x2 + 1
< 1. (164)

This proves the claim. �

Proof of Lemma 3. We use the shorthand notation xk2 ≡ ξ#2 (ck2) and pk2 ≡ p2(x
#
1 , x

k
2) for

k ∈ {1, . . . ,K2}. We have the first-order conditions

K2∑
k=1

qk2p
k
2(1− pk2) = c#1 Φ(x#1 ), (165)

pk2(1− pk2) = ck2Φ(xk2) (k ∈ {1, . . . ,K2}). (166)

Total differentiation of (165) yields

K2∑
k=1

qk2 (1− 2pk2)dp
k
2 +

{
K2∑
k=1

δk2p
k
2(1− pk2)

}
dε = c#1 Φ′(x#1 )dx#1 . (167)

Moreover, for k ∈ {1, . . . ,K2}, using (166),

dpk2 =
∂pk2

∂x#1
dx#1 +

∂pk2
∂xk2

dxk2 (168)

= −p
k
2(1− pk2)
Φ(x#1 )

dx#1 +
pk2(1− pk2)

Φ(xk2)
dxk2 (169)

= ck2

{
− Φ(xk2)

Φ(x#1 )
dx#1 + dxk2

}
. (170)
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From Lemma A.1(iv),

dxk2 =
Φ(xk2)

Φ(x#1 )

2pk2 − 1

Φ′(xk2)− 1 + 2pk2
dx#1 , (171)

so that

dpk2 = −ck2
Φ(xk2)

Φ(x#1 )

Φ′(xk2)

Φ′(xk2)− 1 + 2pk2
dx#1 (k ∈ {1, . . . ,K2}). (172)

Using (172) to eliminate dpk2 in (167), we obtain

{
K2∑
k=1

δk2c
k
2Φ(xk2)

}
dε

=
dx#1

Φ(x#1 )

{
c#1 Φ(x#1 )Φ′(x#1 )−

K2∑
k=1

qk2c
k
2Φ(xk2)

(2pk2 − 1)Φ′(xk2)

Φ′(xk2) + 2pk2 − 1

}
(173)

=
dx#1

Φ(x#1 )

K2∑
k=1

qk2c
k
2Φ(xk2)

{
Φ′(x#1 )− (2pk2 − 1)Φ′(xk2)

Φ′(xk2) + 2pk2 − 1

}
. (174)

We claim that

Φ′(x#1 )− (2pk2 − 1)Φ′(xk2)

Φ′(xk2) + 2pk2 − 1
> 0 (k ∈ {1, . . . ,K2}). (175)

Indeed, this is obvious for pk2 ≤ 1
2 since Φ′ ≥ 1 by Lemma A.1(ii). On the other hand, if pk2 >

1
2 ,

then 2pk2 − 1 > 0, and hence,

(2pk2 − 1) · Φ′(xk2)

Φ′(xk2) + 2pk2 − 1
< 2pk2 − 1 ≤ 1 ≤ Φ′(x#1 ). (176)

Hence, the claim (175) is indeed true. Therefore,

dx#1
dε

= {sth. positive}−1 ·
{
K2∑
k=1

δk2ϕ
k

}
, (177)

where ϕk = ck2Φ(xk2), for k ∈ {1, . . . ,K2}. The hump-shape of the sequence (ϕ1, . . . , ϕK2) follows

immediately from (166) and Lemma A.2. This proves the lemma. �

Proof of Proposition 6. As seen above, before the shift,

x#, before1 =

(
E[
√
c2]

c#1 + E[c2]

)2
. (178)
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It suffi ces to prove the claim for a FOSD shift in the type distribution of player 2 that makes c2

more likely by a probability ε > 0, and another type ĉ2 < c2 less likely by the same probability.

Then, after the shift, we get

x#, after1 =

(
E[
√
c2] + ε(

√
c2 −

√
ĉ2)

c#1 + E[c2] + ε(c2 − ĉ2)

)2
, (179)

Let ε̂ = ε(
√
c2 −

√
ĉ2). Then,

x#, after1 =

(
E[
√
c2] + ε̂

c#1 + E[c2] + ε̂(
√
c2 +

√
ĉ2)

)2
. (180)

It follows that x#, after1 < x#, before1 holds if and only if

1√
c2 +

√
ĉ2

<
E[
√
c2]

c#1 + E[c2]
(181)

⇔ c#1 + E[c2] < E[
√
c2](
√
c2 +

√
ĉ2). (182)

This is equivalent to

c#1 + E[c2] < E[
√
c2c2]︸ ︷︷ ︸

>E[c2]

+E[
√
c2ĉ2]︸ ︷︷ ︸

≥c#1

, (183)

which holds true. �

The following lemma is used in the proof of Proposition 7.

