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Abstract

This paper constructs a new estimator for large covariance matrices by drawing a bridge

between the classic Stein (1975) estimator in finite samples and recent progress under large-

dimensional asymptotics. The estimator keeps the eigenvectors of the sample covariance

matrix and applies shrinkage to the inverse sample eigenvalues. The corresponding formula is

quadratic: it has two shrinkage targets weighted by quadratic functions of the concentration

(that is, matrix dimension divided by sample size). The first target dominates mid-level

concentrations and the second one higher levels. This extra degree of freedom enables us

to outperform linear shrinkage when optimal shrinkage is not linear (which is the general

case). Both of our targets are based on what we term the “Stein shrinker”, a local attraction

operator that pulls sample covariance matrix eigenvalues towards their nearest neighbors,

but whose force diminishes with distance, like gravitation. We prove that no cubic or higher-

order nonlinearities beat quadratic with respect to Frobenius loss under large-dimensional

asymptotics. Non-normality and the case where the matrix dimension exceeds the sample

size are accommodated. Monte Carlo simulations confirm state-of-the-art performance in

terms of accuracy, speed, and scalability.

KEY WORDS: Inverse shrinkage, Hilbert transform, large-dimensional asymptotics,

signal amplitude, Stein shrinkage.
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1 Introduction

The covariance matrix is, arguably, the second most important object in all of statistics. It has

long been known — by theoreticians and practitioners alike — that the sample covariance matrix

suffers from the curse of dimensionality. This curse is most obvious when the matrix dimension

exceeds the sample size — in which case the sample covariance matrix is singular — but is

pervasive unless matrix dimension is negligible with respect to sample size.

Efforts to robustify covariance matrix estimation against large dimensions can be broadly

divided into two generations. First, the 20th century, characterized by (1.a) finite-sample

mathematics, (1.b) the normality assumption, and (1.c) matrix dimensions below the sample size.

Second, the 21st century, characterized by (2.a) large-dimensional asymptotics, (2.b) relaxation

of the normality assumption, and (2.c) matrix dimensions below or above the sample size. At the

risk of over-simplification, the second generation can be summarized as giving first-generation

(finite-sample) ideas a major upgrade thanks to the powerful mathematics of large-dimensional

asymptotics. For example, Ledoit and Wolf (2004) apply linear shrinkage to the covariance

matrix in the spirit of James and Stein (1961). Bodnar et al. (2016) linearly shrink the precision

matrix (inverse of the covariance matrix) as Haff (1979) did. The tests for identity and sphericity

of the covariance matrix proposed by Ledoit and Wolf (2002) and Chen et al. (2010) are direct

heirs of the ones of John (1971) and Nagao (1973).

The crowning achievement of the first generation of research on robustifying covariance

matrix estimation against the curse of dimensionality is without doubt the nonlinear shrinkage

formula of Stein (1975, 1977, 1986). A string of Monte Carlo simulations starting with Lin

and Perlman (1985) have found it remarkably accurate, especially when the cross-sectional

distribution of covariance matrix eigenvalues (a.k.a. principal components) is not smooth but

clustered, a difficult case to handle. According to Rajaratnam and Vincenzi (2016b), “Stein’s

covariance estimator is considered a gold standard in the literature”. Yet the Stein shrinkage

estimator has not been given its rightful ‘large-dimensional asymptotic upgrade’ yet. This is the

objective of the present paper.

We start from a solid foundation in finite samples by reinterpreting Stein’s highly nonlinear

(and not immediately intuitive) formula as just linear shrinkage in inverse-eigenvalues space.

This gives much greater clarity and insight into what is really happening under the hood. The

linear shrinkage intensity could not be simpler: it is the “concentration (ratio)”, defined as the

ratio of matrix dimension to sample size, a standard measure of the severity of the curse of

dimensionality. The higher the concentration, the more the eigenvalues need to be shrunk away

from the observed ones. This is called “shrinkage” because the cross-sectional dispersion of the

eigenvalues goes down, as they are attracted to one another. What is more interesting is that

the shrinkage target is not always the same: it varies depending on relative position with respect

to surrounding sample eigenvalues. An eigenvalue that lies slightly above (below) a concentrated

cluster of the other eigenvalues is attracted downwards (upwards), and the intensity of this

attraction vanishes as the distance increases. Stein’s results, reinterpreted in this light, provide
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a very well-defined targeting function that captures this important phenomenon, and we call

this function the “Stein shrinker”. It will be the central object throughout the paper.

The only problem with the näıve Stein shrinker is that it explodes when two consecutive

eigenvalues get too close to each other. This is where large-dimensional asymptotics comes into

play. We show that smoothing the Stein shrinker provides a covariance matrix estimator that

is optimal with respect to Stein’s loss under large-dimensional asymptotics. The smoothing

parameter must vanish asymptotically as the matrix dimension and the sample size go to infinity

together, but not too fast. Note that Stein himself, even though he had essentially the same

formula (up to smoothing), could not formally prove optimality in finite samples. Note also

that Stein (1986) explicitly acknowlegded both the need for injecting some type of smoothing

(ex-post through his so-called isotonization algorithm), and also the relevance of large-dimensional

asymptotics (cf. his Theorem 1). Therefore, the “smoothed Stein shrinker”, as we call it, is just

a reorganization of the fundamental ingredients that were already embedded in Stein’s original

work, but could not be brought to full fruition at that time.

These developments naturally open the door to other loss functions. The first obvious

candidate is simply the Inverse Stein’s loss (Tsukuma, 2005): Stein’s loss applied to the precision

matrix instead of the covariance matrix. This loss function belongs to a broader class that

contains two more loss functions: the Frobenius loss, and the Minimum Variance loss of Engle

et al. (2019). The former has proven quite popular in a variety of applied fields ranging from

macroeconomics (Korniotis, 2008) to brain-computer interface (Vidaurre et al., 2009) to analytical

chemistry (Guo et al., 2012), among many others. The latter is ideal whenever the objective is to

optimize the reward-to-risk ratio (finance) or signal-to-noise ratio (electrical engineering). The

reason why these three loss functions are grouped together is that they lead to the same optimal

nonlinear shrinkage formula, both in finite samples and under large-dimensional asymptotics.

To handle these loss functions, the asymptotically optimal solution is to move from linear

shrinkage in inverse-eigenvalues space to quadratic shrinkage. There are now two shrinkage

targets: one driven by the smoothed Stein shrinker as before, and the other by its “squared

amplitude”. For readers not versed in signal processing, the squared amplitude is basically the

square of the Stein shrinker, but with something more added. The extra part is the square of

the ‘hidden’ or imaginary component that is the conjugate of the Stein shrinker. This is a basic

concept in signal processing that goes back to Gabor (1946), but we review all the necessary

details in the main body of the paper. As for the shrinkage intensities themselves, they are

split three-ways between the original inverse eigenvalues, the smoothed Stein shrinker, and its

squared amplitude. The first dominates small concentrations, the second dominates for mid-level

concentrations around the 0.5 mark, and the third dominates for high concentrations tending to

1. All three shrinkage intensities are quadratic functions of the concentration ratio.

To cap it all off, we venture into the realm where the sample covariance matrix is singular. In

this case, the quadratic weighting scheme delineated above degenerates into putting 100% weight

on the squared amplitude of the smoothed Stein shrinker. Null sample eigenvalues need to be

kicked out of the computation of the shrinker, so instead they get their own shrinkage formula:
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a simple function of the concentration ratio and the harmonic mean of non-null eigenvalues.

Rolling out the ‘large-dimensional asymptotic upgrade’ generates many obvious contributions

with respect to Stein (1975, 1986), listed above. With respect to linear shrinkage, the contribution

is also clear because going from linear to quadratic is an easily manageable enhancement that

guarantees maximum accuracy even when eigenvalues can be dispersed, clustered, or otherwise

unruly. With respect to the other nonlinear shrinkage formulas from Ledoit and Wolf (2015)

onwards, there are two key advantages. The first is that the formula obtained here comes from

classical statistics instead of from random matrix theory (RMT). All existing ones have been

based on a fundamental equation from RMT originally due to Marčenko and Pastur (1967),

reformulated by Silverstein (1995), and generalized by Ledoit and Péché (2011). By starting

from Stein’s (1975) first-generation classic instead, we not only reconnect with a rich body of

literature in multivariate statistics, but also inject much-needed understandability. Although

many results from RMT have been used for quite a while now by some statisticians, the field

is, arguably, still not overly familiar to others. By contrast, it is plain to see, just by visually

inspecting the Stein shrinker itself, that eigenvalues are attracted to close-by clusters of other

eigenvalues, whereas distant clusters have diminishing influence. We hope that this feature

makes the resulting estimator more transparent and user-friendly because opacity usually slows

down adoption. The second key advantage is that we manage to reduce mathematical complexity

from an infinite degree of nonlinearity to just two degrees (quadratic shrinkage). All this is

accomplished without sacrificing accuracy, computational speed, or scalability. In particular,

concerning accuracy, we attain the same performance in the large-dimensional limit as the best

nonlinear shrinkage formulas based on the fundamental equation of RMT, and (almost) the

same performance in finite samples as well.

The remainder of the paper is organized as follows. Section 2 reinterprets the classic first-

generation Stein (1986) paper as linear shrinkage in inverse-eigenvalues space and introduces

what we term the Stein shrinker. Section 3 shows how to smooth out the explosive discontinuity

inside the Stein shrinker, and states conditions on the smoothing parameter that guarantee

optimality with respect to Stein’s loss under large-dimensional asymptotics. Section 4 adapts the

formula to the Inverse Stein, Frobenius, and Minimum Variance loss functions by introducing a

second shrinkage target based on the squared amplitude of the smoothed Stein shrinker, and by

making shrinkage intensities quadratic functions of the concentration ratio. Section 5 shows how

to handle the case when the dimension exceeds the sample size. Section 6 conducts an extensive

numerical calibration to select a smoothing parameter in the theoretically acceptable range,

which results in a specific recommendation. Section 7 runs a full-blown Monte Carlo simulation

exercise that demonstrates the strong performance of quadratic shrinkage in a wide variety of

scenarios, matching the best RMT-based estimators that allow infinite degrees of nonlinearity.

Section 8 concludes. An Appendix contains programming code, proofs of all mathematical

results, and additional material such as supplementary Monte Carlo simulations.
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2 Finite-Sample Analysis

Even though the sample size n is fixed in this section, we nonetheless subscript quantities by n

to harmonize the notation throughout the paper.

2.1 General Setup

Let Σn denote a p-dimensional positive-definite population covariance matrix, where 2 < p < n.1

A mean-zero independent and identically distributed (i.i.d.) sample of n observations with

covariance matrix Σn is arranged in an n× p matrix Yn, which generates the sample covariance

matrix Sn ..= Y ′nYn/n.2 Its spectral decomposition is Sn = UnΛnU
′
n, where Λn is the diagonal

matrix whose elements are the eigenvalues λn ..= (λn,1, . . . , λn,p) sorted in nondecreasing order

without loss of generality, and an orthogonal matrix Un whose columns [un,1 . . . un,p] are the

corresponding eigenvectors. Thus, Sn =
∑p

i=1 λn,i · un,iu′n,i.

2.2 Class of Estimators

Following Stein (1986, Lecture 4), we seek an estimator of the form Σ̃n
..= Un∆̃nU

′
n, where

∆̃n is a diagonal matrix whose elements δ̃n ..=
(
δ̃n,1, . . . , δ̃n,p

)
∈ (0,+∞)p are a function of λn.

Such estimators are rotation equivariant because post-multiplying the data Yn by an orthogonal

matrix (with determinant one) rotates the estimators accordingly. By contrast, estimators from

the sparsity literature such as Bickel and Levina (2008a,b) and El Karoui (2008) are merely

permutation equivariant. This means that they are dependent on a priori information about the

orientation of the orthonormal basis of the population eigenvectors which is impossible to verify

in practice.

2.3 Loss Function

Any generic estimator Σ̃n is evaluated according to the following loss function used by Stein

(1975, 1986) and commonly referred to as Stein’s loss:

Definition 2.1 (Stein’s Loss). Let Tr(·) denote the trace. Stein’s loss is defined as:

LSTn
(

Σn, Σ̃n

)
..=

1

p
Tr
(

Σ−1
n Σ̃n

)
− 1

p
log det

(
Σ−1
n Σ̃n

)
− 1 . (2.1)

Proposition 2.1. The solution to the optimization problem

argmin
∆̃n diagonal

LSTn
(

Σn, Un∆̃nU
′
n

)

is D
ST
n

..= Diag
(
d
ST
n,1, . . . , d

ST
n,p

)
where d

ST
n,i

..=
1

u′n,iΣ
−1
n un,i

for i = 1, . . . , p. (2.2)

1The singular case p > n is covered in Section 5 and Appendix E.
2If the variables have a nonzero mean, the theorems in this paper also apply after in-sample demeaning, and

adjusting the ‘effective sample size’ to n− 1 to account for the loss of one degree of freedom.
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This results in an estimator, S
ST
n

..= UnD
ST
n U ′n, which is not achievable in practice because Σn

is unobservable, but constitutes a useful benchmark. At the qualitative level, we can already

point out that the shrinkage formula (2.2) is in some sense ‘the inverse of an inverse’. A less

roundabout, more direct approach will be provided in Section 4.

2.4 Bona Fide Shrinkage Formula

Rewriting Equations (22)–(23) of Stein (1986, Lecture 4) in our notation, Stein approximates

the unobservable d
ST
n,i ’s with the bona fide estimator

d̃n,i ..=
nλn,i

n+ p− 2i+ 1 + 2

p∑
j=i+1

nλn,j
nλn,i − nλn,j

− 2

i−1∑
j=1

nλn,i
nλn,j − nλn,i

, (2.3)

for all i = 1, . . . , p. The main differences between Stein’s notation and ours are that the

roles of the indices i and j are swapped, and his eigenvalues `j (j = 1, . . . , p) are equal to

n times those of the sample covariance matrix. The resulting covariance matrix estimator is

S̃n ..=
∑p

i=1 d̃n,i · un,iu′n,i. Although expression (2.6) below is the more common one in the

literature, the original expression in Stein (1986, Lecture 4) is indeed (2.3).

Stein’s estimator broke new ground and fathered an extensive literature on rotation-

equivariant shrinkage estimation of a covariance matrix; for example, see the articles by Efron

and Morris (1976), Haff (1980, 1991), Lin and Perlman (1985), Dey and Srinivasan (1985),

Krishnamoorthy and Gupta (1989), Loh (1991), Pal (1993), Yang and Berger (1994), Daniels

and Kass (2001), Ledoit and Wolf (2004, 2012), Chen et al. (2009), Won et al. (2013), Donoho

et al. (2018), and the references therein.

2.5 The Stein Shrinker

One glaring issue with Stein’s formula is that it is not intuitive because it is highly nonlinear.

Therefore, our first contribution is to reinterpret it as linear shrinkage — but not of the sample

eigenvalues: of their inverses instead. There is no a priori reason why linearly shrinking the

inverse eigenvalues should be better than shrinking the eigenvalues themselves; it is just what

Stein’s mathematical discoveries lead to. But linearly shrinking the inverse eigenvalues is certainly

no more worrisome than linearly shrinking the eigenvalues, an operation that has been well

understood and accepted by researchers at least since Ledoit and Wolf (2004).

Theorem 2.1. The nonlinear shrinkage formula (2.3) is mathematically equivalent to

∀i = 1, . . . , p d̃−1
n,i =

(
1− p− 1

n

)
λ−1
n,i +

(
p− 1

n

)
× 2λ−1

n,i θ̃n

(
λ−1
n,i

)
(2.4)

where ∀x ∈ R θ̃n(x) ..=
1

p− 1

p∑
j=1

λ−1
n,j
6=x

λ−1
n,j

1

λ−1
n,j − x

. (2.5)

6



Proof of Theorem 2.1. From Equation (2.3) we deduce

d̃n,i =
λn,i

1 +
p− 1

n
+

2

n

∑
j 6=i

λn,j
λn,i − λn,j

(2.6)

d̃−1
n,i = λ−1

n,i +
p− 1

n
λ−1
n,i

1 + 2
1

p− 1

∑
j 6=i

(
λ−1
n,j

λ−1
n,j − λ

−1
n,i

− 1

) (2.7)

=

(
1− p− 1

n

)
λ−1
n,i +

(
p− 1

n

)
× 1

p− 1

∑
j 6=i

2λ−1
n,jλ

−1
n,i

λ−1
n,j − λ

−1
n,i

. (2.8)

We call this shrinkage “linear” in inverse-eigenvalues space because it is a convex linear

combination of λ−1
n,i with a shrinkage target that has a common structure independent of

the shrinkage intensity. The fact that the shrinkage intensity is (p − 1)/n makes intuitive

sense because more shrinkage must be applied when the curse of dimensionality is strong. The

shrinkage target is a multiplicative modulation of the eigenvalue λ−1
n,i that is being shrunk. From

now on we shall call the modulator

θ̃n(x) =
1

p− 1

p∑
j=1

λ−1
n,j
6=x

λ−1
n,j

1

λ−1
n,j − x

(2.9)

the “Stein shrinker”. It is locally adaptive in the sense that θ̃n(x) is not constant. This property

stands in sharp contrast with the linear shrinkage formula of Ledoit and Wolf (2004) that

shrinks all sample eigenvalues linearly towards the same common (global) target: their grand

mean. Letting shrinkage targets adapt to local conditions makes it possible to extract additional

accuracy gains over and above those already attained by Ledoit and Wolf (2004), especially

when the sample eigenvalues are dispersed or clustered.