Lemma B.2 An active type c2 ∈ C2 prefers a marginal change dξ1 in player 1’s bid schedule if
and only if

Ec1

[
p2(ξ

∗
1(c1), ξ

∗
2(c2))(1− p2(ξ∗1(c1), ξ∗2(c2)))

ξ∗1(c1)
dξ1(c1)

]
< 0 (184)

Proof. Type c2’s expected payoff is given as

Ec1 [Π2] = max
x2≥0

E[p2(ξ
∗
1(c1), x2)− c2x2]. (185)

The claim follows now by the envelope theorem. �
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Proof of Proposition 7. First-order conditions read

q12
p11(1− p11)

x11
+ q22

p12(1− p12)

x11
= c1 (186)

q12
p21(1− p21)

x21
+ q22

p22(1− p22)

x21
= c1 (187)

q11
p11(1− p11)

x12
+ q21

p21(1− p21)

x12
= c2 (188)

q11
p12(1− p12)

x22
+ q21

p22(1− p22)

x22
= c2, (189)

where we use the shorthand notation

pk1k2 = p1(ξ
∗
1(c

k1
1 ), ξ∗2(c

k2
2 )) = 1− p2(ξ∗1(ck11 ), ξ∗2(c

k2
2 )). (190)

We consider now a marginal increase of q22 by ε, combined with a simultaneous reduction of q
1
2 by

ε (so that the resulting probabilities for player 2’s types continue to sum up to one). Intuitively,

this corresponds to a marginal counterpart of the scenario studied in Proposition 1. Taking the

total differential with respect to the variables x11 = ξ∗1(c
1
1), x

2
1 = ξ∗1(c

2
1), x

1
2 = ξ∗2(c

1
2), x

2
2 = ξ∗2(c

2
2),

and ε, we obtain the system



d11 0 −a11 −a12

0 d21 −a21 −a22

a11 a21 d12 0

a12 a22 0 d22





q11d lnx11

q21d lnx21

q12d lnx12

q22d lnx22


=



p11(1− p11)− p12(1− p12)

−p21(1− p21) + p22(1− p22)

0

0


dε, (191)

where the diagonal entries of the matrix in (191) are given by

d11 = − 2

q11

(
q12(p11)

2(1− p11) + q22(p12)
2(1− p12)

)
, (192)

d21 = − 2

q21

(
q12(p21)

2(1− p21) + q22(p22)
2(1− p22)

)
, (193)

d12 = − 2

q12

(
q11p11(1− p11)

2 + q21p21(1− p21)
2
)
, (194)

d22 = − 2

q22

(
q11p12(1− p12)

2 + q21p22(1− p22)
2
)
, (195)
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while the off-diagonal entries are given by

ak1k2 = (1− 2pk1k2)pk1k1(1− pk1k2) (k1, k2 ∈ {1, 2}). (196)

Inverting the matrix in (191) yields



d11 0 −a11 −a12

0 d21 −a21 −a22

a11 a21 d12 0

a12 a22 0 d22



−1

(197)

=
1

∆



(a21)
2d22 + (a22)

2d12 + d21d
1
2d
2
2 < 0 −a11a21d

2
2 − a12a22d

1
2 ∗ ∗

−a11a21d
2
2 − a12a22d

1
2 (a11)

2d22 + (a12)
2d12 + d11d

1
2d
2
2 < 0 ∗ ∗

−a22(a11a22 − a12a21)− a11d
2
1d
2
2 a12(a11a22 − a12a21)− a21d

1
1d
2
2 ∗ ∗

a21(a11a22 − a12a21)− a12d
2
1d
1
2 −a11(a11a22 − a12a21)− a22d

1
1d
1
2 ∗ ∗


,

with

∆ = det

 a11 a21

a12 a22


2

+ d11
[
(a22)

2d12 + (a21)
2d22
]

+ d21
[
(a12)

2d12 + (a11)
2d22
]

+ d11d
1
2d
2
1d
2
2 > 0.

(198)

These equations allow to disentangle the implications of a marginal shift in player 2’s type dis-

tribution. First, one notes that, while the repective signs of d11, d21, d12, and d22 are all negative,

the sign of ak1k2 is positive (negative) if pk1k1 <
1
2 (if pk1k1 >

1
2) or equivalently, if x

k1
1 < xk22 (if

xk11 > xk22 ). Next, one notes that, as a consequency of the monotonicity of bid schedules (Lemma

A.3),

{
pk11 >

1

2

}
⇒ pk11(1− pk11)− pk12(1− pk12) > 0 (199){

pk12 <
1

2

}
⇒ pk11(1− pk11)− pk12(1− pk12) < 0. (200)

Using these facts, we can now prove the proposition. Claims (i) and (ii) are immediate from the
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analysis above. As for claim (iii), using Lemma B.2, the expected payoffs of player 2’s weak type

c22 rises strictly if

q11
p11(1− p11)

x11
dx11 + q21

p12(1− p12)

x21
dx21 < 0, (201)

or equivalently, if

p11(1− p11)
(
q11d lnx11

)
+ p12(1− p12)

(
q21d lnx21

)
< 0. (202)

Using the results from above, this is seen to be equivalent to

0 > p11(1− p11)

 ((a21)
2d22 + (a22)

2d12 + d21d
1
2d
2
2)(p11(1− p11)− p12(1− p12))

+(a11a21d
2
2 + a12a22d

1
2)(−p21(1− p21) + p22(1− p22))

 (203)

+p12(1− p12)

 −(a11a21d
2
2 + a12a22d

1
2)(p11(1− p11)− p12(1− p12))

+((a11)
2d22 + (a12)

2d12 + d11d
1
2d
2
2)(−p21(1− p21) + p22(1− p22))

 .
This proves the last claim, and hence, the proposition. �

Proof of Proposition 8. To provoke a contradiction, suppose there are two messages m1

and m2, both used in equilibrium with positive probability, so that the equilibrium effort of the

uninformed player is strictly lower for message m1 than for m2. In straightforward extension

of Lemma A.4(ii), all types of the informed player share the same strict preference for lowering

the uninformed player’s bid– provided they are active against the lower bid. Therefore, any

type active after sending m1 strictly prefers sending m1 over sending m2. Moreover, only types

anticipating marginalization after sending m1 can rationally send m2 (because they bid zero

regardless of the message they sent). But then, the uninformed player would have a strict incentive

to lower her effort for message m2 weakly below her equilibrium effort for m1. Hence, we arrive

at the desired contradiction. �

Proof of Proposition 9. (i) In a fully separating equilibrium, the uninformed player 1 chooses

the bid

x◦1 =
c2(

c#1 + c2

)2 (204)
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when receiving type c2’s message. Recalling that c
#
1 is constant, the right-hand side of Eq. (204)

is positive and strictly hump-shaped in c2. However, by Proposition 8, player 1 necessarily chooses

the same bid in response to all types c2 ∈ C2. Therefore, there can be at most two types in C2.
(ii) In the lottery contest with complete information, the best response of player 1 against a given

effort level x2 of player 2 is x1 = max{0,
√
x2/c1 − x2}. Plugging this into the payoff function

yields Π1 = (max{0, 1−√c1x2})2. Suppose that player 1’s type c1 claims being ĉ1. As type c1 is
active under truth-telling, she will consider such deviation only if she stays active, but from the

profit formula, this will be the case for lower-cost types. Then, player 2 chooses x2 = ĉ1/(ĉ1+c2)
2.

Hence, type c1’s profit from claiming being type ĉ1 is

Ec2 [Π1] = Ec2


1−

√
c1ĉ1

ĉ1 + c2︸ ︷︷ ︸
>0 by activity


2 . (205)

Suppose now that c1 ≤ c2. Then, the right-hand side of Eq. (205) is strictly declining in ĉ1.