Visual inspection of the Stein shrinker immediately reveals that: 1) it attracts eigenvalues

towards each other; 2) larger precision matrix eigenvalues have proportionally stronger power of

attraction; 3) the intensity of the attraction vanishes to zero as the distance between eigenvalues

increases; and 4) bad things happen (explosive numerical behavior) when two eigenvalues get too

close to each other. The first three properties are features, but the fourth one can be considered

a ‘bug’, and the next section is devoted to fixing it by smoothing.3

3 Optimal Linear-Inverse Shrinkage

Stein’s analysis was only suggestive of optimality, not conclusive. First, he conceded that he had

to ignore the effect of a certain derivatives term (Stein, 1986, p. 1391). Second, he post-processed

the shrunken eigenvalues of Equation (2.3) through a numerical procedure called “isotonization”

in order to restore the ordering of the eigenvalues, and ensure they are all positive. Rajaratnam

3Rajaratnam and Vincenzi (2016a,b) provide an in-depth study of the limitations of the original (or raw) Stein

shrinker.
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and Vincenzi (2016a) show that isotonization is actually essential to the empirical success of

Stein’s estimator, but its theoretical properties are extremely hard to investigate formally. Our

next task is, therefore, to develop a provably optimal version of Stein’s estimator that is purely

analytical in nature. Given the lack of tractability in finite samples, we move to the framework

of large-dimensional asymptotics.

3.1 Large-Dimensional Asymptotics

The idea is that the matrix dimension p and sample size n go to infinity together, while their

ratio p/n (called the “concentration (ratio)”) converges to some limit c ∈ (0, 1).4 This framework

is empirically relevant as soon as the matrix dimension is non-negligible with respect to the

sample size. The following assumptions, or variations thereof, have been employed before in this

literature, also known in physics as random matrix theory (RMT), going back to Wigner (1955).

Assumption 3.1 (Dimension). Let n denote the sample size and p ..= p(n) the number of

variables. It is assumed that the concentration (ratio) cn ..= p/n converges, as n → ∞, to a

limit c ∈ (0, 1) called the “limiting concentration (ratio)”. Furthermore, there exists a compact

interval included in (0, 1) that contains p/n for all n large enough.

The elegant way to handle the ever-increasing dimension of the vector of eigenvalues is to map it

into a function:

Definition 3.1. The empirical distribution function (e.d.f.) of a collection of eigenvalues

(α1, . . . , αp) is the nondecreasing step function x 7−→ p−1
∑p

i=1 1{αi≤x}, where 1 denotes the

indicator function.

This e.d.f. returns the proportion of eigenvalues that lie weakly below its argument.

Assumption 3.2.

a. The population covariance matrix Σn is a nonrandom symmetric positive-definite matrix

of dimension p× p.

b. Xn is an n× p matrix of i.i.d. random variables with mean zero, variance one, and finite

16th moment. The matrix of observations is Yn ..= Xn ×
√

Σn. Neither
√

Σn nor Xn are

observed on their own: only Yn is observed.

c. Let τn ..= (τn,1, . . . , τn,p)
′ denote a system of eigenvalues of Σn, and Hn the e.d.f. of

population eigenvalues. It is assumed that Hn converges weakly to a limit law H, called

the “limiting spectral distribution (function)”.

d. Supp(H), the support of H, is the union of a finite number of closed intervals, bounded

away from zero and infinity. Also, there exists a compact interval [T , T ] ⊂ (0,∞) that

contains
{
τn,1, . . . , τn,p

}
for all n large enough.

4The case c ∈ (1,+∞) is covered in Section 5 and Appendix E.
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Remark 3.1. The assumption of a finite 16th moment comes from Theorem 3 of Jing et al.

(2010), which we use in our proofs. However, these authors’ Remark 1 conjectures that a finite

fourth moment is actually enough, and our own Monte Carlo simulations in Section 7 concur.

The literature on the eigenvalues of the sample covariance matrix under large-dimensional

asymptotics is based on a foundational result by Marčenko and Pastur (1967), which has been

strengthened and broadened by subsequent authors including Silverstein and Bai (1995) and

Silverstein (1995), among others. The latter’s Theorem 1.1 implies that, under Assumptions

3.1–3.2, there exists a continuous non-stochastic limiting sample spectral distribution function F

such that the e.d.f. of the sample eigenvalues, denoted by Fn, converges pointwise almost surely

to F . This limiting sample spectral c.d.f. F is uniquely determined by c and H, so we will

denote it more explicitly by Fc,H whenever there is some risk of ambiguity. Assumption 3.2

together with Theorem 1.1. of Bai and Silverstein (1998) imply that the support of F , denoted

by Supp(F ), is the union of a finite number ν ≥ 1 of compact intervals: Supp(F ) =
⋃ν
k=1[ak, bk],

where 0 < a1 < b1 < · · · < aν < bν <∞.

Following Ledoit and Wolf (2018), we extend the class of rotation-equivariant covariance

matrix estimators from Section 2 into the realm of large-dimensional asymptotics.

Definition 3.2 (Class of Estimators). Covariance matrix estimators are of the type Σ̃n
..=

Un∆̃nU
′
n, where ∆̃n is a diagonal matrix: ∆̃n

..= Diag
(
δ̃n(λn,1) . . . , δ̃n(λn,p)

)
, and δ̃n is a

(possibly random) real univariate function which can depend on Sn.

Every candidate shrinkage function δ̃n must behave well asymptotically:

Assumption 3.3 (Limiting Shrinkage Function). There exists a nonrandom real univariate

function δ̃ defined on Supp(F ) and continuously differentiable such that δ̃n(x)
a.s−→ δ̃(x), for all

x ∈ Supp(F ). Furthermore, this convergence is uniform over x ∈
⋃ν
k=1[ak + η, bk − η], for any

small η > 0. Finally, for any small η > 0, there exists a finite nonrandom constant K̂ such that

almost surely, over the set x ∈
⋃ν
k=1[ak − η, bk + η], δ̃n(x) is uniformly bounded by K̃ from above

and by 1/K̃ from below, for n large enough.

3.2 Smoothed Stein Shrinker

Our second contribution is to prove that a simple smoothing of the Stein shrinker yields an

optimal estimator under large-dimensional asymptotics, even without requiring the variates

to be normally distributed.

Theorem 3.1. Suppose Assumptions 3.1–3.3 hold. Then, for any covariance matrix estimator

Σ̃n in the rotation-equivariant class of Definition 3.2, Stein’s loss LSTn (Σn, Σ̃n) converges almost

surely to a nonrandom limit as p and n go to infinity together. This limit is minimized if

9



δ̃n(λn,i) = d̂n,i, with d̂n,i satisfying:

∀i = 1, . . . , p d̂−1
n,i

..=
(

1− p

n

)
λ−1
n,i +

( p
n

)
× 2λ−1

n,i θ̂n

(
λ−1
n,i

)
(3.1)

where ∀x ∈ R θ̂n(x) ..=
1

p

p∑
j=1

λ−1
n,j

λ−1
n,j − x(

λ−1
n,j − x

)2
+ h2

nλ
−2
n,j

, (3.2)

and a smoothing parameter hn ∼ Kn−α for some K > 0 and α ∈ (0, 2/5) . (3.3)

The resulting covariance matrix estimator is Ŝn ..=
∑p

i=1 d̂n,i · un,iu′n,i.

Proofs are in the appendix. As a technical aside, the proofs in this paper build upon Jing

et al. (2010) and Ledoit and Wolf (2020). We use the most salient elements of both works as

stepping stones to make further headway. From Jing et al. (2010) we borrow techniques that

enable us to extend the analysis of Ledoit and Wolf (2020) from kernels with bounded support

to kernels with unbounded support. From Ledoit and Wolf (2020), we borrow techniques that

enable us to extend the kernel estimation of the limiting sample spectral density in Jing et al.

(2010) to its Hilbert transform. Beyond both papers, we move into the realm of the inverses

of the sample eigenvalues (as opposed to the sample eigenvalues themselves), and of the first

incomplete moment function.

Equation (3.1) is still linear shrinkage of the inverse sample eigenvalues. Replacing the

shrinkage intensity (p− 1)/n from Equation (2.4) with p/n is immaterial, as we operate under

large-dimensional asymptotics. What matters is that, inside the summation, the discontinuous,

explosive influence function

1

λ−1
n,j − x

is replaced by a smoother equivalent
λ−1
n,j − x(

λ−1
n,j − x

)2
+ h2

nλ
−2
n,j

. (3.4)

We view the covariance matrix estimator Ŝn of Theorem 3.1 as linear shrinkage in inverse-

eigenvalues space, or linear-inverse shrinkage (LIS) for short. It can also be interpreted as linear

shrinkage of the precision matrix.
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The bandwidth parameter hn controls the degree of smoothing. If hn were equal to zero, the

two fractions in Equation (3.4) would be mathematically identical. For the purpose of the proofs,

we require hn to be strictly positive but to vanish asymptotically as n goes to infinity. In terms

of nomenclature, we call θ̂n(x) the “smoothed Stein shrinker”. Figure 1 illustrates visually.
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Figure 1: Dependence of the influence function on the regularization parameter hn. When

hn = 0, the function diverges, which generates much numerical instability.

Stein’s formula required ex post numerical regularization through the ad hoc procedure of

isotonization. We avoid this problem by bringing regularization analytically inside the formula

through the introduction of the parameter hn into the smoothed shrinkage modulator θ̂n(x).

Not only does Theorem 3.1 formally prove optimality, but it does so without requiring normality,

as can be seen from Assumption 3.2(b).

Careful examination of the influence function shows a phenomenon of “local shrinkage”.

If λ−1
n,i is slightly below λ−1

n,j (x < 1 in Figure 1), then the influence exerted by λ−1
n,j onto λ−1

n,i

is positive, meaning that d̂−1
n,i will tend to go up towards λ−1

n,j (everything else being equal).

Similarly, if λ−1
n,i is slightly above λ−1

n,j (x > 1 in Figure 1), then the influence exerted by λ−1
n,j

onto λ−1
n,i is negative, meaning that d̂−1

n,i will tend to go down, also towards λ−1
n,j . Thus, there is

shrinkage in the sense that inverse eigenvalues tend to be attracted towards one another. But,

unlike the linear shrinkage formula of Ledoit and Wolf (2004), this shrinkage is “local” because

the influence exerted by distant eigenvalues vanishes quickly. This is why this particular form of

linear shrinkage can generate substantial improvements when the population eigenvalues are

dispersed, clustered, or otherwise unruly.

At this stage, there is nothing guaranteeing that the shrunken inverse eigenvalues will be

strictly positive. This was also the case in the original Stein estimator, which is part of the

reason why he had recourse to isotonization — which fixed the problem. But since we would

prefer to retain a purely analytic formula, we propose a minor alteration to Equation (3.1). It

is based on the observation that shrinkage always operated inwards at the extremities of the
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support. Thus, in particular, all d̂−1
n,i should be greater than or equal to minj=1,...,p

(
λ−1
n,j

)
= λ−1

n,p,

which is itself strictly positive. Hence the correction:

(
d̂LIS
n,i

)−1 ..= max

λ−1
n,p,

1

p

p∑
j=1

λ−1
n,j

λ−1
n,j − x(

λ−1
n,j − x

)2
+ h2

nλ
−2
n,j

 and ŜLIS
n

..=

p∑
i=1

d̂LIS
n,i · un,iu′n,i . (3.5)

This modification is not needed asymptotically, so the constrained estimator shares the optimality

properties stated in Theorem 3.1. Yet, we prefer it because it is safer in finite samples.5

4 Shrinkage Under Alternative Loss Functions

Stein (1986, p. 1390) candidly acknowledges that he uses the loss function of Definition 2.1,

now called Stein’s loss, “because it is comparatively easy to work with this loss function.” The

technological boost from large-dimensional asymptotics now gives us a chance to solve the same

problem for loss functions that are “comparatively hard to work with”, but potentially more

interesting for a wide variety of practical applications.

4.1 Inverse Stein’s Loss

To facilitate continuity with Section 3, we start by applying Stein’s loss to the precision matrix,

as Tsukuma (2005) did.

Definition 4.1 (Inverse Stein’s Loss). The Inverse Stein’s loss is defined as:

LISn
(
Σn, Σ̃n

)
..= LSTn

(
Σ̃n,Σn

)
= LSTn

(
Σ−1
n , Σ̃−1

n

)
=

1

p
Tr
(
ΣnΣ̃−1

n

)
−1

p
log det

(
ΣnΣ̃−1

n

)
−1 . (4.1)

In finite samples, the Frobenius loss, the Minimum Variance loss and the Inverse Stein’s loss all

give rise to the same optimal oracle estimator defined by Equation (4.4).

Proposition 4.1. The solution to the optimization problem

argmin
∆̃n diagonal

LISn
(

Σn, Un∆̃nU
′
n

)
is Dn

..= Diag
(
dn,1, . . . , dn,p

)
where dn,i ..= u′n,iΣnun,i for i = 1, . . . , p . (4.2)

This results in an estimator, Sn ..= UnDnU
′
n, which is not achievable in practice because Σn

is unobservable, but constitutes a useful benchmark. For this reason, it is called an “oracle”

estimator. Comparing with Stein’s loss, in terms of covariance matrix eigenvalues we move from(
u′n,iΣ

−1
n un,i

)−1
to u′n,iΣnun,i . This move looks like rather intuitive and easily understandable.

5We thank two referees for having prompted us to find a way to guarantee the strict positivity of shrunken

inverse eigenvalues.
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4.2 Frobenius Loss

Definition 4.2 (Frobenius Loss). The Frobenius loss is defined as:

LFR
(
Σn, Σ̃n

)
..=

1

p
Tr

[(
Σn − Σ̃n

)2
]
. (4.3)

The linear shrinkage formula of Ledoit and Wolf (2004) has popularized Frobenius-loss-based

covariance matrix estimation in fields as far apart as cancer research (Pyeon et al., 2007),

macroeconomics (Korniotis, 2008), brain-computer interface (Vidaurre et al., 2009), psychology

(Markon, 2010), political science (Tenenhaus and Tenenhaus, 2011), analytical chemistry (Guo

et al., 2012), geology (Elsheikh et al., 2013), and neuroscience (Deligianni et al., 2014), to

highlight but a selected few.

This literature also incorporates numerous extensions, adaptations and refinements of Ledoit

and Wolf’s linear shrinkage estimator. For example, Schäfer and Strimmer (2005) propose six

different shrinkage targets. Stoica et al. (2008) embed linear shrinkage into space-time adaptive

processing, an important radar technique. Chen et al. (2011) improve the formula for the

shrinkage intensity when variates are normally, respectively elliptically, distributed. What such

papers have in common is that they all set out to minimize the expected Frobenius loss.

Proposition 4.2. The solution to the optimization problem

argmin
∆̃n diagonal

LFRn
(

Σn, Un∆̃nU
′
n

)
is Dn

..= Diag
(
dn,1, . . . , dn,p

)
where dn,i ..= u′n,iΣnun,i for i = 1, . . . , p . (4.4)

4.3 Minimum Variance Loss

An even stronger justification for moving away from Stein’s loss comes from reviewing typical

applications that make use of the covariance matrix and its inverse, in order to craft a tailor-made

loss function that directly speaks to their overarching objectives. Markowitz (1952) essentially

launched finance as a scientific field. His key contribution was to show that the investor should

think in terms of a portfolio allocated across a multitude of candidate financial assets, and trade

off expected returns (good) against total portfolio risk (bad). In this context, the variables whose

covariances we estimate are asset returns (potentially in excess of the risk-free rate). Given

a p× 1 vector of expected (excess) returns µ, the optimal trade-off is achieved by solving the

minimization problem

argmin
w∈Rp

w′Σnw subject to: w′µ = γ , (4.5)

where γ is an expected return target. This is also known as the “tangency portfolio”. The

solution to (4.5) is of the form w = scalar×Σ−1
n µ, where the scalar multiplier is chosen to satisfy

the investor’s capital and leverage constraints. In reality, the population covariance matrix Σn is

unobservable, so we must replace it with some estimator Σ̃n, and the question is how high is
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the out-of-sample volatility w̃′Σnw̃ of the in-sample efficient portfolio w̃ ..= Σ̃−1
n µ. Given that

every investor has a different µ based on individual expectations of how assets will perform, it is

desirable to ‘average out’, or somehow ‘integrate’ the answer across all possible directions of the

expected return vector µ.

The above framework carries through one-for-one as we move to Capon (1969) beamforming

in signal processing (radar, sonar, wireless communications, seismology, etc). When a narrow-

band source impinging upon an array of sensors, the vector µ should be interpreted as a response

vector that includes effects such as coupling between elements and subsequent amplification,

presumed to be known due to the design of the sensor array, called a(θs) by Abrahamsson et al.

(2007) in their Equation (2). The rest of the analysis is identical to the finance application.

It is the same for optimal fingerprinting, a method originally due to Hasselmann (1993) that

has been chosen by the Intergovernment Panel on Climate Change to track global warming

(IPCC, 2007, Section 9.A.1). In this context, the place of the vector µ is taken by the nonrandom

response of the earth-system to an external forcing (Ribes et al., 2009, Section 2.1). The objective

is to find a p×1 “fingerprint” vector so that the linear combination of temperature measurements

weighted by the entries of the fingerprint minimizes climate-variability noise subject to a linear

constraint on signal intensity.

Yet another method that fits in this framework is linear discriminant analysis (LDA), an

essential tool for machine learning. In the two-class case, the vector µ represents the difference

between the average score of one class across all dimensions of measurement, minus the average

score of the other class against which we wish to discriminate. The objective of LDA is to find a

one-dimensional subspace in which the classes are well separated. This is achieved by requiring

that, after projection onto the subspace, the ratio of between-class variance to within-class

variance is maximal. In this context, w̃ is the direction of the one-dimensional subspace used to

discriminate between classes. LDA has been used extensively in efforts to develop an interface

between the brain and a computer (Vidaurre et al., 2009).

Motivated by this seemingly ubiquitous mathematical problem, Engle et al. (2019) advocate

what is called the “Minimum Variance” loss function:

Definition 4.3 (Minimum Variance Loss). The Minimum Variance loss is defined as:

LMV
(
Σn, Σ̃n

)
..=

Tr
(
Σ̃−1
n ΣnΣ̃−1

n

)/
p[

Tr
(
Σ̃−1
n

)/
p
]2 − 1

Tr
[
Σ−1
n

]
/p

. (4.6)

It represents the true variance of a linear combination of the original p variables selected to

have minimum estimated variance subject to a generic linear constraint, suitably normalized

under large-dimensional asymptotics. Thus, it is extremely relevant to the empirical applications

enumerated above and mathematically similar ones in other fields of science. We will not go

more in-depth here into the justification of this particular loss function because it has been

given already in Engle et al. (2019, Section 4), as well as in a precursor paper by Engle and

Colacito (2006, Section 2). The good news is that we do not have to choose between Inverse

Stein, Frobenius, and Minimum Variance loss because they all lead to the same oracle estimator.
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Proposition 4.3. The oracle estimator Sn ..=
∑p

i=1 dn,i · un,iu′n,i minimizes the loss function

LMV
n within the class of rotation-equivariant estimators specified in Section 2.2.

The profound agreement between three seemingly different loss functions: LMV, LFR and LISn ,

serves as further justification for adopting this family.

Remark 4.1. The common feature between all three of the loss functions in this family is that

they are based on the population covariance matrix Σn, and not on the inverse Σ−1
n used by

Stein’s loss. This is desirable because, if one of the population eigenvalues happens to be very

close to zero, which can be extremely hard to detect when p > n as in Section 5, inverting Σn

would generate much numerical instability.

4.4 Conjugate and Amplitude of the Smoothed Stein Shrinker

To construct a bona fide estimator, that is, one that only depends on the observable data Yn,

we go back to the more tractable framework of large-dimensional asymptotics. To express our

solution, we need to present two closely related concepts borrowed from signal processing: the

conjugate and the amplitude. As a sneak preview, the new loss functions will introduce a second

shrinkage target governed by the squared amplitude of the smoothed Stein shrinker.

The notion of conjugate goes all the way back to the analytic signal theory of Gabor (1946).

The basic idea is that what we observe (which, in our case, is the smoothed Stein shrinker

θ̂n(x)) also encrypts a conjugate that is not directly observable but is extractable via the Hilbert

transform. This important transform is defined as convolution with the Cauchy kernel (πt)−1:

∀x ∈ R θ̂∗n(x) = H
θ̂n

(x) ..=
1

π
PV

∫ +∞

−∞
θ̂n(t)

dt

t− x
, (4.7)

where PV stands for the Cauchy principal value, which is used to evaluate the singular integral:

PV

∫ +∞

−∞
θ̂n(t)

dt

t− x
..= lim

ε→0+

[∫ x−ε

−∞
θ̂n(t)

dt

t− x
+

∫ +∞

x+ε
θ̂n(t)

dt

t− x

]
. (4.8)

Conjugation is anti-involutive, meaning that the conjugate of the conjugate is none other than

the original function itself (up to a minus sign). For example, the conjugate of the sine is the

cosine, and the conjugate of the cosine is minus the sine. So the two conjugates are best thought

of as a pair ’joined at the hip’. In our case, it is worth finding out the interpretation of the

conjugate of the Stein shrinker.

Proposition 4.4. The smoothed Stein shrinker

θ̂n(x) =
1

p

p∑
j=1

λ−1
n,j

λ−1
n,j − x(

λ−1
n,j − x

)2
+ h2

nλ
−2
n,j

(4.9)

has for its conjugate

θ̂∗n(x) =
1

p

p∑
j=1

λ−1
n,j

hnλ
−1
n,j(

λ−1
n,j − x

)2
+ h2

nλ
−2
n,j

. (4.10)
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We see that (4.10) is a nonparametric estimator of the derivative of the first incomplete moment

of the spectral distribution of the sample precision matrix, using the Cauchy density as kernel,

and using the locally adaptive bandwidth hn,j ..= hnλ
−1
n,j . Thus, the conjugate θ̂∗n(x) shows where

the inverse eigenvalues lie, like a density that would overweight the larger inverse eigenvalues. It

is intuitively satisfying that the attraction force between eigenvalues is the conjugate of their

location, and vice-versa.

The analytic signal theory of Gabor (1946) goes one step further to define the amplitude of a

signal by combining the original function with its conjugate in a quadratic way. Vakman (1996,

Section II) proves Gabor’s formula captures our physical intuition about what amplitude should

mean. Formally, the squared amplitude is defined as follows:

A2
θ̂n

(x) ..= θ̂n(x)2 + θ̂∗n(x)2 =
[
−H

θ̂∗n
(x)
]2

+
[
H
θ̂n

(x)
]2

(4.11)

=

1

p

p∑
j=1

λ−1
n,j

λ−1
n,j − x(

λ−1
n,j − x

)2
+ h2

nλ
−2
n,j


2

+

1

p

p∑
j=1

λ−1
n,j

hnλ
−1
n,j(

λ−1
n,j − x

)2
+ h2

nλ
−2
n,j


2

. (4.12)

The amplitude measures whether there is any action in terms of either attraction force (the

shrinker θ̂n) or weighted density (its conjugate θ̂∗n); it puts both pair members on the same

footing and ‘envelopes’ them. Near the outskirts, there is less action of either type, so the

amplitude vanishes. Note the elegant symmetry in (4.12): The denominator of the fraction is

the sum of the squares of two terms, and both terms take turns appearing in the numerators of

θ̂n(x) and θ̂∗n(x), respectively. To illustrate, Figure 2 displays a shrinker that behaves almost

like minus the cosine over the interval [π, 2π], up to rescaling.

3 3.5 4 4.5 5 5.5 6 6.5

Inverse Eigenvalues

-5

0

5

10
Illustrative Example

Shrinker

Conjugate

Amplitude

Figure 2: Stylized example of a shrinker, its conjugate and their amplitude.

As expected, its conjugate is basically minus the sine (up to rescaling), with a peak at the

support midpoint of 3π/2. The amplitude looks relatively flat because the cosine (attraction

force) and the sine (weighted density) tend to compensate for each other. Near the edges of the

support, the amplitude starts dipping because the action is dying down. To recapitulate:

• In the middle of the cluster of inverse eigenvalues, the amplitude is strong because the

weighted density (the conjugate) is strongly positive.
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• On either side of the cluster of inverse eigenvalues, the amplitude is still strong, but for a

different reason: because the attraction force (the shrinker) is strong in absolute value.

• Further out near the edges of the support, the inverse eigenvalues are sparser and exert

less pull, so the amplitude weakens.

4.5 Quadratic-Inverse Shrinkage (QIS) Estimator

We are now ready to state our third contribution, which is the adaptation of Stein’s (smoothed)

shrinkage formula to the Frobenius loss function and its two cousins:

Theorem 4.1. Suppose Assumptions 3.1–3.3 hold. Then, for any covariance matrix estimator

Σ̂n in the rotation-equivariant class of Definition 3.2, the Frobenius loss LFRn (Σn, Σ̂n) converges

in probability to a nonrandom limit as n goes to infinity. This limit is minimized if δ̃n(λn,i) = δ̂n,i,

with δ̂n,i satisfying:

δ̂−1
n,i =

(
1− p

n

)2
λ−1
n,i + 2

p

n

(
1− p

n

)
λ−1
n,i θ̂n

(
λ−1
n,i

)
+
( p
n

)2
λ−1
n,i A

2
θ̂n

(
λ−1
n,i

)
, where (4.13)

θ̂n(x) ..=
1

p

p∑
j=1

λ−1
n,j

λ−1
n,j − x(

λ−1
n,j − x

)2
+ h2

nλ
−2
n,j

and (4.14)

A2
θ̂n

(x) =

1

p

p∑
j=1

λ−1
n,j

λ−1
n,j − x(

λ−1
n,j − x

)2
+ h2

nλ
−2
n,j


2

+

1

p

p∑
j=1

λ−1
n,j

hnλ
−1
n,j(

λ−1
n,j − x

)2
+ h2

nλ
−2
n,j


2

, (4.15)

for a smoothing parameter hn satisfying the conditions of Equation (3.3).

Note that the first two terms on the right-hand side of Equation (4.13) are the same as the ones

from Theorem 3.1, up to rescaling by a factor of 1− (p/n). We call Equation (4.13) “quadratic

shrinkage” of the inverse sample covariance matrix eigenvalues because the three weighting

coefficients are quadratic functions of the concentration ratio p/n adding up to a perfect square:(
1− p

n

)2
+ 2

p

n

(
1− p

n

)
+
( p
n

)2
=
(

1− p

n
+
p

n

)2
= 1 ,

and also because the new term is the square of the amplitude of the smoothed Stein shrinker.

Mathematically speaking, this new term goes back to the oracle formula for the Frobenius loss

first proven in Ledoit and Péché (2011, Theorem 4); in particular, it is due to the squared

modulus of the Stieltjes-transform term in their Equation (13).

Corollary 4.1. The results stated in Theorem 4.1 also hold true for the Minimum Variance

loss function LMV and the Inverse Stein’s loss function LIS, using the same shrinkage formula.

The inverse sample covariance matrix eigenvalue is attracted to two shrinkage targets modulated,

respectively, by θ̂n(λ−1
n,i) and A2

θ̂n
(λ−1
n,i). The first target dominates mid-level concentration ratios,

and the second one high-level concentration ratios. Figure 3 illustrates these shapes.
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Figure 3: Evolution of the quadratic weights as a function of the concentration ratio p/n. The

three of them sum up to one for every value of p/n.

Remark 4.2. The shrunken inverse eigenvalues
{
δ̂−1
n,i

}p
i=1

are guaranteed to be strictly positive,

which was not necessarily the case when using Stein’s loss in Section 2 and Theorem 3.1. Hence,

a constraint analogous to Equation (3.5) is no longer required and shall not be applied here.

As for undoing eigenvalue order violations through post-processing by a numerical algorithm,

Appendix F.1 shows that it is not particularly useful here because the violations are relatively

few, their magnitudes are benign, and it would not really move the needle in terms of accuracy

of the QIS estimator.

Theorem 4.1 states that the quadratic shrinkage formula is optimal among all nonlinear shrinkage

formulas; therefore, it cannot be beaten by any cubic or higher-order shrinkage. This result

that reduces the most complicated nonlinear problem to a simple quadratic by tweaking Stein’s

classic formula is both powerful and mathematically elegant.

A potentially valuable refinement, more useful for the Frobenius and Inverse Stein losses than

for Minimum Variance loss, is to rescale the quadratic-inverse shrinkage estimator to have the

same trace as the sample covariance matrix, a property already enjoyed by the linear shrinkage

of Ledoit and Wolf (2004):

Σ̂QIS
n

..=
Tr
[
Sn
]

Tr
[
Σ̂n

] Σ̂n where Σ̂n
..=

p∑
i=1

δ̂n,i · un,iu′n,i . (4.16)

This modification is not needed asymptotically, but may boost finite-sample performance in

some applications. The bandwidth parameter hn will be further specified in the next section.

Remark 4.3. For researchers who prefer a loss function that views eigenvalues close to zero as

being ‘as far away’ as eigenvalues close to infinity, the Symmetrized Kullback-Leibler divergence

LSKL
n

(
Σn, Σ̃n

)
..= 1

2pTr
(
Σ−1
n Σ̃n + ΣnΣ̃−1

n

)
− 1 of Moakher and Batchelor (2006, Eq. (17.8)) is

invariant to matrix inversion. It is a convenient alternative to the affine-equivariant geodesic

norm on the manifold of positive-definite matrices and to the Log-Euclidian norm. The two latter

18



norms are invariant to matrix inversion as well — see Förstner and Moonen (1999, Section 3.2)

and Arsigny et al. (2006, p.413), respectively — but they are less tractable in the present

framework. The rotation-equivariant covariance matrix estimator asymptotically optimal with

respect to the Symmetrized Kullback-Leibler divergence is constructed by geometrically averaging

Linear-Inverse shrinkage with Quadratic-Inverse shrinkage:

ŜSKL ..=

p∑
i=1

√
ŜLIS × Σ̂QIS · un,iu′n,i . (4.17)

This result is a direct consequence of Theorems 3.1 and 4.1, conducted in the spirit of Ledoit

and Wolf (2018, Section 4.4). For reasons detailed in the next section, this approach only works

for p < n, but not in the singular case p > n.

Remark 4.4. It is worth noting that a loss function that pertains to the precision matrix such

as Inverse Stein can have the same optimal shrinkage formula as a loss function that pertains to

the covariance matrix such as Frobenius. Some loss functions, such as the three mentioned in

the previous remark, are invariant to matrix inversion. In addition, it is possible to obtain an

optimal shrinkage estimator of the covariance matrix with respect to Frobenius loss by shrinking

the eigenvalues of the precision matrix. For all these reasons, one cannot ask whether we are

shrinking the covariance matrix or the precision matrix because it is not a well-posed question.

5 Singular Case

We address the case p > n by considering the inverses of the non-null sample eigenvalues only.

The shrunken inverse eigenvalues are then given by:

δ̂−1
n,i

..=


( p
n
− 1
)
× 1

n

p∑
j=p−n+1

λ−1
n,j i = 1, . . . , p− n

λ−1
n,i A

2
θ̂n

(λ−1
n,i) i = p− n+ 1, . . . , p

where (5.1)

θ̂n(x) ..=
1

n

p∑
j=p−n+1

λ−1
n,j

λ−1
n,j − x(

λ−1
n,j − x

)2
+ h2

nλ
−2
n,j

and (5.2)

A2
θ̂n

(x) ..=

 1
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λ−1
n,j

λ−1
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λ−1
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)2
+ h2

nλ
−2
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λ−1
n,j

hnλ
−1
n,j(

λ−1
n,j − x

)2
+ h2

nλ
−2
n,j


2

.

(5.3)

Appendix E goes through the derivations in more detail. This shrinkage formula also works for

Minimum Variance and Inverse Stein loss. It should be post-processed through (4.16) as before.

Note that Equations (5.2)–(5.3) are the same as their counterparts in Theorem 4.1, with the

proviso that averaging only extends over non-null eigenvalues. Also, if we compare Equation (4.13)

with the bottom line of Equation (5.1), the first two terms on the right-hand side inherited from

Stein’s loss have disappeared and all the weight has shifted onto the third term. We consider
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this covariance matrix estimator to be the same as the one defined by Theorem 4.1, given that

these two definitions cover two different domains: p > n and p < n respectively, so we can use

the same symbol Σ̂QIS
n both times.

This approach cannot be used to estimate the covariance matrix under Stein’s loss or the

Symmetrized Kullback-Leibler divergence when p > n. This is because, as shown by Ledoit and

Péché (2011, Theorem 5), adjusting null eigenvalues in these two cases requires estimating the

population eigenvalues (τn,1, . . . , τn,p), which is feasible only through numerical inversion of the

QuEST function; see Ledoit and Wolf (2015, 2017). This feature is yet another advantage of

quadratic-inverse shrinkage.

There is a deep mathematical reason for this. If p > n, the number of null sample eigenvalues

remains constant as long as the number of null population eigenvalues is less than p−n. Thus, the

first p−n null population eigenvalues are essentially undetectable. Only if there are p−n+1 null

population eigenvalues can we detect that there are indeed p− n+ 1 null population eigenvalues,

since we observe p − n + 1 null sample eigenvalues, and that is the only possible reason why.

Thus, there is an initial zone where a few null population eigenvalues fly under the radar screen,

followed by an ‘avalanche effect’ of revelation when all of a sudden there are too many of them.

For this reason, any loss function that involves the inverse population covariance matrix should

be avoided at all cost when p > n, and this includes both Stein’s loss and the Symmetrized

Kullback-Leibler divergence, as well as all the other loss functions that are invariant with respect

to matrix inversion on the manifold of symmetric positive-definite matrices (tensors).

6 Smoothing Parameter and Concentration Ratio

The only guidance from theory about selecting the smoothing parameter hn is that it must be

of the form Kn−α for some constants K > 0 and α ∈ (0, 2/5). However, this leaves open the

question of dependency on cn ..= p/n, the concentration ratio. Assumption 3.1 has it converging

to some limit c bounded away from zero and infinity, so in theory the concentration is a constant

that could appear anywhere in the formula. For example, we could have hn = K(cn)n−α, or

even hn = K(cn)× [cnn]−α = K(cn) p−α. In the absence of theoretical insight into this important

question, we undertake a comprehensive numerical analysis to map out the terrain.

6.1 Test Bench

We cover six different scenarios for the population spectrum (indexed i = 1, . . . , 6 below):

1. Σn is the identity, and the variates are distributed as a “Student” t distribution with

5 degrees of freedom.