Hence, truth-telling cannot be an equilibrium– as, e.g., player 1’s weakest type c1 would have an

incentive to claim to be stronger. (iii) Let q denote the probability of the effi cient type of player

1. Under the given condition, the incentive compatibility condition for the effi cient type (205)

reads

q

(
1− c

c+ c

)2
︸ ︷︷ ︸

= 1
4

+(1− q)
(

1− c

c+ c

)2
≥ q

(
1−

√
cc

c+ c

)2
+ (1− q)

(
1−

√
cc

c+ c

)
, (206)

while the incentive compatibility condition for the ineffi cient type reads

q

(
1− c

c+ c

)2
+ (1− q)

(
1− c

c+ c

)2
︸ ︷︷ ︸

= 1
4

≥ q
(

max

{
0, 1−

√
cc

c+ c

})2
+ (1− q)

(
1−

√
cc

c+ c

)
. (207)
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Note that

(
1−

√
cc

c+ c

)2
>

1

4
, (208)(

1− c

c+ c

)2
>

(
1−

√
cc

c+ c

)2
. (209)

Therefore, rewriting yields

(
1− c

c+c

)2
−
(

1−
√
cc

c+c

)
(

1−
√
cc

c+c

)2
− 1

4

≥
q

1− q ≥

(
1−

√
cc

c+c

)
− 1

4(
1− c

c+c

)2
−
(

max
{

0, 1−
√
cc

c+c

})2 (210)

as a necessary condition for truth-telling. For convenience, we write x = c/c. Then, we get

(
1− 1

1+x

)2
−
(

1− 1
2
√
x

)
(

1−
√
x

1+x

)2
− 1

4

≥

(
1−

√
x

1+x

)
− 1

4(
1− x

1+x

)2
−
(

max
{

0, 1−
√
x
2

})2 . (211)

Multiplying out leads to

((1− 1

1 + x
)2 − (1− 1

2
√
x

)2)((1− x

1 + x
)2 − (1−

√
x

2
)2)− ((1−

√
x

1 + x
)2 − 1

4
)2

= −1

4

(
√
x+ 1)

2
(
√
x− 1)

6

√
x (x+ 1)3

(212)

< 0 (213)

for the case without self-marginalization (i.e., for x < 4), and to

((1− 1

1 + x
)2 − (1− 1

2
√
x

)2)(1− x

1 + x
)2 − ((1−

√
x

1 + x
)2 − 1

4
)2

= − 1

16

(
9x+ 46x2 + 9x3 − 8

√
x− 38x

3
2 − 30x

5
2 + 4

) (
√
x− 1)

2

(
√
x)
2

(x+ 1)3
(214)

Inspection shows that the polynomial

P = 9y2 + 46y4 + 9y6 − 8y − 38y3 − 30y5 + 4 (215)
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has two real zeros in the interval [0, 2] and four complex zeros. Therefore, for x ≥ 4, the right-

hand side of (214) is negative. Thus, regardless of whether the ineffi cient type self-marginalizes

herself or not, truth-telling cannot be simultaneously optimal for both types. (iv) Let i, j ∈ {1, 2}
such that j 6= i. With marginal variation of the reported type ĉi vis-a-vis the true type ci,

self-marginalization does not occur. Hence, incentive compatibility implies

0 =
∂

∂ĉi
Ecj

[(
1−

√
ciĉi

ĉi + cj

)2]∣∣∣∣∣
ĉi=ci

(216)

= Ecj

[
∂

∂ĉi

(
1−

√
ciĉi

ĉi + cj

)2∣∣∣∣∣
ĉi=ci

]
(217)

= Ecj

[
cj(ci − cj)
(ci + cj)

3

]
. (218)

Without loss of generality, the least effi cient type in the contest is ci. Then, letting ci = ci shows

that

Ecj

[
cj(ci − cj)
(ci + cj)

3

]
< 0, (219)

a contradiction. �

Proof of Lemma 4. Take a posterior belief µ2 ∈ ∆(C2). Then, the weakest type c2 ∈ C2 is
active if and only if

c2 <

(
c#1 + E[ c̃2|µ2]
E[
√
c̃2
∣∣µ2]

)2
, (220)

or equivalently, if

m
√
c2(c2 − c2) < c#1 , (221)

where m = µ2(c2). Letting m = 1 yields the condition in the statement of the lemma. �

Proof of Proposition 10. The sender (player 2) solves the problem

max
τ2 s.t. (12)

τA2 Ec2

[
Π#2 (c2|µA2 )

]
+ τB2Ec2

[
Π#2 (c2|µB2 )

]
. (222)
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More explicitly, this becomes

max
τA2 ≡1−τB2 ∈[0,1],

µA2 (c2)≡1−µA2 (c2)∈[0,1],
µB2 (c2)≡1−µB2 (c2)∈[0,1],

s.t. (12)

τA2 Ec2

[
Π#2 (c2|µA2 )

]
+ τB2Ec2

[
Π#2 (c2|µB2 )

]
. (223)

We shart with the case where c#1 ≥
√
c2c2. By Lemma 4, both types of player 2 are active.

Therefore, the question if player 2 benefits from persuasion (or not) is linked to the strict convexity

(or weak concavity) of the function

Π̂2(µ2) = q2(c2)

(
1−
√
c2E[
√
c̃2|µ2]

c#1 + E[c̃2|µ2]

)2
+ q2(c2)

(
1−
√
c2E[
√
c̃2|µ2]

c#1 + E[c̃2|µ2]

)2
, (224)

where the posterior µ2 is given as

µ2 ≡ (µ2(c2), µ2(c2)) ∈ ∆(C2) = {(m, 1−m) : 0 ≤ m ≤ 1}. (225)

Let c2 ∈ C2. Based on the computation of the first derivative,

∂

∂m

(
1−
√
c2E[
√
c̃2|µ2]

c#1 + E[c̃2|µ2]

)2

=
∂

∂m

(
1−
√
c2(m

√
c2 + (1−m)

√
c2)

c#1 +mc2 + (1−m)c2

)2
(226)

= 2 ·
(

1−
√
c2(m

√
c2 + (1−m)

√
c2)

c#1 +mc2 + (1−m)c2

)
·
√
c2(
√
c2 −

√
c2)(c

#
1 −
√
c2c2)

(c#1 +mc2 + (1−m)c2)2
, (227)
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we see that the second derivative is given by

∂2

∂m2

(
1−
√
c2E[
√
c̃2|µ2]

c#1 + E[c̃2|µ2]

)2

= 2 ·
(√

c2(
√
c2 −

√
c2)(c

#
1 −
√
c2c2)

(c#1 +mc2 + (1−m)c2)2

)2
(228)

+4 ·
(

1−
√
c2E[
√
c̃2|µ2]

c#1 + E[c̃2|µ2]

)
︸ ︷︷ ︸

>0 by activity

·
√
c2(
√
c2 −

√
c2)(c

#
1 −
√
c2c2)(c2 − c2)

(c#1 +mc2 + (1−m)c2)3
.

Clearly, the right-hand side of Eq. (228) is positive (zero) if c#1 >
√
c2c2 (if c

#
1 >

√
c2c2) regardless

of c2 ∈ C2 and m ∈ [0, 1], which proves parts (i) and (ii). Suppose next that
√
c2c2 > c#1 . Then,

combining (224) and (228), we get

∂2Π̂2(µ2)

∂m2
=

2(
√
c2 −

√
c2)

2(c#1 −
√
c2c2)

(c#1 + E[c̃2|µ2])4
·


E[c2](c

#
1 −
√
c2c2)

+2(c#1 + E[c̃2|µ2])E[
√
c2](
√
c2 +

√
c2)

−2E[c2]E[
√
c̃2|µ2](

√
c2 +

√
c2)

 . (229)

Exploiting that

E[
√
c2](
√
c2 +

√
c2) = E[c2] +

√
c2c2 , (230)

E[
√
c̃2|µ2](

√
c2 +

√
c2) = E[c̃2|µ2] +

√
c2c2 , (231)

we see that

∂2Π̂2(µ2)

∂m2
=

2(
√
c2 −

√
c2)

2(c#1 −
√
c2c2)

(c#1 +mc2 + (1−m)c2)4
·

 (3E[c2] + 2
√
c2c2) c

#
1

− (3E[c2]− 2(mc2 + (1−m)c2))
√
c2c2

 . (232)
As the expression in the curly brackets is linear in m, we certainly find a unique cut-off level

m∗ ∈ R such that, if replaced for m in (232), renders this term equal to zero. Moreover, Π̂2(µ2)

is strictly concave for m ≤ m∗, and strictly convex for m ≥ m∗. There are now three cases.

Suppose first that m∗ ≥ 1. Then, Π̂2(µ2) is globally strictly concave regardless of q2(c2), so that
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full concealment is optimal. In this case, we may set χ∗ = 1. Next, suppose that m∗ ∈ (0, 1).