2. High condition number: the population eigenvalues are uniformly distributed on the

interval [1, 30]; the variates are Gaussian.

3. Spectral separation: half of the population eigenvalues are uniformly distributed on the

interval [1, 2], and the other half on [10, 11]; the variates are still Gaussian.
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4. Upper spike: the first p− 1 population eigenvalues are distributed as per the semi-circular

law (Wigner, 1955) with support [1, 5], and the top one is a “spike” that lies well above

the bulk at the value 10; the variates are still Gaussian.

5. Lower spike: the top p− 1 population eigenvalues are distributed as per the semi-circular

law with support [1, 5], and the smallest one is a “reverse spike” that lies well below the

bulk at the value 0.25; the variates are still Gaussian.

6. Skewed: many small eigenvalues, few large ones; based on the Marčenko and Pastur (1967)

law with parameter 1/2, which implies a condition number ≈ 33; the variates are still

Gaussian.

These six scenarios are furthermore crossed with the two loss functions, Inverse Stein

(Definition 4.1) and Minimum Variance (Definition 4.3), for a total of 6× 2 = 12 combinations.

6.2 Monte Carlo Simulation Results

To vary the ratio p/n, we consider a collection of concentration ratios c defined as the tangents

of angles in the set {10, 20, . . . , 80} (in degrees). To explore what happens for large and small

sample sizes, we select 12 values for
√
pn logarithmically spaced between 75 and 500. These

two choices imply that p and n vary between a low of 75 ×
√

tan(10◦) ≈ 31 and a high of

500×
√

tan(80◦) ≈ 1191, a broad enough range. For each pair (p, n), we run 1,000 simulations.

For every (p, n) combination, for every population spectrum i ∈ {1, . . . , 6}, and for every

loss function j ∈ {MV, IS}, we determine numerically the optimal bandwidth h∗n(p, n, i, j). This

is the value that minimizes the average of loss j across 1,000 Monte Carlo simulations run

for the specification (p, n, i, j). Figure 4 displays the optimal bandwidth as a function of the

matrix dimension and the sample size. The three axes are in logarithmic scale. Every point on

the surface is the average of 12,000 numbers: 2 loss functions × 6 population spectra × 1,000

simulations.
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Figure 4: Dependence of the optimal bandwidth on the sample size and the matrix dimension.

The optimal bandwidth decreases in p and/or n as expected, but its level, governed by the

multiplier K, has a very clear dependence on the concentration ratio: it is high when p is close

to n, and low otherwise. This makes sense because concentrations close to one generate many

eigenvalues close to zero, which are hard to handle. This inverted V-shape pattern is universal:

It looks exactly the same even if we partial out the results by loss function, or by shape of

population spectrum. On the latter point, Appendix F.4 has further justification.

6.3 Numerical Calibration of the Optimal Bandwidth

In order to formally model this structure, we run two regressions:

log
[
h∗n(p, n, i, j)

]
= a+ b1 log

[
min

(
p

n
,
n

p

)]
+ b2 log[n] + εp,n,i,j (6.1)

log
[
h∗n(p, n, i, j)

]
= a+ b1 log

[
min

(
p

n
,
n

p

)]
+ b2 log[p] + εp,n,i,j . (6.2)

Table 1 presents the results obtained with Matlab’s fitlm routine.
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Model (6.1) (6.2)

Intercept −1.021 0.256

(0.071) (0.040)

log
[
min(p/n, n/p)

]
0.659 0.659

(0.018) (0.010)

log[n] −0.149

(0.013)

log[p] −0.392

(0.007)

n 1152 1152

R2 0.572 0.864

Table 1: Fitting linear models (6.1) and (6.2) to the optimal bandwidth in log-space.

One can clearly see that matrix dimension provides a better fit than sample size. Therefore,

we are going into the direction of a bandwidth formula of the type hn = K(cn) p−α, rather than

hn = K(cn)n−α. Looking at Panel B specifically, the R2 is extremely high at 86.4%, which

justifies our modeling choice for the dependency of K on cn, with a symmetric drop away from

p = n in the directions p < n and p > n. One important aspect is that the exponent of p is close

to the −0.40 boundary from theory, so we suggest rounding it to −0.35. Further, the exponent

of max(p/n, n/p) is quite close to twice this number: 0.70. Finally, the intercept is quite close to

zero. Therefore, in the interest of elegance, our final recommendation for the bandwidth formula

is simply:

hn ..= min

(
p2

n2
,
n2

p2

)0.35

︸ ︷︷ ︸
K
(
cn
) × p−0.35 . (6.3)

Based on more than a million Monte Carlo simulations, we consider this formula to be a safe

all-around bandwidth that espouses the salient features of the problem at hand. Appendix F.4

gives supplementary evidence that our proposed estimator is not overly sensitive to the choice of

smoothing hyper-parameter, as long as it remains in the general ballpark of Equation (6.3).

7 Numerical Performance of Quadratic-Inverse Shrinkage

Even though the main purpose of the present paper is essentially to exploit an unexpected

connection between Stein’s (1975) first-generation nonlinear shrinkage estimator of the covariance

matrix and the latest advances in second-generation large-dimensional asymptotics, we still need

to show how our proposed estimator — Quadratic-Inverse Shrinkage with smoothing parameter

chosen as per Section 6 — performs relative to the current state-of-the-art. We put together a

stable of seven competitors that do not assume any a priori information on the orientation of

the eigenvectors of the true (unobservable) covariance matrix.
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Sample The sample covariance matrix Sn.

Linear The linear shrinkage estimator of Ledoit and Wolf (2004).

NERCOME The nonlinear shrinkage estimator using cross-validation due to Lam (2016).

QIS The quadratic-inverse shrinkage estimator of Theorem 4.1 with smoothing parameter hn

chosen as per prescription (6.3).

Analytical The analytical nonlinear shrinkage formula of Ledoit and Wolf (2020, Section 4.7).

QuEST The nonlinear shrinkage estimator of Ledoit and Wolf (2015), which is based on

numerical inversion of the QuEST function.

FSOPT The finite-sample optimal estimator Sn defined underneath Proposition 4.2, which

would require knowledge of the unobservable population covariance matrix Σn, and thus is

not applicable in the real world.

The first and the last are used for benchmarking purposes, as they generate the percentage

relative improvement in average loss (PRIAL), defined for any estimator Σ̂n as

PRIALn
(
Σ̂n

)
..=

E
[
LFR
n

(
Sn,Σn)

]
− E

[
LFR
n

(
Σ̂n,Σn)

]
E
[
LFR
n

(
Sn,Σn)

]
− E

[
LFR
n

(
Sn,Σn)

] × 100% . (7.1)

The expectation E[·] is in practice taken as the average across max{100,min{1000, 105/p}}
Monte Carlo simulations; for example, in dimension p = 500, we only need to run 200 simulations

instead of 1000 to get reliable results.

From extant literature, we can already list some basic facts about these competitors.

• Linear shrinkage always beats the sample covariance matrix but, depending on parameter

configurations, can either get very close to the FSOPT, or leave money on the table.

• The three nonlinear shrinkage estimators (NERCOME, Analytical, and QuEST) remain

close to the FSOPT in any parameter configuration, so it is very hard to beat them in

terms of accuracy.

• Sample, Linear, Analytical, and FSOPT have closed-form expressions, so it is very hard

to beat them in terms of speed and scalability in ultra-high dimensions; however, the

numerical estimators NERCOME and QuEST are orders of magnitude slower.

Therefore, we will be able to qualify the QIS estimator as ‘state of the art’ if it has similar

accuracy to NERCOME, Analytical, and QuEST; and similar speed/scalability to Sample,

Linear, Analytical, and FSOPT. Also worth pointing out is that two of these estimators, namely

Analytical and QuEST, are ‘outliers’ in the present context because their formulas derive not

from statistics but from the Random Matrix Theory invented by 1963 Physics Nobel prize winner

Eugene Wigner (1955) to model the wave functions of quantum mechanical systems, by way of

the subsequent work of Marčenko and Pastur (1967) and their successors.

Even though the Monte Carlo simulations in this section focus on the Frobenius loss,

because it has been widely accepted across many applied fields over the past couple of decades,

supplementary simulations in Appendix F.3 indicate that similar conclusions would carry over

to the Inverse Stein’s loss and the Minimum Variance loss.
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7.1 Baseline Scenario

The simulations are organized around a baseline scenario. Each parameter will be subsequently

varied to assess the robustness of the conclusions. The baseline scenario is:

• the matrix dimension is p = 200;

• the sample size is n = 600; therefore, the concentration ratio p/n is equal to 1/3;

• the condition number of the population covariance matrix is 10;

• 20% of population eigenvalues are equal to 1, 40% are equal to 3, and 40% are equal to 10;

• and the variates are normally distributed.

The distribution of the population eigenvalues is a particularly interesting and difficult case

introduced and analyzed in detail by Bai and Silverstein (1998). We have purposefully selected

a shape of population spectrum left untouched by the calibration round in Section 6.

Table 2 presents estimator performances under the baseline scenario. Computational times

come from a 3.3GHz Mac Pro desktop computer running Matlab R2020a.

Estimator Sample Linear NERCOME QIS Analytical QuEST FSOPT

Average Loss 39.1 23.5 17.1 16.8 16.6 16.2 16.1

PRIAL 0% 68% 96% 97% 98% 99% 100%

Time (ms) < 1 1 2, 117 3 3 1, 644 3

Table 2: Simulation results for the baseline scenario.

The 0% PRIAL for the sample covariance matrix and the 100% PRIAL for the finite-sample

optimal estimator are by construction. Linear shrinkage performs well but leaves some money on

the table. The four nonlinear shrinkage formulas deliver near-perfect performance in the 96%+

range, with NERCOME and QuEST being much slower by orders of magnitude, as expected.

7.2 Convergence

Under large-dimensional asymptotics, the matrix dimension p and the sample size n go to infinity

together, while their ratio p/n converges to some limit c. In the first experiment, p and n increase

together, with their ratio fixed at the baseline value of 1/3. Figure 5 displays the results.
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Figure 5: Evolution of the PRIAL as the matrix dimension and the sample size go to infinity

together.

The four nonlinear shrinkage methods perform approximately the same as one another. They

do well even in small dimensions, but do better as the dimension grows large. The difference

between the PRIALs of Analytical and QIS is never more than 1%, which is very small.

Remark 7.1. Analytical, QIS and QuEST have shrinkage functions that behave essentially the

same under large-dimensional asymptotics. They have the same limiting loss. Therefore, we

should expect their performances to be nearly identical for large (p, n). For small and moderate

(p, n), we would expect the performance of QuEST to be somewhat better compared to both

Analytical and QIS, since it exploits the feature that f is the density of a limiting sample spectral

distribution that is the output of the Fundamental Equation of Random Matrix Theory; hence,

QuEST can be considered a model-based estimator. By contrast, Analytical and QIS do not

exploit this feature of f , and thus can be considered model-free estimators.

To see what happens when matrices become very large, we consider the case p = 10, 000 in Table

3. At this level, the numerical methods QuEST and NERCOME can no longer follow, even with

a powerful computer, so we only consider the other estimators.

Estimator Sample Linear QIS Analytical FSOPT

Average Loss 38.89 23.37 16.12 16.08 16.07

PRIAL 0% 68.0% 99.8% 99.9% 100%

Time (s) 5 10 31 32 35

Table 3: Results of 100 Monte Carlo simulations for p = 10, 000 and n = 30, 000.

One can see that letting dimension go to infinity does nothing for linear shrinkage, but it brings

nonlinear shrinkage ever-closer to the maximum allowable level of improvement, 100%. QIS is
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slightly worse than Analytical, but the difference is too small to be material. In unreported

simulations, we even managed to go up to p = 20, 000 and n = 60, 000. The average computational

time increased to just under four minutes per estimator, and was mostly devoted to extracting

the sample covariance eigenvalues and eigenvectors.

7.3 Concentration Ratio

We vary the concentration ratio p/n from 0.1 to 0.9 while holding the product p× n constant at

the level it had under the baseline scenario, namely, p× n = 120, 000. (In this way, we keep the

amount of total information fixed, as measured by the number of entries in the matrix Yn of

Assumption 3.2b, as the concentration ratio varies.) Figure 6 displays the resulting PRIALs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

25

50

75

100

Figure 6: Evolution of the PRIAL of various estimators as a function of the ratio of the matrix

dimension to the sample size.

Linear shrinkage performs very well in high concentrations but less so in low concentrations,

even though it still improves decisively over the sample covariance matrix across the board,

as evidenced by its strictly positive PRIALs. The four nonlinear shrinkage methods perform

approximately the same as one another, with QuEST remaining the gold standard, and the

others performing nearly as well (for any practical purposes).

7.4 Condition Number

We start again from the baseline scenario and, this time, vary the condition number of the

population covariance matrix, called κ. We set 20% of the population eigenvalues equal to 1,

40% equal to (2κ+ 7)/9, and 40% equal to κ. Thus, the baseline scenario corresponds to κ = 10.

In this experiment, we let κ vary from κ = 3 to κ = 30. This corresponds to linearly squeezing

or stretching the distribution of population eigenvalues. Figure 7 displays the resulting PRIALs.
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Figure 7: Evolution of the PRIAL of various estimators as a function of the condition number of

the population covariance matrix.

Linear shrinkage performs very well for low condition numbers, but leaves some money on the

table when eigenvalues are dispersed, as predicted theoretically by Ledoit and Wolf (2004, Figure

5). The nonlinear shrinkage formulas capture nearly all the potential for loss reduction.

7.5 Non-Normality

In this experiment, we start from the baseline scenario and change the distribution of the variates.

We study the Bernoulli coin toss distribution, which is the most platykurtic of all distributions,

the Laplace distribution, which is leptokurtotic, and the Student t-distribution with 5 degrees of

freedom, also leptokurtotic. All of these are suitably normalized to have mean zero and variance

one, if necessary. Table 4 presents the results.

Distribution Linear NERCOME QIS Analytical QuEST

Bernoulli 67.5% 95.9% 97.5% 98.1% 99.4%

Laplace 68.4% 95.7% 96.4% 97.5% 99.1%

Student t5 68.7% 95.7% 95.4% 96.5% 98.2%

Table 4: Simulation results for various variate distributions (PRIAL).

This experiment confirms that results are not sensitive to the distribution of the variates.

7.6 Shape of the Distribution of Population Eigenvalues

Relative to the baseline scenario, we now move away from the clustered distribution for the

population eigenvalues and try continuous distributions from the Beta family. They are linearly

shifted and stretched so that the support is [1, 10]. A graphical illustration of the densities of

the various Beta shapes is in Ledoit and Wolf (2018, Figure 8.4). Table 5 presents the results.
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Beta Parameters Linear NERCOME QIS Analytical QuEST

(1, 1) 92.8% 98.3% 98.5% 98.8% 99.2%

(1, 2) 96.6% 97.6% 98.4% 98.6% 98.8%

(2, 1) 97.2% 99.2% 98.9% 99.2% 99.6%

(1.5, 1.5) 96.1% 98.6% 98.7% 99.0% 99.3%

(0.5, 0.5) 82.8% 97.8% 98.2% 98.5% 99.1%

(5, 5) 99.1% 99.5% 99.0% 99.3% 99.7%

(5, 2) 99.0% 99.6% 99.0% 99.4% 99.8%

(2, 5) 98.4% 98.6% 98.7% 99.0% 99.2%

Table 5: Simulation results for various distributions of the population eigenvalues (PRIAL).

This time, linear shrinkage does much better overall, except perhaps for the bimodal shape

(0.5, 0.5). This is due to the fact that, in the other cases, the optimal nonlinear shrinkage formula

happens to be almost linear. Nonlinear shrinkage formulas capture a nearly perfect percentage

of the potential for variance reduction in all cases.

7.7 Singular Case

Finally, we run a counterpart of the Monte Carlo simulations in Section 7.3 for the case c > 1.

We vary the concentration ratio p/n from 1.1 to 10 while holding the product p× n constant at

the level it had under the baseline scenario, namely, p× n = 120, 000. (In this way, we keep the

amount of total information fixed, as measured by the number of entries in the matrix Yn of

Assumption 3.2b, as the concentration ratio varies.) Figure 8 displays the resulting PRIALs.
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Figure 8: Frobenius PRIAL when the matrix dimension exceeds the sample size.

We draw the attention of the reader to the vertical scale of the figure: It starts at 96%. This

confirms the trend that could be inferred from Figure 6: Higher concentration ratios make
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all shrinkage estimators look good. At this level of performance, the exact ordering becomes

relatively less important; overall, NERCOME does best.

7.8 Supplementary Monte Carlo Simulations

Because of space contraints, some further batches of numerical simulations are relegated to

Appendix F. Their conclusions are briefly summarized below for convenience:

• There is no real need to post-process the QIS estimator with a numerical algorithm that

would restore the order of the shrunken eigenvalues.

• Choosing a smoothing kernel different from the Cauchy density would only increase

complexity without increasing performance.

• The general pattern of simulation results presented in Section 7 for the Frobenius loss is

similar for the Inverse Stein’s loss and the Minimum Variance loss.

• The performance of the QIS estimator is not sensitive to the specification of the smoothing

parameter hn, as long as we remain in the general area of our proposal from Section 6.

• The classic estimator of Stein (1975, 1977, 1986) is still hard to beat on its own terms,

that is, with respect to Stein’s loss. The value of the QIS estimator is that it extends the

same logic to alternative loss functions that are harder to handle mathematically, and

potentially more attractive in practice (such as Frobenius loss and Minimum Variance

loss), as well as being able to handle the challenging p > n case.

7.9 Overall Comparison of Performance Results

In terms of accuracy, the QIS estimator matches the high-water mark set by NERCOME,

Analytical, and QuEST in hugging close to the FSOPT no matter what happens — unlike

linear shrinkage, whose percentage improvement (albeit always positive) can fluctuate according

to parameter configurations. In terms of speed and of scalability into ultra-high dimensions,

the QIS estimator is in the efficient group alongside Sample, Linear, Analytical and FSOPT —

a decisive advantage over the numerical methods NERCOME and QuEST.

If we define ‘state-of-the-art’ as close-to-FSOPT accuracy across the parameter space, and a

scalable closed-formed mathematical expression, then QIS the only such estimator apart from

Analytical, although there could conceivably be more invented by future researchers over the

course of scientific progress. What makes QIS special in this class so far is that its formula

• originates from statistical decision theory (Stein, 1975), whereas the Analytical shrinkage

formula originates in the physics of random matrix theory (Marčenko and Pastur, 1967);

• is intelligible because it is a simple adaptation of the Stein shrinker, which visibly attracts

sample eigenvalues to close neighbors on either side, decaying with distance;

• and has lower degree of complexity because it is second-order (quadratic) shrinkage, as

opposed to infinite-order nonlinear.
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8 Conclusion

Stein’s (1975,1977,1986) seminal work has garnered a lot of attention over the years from

researchers interested in estimating covariance matrices of dimension larger than three. It is hard

to make an original contribution on top of such a body of knowledge, but we (i) reinterpret Stein’s

ostensibly nonlinear shrinkage formula as linear in inverse-eigenvalues space; (ii) smooth out his

shrinker to make it continuous instead of divergent; and (iii) address more practically-oriented

loss functions that work even when variables outnumber observations, by adjoining a quadratic

component.

Given that this construct harnesses the latest techniques in large-dimensional asymptotic

theory, we believe that it is not just tying up loose ends from the past, but also the foundation

for a new covariance matrix estimator that will prove useful to future researchers. The relentless

search for simpler formulas is a priority for the community because future developments will be

easier to build on top of transparent insights instead of arcane ones. The intimate connection we

established between one nonlinear shrinkage formula from the first generation (finite samples) and

another nonlinear shrinkage formula from the second generation (large-dimensional asymptotics)

is quite unexpected due to the wide generation gap in techniques and methodology, so the most

likely reason is that a deeper mathematical truth has, at least partially, been unearthed.
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A Programming Code

The Matlab function for the Quadratic-Inverse Shrinkage estimator of the covariance matrix has

only 20 or so lines of documented code, which makes for easy understanding and customization.

function sigmahat=QIS(Y,k) % sigmahat:covariance matrix; Y:raw data

%%% EXTRACT sample eigenvalues sorted in ascending order and eigenvectors %%%

[N,p]=size(Y); % sample size and matrix dimension

if (nargin<2)||isnan(k)||isempty(k) % default setting

Y=Y-repmat(mean(Y),[N 1]); % demean the raw data matrix

k=1; % subtract one degree of freedom

end

n=N-k; % adjust effective sample size

c=p/n; % concentration ratio

sample=(Y'*Y)./n; % sample covariance matrix

[u,lambda]=eig(sample,'vector'); % spectral decomposition

[lambda,isort]=sort(lambda); % sort eigenvalues in ascending order

u=u(:,isort); % eigenvectors follow their eigenvalues

%%% COMPUTE Quadratic-Inverse Shrinkage estimator of the covariance matrix %%%

h=min(c^2,1/c^2)^0.35/p^0.35; % smoothing parameter

invlambda=1./lambda(max(1,p-n+1):p); % inverse of (non-null) eigenvalues

Lj=repmat(invlambda,[1 min(p,n)])'; % like 1/lambda_j

Lj_i=Lj-Lj'; % like (1/lambda_j)-(1/lambda_i)

theta=mean(Lj.*Lj_i./(Lj_i.^2+h^2.*Lj.^2),2); % smoothed Stein shrinker

Htheta=mean(Lj.*(h.*Lj)./(Lj_i.^2+h^2.*Lj.^2),2); % its conjugate

Atheta2=theta.^2+Htheta.^2; % its squared amplitude

if p<=n % case where sample covariance matrix is not singular

delta=1./((1-c)^2*invlambda+2*c*(1-c)*invlambda.*theta ...

+c^2*invlambda.*Atheta2); % optimally shrunk eigenvalues

else % case where sample covariance matrix is singular

delta0=1./((c-1)*mean(invlambda)); % shrinkage of null eigenvalues

delta=[repmat(delta0,[p-n 1]);1./(invlambda.*Atheta2)];

end

deltaQIS=delta.*(sum(lambda)/sum(delta)); % preserve trace

sigmahat=u*diag(deltaQIS)*u'; % reconstruct covariance matrix

The QIS function transforms an n× p matrix Y containing n i.i.d. samples of p variables into

the p× p nonlinear shrinkage covariance matrix estimator sigmahat. If the second (optional)

parameter k is absent, not-a-number, or empty, then the algorithm demeans the data by default,

and adjusts the effective sample size accordingly. If the user inputs k = 0, then no demeaning

takes place; if (s)he inputs k = 1, then it signifies that the data Y has already been demeaned.
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We also have Python code that delivers the same results (verified for Python version 3.7.9):

#Imports

import numpy as np

import pandas as pd

import math

#Sigmahat function

def sigmahat(Y,k=None):

#Pre-Conditions: Y is a valid pd.dataframe and optional arg- k which can be

# None, np.nan or int

#Post-Condition: Sigmahat dataframe is returned

#Set df dimensions

N = Y.shape[0] #num of columns

p = Y.shape[1] #num of rows

#default setting

if (k is None or math.isnan(k)):

Y = Y.sub(Y.mean(axis=0), axis=1) #demean

k = 1

#vars

n = N-k # adjust effective sample size

c = p/n # concentration ratio

#Cov df: sample covariance matrix

sample = pd.DataFrame(np.matmul(Y.T.to_numpy(),Y.to_numpy()))/n

sample = (sample+sample.T)/2 #make symmetrical

#Spectral decomp

lambda1, u = np.linalg.eigh(sample) #use Cholesky factorisation

# based on hermitian matrix

lambda1 = lambda1.real.clip(min=0) #reset negative values to 0

dfu = pd.DataFrame(u,columns=lambda1) #create df with column names lambda

# and values u

dfu.sort_index(axis=1,inplace = True) #sort df by column index

lambda1 = dfu.columns #recapture sorted lambda

#COMPUTE Quadratic-Inverse Shrinkage estimator of the covariance matrix

h = (min(c**2,1/c**2)**0.35)/p**0.35 #smoothing parameter
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invlambda = 1/lambda1[max(1,p-n+1)-1:p] #inverse of (non-null) eigenvalues

dfl = pd.DataFrame()

dfl['lambda'] = invlambda

Lj = dfl[np.repeat(dfl.columns.values,min(p,n))] #like 1/lambda_j

Lj = pd.DataFrame(Lj.to_numpy()) #Reset column names

Lj_i = Lj.subtract(Lj.T) #like (1/lambda_j)-(1/lambda_i)

theta = Lj.multiply(Lj_i).div(Lj_i.multiply(Lj_i).add(

Lj.multiply(Lj)*h**2)).mean(axis = 0) #smoothed Stein shrinker

Htheta = Lj.multiply(Lj*h).div(Lj_i.multiply(Lj_i).add(

Lj.multiply(Lj)*h**2)).mean(axis = 0) #its conjugate

Atheta2 = theta**2+Htheta**2 #its squared amplitude

if p<=n: #case where sample covariance matrix is not singular

delta = 1 / ((1-c)**2*invlambda+2*c*(1-c)*invlambda*theta \

+c**2*invlambda*Atheta2) #optimally shrunk eigenvalues

delta = delta.to_numpy()

else:

delta0 = 1/((c-1)*np.mean(invlambda.to_numpy())) #shrinkage of null

# eigenvalues

delta = np.repeat(delta0,p-n)

delta = np.concatenate((delta, 1/(invlambda*Atheta2)), axis=None)

deltaQIS = delta*(sum(lambda1)/sum(delta)) #preserve trace

temp1 = dfu.to_numpy()

temp2 = np.diag(deltaQIS)

temp3 = dfu.T.to_numpy().conjugate()

#reconstruct covariance matrix

sigmahat = pd.DataFrame(np.matmul(np.matmul(temp1,temp2),temp3))

return sigmahat

One key point is that the algorithm that decomposes the sample covariance matrix into

eigenvectors and eigenvalues must be explicitly told that the sample covariance matrix is

symmetric. Matlab detects this automatically, but within Python’s numpy library, we must

call the tailor-made linalg.eigh (based on the Cholesky decomposition) instead of the usual

linalg.eig function.6 Otherwise, in the p > n case, the procedure tends to return complex

eigenvalues and eigenvectors, which would be impossible to handle. We flag this out in the

interest of future researchers who wish to implement the QIS estimator in other languages.

6This issue was unearthed and resolved by our Matlab-to-Python translator Patrick Ledoit.

39



B Proofs of Propositions

B.1 Proof of Proposition 2.1
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n u−1

n,i − δ̃
−1
n,i = 0 for all i = 1, . . . , p. One can also check the

second-order condition to verify that the solution is indeed a minimum.

B.2 Proof of Proposition 4.1
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n,i = 0 for all i = 1, . . . , p. One can also check

the second-order condition to verify that the solution is indeed a minimum.

B.3 Proof of Proposition 4.2
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which is minimized if and only if δ̃n,i = u′n,iΣnun,i.

B.4 Proof of Proposition 4.3

Minimizing LMV is equivalent to minimizing

Tr
(

Σ̃−1
n ΣnΣ̃−1

n

)
[
Tr
(
Σ̃−1
n

)]2 =
Tr
(
Un∆̃−1

n U ′nΣnUn∆̃−1
n U ′n

)
[
Tr
(
Un∆̃−1

n U ′n
)]2 =

Tr
(

∆̃−1
n U ′nΣnUn∆̃−1

n

)
[
Tr
(
∆̃−1
n

)]2 (B.1)

=

∑p
i=1 δ̃

−2
n,i dn,i(∑p

i=1 δ̃
−1
n,i

)2 =.. g(δ̃n) (B.2)

40



The partial derivatives are, for all i = 1, . . . , p,

∂g
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It is only possible for all of them to be equal to zero if the ratio
(
2δ̃−3
n,i dn,i

)/(
2δ̃−2
n,i

)
is equal to a

constant independent of i = 1, . . . , p. This means that the δ̃n,i’s are proportional to the dn,i’s.

We take the proportionality constant equal to one without loss of generality. One can also check

the second-order condition to verify that the solution is indeed a minimum.

B.5 Proof of Proposition 4.4

As per Equation (1.7) of Gabor (1946), moving from a signal to its conjugate can be accomplished

in either one of two mathematically equivalent ways: 1) taking the Fourier transform of the signal,

suppressing the amplitudes belonging to negative frequencies, and multiplying the amplitudes

of positive frequencies by two; or 2) taking the Hilbert transform of the signal. Appendix C.1

below gives a refresher course on the Hilbert transform. Then Appendix C.2 recalls that the

Hilbert transform of the Cauchy probability density function

kC(x) ..=
1

π(x2 + 1)
is HkC (x) = − x

π(x2 + 1)
. (B.4)

These expressions enable us to rewrite the smoothed Stein shrinker as the linear combination

∀x ∈ R θ̂n(x) =
1

p

p∑
j=1

π

hn
HkC

(
x− λ−1

n,j

hnλ
−1
n,j

)
. (B.5)

Given that the operator that maps a signal into its Hilbert transform is both linear and anti-

involutive (meaning that HH
kC

= −kC), applying Equation (B.4) to the smoothed Stein shrinker

θ̂n(x) yields its conjugate θ̂∗n(x), and its squared amplitude A2
θ̂n

(x) follows.

C Some Foundations for Large-Dimensional Asymptotics

C.1 Hilbert Transform

To get started, we need to briefly recall a well-known important mathematical tool called the

“Hilbert transform”. Krantz (2009, p. 17) states that: “The Hilbert transform is, without question,

the most important operator in analysis. It arises in many different contexts, and all these

contexts are intertwined in profound and influential ways.” It is defined as convolution with the

“Cauchy kernel” (πt)−1.

Definition C.1. The Hilbert transform of a real function g is defined as

∀x ∈ R Hg(x) ..=
1

π
PV

∫ +∞

−∞
g(t)

dt

t− x
. (C.1)

41



PV represents the “Cauchy principal value”, which is used to evaluate the singular integral in

the following way:

PV

∫ +∞

−∞
g(t)

dt

t− x
..= lim

ε→0+

[∫ x−ε

−∞
g(t)

dt

t− x
+

∫ +∞

x+ε
g(t)

dt

t− x

]
, (C.2)

should this limit exist; otherwise, the Hilbert transform is not defined.

Recourse to the Cauchy principal value is needed because the Cauchy convolution kernel is

singular, as a consequence of which the integral does not converge in the usual sense. The Hilbert

transform is an anti-involution: HHg = −g; for example, see Titchmarsh (1948). Thus, g and

Hg can be said to constitute a “Hilbert pair”. Given that Eq. (1.7) of Gabor (1946) states

Ag(x)2 = g(x)2 +Hg(x)2 , (C.3)

from now on we will deal with the Hilbert transform instead of the amplitude in the proofs.

C.2 Cauchy Density

The Cauchy cumulative distribution function (c.d.f.) is defined as

∀x ∈ R KC(x) ..=
1

π
arctan(x) +

1

2
. (C.4)

Its corresponding probability density function (p.d.f.)

∀x ∈ R kC(x) ..=
1

π(x2 + 1)
. (C.5)

admits a well-known Hilbert transform; for example, see Poularikas (1998, Table 15.2):

∀x ∈ R HkC (x) = − x

π(x2 + 1)
, (C.6)

and their relationship is illustrated in Figure 9. Of all the known Hilbert pairs, the one with the

Cauchy probability density function is the simplest, and this is no accident because the Hilbert

transform is founded on both the Cauchy integration kernel and the Cauchy principal value.
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Figure 9: Comparison of the Cauchy density with its Hilbert transform.

The intuition behind the Hilbert transform is that it operates like a local attraction force. It is

very positive if there are heavy mass points slightly larger than you, so it pushes you up (towards

them), but very negative if they are slightly smaller, so it pushes you down (also towards them).

When the mass points lie far away, it fades out to zero like gravitational attraction does. These

effects are clearly apparent in Figure 9.

C.3 Stieltjes Transform

A transform closely related to the Hilbert transform is the “Stieltjes transform”, which is defined

on C+, the strict upper half of the complex plane. Given any bounded, nondecreasing function G,

its Stieltjes transform mG is defined as

∀z ∈ C+ mG(z) ..=

∫ +∞

−∞

1

x− z
dG(x) .

When G is sufficiently regular, including the existence of its derivative G′, its Stieltjes transform

admits an extension to the real line, which we denote as

m̆G(x) ..= lim
z∈C+→x

mG(z) for all x ∈ R .

Note that, although m̆G is a function of real argument, it is generally complex-valued. Its real

and imaginary parts are given in terms of the derivative G′ by, respectively,

∀x ∈ R Re
[
m̆G(x)

]
= πHG′(x) and Im

[
m̆G(x)

]
= πG′(x) . (C.7)

Thus, any statement about the extension to the real line of the Stieltjes transform of a function

is really a statement about the function’s derivative and its Hilbert transform.
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C.4 Spectral Distribution of the Precision Matrix

By analogy with the e.d.f. of the sample covariance matrix eigenvalues, Fn, we can construct the

e.d.f. of the sample precision matrix eigenvalues:

∀x ∈ R Φn(x) ..=
1

p

p∑
i=1

1{λ−1
n,i≤x} . (C.8)

Note that the smallest sample covariance matrix eigenvalue λn,1 is strictly positive with probability

one under Assumptions 3.1–3.2; therefore, the relationship between Φn and Fn can be expressed

symmetrically as follows:

∀x ∈ R Φn(x) =

1− Fn(1/x) if x > 0

0 otherwise
(C.9)

∀x ∈ R Fn(x) =

1− Φn(1/x) if x > 0

0 otherwise .
(C.10)

Now define

∀x ∈ R Φ(x) ..=

1− F (1/x) if x > 0

0 otherwise
, (C.11)

where F (x) is the limiting spectral distribution of the sample eigenvalues. The mapping in (C.9)

implies that, under Assumptions 3.1–3.2, large-dimensional asymptotics in precision-matrix

space shares all the nice properties of large-dimensional asymptotics in covariance-matrix space

proven by Silverstein and Bai (1995), Silverstein (1995), Silverstein and Choi (1995), and Bai

and Silverstein (1998), namely:

1. ∀x ∈ R, Φn(x)→ Φ(x) almost surely.

2. The limiting precision spectral distribution Φ has a continuous derivative φ on R.

3. The limiting precision spectral density φ(x) has a Hilbert transform Hφ(x) that also exists

and is continuous on R.

4. As a consequence, the Stieltjes transform of Φ admits a complex-valued extension to the

real line m̆Φ that also exists and is continuous on R.

5. Supp(Φ) is the union of a finite number ν ≥ 1 of compact intervals: Supp(Φ) =⋃ν
k=1[1/bk, 1/ak], where 0 < a1 < b1 < · · · < aν < bν <∞.