Then, taking the convex closure of Π̂2(µ2) over the interval [0, 1], we find a “tangential” point

at some χ∗ ∈ [0,m∗), as illustrated conceptually in Figure 5 in the case where m∗ ∈ (0, 1) and

χ∗ > 0. (For χ∗ = 0, the slope of Π̂2(µ2) at m = 0 and the slope of the upper boundary of the

convex closure may differ). If q2(c2) ≤ χ∗, then full concealment remains optimal. If q2(c2) > χ∗,

however, player 2’s signal randomizes, in response to her type and the randomizing commitment

device, between the two signals causing Bayesian posteriors µA2 with µ
A
2 (c2) = χ∗ and µB2 with

µB2 (c2) = 1.71 Suppose, finally, that m∗ ≤ 0. Then, Π̂2(µ2) is globally strictly convex regardless of

q2(c2), so that full disclosure is optimal. In this case, we may set χ
∗ = 0. This proves the claim.

�

Figure 5. Proof of Proposition 10.

Proof of Proposition 11. (i) This result follows immediately from Zhang and Zhou (2016,

Prop. 3) by replacing valuations by reciprocals of marginal costs. The details are omitted.

(ii) In an unbiased lottery contest with incomplete information about marginal costs, the ex-

ante expected expenses are identical across players. Moreover, the prize is always assigned to

one player. Therefore, maximizing total expected payoffs is equivalent to minimizing player 1’s

expenses, c#1 x
#
1 . However, as shown in the proof of Lemma 3, all types c2 ∈ C2 prefer a strictly

lower bid x#1 over any higher bid. The claim follows.

71An example for this case is c#1 = 1, c2 = 5, c2 = 6, q2(c2) = 0.75, and q2(c2) = 0.25. Then, m∗ = 0.56 and
χ∗ = 0.32. The reader is cautioned, however, that the effects are numerically small.
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(iii) In an unbiased lottery contest, we have

1

4

{
1− Ec2

[(
p1(x

#
1 , ξ

#
2 (c2))− p2(x#1 , ξ

#
2 (c2))

)2]}
= Ec2

[
p1(x

#
1 , ξ

#
2 (c2))(1− p1(x#1 , ξ

#
2 (c2)))

]
(233)

= x#1 c
#
1 . (234)

Hence, minimizing the expected quadratic distance between players’winning probabilities is equiv-

alent to maximizing player 1’s expenses. But, by the arguments just explained, this is equivalent

to the problem considered under part (i). The proposition follows. �

Proof of Proposition 12. We first show that all information must be disclosed in any perfect

Bayesian equilibrium. The key point to note is that, even if the underdog’s conditional belief

µ1( ·| c2) ∈ ∆(C1) is weakly decreasing in c2 in the FOSD sense, the underdog’s bid schedule re-

mains weakly decreasing globally, as well as strictly decreasing in the interior. Indeed, this follows

immediately by combining Lemma A.2 and Lemma B.1, where the underdog’s domain condition

holds as a consequence of Assumption 1. Therefore, the proof of Proposition 1, which exploits

only the monotonicity properties of the bid schedules and the monotonicity properties of the best-

response mappings applies without change to this more general setting. Thus, the underdog side

unravels. For the favorite, correlation now does not matter anymore, i.e., Proposition 2 applies

as before. This proves the claim. Next, we show that self-disclosure by all types of both players

is indeed a perfect Bayesian equilibrium. Even in the presence of arbitrary correlation, this is the

case provided we keep the specification of off-equilibrium beliefs used in the proof of Theorem

1. The reason is that, under this specification, type-specific payoffs resulting from self-disclosure

or unilateral concealment are expected values of complete-information payoffs. Therefore, the

correlation does not affect the interim payoff ranking for the contest stage, and the argument

proceeds as before. �

Proof of Proposition 13. We repeatedly apply Benoît and Dubra (2006, Thm. 1), for which

we refer the reader to the original paper. In a first step, we note that type c2’s expected payoff
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from disclosure,

u2(c2, c2, S1, S2)

≡
∫
S1

Π2(x
◦
1, x
◦
2; c2)dF1(c1) +

∫
C1\S1

Π2(ξ
#
1 (c1), x

#
2 ; c2)dF1(c1) (235)

=

∫
S1

(
c1

c1 + c2

)2
dF1(c1) + pr{C1\S1}

E[
√
c1
∣∣ c1 ∈ C1\S1]2E[c1| c1 ∈ C1\S1]

((E[c1| c1 ∈ C1\S1] + c2)
2 , (236)

is continuous in c2 as a consequence of Lebesgue’s theorem of dominated convergence. Similarly,

type c2’s expected payoff from concealment,

u2(c2, ∅, S1, S2)