6. Φ is uniquely determined by c and H, so we can denote it more explicitly by Φc,H whenever

there is some risk of ambiguity.

So we can work with Φn, Φ, φ, Hφ, and m̆Φ just like with Fn, F , f , Hf , and m̆F .

C.5 First Incomplete Moment Function

At times, it can be mathematically convenient to work not with a cumulative distribution

function but with the first incomplete moment function associated with it. Given any generic
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c.d.f G, its first incomplete moment function is defined as

∀x ∈ R LG(x) ..=

∫ x

−∞
t dG(t) . (C.12)

The prefix L is meant to represent the fact that the mapping from a c.d.f. to its first incomplete

moment function is Linear. The Stieltjes transform of the first incomplete moment function can

be easily deduced from that of its corresponding c.d.f. as follows:

∀x ∈ R m̆LG(x) = 1 + xm̆G(x) . (C.13)

Of particular interest is applying the L transform to the limiting spectral distibution F .

Intuitively, this means giving more importance to the big eigenvalues, relative to smaller

ones. This can be seen most clearly when all population eigenvalues are equal to one, since a

closed-form solution for the (limiting) density of the sample eigenvalues was found by Marčenko

and Pastur (1967). Figure 10 illustrates visually.
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Figure 10: Comparison of F with LF .

From the density of the sample eigenvalues on the left-hand side, one can see that there are many

small eigenvalues and few large ones, which gives the graph a lopsided appearance. By contrast,

on the right-hand side, overweighting the large eigenvalues through the L operator means that

these few large eigenvalues take on more importance, which yields an elegantly symmetrical

graph: the semi-circular law made famous by Wigner (1955).

C.6 Initial Findings About the Optimal Modulating Function

A key mathematical object is obtained by combining Sections C.5 and C.4, meaning we construct

the first incomplete moment of precision matrix eigenvalues:

∀x ∈ R Ψn(x) ..= LΦn(x) ..=
1

p

p∑
i=1

λ−1
n,i 1{λ−1

n,i≤x} . (C.14)

Needless to say, the L operator preserves all of the nice properties 1–6 enumerated in Section C.4;

therefore, it is as easy to work with Ψn, Ψ ..= LΦ, ψ ..= Ψ′, Hψ, and m̆Ψ as with Φn, Φ, φ, Hφ,

and m̆Φ; or, for that matter, as with Fn, F , f , Hf , and m̆F in the first place.
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1. ∀x ∈ R, Ψn(x)→ Ψ(x) almost surely.

2. The limiting precision spectral distribution Ψ has a continuous derivative ψ on R.

3. The limiting precision spectral density ψ(x) has a Hilbert transform Hψ(x) that also exists

and is continuous on R.

4. As a consequence, the Stieltjes transform of Ψ admits a complex-valued extension to the

real line m̆Ψ that also exists and is continuous on R.

5. Supp(Ψ) is the union of a finite number ν ≥ 1 of compact intervals: Supp(Ψ) =⋃ν
k=1[1/bk, 1/ak], where 0 < a1 < b1 < · · · < aν < bν <∞.

6. Ψ is uniquely determined by c and H, so we can denote it more explicitly by Ψc,H whenever

there is some risk of ambiguity.

As a result, all the asymptotic results that have been obtained for kernel estimation of the

limiting sample spectral density f by Jing et al. (2010), and subsequently extended to kernel

estimation of its Hilbert transform Hf by Ledoit and Wolf (2020), will carry through to Hψ. This

is important because the modulating function featured in Proposition 2.1’s reinterpretation of

Stein’s (1986) formula as “Linear-Inverse Shrinkage” is merely a trivial rescaling of the function

HΨ′n(x), as the next proposition shows.

Proposition C.1.

∀x /∈ {λn,1, . . . , λn,p} θ̃n(x) =
π p

p− 1
HΨ′n(x) . (C.15)

Proof of Proposition C.1. From (C.1), the Hilbert transform of a generic p.d.f. g with

corresponding c.d.f. G is

Hg(x) ..=
1

π
PV

∫ +∞

−∞

1

t− x
dG(t) . (C.16)

Plugging Equation (C.14) into Equation (C.16) yields

∀x /∈ {λn,1, . . . , λn,p} HΨ′n(x) =
1

π
PV

∫ +∞

−∞

1

t− x
dΨn(t) (C.17)

=
1

π
· 1

p

p∑
j=1

λ−1
n,j

λ−1
n,j − x

(C.18)

=
p− 1

π p
θ̃n(x) . (C.19)

To unpack Proposition C.1 intuitively: (i) the Hilbert transform acts as a local attraction

force; (ii) the L operator acknowledges that eigenvalues are influential in proportion to their

magnitudes; and (iii) Stein’s formula linearly shrinks precision matrix eigenvalues, hence (LΦn)′

instead of (LFn)′.

It is impossible to work directly with θ̃n(x) or HΨ′n(x) because they both explode when x is

equal to the inverse of a sample eigenvalue. This is why Stein (1975) had so much trouble with

his nonlinear shrinkage formula that he had to post-process it through a numerical regularization

process called isotonization, described in detail in the Appendix of Lin and Perlman (1985).
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The more fruitful approach is to take an indirect route that starts with the much better-behaved

function Ψn(x). To this end, we establish the following lemma.

Lemma C.1. Under Assumptions 3.1–3.2,

∀x ∈ R Ψn(x)
a.s.−→ Ψ(x) ..= LΦ(x) ; (C.20)

furthermore, the function Ψ(x) admits a continuous derivative ψ(x) that has a well-defined

Hilbert transform Hψ(x) on all of x ∈ R.

Proof of Lemma C.1. Silverstein (1995, Theorem 1.1) proves that

Fn(x)
a.s.−→ F (x) (C.21)

under assumptions that are even less restrictive than Assumptions 3.1–3.2. He proves it only

for x where the limiting spectral c.d.f. F is continuous. However, given that we assume that

the limiting concentration ratio c = limn→∞ p/n is strictly below 1, and that the support of the

distribution of population covariance matrix eigenvalues Supp(H) is bounded away from zero,

the results of Silverstein and Choi (1995) imply that F is continuous on R, hence (C.21) holds

for all x ∈ R.

Next, injecting Equations (C.9) and (C.11) into (C.21) implies that

∀x ∈ R Φn(x)
a.s.−→ Φ(x) . (C.22)

There might be some concern about what happens near zero, given that we are inverting the

sample eigenvalues. However, this is a moot point because with probability one there will be no

eigenvalues in (−∞, a1/2] for all n sufficiently large (Bai and Silverstein, 1998). Here a1 > 0

denotes the lower bound of the support of F (cf. Section 3.1).

Finally, moving from the c.d.f. to the first incomplete moment function as per Section (C.5)

is ‘for free’ because the L-transform is linear; therefore:

∀x ∈ R Ψn(x) = LΦn(x)
a.s.−→ Ψ(x) ..= LΦ(x) . (C.23)

The function Ψ(x) admits a continuous derivative ψ(x) that has a well-defined Hilbert transform

Hψ(x) on all of x ∈ R because F does, and the successive transformations preserve these

properties, given that the support of F is bounded away from zero.

The next order of business is to show that ψ (respectively, its Hilbert transformHψ) is consistently

estimated by convolving the first incomplete moment function of precision matrix eigenvalues Ψn

with the Cauchy density (respectively, its Hilbert transform), provided that the kernel bandwidth

parameter is chosen within an appropriate range.

D Cauchy Kernel Estimation in Inverse-Eigenvalues Space

At this juncture, we turn to a well-known technique called kernel estimation. In the related

context of estimating the limiting sample spectral density f , this technique has already been used
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by Jing et al. (2010). There are several differences between our work and theirs. First, we apply

kernel estimation to a bigger ultimate problem, namely, the estimation of the covariance matrix

as a whole, as opposed to the estimation of the limiting e.d.f. of sample eigenvalues. Second,

we employ a different kernel, namely, the Cauchy density, as opposed to the Gaussian density.

Third, we use a locally adaptive bandwidth, whereas they use a globally uniform bandwidth.

Fourth, we apply kernel estimation at the level of the first incomplete moment function rather

than the cumulative distribution function. And fifth, we also estimate the Hilbert transform.

D.1 Formulas for Kernel Estimators

From here on, for notational simplicity, all the proofs assume that the support of F , denoted

by Supp(F ), is a finite interval [a, b], where 0 < a < b < ∞. At the cost of increased

notational complexity, all the proofs also extend to the general case where Supp(F ) is the

union of a finite number ν ≥ 1 of compact intervals: Supp(F ) =
⋃ν
k=1[ak, bk], where

0 < a1 < b1 < · · · < aν < bν <∞.

Remark D.1. For the purpose of clarity, note that the Cauchy density that we use in our

nonparametric kernel estimator should not be confused with the Cauchy convolution kernel

that defines the Hilbert transform, because they are not the same — although there is a deep

mathematical relationship between the two concepts. Thus, we will try to stay away from the

unqualified expression ‘Cauchy kernel”, which can be slightly ambiguous.

If we adopt a locally adaptive (proportional) bandwidth hn,j ..= hnλ
−1
n,j , for j = 1, . . . , p, in

conjunction with a generic kernel k, the kernel estimators of the spectral density of the population

covariance matrix φ and its Hilbert transform are given by:

∀x ∈ R φ̂n(x) ..=
1

p

p∑
j=1

1

hn,j
· k

(
x− λ−1

n,j

hn,j

)
(D.1)

∀x ∈ R H
φ̂n

(x) ..=
1

p

p∑
j=1

1

hn,j
· Hk

(
x− λ−1

n,j

hn,j

)
(D.2)

Given formula (D.1), the kernel estimator of the spectral c.d.f. is given by

Φ̂n(x) =

∫ x

∞
φ̂n(t)dt =

1

p

p∑
j=1

1

hn,j
·K

(
x− λ−1

n,j

hn,j

)
, (D.3)

with K(x) ..=
∫ x
−∞ k(t)dt. Analogously, the kernel estimators of the function ψ and its Hilbert

transform are given by:

∀x ∈ R ψ̂n(x) ..=
1

p

p∑
j=1

λ−1
n,j

hn,j
· k

(
x− λ−1

n,j

hn,j

)
(D.4)

∀x ∈ R H
ψ̂n

(x) ..=
1

p

p∑
j=1

λ−1
n,j

hn,j
· Hk

(
x− λ−1

n,j

hn,j

)
(D.5)
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Equations (C.5)–(C.6) then imply that for the special choice of the Cauchy density for the kernel

k, the kernel estimators of the function ψ and its Hilbert transform specialize to:

∀x ∈ R ψ̂n(x) =
1

p

p∑
j=1

λ−1
n,j

hn,j
· 1

π

(x− λ−1
n,j

hn,j

)2

+ 1

 (D.6)

=
1

p

p∑
j=1

λ−1
n,j

hn,j

π

[(
x− λ−1

n,j

)2
+ h2

n,j

] (D.7)

=
1

p

p∑
j=1

λ−1
n,j

hnλ
−1
n,j

π

[(
x− λ−1

n,j

)2
+ h2

nλ
−2
n,j

] (D.8)

∀x ∈ R H
ψ̂n

(x) = −1

p

p∑
j=1

λ−1
n,j

hn,j
·

x− λ−1
n,j

hn,j

π

(x− λ−1
n,j

hn,j

)2

+ 1

 (D.9)

= −1

p

p∑
j=1

λ−1
n,j

x− λ−1
n,j

π

[(
x− λ−1

n,j

)2
+ h2

n,j

] (D.10)

= −1

p

p∑
j=1

λ−1
n,j

x− λ−1
n,j

π

[(
x− λ−1

n,j

)2
+ h2

nλ
−2
n,j

] (D.11)

Comparing Equation (D.11) with Equation (3.2) reveals that

∀x ∈ R θ̂n(x) = πH
ψ̂n

(x) . (D.12)

D.2 Technical Preliminaries Regarding the Kernel

Assumption D.1 (Kernel). Let k denote a continuously differentiable, symmetric, real-valued,

probability density function (p.d.f.), whose c.d.f. is denoted by K, that satisfies the following

conditions:

a. k(x) = o(1/x).

b. Its Hilbert transform Hk exists and is continuous on R.

c. Both the kernel k and its Hilbert transform Hk are functions of bounded variation.

d. lim
x→+∞

xHk(x) = −1/π;

Note that Assumption D.1.c implies that∫ +∞

−∞

∣∣∣∣dm̆K

dx
(x)

∣∣∣∣ dx <∞ , . (D.13)

Indeed, the imaginary part of (D.13) is taken care of, since the imaginary part of m̆K is π times

the kernel density k itself, which is assumed to be of bounded variation. The real part of (D.13)
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is also taken care of, since the real part of m̆K is π times the Hilbert transform of the kernel

density k, which is also assumed to be of bounded variation. From now on, we define

m̆′K(x) ..=
dm̆K

dx
(x) .

As for Assumption D.1.d, it essentially means that the Hilbert transform decays away from the

bulk of the kernel density at the same speed as for compactly-supported kernels. The point

is to rule out kernels with pathological tail behavior. The presence of the coefficient −1/π is

solely due to the conventions we used in defining the Hilbert transform in (C.1). Together,

Assumptions D.1.b and D.1.d imply that

∃C > 0 s.t. ∀x ∈ R
∣∣xHk(x)

∣∣ ≤ C <∞ . (D.14)

Lemma D.1. If a kernel k satisfies Assumption D.1 then

lim
x→+∞

1

x

∫ x

−x
|m̆K(t)|dt = 0 . (D.15)

Proof of Lemma D.1. Fix any ε ∈ (0, 1/π). By Assumption D.1.a, there exists x1 > 0 such

that ∀x > x1 k(x) < ε/x. By Assumption D.1.d, there exists x2 > x1 such that

∀x > x2

(
− 1

π
− ε
)

1

x
< Hk(x) <

(
− 1

π
+ ε

)
1

x
< 0 .

Therefore, for all x > x2, |m̆K(x)| = |πHk(x) + iπk(x)| < (1 + 2πε)/x. Recall also that both k

and Hk are functions of bounded variation, so |m̆K(x)| is bounded over x ∈ R by a finite upper

bound, which we can call C1. Then we have

∀x > x2
1

x

∫ x

−x
|m̆K(t)|dt =

1

x

∫ x2

−x2
|m̆K(t)|dt+

2

x

∫ x

x2

|m̆K(t)|dt

≤ 2x2C1

x
+

2

x

∫ x

x2

1 + 2πε

t
dt

≤ 2x2C1

x
+ 2(1 + 2πε)

log(x)− log(x2)

x
,

which converges to zero as x→ +∞.

Lemma D.2. The Cauchy density satisfies Assumption D.1.

Proof of Lemma D.2. Follows directly from visual inspection of Equations (C.5)–(C.6).

Assumption D.2. The proportional bandwidths are of the form hn,j ..= hnλ
−1
n,j, for j = 1, . . . , p,

where hn is a sequence of positive numbers satisfying

lim
n→∞

nh5/2
n =∞ and lim

n→∞
hn = 0 . (D.16)

Lemma D.3. For a choice of bandwidth hn satisfying Assumption D.2 and a kernel k satisfying

Assumption D.1,

lim
n→∞

PV

∫
1

1 + uhn
k(u)du = 1 . (D.17)
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Proof of Lemma D.3.

PV

∫
1

1 + uhn
k(u)du =

1

hn
PV

∫
1

u− (−1/hn)
k(u)du

=
π

hn
Hk
(
− 1

hn

)
= − π

hn
Hk
(

1

hn

)
.

The desired result follows from injecting x ..= 1/hn into Assumption D.1.d and letting both n

and x go to infinity.

D.3 Some Useful Lemmas

This section lays the groundwork for the main proofs. It is a mix between extending results in

the existing literature from F to Ψ and developing newer material.

Lemma D.4. For all x ∈ R, x 6= 0,

lim
z∈C+→x

mΨ(z) =.. m̆Ψ(x) exists. (D.18)

The function m̆Ψ is continuous on R \ {0}. Consequently, Ψ has a continuous derivative ψ on

R \ {0} given by ψ(x) = 1
π Im [m̆Ψ(x)].

Proof of Lemma D.4.

∀z ∈ C+ m̆Φ(z) =

∫ +∞

0

1

t− z
dΦ(t) =

∫ +∞

0

1

t− z
· 1

t2
dF (1/t) (D.19)

=

∫ 0

+∞

1
1
u − z

· u2

(
− 1

u2

)
dF (u) =

∫ +∞

0

u

1− uz
dF (u) (D.20)

=
1

z

∫ +∞

0

u
1
z − u

dF (u) =
1

z

∫ +∞

0

u− 1
z + 1

z
1
z − u

dF (u) (D.21)

= −1

z
+

1

z2

∫ +∞

0

1
1
z − u

dF (u) = −1

z
− 1

z2
mF (1/z) (D.22)

mΨ(z) = 1 + zmΦ(z) = −1

z
mF (1/z) . (D.23)

The first part of Lemma D.4 follows from Equation (D.23) and from Theorem 1.1 of Silverstein

and Choi (1995), which states that for all x ∈ R, x 6= 0,

lim
z∈C+→x

mF (z) =.. m̆F (x) exists, (D.24)

and the function m̆F is continuous on R \ {0}. The fact that Ψ has a continuous derivative ψ on

R \ {0} given by ψ(x) = 1
π Im [m̆Ψ(x)] then follows from applying Theorem 2.1 of Silverstein and

Choi (1995) to the c.d.f. Ψ(x)/Ψ(b′).

Much of the work is carried out on an interval [a′, b′] such that 0 < a′ < a and b < b′ < +∞.

Due to Assumption 3.2.d, it is possible to choose a′ and b′ so that there exists N such that

∀n ≥ N, Supp (Fcn,Hn) ( [a′, b′]. Thanks to Assumption 3.1, it is possible to assume without

loss of generality that ∀n ≥ N, cn ∈ [c/2, (c+ 1)/2].
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Lemma D.5. Under Assumptions 3.1-3.2, let Ψcn,Hn(x) be the c.d.f. obtained from Ψc,H(x)

by replacing c and H with cn and Hn, respectively. Furthermore, let m̆Ψcn,Hn
(x) denote the

extension to the real line of the Stieltjes transform of Ψcn,Hn(x). Then there exists a fixed, finite

upper bound M such that

sup
n≥N,x∈R

∣∣m̆Ψcn,Hn
(x)
∣∣ ≤M . (D.25)

Proof of Lemma D.5. The proof starts from the associated c.d.f.

∀x ∈ R F c,H(x) ..= cFc,H(x)− (c− 1)1{x≥0} , (D.26)

It is the limiting spectral c.d.f. of the matrix YnY
′
n/n, which has the same eigenvalues as the

sample covariance matrix, apart from |p−n| null eigenvalues. We define F cn,Hn in similar fashion.

Equation (5.5) of Jing et al. (2010) implies that there exists a fixed, finite upper bound M1

such that

sup
n≥N,x∈[a′,b′]

∣∣∣m̆F cn,Hn
(x)
∣∣∣ ≤M1 . (D.27)

The relationship

∀x ∈ (0,+∞) m̆Fcn,Hn
(x) =

1− cn
cnx

+
1

cn
m̆F cn,Hn

(x) , (D.28)

which follows directly from Equation (1.3) of Silverstein (1995), guarantees that

sup
n≥N,x∈[a′,b′]

∣∣m̆Fcn,Hn
(x)
∣∣ ≤ 1− c

ca′
+

2

c
M1 =.. M2 <∞ . (D.29)

Next, we move into the realm of precision matrix eigenvalues: for all x ∈ (0,+∞),

m̆Φcn,Hn
(x) =

∫ +∞

0

1

t− x
dΦcn,Hn(t) =

∫ +∞

0

1

t− x
· 1

t2
dFcn,Hn(1/t) (D.30)

=

∫ 0

+∞

1
1
u − x

· u2

(
− 1

u2

)
dFcn,Hn(u) =

∫ +∞

0

u

1− ux
dFcn,Hn(u) (D.31)

=
1

x

∫ +∞

0

u
1
x − u

dFcn,Hn(u) =
1

x

∫ +∞

0

u− 1
x + 1

x
1
x − u

dFcn,Hn(u) (D.32)

= −1

x
+

1

x2

∫ +∞

0

1
1
x − u

dFcn,Hn(u) (D.33)

= −1

x
− 1

x2
m̆Fcn,Hn

(1/x) . (D.34)

Then we turn to the first incomplete moment function. From Section C.5:

∀n ∈ N ∀x ∈ (0,+∞) m̆Ψcn,Hn
(x) = 1 + xm̆Φcn,Hn

(x) = −1

x
m̆Fcn,Hn

(1/x) , (D.35)

from which we deduce

sup
n≥N,x∈[1/b′,1/a′]

∣∣m̆Ψcn,Hn
(x)
∣∣ ≤ b′M2 =.. M <∞ . (D.36)
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As for x /∈ [1/b′, 1/a′], Im
[
m̆Ψcn,Hn

(x)
]

= 0 because ∀n ≥ N , Supp (Ψcn,Hn) ( [1/b′, 1/a′], so we

need only worry about the real part:

∀x ∈ (−∞, 1/b′) 0 ≤ Re
[
m̆Ψcn,Hn

(x)
]

=

∫ 1/a′

1/b′

1

t− x
dΨcn,Hn(t) (D.37)

≤ PV
∫ 1/a′

1/b′

1

t− 1
b′
dΨcn,Hn(t) = Re

[
m̆Ψcn,Hn

(1/b′)
]

≤M <∞ (D.38)

∀x ∈ (1/a′,+∞) 0 ≥ Re
[
m̆Ψcn,Hn

(x)
]

=

∫ 1/a′

1/b′

1

t− x
dΨcn,Hn(t) (D.39)

≥ PV
∫ 1/a′

1/b′

1

t− 1
a′
dΨcn,Hn(t) = Re

[
m̆Ψcn,Hn

(1/a′)
]

≥ −M > −∞ . (D.40)

This concludes the proof of Lemma D.5.

Remark D.2. The result also holds with Ψc,H in place of Ψcn,Hn .

Lemma D.6. Under Assumptions 3.1-3.2, D.1, and D.2,

E

{
sup

x∈[ 1
b′ ,

1
a′ ]

∣∣Ψn(x)−Ψcn,Hn(x)
∣∣} = O

(
1

n2/5

)
. (D.41)

Proof of Lemma D.6. Theorem 3 of Jing et al. (2010) implies that, under Assumptions 3.1-3.2,

D.1, and D.2,

E

{
sup

x∈[a′,b′]

∣∣Fn(x)− Fcn,Hn(x)
∣∣} = O

(
1

n2/5

)
. (D.42)

Moving to precision matrix eigenvalues, we have:

∀x ∈ [a′, b′] Φn(x) = 1− Fn
(

1

x

)
(D.43)

Φcn,Hn(x) = 1− Fcn,Hn
(

1

x

)
(D.44)

Φn(x)− Φcn,Hn(x) = Fcn,Hn

(
1

x

)
− Fn

(
1

x

)
(D.45)

sup
x∈[ 1

b′ ,
1
a′ ]

∣∣Φn(x)− Φcn,Hn(x)
∣∣ = sup

x∈[a′,b′]
|Fn (x)− Fcn,Hn (x)| . (D.46)

This sets the stage for the last transformation:

∀x ∈
[
1/b′, 1/a′

]
Ψn(x) = LΦn(x) (D.47)

Ψcn,Hn(x) = LΦcn,Hn(x) (D.48)

Ψn(x)−Ψcn,Hn(x) = L [Φn(x)− Φcn,Hn(x)] (D.49)

=

∫ x

1/b′
t [dΦn(t)− dΦcn,Hn(t)] . (D.50)
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Using integration by parts, we get, for all x ∈ [1/b′, 1/a′],

Ψn(x)−Ψcn,Hn(x) = x
[
Φn(x)− Φcn,Hn(x)

]
−
∫ x

1/b′
[Φn(t)− Φcn,Hn(t)] dt

∣∣Ψn(x)−Ψcn,Hn(x)
∣∣ ≤ 1

a′
∣∣Φn(x)− Φcn,Hn(x)

∣∣+
1

a′
sup

x∈[ 1
b′ ,

1
a′ ]

∣∣Φn(x)− Φcn,Hn(x)
∣∣

sup
x∈[ 1

b′ ,
1
a′ ]

∣∣Ψn(x)−Ψcn,Hn(x)
∣∣ ≤ 2

a′
sup

x∈[ 1
b′ ,

1
a′ ]

∣∣Φn(x)− Φcn,Hn(x)
∣∣ (D.51)

By putting Equations (D.42), (D.46), and (D.51) together, we conclude that

sup
x∈[ 1

b′ ,
1
a′ ]

∣∣Ψn(x)−Ψcn,Hn(x)
∣∣ ≤ 2

a′
sup

x∈[a′,b′]

∣∣Fn(x)− Fcn,Hn(x)
∣∣

E sup
x∈[ 1

b′ ,
1
a′ ]

∣∣Ψn(x)−Ψcn,Hn(x)
∣∣ ≤ 2

a′
E sup
x∈[a′,b′]

∣∣Fn(x)− Fcn, Hn(x)
∣∣ = O

(
1

n2/5

)
.

Lemma D.7. Under Assumptions 3.1-3.2, when xn ∈ (0,+∞) converges to some x ∈ [1/b′, 1/a′],

we have

ψcn,Hn(xn)− ψc,H(xn) −→ 0 . (D.52)

Proof of Lemma D.7. Lemma D.7 is a direct consequence of Jing et al.’s (2010) Lemma 2

once we notice that

ψcn,Hn(xn) = − 1

xn
fcn,Hn(1/xn) and ψc,H(xn) = − 1

xn
fc,H(1/xn) . (D.53)

Lemma D.8. If g is a density with bounded support whose Hilbert transform Hg exists and is

continuous, then

lim
x→±∞

xHg(x) = − 1

π
.

Proof of Lemma D.8. Let c1
..= minSupp(g) and c2

..= maxSupp(g). Take d1 < c1 and

d2 > c2.

∀x > d2 πxHg(x) =

∫ c2

c1

x
g(t)

t− x
dt ≤ x

c1 − x

∫ c2

c1

g(t)dt =
x

c1 − x

and πxHg(x) =

∫ c2

c1

x
g(t)

t− x
dt ≥ x

c2 − x

∫ c2

c1

g(t)dt =
x

c2 − x
.

Since both bounds converge to −1 as x→ +∞, it holds that limx→+∞ πxHg(x) = −1.

∀x < d1 πxHg(x) =

∫ c2

c1

x
g(t)

t− x
dt ≤ x

c2 − x

∫ c2

c1

g(t)dt =
x

c2 − x

and πxHg(x) =

∫ c2

c1

x
g(t)

t− x
dt ≥ x

c1 − x

∫ c2

c1

g(t)dt =
x

c1 − x
.

Since both bounds converge to −1 as x→ −∞, it holds that limx→−∞ πxHg(x) = −1.

Corollary D.1. If g is a density with bounded support whose Hilbert transform Hg exists and

is continuous, then there exists C > 0 such that ∀x ∈ R,
∣∣xHg(x)

∣∣ ≤ C.
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D.4 Consistency Result

We next state and prove a theorem about the uniform consistency of the kernel estimators of

the first incomplete moment of the spectral precision e.d.f. ψ and its Hilbert transform.

Theorem D.1. Under Assumptions 3.1-3.2, D.1, and D.2, both

sup
x∈[1/b′,1/a′]

∣∣∣ψ̂n(x)− ψ(x)
∣∣∣ −→ 0 and sup

x∈[1/b′,1/a′]

∣∣∣Hψ̂n(x)−Hψ(x)
∣∣∣ p−→ 0 , (D.54)

where the symbol
p−→ denotes convergence in probability.

Proof of Theorem D.1. Without loss of generality, in the following developments, we will

work on a set of probability one on which Fn converges almost surely to F . We then take n

large enough such that both Fn(a′) = 0 and Fn(b′) = 1, which can be done by the results of Bai

and Silverstein (1998). First, we claim that

sup
x∈[a′,b′]

∣∣∣∣∣m̆Ψ̂n
(x)−

∫ 1/a′

1/b′

1

thn
m̆K

(
x− t
thn

)
dΨcn,Hn(t)

∣∣∣∣∣ p−→ 0 . (D.55)

From Equations (D.4)–(D.5) we compute the Stieltjes transform as

m̆
Ψ̂n

(x) =
1

p

p∑
j=1

λ−1
n,j

hnλ
−1
n,j

m̆K

(
x− λ−1

n,j

hnλ
−1
n,j

)
=

∫ 1/a′

1/b′

1

thn
m̆K

(
x− t
thn

)
dΨ̂n(t) , (D.56)

for all x ∈ R. Now by using integration by parts, we obtain

E sup
x∈[ 1

b′ ,
1
a′ ]

∣∣∣∣∣
∫ 1/a′

1/b′

1

thn
m̆K

(
x− t
thn

)
dΨn(t)−

∫ 1/a′

1/b′

1

thn
m̆K

(
x− t
thn

)
dΨcn,Hn(t)

∣∣∣∣∣ (D.57)

= E sup
x∈[ 1

b′ ,
1
a′ ]

∣∣∣∣∣
∫ 1/a′

1/b′

1

thn
m̆K

(
x− t
thn

)[
dΨn(t)− dΨcn,Hn(t)

]∣∣∣∣∣
= E sup

x∈[ 1
b′ ,

1
a′ ]

∣∣∣∣∣
∫ 1/a′

1/b′

1

t2hn

[
m̆K

(
x− t
thn

)
+

x

thn
m̆′K

(
x− t
thn

)]
× [Ψn(t)−Ψcn,Hn(t)] dt

∣∣∣∣∣
= E sup

x∈[ 1
b′ ,

1
a′ ]

∣∣∣∣∣
∫ b′x−1

hn

a′x−1
hn

(1 + uhn)2

x2hn

[
m̆K (u) +

1 + uhn
hn

m̆′K (u)

]

×
[
Ψn

(
x

1 + uhn

)
−Ψcn,Hn

(
x

1 + uhn

)]
xhn

(1 + uhn)2
du

∣∣∣∣∣
= E sup

x∈[ 1
b′ ,

1
a′ ]

∣∣∣∣∣
∫ b′x−1

hn

a′x−1
hn

1

x

[
m̆K (u) +

1 + uhn
hn

m̆′K (u)

]

×
[
Ψn

(
x

1 + uhn

)
−Ψcn,Hn

(
x

1 + uhn

)]
du

∣∣∣∣∣
≤ 1

hn
E sup

x
|Φn(x)−Ψcn,Hn(x)| × b′

[
hn

∫ b′−a′
a′hn

a′−b′
a′hn

|m̆K (u)| du+
b′

a′

∫ +∞

−∞

∣∣m̆′K (u)
∣∣ du]

= O

(
1

n2/5hn

)
−→ 0 , (D.58)
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where we have used Lemma D.6 in the last line, together with the fact that the multiplier

between the square brackets is O(1). This is because this multiplier is the sum of two terms

that are each O(1): the first term by Lemma D.1, and the second one by Equation (D.13).

The next aim is to show that∫ 1/a′

1/b′

1

thn
m̆K

(
x− t
thn

)
dΨcn,Hn(t)−

∫ 1/a′

1/b′

1

thn
m̆K

(
x− t
thn

)
dΨc,H(t) −→ 0 (D.59)

uniformly in x ∈ [a′, b′]. Using the change of variable u = (x − t)/(thn), this is equivalent to

proving that, for any sequence {xn, n ≥ 1} in [a′, b′] converging to x,∫ (b′xn−1)/hn

(a′xn−1)/hn

1

1 + uhn
m̆K(u)

[
Ψ′cn,Hn

(
xn

1 + uhn

)
−Ψ′c,H

(
xn

1 + uhn

)]
du −→ 0 . (D.60)

Notice that the first term under the integral, (1+uhn)−1, is bounded from below by 1/b′2 > 0 and

from above by 1/a′2 < +∞. From Lemma D.4, Ψ′c,H is uniformly bounded on [a′, b′]. Therefore,

(D.60) follows from the dominated convergence theorem, Lemma D.5, and Lemma D.7.

The final step is divided into two sub-items, by considering the real part of the Stieltjes

transform (which is π times the Hilbert transform of the density) and its imaginary part (which

is π times the density itself) separately. Recall that PV denotes the Cauchy principal value of

an improper integral. Regarding the real part, we observe that∫ 1/a′

1/b′

1

thn
Re

[
m̆K

(
x− t
thn

)]
dΨc,H(t) =

∫ 1/a′

1/b′

1

thn
PV

∫
k(u)

u− x−t
thn

du dΨc,H(t) (D.61)

=

∫
k(u) PV

∫ 1/a′

1/b′

1

thn

Ψ′c,H(t)

u− x−t
thn

dtdu

= PV

∫
1

1 + uhn
k(u) PV

∫ 1/a′

1/b′

Ψ′c,H(t)

t− x
1+uhn

dtdu

= PV

∫
1

1 + uhn
k(u)Re

[
m̆Ψc,H

(
x

1 + uhn

)]
du .

Therefore,

sup
x∈[ 1

b′ ,
1
a′ ]

∣∣∣∣∣
∫ 1/a′

1/b′

1

thn
Re

[
m̆K

(
x− t
thn

)]
dΨc,H(t)− Re[m̆Ψc,H (x)]

∣∣∣∣∣
= sup

x∈[ 1
b′ ,

1
a′ ]

∣∣∣∣PV ∫ 1

1 + uhn
k(u)Re

[
m̆Ψc,H

(
x

1 + uhn

)]
du− Re[m̆Ψc,H (x)]

∣∣∣∣
≤ sup

x∈[ 1
b′ ,

1
a′ ]

∣∣∣∣∣PV
∫

1

1 + uhn
k(u)

{
Re

[
m̆Ψc,H

(
x

1 + uhn

)]
− Re[m̆Ψc,H (x)]

}
du

∣∣∣∣∣
+ sup
x∈[ 1

b′ ,
1
a′ ]

∣∣Re[m̆Ψc,H (x)]
∣∣× ∣∣∣∣1− PV ∫ 1

1 + uhn
k(u)du

∣∣∣∣ . (D.62)

Note that, by Lemma D.3,

lim
n→∞

PV

∫
1

1 + uhn
k(u)du =

∫
k(u)du = 1 . (D.63)
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Therefore, using also Remark D.2, the second term in (D.62) is o(1). The first term is more

complicated, and needs to be split into three parts, for which the arguments are different.