≡
∫
S1

Π2(x
#
1 , ξ

#
2 (c2); c2)dF1(c1) +

∫
C1\S1

Π2(ξ
∗
1(c1), ξ

∗
2(c2); c2)dF1(c1) (237)

= pr{S1}
(

1−
√
c2E[

√
c̃2
∣∣ c̃2 ∈ C2\S2]

c1 + E[ c̃2| c̃2 ∈ C2\S2]

)2
(238)

+

∫
C1\S1

(
ξ∗1(c1)

ξ∗1(c1) + ξ∗2(c2)
− c2ξ∗2(c2)

)
dF1(c1),

is well-defined as a consequence of the existence and uniqueness results in Ewerhart (2014, Thm.

3.4 & 4.2). Moreover, u2(c2, ∅, S1, S2) is continuous in c2, because the equilibrium strategy ξ∗1

in the second term does not depend on c2. By a straightforward generalization of Proposition

1, for any non-degenerate conditional distribution F2( ·| ∅, S2), the lowest type ĉ2 in the support
of F2( ·| ∅, S2) has the property that u2(ĉ2, ĉ2, S1, S2) > u2(ĉ2, ∅, S1, S2). By Benoît and Dubra
(2006, Thm. 1), the underdog’s signal is almost surely known in any perfect Bayesian equilibrium.

Next, we consider the decision of the favorite under the assumption that the underdog’s type is

revealed with probability one. Continuity of the expected payoff functions u1(c1, c1, S1, C2) and

u1(c1, ∅, S1, C2), defined in analogy to (235) and (237), may be checked as above. Then, by a
straightforward generalization of Proposition 2, almost surely across c2, for any non-degenerate

conditional distribution F1( ·| ∅, S1), the highest type ĉ1 in the support of F1( ·| ∅, S1) has, typewise
across c2 ∈ C2, but hence also globally the property that u1(ĉ1, ĉ1, S1, C2) > u1(ĉ1, ∅, S1, C2).
Applying Benoît and Dubra (2006, Thm. 1) again, we see that also the favorite’s type is necessarily

almost surely known in any perfect Bayesian equilibrium. This concludes the proof and proves

the proposition. �

85



References

Alfano, M., Robinson, B. (2014), Bragging, Thought: A Journal of Philosophy 3, 263-272.

Amann, E., Leininger, W. (1996), Asymmetric all-pay auctions with incomplete information: The

two-player case, Games and Economic Behavior 14, 1-18.

Anderson, S.P., Renault, R. (2003), Effi ciency and surplus bounds in Cournot competition, Jour-

nal of Economic Theory 113, 253-264.

Aoyagi, M. (2010), Information feedback in a dynamic tournament, Games and Economic Behav-

ior 70, 242-260.

Baik, K.H., Shogren, J.F. (1995), Contests with spying, European Journal of Political Economy

11, 441-451.

Barthel, A.C., Hoffmann, E., (2019), Rationalizability and learning in games with strategic het-

erogeneity, Economic Theory 67, 565-587.

Beardsley, K., Asal, V. (2009), Winning with the bomb, Journal of Conflict Resolution 53, 278-

301.

Benoît, J.P., Dubra, J. (2006), Information revelation in auctions, Games and Economic Behavior

57, 181-205.

Board, O. (2009), Competition and disclosure, Journal of Industrial Economics 57, 197-213.

Caplin, A., Nalebuff, B. (1991a), Aggregation and social choice: A mean voter theorem, Econo-

metrica 59, 1-23.

Caplin, A., Nalebuff, B. (1991b), Aggregation and imperfect competition: On the existence of

equilibrium, Econometrica 59, 25-59.

Caygill, H. (2013), On Resistance: A Philosophy of Defiance, Bloomsbury, London.

Chen, K.-P. (2003), Sabotage in promotion tournaments, Journal of Law, Economics, and Orga-

nization 19, 119-139.

Chen, B., Jiang, X., Knyazev, D. (2017), On disclosure policies in all-pay auctions with stochastic

entry, Journal of Mathematical Economics 70, 66-73.

Clark, D.J. (1997), Learning the structure of a simple rent-seeking game, Public Choice 93, 119-

130.

86



Clark, D.J., Riis, C. (1998), Contest success functions: An extension, Economic Theory 11,

201-204.

Crawford, V.P., Sobel, J. (1982), Strategic information transmission, Econometrica 50, 1431-1451.

Denter, P., Morgan, J., Sisak, D. (2014), “Where ignorance is bliss, ‘tis folly to be wise”: Trans-

parency in contests, mimeo, UC Berkeley.

Dixit, A. (1987), Strategic behavior in contests, American Economic Review 77, 891-898.

Dranove, D., Jin, G.Z. (2010), Quality disclosure and certification: Theory and practice, Journal

of Economic Literature 48, 935-963.

Dresher, M. (1953), Moment spaces and inequalities, Duke Mathematical Journal 20, 261-271.

Drugov, M., Ryvkin, D. (2017), Biased contests for symmetric players, Games and Economic

Behavior, 103, 116-144.

Dubey, P. (2013), The role of information in contests, Economics Letters 120, 160-163.

Dye, R.A. (1985), Disclosure of nonproprietary information, Journal of Accounting Research 23,

123-145.

Ederer, F. (2010), Feedback and motivation in dynamic tournaments, Journal of Economics &

Management Strategy, 19, 733-769.

Einy, E., Haimanko, O., Moreno, D., Sela, A., Shitovitz, B. (2015), Equilibrium existence in

Tullock contests with incomplete information, Journal of Mathematical Economics 61, 241-245.

Einy, E., Moreno, D., Shitovitz, B. (2017), The value of public information in common-value

Tullock contests, Economic Theory 63, 925-942.

Epstein, G.S., Mealem, Y. (2013), Who gains from information asymmetry? Theory and Decision

75, 305-337.

Epstein, G.S., Mealem, Y., Nitzan, S. (2013), Lotteries vs. all-pay auctions in fair and biased

contests, Economics & Politics 25, 48-60.

Ewerhart, C. (2014), Unique equilibrium in rent-seeking contests with a continuum of types,

Economics Letters 125, 115-118.

Ewerhart, C., Quartieri, F. (2020), Unique equilibrium in contests with incomplete information,

Economic Theory 70, 243-271.

87



Fearon, J.D. (1995), Rationalist explanations for war, International Organization 49, 379-414.

Feess, E., Muehlheusser, G., Walzl, M. (2008), Unfair contests, Journal of Economics 93, 267-291.

Feng, X., Lu, J. (2016), The optimal disclosure policy in contests with stochastic entry: A Bayesian

persuasion perspective, Economics Letters 147, 103-107.

Fey, M. (2008), Rent-seeking contests with incomplete information, Public Choice 135, 225-236.

Fey, M., Kim, J., Rothenberg, L.S. (2007), Pre-play communication in games of two-sided incom-

plete information, mimeo, University of Rochester.

Franke, J., Kanzow, C., Leininger, W., Schwartz, A. (2014), Lottery versus all-pay auction con-

tests: A revenue dominance theorem, Games and Economic Behavior 83, 116-126.

Fu, Q., Gürtler, O., Münster, J. (2013), Communication and commitment in contests, Journal of

Economic Behavior & Organization 95, 1-19.

Fu, Q., Jiao, Q., Lu, J. (2011), On disclosure policy in contests with stochastic entry, Public

Choice 148, 419-434.

Fu, Q., Jiao, Q., Lu, J. (2014), Disclosure policy in a multi-prize all-pay auction with stochastic

abilities, Economics Letters 125, 376-380.

Fu, Q., Lu, J., Zhang, J. (2016), Disclosure policy in Tullock contests with asymmetric stochastic

entry, Canadian Journal of Economics 49, 52-75.

Fudenberg, D., Gilbert, R., Stiglitz, J., Tirole, J. (1983), Preemption, leapfrogging and competi-

tion in patent races, European Economic Review 22, 3-31.

Fudenberg, D., Tirole, J. (1991), Game Theory, MIT Press, Cambridge.

Gama, A., Rietzke, D. (2017), Robust comparative statics in contests, mimeo, Lancaster Univer-

sity Management School.

Giovannoni, F., Seidmann, D.J. (2007), Secrecy, two-sided bias, and the value of evidence, Games

and Economic Behavior 59, 296-315.

Goltsman, M., Mukherjee, A. (2011), Interim performance feedback in multistage tournaments:

The optimality of partial disclosure, Journal of Labor Economics 29, 229-265.

Grossman, S.J. (1981), The informational role of warranties and private disclosure about product

quality, Journal of Law and Economics 24, 461-483.

88
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