First, using Remark D.2 again, there exists some finite constant M that is an upper bound

on |Re[m̆Ψc,H (x)| for all x ∈ R. For any small ε > 0, there exists some sufficiently large R > 0

such that

∀n ∈ N
∫ +∞

R

1

1 + uhn
k(u)du ≤

∫ +∞

R
k(u)du = 1−K(R) ≤ ε

2M
. (D.64)

Then:

lim sup
n→∞

sup
x∈[ 1

b′ ,
1
a′ ]

∣∣∣∣∣
∫ +∞

R

1

1 + uhn
k(u)

{
Re

[
m̆Ψc,H

(
x

1 + uhn

)]
− Re[m̆Ψc,H (x)]

}
du

∣∣∣∣∣
≤ 2M lim sup

n→∞

∫ +∞

R

1

1 + uhn
k(u)du ≤ ε . (D.65)

Second,

sup
x∈[ 1

b′ ,
1
a′ ]

∣∣∣∣∣
∫ R

−R

1

1 + uhn
k(u)

{
Re

[
m̆Ψc,H

(
x

1 + uhn

)]
− Re[m̆Ψc,H (x)]

}
du

∣∣∣∣∣
≤ sup

x∈[ 1
b′ ,

1
a′ ]

∫ R

−R

1

1 + uhn
k(u)

∣∣∣∣Re [m̆Ψc,H

(
x

1 + uhn

)]
− Re[m̆Ψc,H (x)]

∣∣∣∣ du
≤ sup

x,y∈[ 1
b′ −

Rhn
1−Rhn

, 1
a′ +

Rhn
1−Rhn ]

|x−y|≤ Rhn
1−Rhn

∣∣Re [m̆Ψc,H (y)
]
− Re[m̆Ψc,H (x)]

∣∣× ∣∣∣∣∫ R

−R

1

1 + uhn
k(u)du

∣∣∣∣
≤ sup

x,y∈[ 1
2b′ ,

2
a′ ]

|x−y|≤ Rhn
1−Rhn

∣∣Re [m̆Ψc,H (y)
]
− Re[m̆Ψc,H (x)]

∣∣× ∣∣∣∣∫ R

−R

1

1 + uhn
k(u)du

∣∣∣∣ (D.66)

for sufficiently large n. The first term of expression (D.66) converges to zero thanks to the

Heine-Cantor theorem, and the second term remains bounded because, when n is large enough

for hn to be below 1
2R ,∣∣∣∣∫ R

−R

1

1 + uhn
k(u)du

∣∣∣∣ =

∫ R

−R

1

1 + uhn
k(u)du ≤

∫ R

−R

1

2
k(u)du ≤ 1

2
. (D.67)

This guarantees that the upper bound (D.66) is o(1) as n→∞.

Third,

lim sup
n→∞

sup
x∈[ 1

b′ ,
1
a′ ]

∣∣∣∣∣PV
∫ −R
−∞

1

1 + uhn
k(u)

{
Re

[
m̆Ψc,H

(
x

1 + uhn

)]
− Re[m̆Ψc,H (x)]

}
du

∣∣∣∣∣
≤ lim sup

n→∞
sup

x∈[ 1
b′ ,

1
a′ ]

∣∣∣∣∣PV
∫ −R
−∞

1

1 + uhn
k(u)Re

[
m̆Ψc,H

(
x

1 + uhn

)]
du

∣∣∣∣∣
+ lim sup

n→∞
sup

x∈[ 1
b′ ,

1
a′ ]

∣∣∣∣∣PV
∫ −R
−∞

1

1 + uhn
k(u)Re[m̆Ψc,H (x)]du

∣∣∣∣∣
=.. lim sup

n→∞
An + lim sup

n→∞
Bn .
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Concerning the first term An, for any sufficiently large n and any x ∈
[

1
b′ ,

1
a′

]
, define the function

gn,x(u) ..=


1

1 + uhn
Re

[
m̆Ψc,H

(
x

1 + uhn

)]
if u 6= −1/hn

−1

x
if u = −1/hn .

Consider the change of variables v ..= x/(1 + uhn). Then as u ↓ −1/hn, v → +∞. From the

Lemma D.8, we get limv→+∞ vRe
[
m̆Ψc,H (v)

]
= −1, which implies that limu↓−1/hn xgn,x(u) = −1.

Similarly, limu↑−1/hn xgn,x(x) = limv→−∞ vRe
[
m̆Ψc,H (v)

]
= −1, hence the function gn,x is

continuous over u ∈ R. As a result, we can get rid of the Cauchy principal value:

PV

∫ −R
−∞

1

1 + uhn
k(u)Re

[
m̆Ψc,H

(
x

1 + uhn

)]
du =

∫ −R
−∞

gn,x(u)k(u)du . (D.68)

Note that for n sufficiently large and for all x ∈
[

1
b′ ,

1
a′

]
gn,x(u) =

πvHψc,H (v)/x if u 6= −1/hn

−1/x if u = −1/hn .

By Corollary D.1, there exists a finite constant K > 0 such that for all sufficiently large n, for

all x ∈
[

1
a′ ,

1
b′

]
and for all u ∈ R,

∣∣gn,x(u)
∣∣ ≤ πK/a′ =.. ∆. This result, combined with (D.68),

implies that for sufficiently large n

sup
x∈[ 1

a′ ,
1
b′ ]

∣∣∣∣PV ∫ −R
−∞

1

1 + uhn
k(u)Re

[
m̆Ψc,H

(
x

1 + uhn

)]
du

∣∣∣∣ ≤ ∆

∫ −R
−∞

k(u)du . (D.69)

Without loss of generality we can consider that R has been chosen sufficiently large to ensure

that this upper bound is less than ε.

Concerning the second term Bn, it holds that

Bn ≤M

∣∣∣∣∣PV
∫ −R
−∞

1

1 + uhn
k(u)du

∣∣∣∣∣
≤M

∣∣∣∣∣PV
∫ +∞

−∞

1

1 + uhn
k(u)du−

∫ +∞

−R

1

1 + uhn
k(u)du

∣∣∣∣∣
By Lemma D.3,

lim
n→∞

PV

∫ +∞

−∞

1

1 + uhn
k(u)du = 1 .

By the dominated convergence theorem, there exists some R′ > 0 sufficiently large such that

1 ≥ lim
n→∞

∫ +∞

−R′

1

1 + uhn
k(u)du ≥ 1− ε

C2
.

Without loss of generality it can be assumed that R′ = R. Therefore,

lim sup
n→∞

Bn ≤M
∣∣∣1− (1− ε

M

)∣∣∣ = ε . (D.70)
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Concerning the proof for the imaginary part, the statement we seek to establish is

sup
x∈[ 1

a′ ,
1
b′ ]

∣∣∣∣∫ 1

thn
Im

[
m̆K

(
x− t
thn

)]
dΨc,H(t)− Im[m̆Ψc,H (x)]

∣∣∣∣ −→ 0 . (D.71)

A closely related statement, namely

sup
x∈[a,b]

∣∣∣∣∫ 1

hn
Im

[
m̆K

(
x− t
hn

)]
dFc,H(t)− Im[m̆Fc,H (x)]

∣∣∣∣ −→ 0 , (D.72)

was proven by Jing et al. (2010) in the course of proving their Theorem 1 at the end of Section 5.1.

It can be verified that the methods developed in this paper to simultaneously handle (i) locally

adaptive bandwidth, (ii) the first incomplete moment function of the spectral e.d.f. of the

precision matrix, and (iii) unbounded kernel support, can be adapted to establish the truth

of (D.71), using the techniques developed above for the real part. Indeed, the real part was

a much tougher nut to crack because it also required moving from the spectral density to its

Hilbert transform; whereas the imaginary part is just the spectral density itself (up to rescaling

by π).

Note that (D.66) and (D.71) together imply

sup
x∈[ 1

a′ ,
1
b′ ]

∣∣∣∣∫ 1

thn
m̆K

(
x− t
thn

)
dΨc,H(t)− m̆Ψc,H (x)

∣∣∣∣ −→ 0 . (D.73)

Results (D.55), (D.59), and (D.73) together conclude the proof of Theorem D.1.

D.5 Proof of Theorem 3.1

Theorem 3.1 of Ledoit and Wolf (2018) shows that, under Assumptions 3.1–3.3, the quantity

LST
n (Σn, Σ̃n), which represents Stein’s loss for any covariance matrix estimator Σ̃n in the rotation-

equivariant class of Definition 3.2, converges almost surely as p and n go to infinity together to

the nonrandom limit:

κ∑
k=1

∫ bk

ak

{
1− c− 2 c xRe[m̆F (x)]

x
δ̃(x)− log

[
δ̃(x)

]}
dF (x) +

∫ +∞

−∞
log(t) dH(t)− 1 . (D.74)

From Corollary 3.1.a of Ledoit and Wolf (2018), it then follows that a covariance matrix

estimator S̃n minimizes in the class of rotation-equivariant estimators described in Definition 3.2

the almost sure limit (D.74) of Stein’s loss if and only if its limiting shrinkage function δ̃ verifies

∀x ∈ Supp(F ), δ̃(x) = δST(x), where

∀x ∈ Supp(F ) δST(x) ..=
x

1− c− 2 c xRe[m̆F (x)]
. (D.75)

By Equation (D.35), we know that

∀x ∈ Supp(F ) Re[m̆Ψ(1/x)] = −xRe[m̆F (x)] . (D.76)

59



Substituting Equation (D.76) into Equation (D.75) yields

∀x ∈ Supp(F ) δST(x) =
x

1− c+ 2 cRe[m̆Ψ(1/x)]
(D.77)

δST(x) =
1

(1− c)x−1 + cx−1 × 2πHψ(1/x)
. (D.78)

Consider the shrinkage function

∀x ∈ (0,+∞) d̂n(x) ..=
1(

1− p

n

)
x−1 +

( p
n

)
x−1 × 2θ̂n

(
x−1

) (D.79)

A comparison with the estimator proposed in Theorem 3.1 reveals that

∀i = 1, . . . , p d̂n,i = d̂n (λn,i) . (D.80)

Thanks to Equation (D.12), the shrinkage function can be rewritten as

∀x ∈ (0,+∞) d̂n(x) =
1(

1− p

n

)
x−1 +

( p
n

)
x−1 × 2πH

Ψ̂n

(
x−1

) . (D.81)

This is where Theorem D.1 comes into play: it implies that

∀x ∈ Supp(F ) d̂n(x)
p−→ δST(x) . (D.82)

Combined with the aforementioned Corollary 3.1.a of Ledoit and Wolf (2018), this concludes the

proof of Theorem 3.1.

D.6 Proof of Theorem 4.1

Theorem 4.2 of Ledoit and Wolf (2018) shows that, under Assumptions 3.1–3.3, the quantity

LFR
n (Σn, Σ̃n), which represents the Frobenius loss for any covariance matrix estimator Σ̃n in the

rotation-equivariant class of Definition 3.2, converges almost surely as p and n go to infinity

together to the nonrandom limit:∫ +∞

−∞
x2 dH(x) +

κ∑
k=1

{
− 2

∫ bk

ak

x δ̃(x)

|1− c− c x m̆F (x)|2
dF (x) +

∫ bk

ak

δ̃(x)2dF (x)

}
. (D.83)

From Corollary 4.2 of Ledoit and Wolf (2018), it then follows that a covariance matrix estimator

S̃n minimizes in the class of rotation-equivariant estimators described in Definition 3.2 the almost

sure limit (D.83) of the Frobenius loss if and only if its limiting shrinkage function δ̃ verifies
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∀x ∈ Supp(F ), δ̃(x) = δFR(x), where ∀x ∈ Supp(F )

δFR(x) ..=
x

|1− c− c x m̆F (x)|2
(D.84)

=
x

{1− c− c xRe [m̆F (x)]}2 + c2 x2 Im [m̆F (x)]2
(D.85)

=
x

(1− c)2 − 2c(1− c)xRe [m̆F (x)] + c2
{
x2 Re [m̆F (x)]2 + x2 Im [m̆F (x)]2

}
=

x

(1− c)2 + 2c(1− c)Re [m̆Ψ(x−1)] + c2
{
Re [m̆Ψ(x−1)]2 + Im [m̆Ψ(x−1)]2

}
=

1

(1− c)2 x−1 + 2c(1− c)x−1πHψ (x−1) + c2x−1π2
[
Hψ (x−1)2 + ψ (x−1)2

]
Consider the shrinkage function defined for all x ∈ (0,+∞) by

δ̂n(x) ..=
1(

1− p

n

)2
x−1 + 2

p

n

(
1− p

n

)
x−1θ̂n

(
x−1

)
+
( p
n

)2
x−1

[
θ̂n
(
x−1

)2
+H

θ̂n

(
x−1

)2]
A comparison with the estimator proposed in Theorem 4.1 reveals that

∀i = 1, . . . , p δ̂n,i = δ̂n (λn,i) . (D.86)

By Equation (D.12) and the anti-involution property of the Hilbert transform, the functions

πψ̂n(x) and θ̂n(x) constitute a Hilbert pair. This means that H
ψ̂n

(x) = θ̂n(x)/π and

H
θ̂n

(x) = −πψ̂n(x) . With this in mind, the shrinkage function δ̂n(x) can be rewritten as

1(
1− p

n

)2
x−1 + 2

p

n

(
1− p

n

)
x−1πH

ψ̂n

(
x−1

)
+
( p
n

)2
x−1π2

[
H
ψ̂n

(
x−1

)2
+ ψ̂n

(
x−1

)2]
Then Theorem D.1 implies that

∀x ∈ Supp(F ) δ̂n(x)
p−→ δFR(x) . (D.87)

Combined with the aforementioned Corollary 4.2 of Ledoit and Wolf (2018), this concludes the

proof of Theorem 4.1.

E Singular Case

The sample covariance matrix is singular when the dimension p exceeds the sample size n.

Its p − n smallest eigenvalues (λn,1, . . . , λn,p−n) are then all equal to zero. In this case, the

finite-sample optimal estimator for LMV, LFR and LIS treats the null space differently:

∀i = 1, . . . , p− n dn,i ..=
1

p− n

p−n∑
j=1

u′n,jΣnun,j (E.1)

∀i = p− n+ 1, . . . , p dn,i ..= u′n,iΣnun,i (E.2)

The counterpart to Assumption 3.1 is:
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Assumption E.1 (Singular Case). Let n denote the sample size and p ..= p(n) the number of

variables. It is assumed that the concentration (ratio) cn ..= p/n converges, as n → ∞, to a

limiting concentration ratio c ∈ (1,+∞). Furthermore, there exists a compact interval included

in (1,+∞) that contains p/n for all n large enough.

E.1 Working With Non-Null Sample Eigenvalues

When p > n, or asymptotically c ∈ (1,+∞), it is more mathematically judicious to work with

the e.d.f. of the non-null sample eigenvalues

∀x ∈ R Fn(x) ..=
1

n

p∑
i=p−n+1

1{λn,i≤x} =
p

n
Fn(x)− p− n

n
1{x≥0} . (E.3)

Under Assumptions E.1, 3.2 and 3.3, Theorem 1.1 of Silverstein (1995) shows that

∀x ∈ R Fn(x)
a.s.−→ F (x) where F (x) ..= cF (x)− (c− 1)1{x≥0} . (E.4)

Theorem 1.1 of Silverstein and Choi (1995) implies that, under the same assumptions, F admits

a continuous derivative f that itself admits a well-defined and continuous Hilbert transform Hf ;

or equivalently, that m̆F exists and is continuous. The relationship between the two Stieltjes

transforms is

∀x ∈ R m̆F (x) = cm̆F (x) +
c− 1

x
. (E.5)

The relationship between the corresponding densities and their Hilbert transforms follows

naturally by taking the real and imaginary parts as per Equation (C.7).

We can do the same with the inverses of the non-null eigenvalues. If the sample precision

matrix existed when p > n, these would be its finite eigenvalues.

∀x ∈ R Φn(x) ..=
1

n

p∑
i=p−n+1

1{λ−1
n,i≤x}

=

1− Fn(1/x) if x > 0

0 otherwise .
(E.6)

Under Assumptions E.1 and 3.2, for all x ∈ R, Φn(x) converges almost surely to

Φ(x) ..=

1− F (1/x) if x > 0

0 otherwise .
(E.7)

Under the same assumptions, Φ admits a continuous derivative φ that itself admits a well-defined

and continuous Hilbert transform Hφ; or equivalently, m̆Φ exists and is continuous. Finally, we

will also need the first incomplete moment function

∀x ∈ R Ψn(x) ..= LΦn(x) =
1

n

p∑
i=p−n+1

λ−1
n,i 1{λ−1

n,i≤x}
. (E.8)

Under Assumptions E.1 and 3.2, for all x ∈ R, Ψn(x) converges almost surely to a limit

Ψ(x) ..= LΦ(x) , (E.9)

which admits a continuous derivative ψ whose Hilbert transform Hψ exists and is continuous.
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E.2 Preliminary Results

The following results have never been, as such, derived for the Frobenius loss in the singular case,

although comparable results have been derived with respect to Stein’s loss and the Minimum

Variance loss in the singular case, and with respect to the Frobenius loss in the p < n case. So

we must build these foundations before proceeding any further.

Definition E.1. Define ∀x ∈ R, Γn(x) ..= p−1
∑p

i=1 u
′
n,iΣnun,i × 1[λn,i,+∞)(x).

Lemma E.1. Under Assumptions E.1 and 3.2, there exists a nonrandom function Γ defined

on R such that Γn(x) converges almost surely to Γ(x), for all x ∈ R \ {0}. Furthermore, Γ is

continuously differentiable on R \ {0} and can be expressed as ∀x ∈ R, Γ(x) =
∫ x
−∞ γ(λ)dF (λ),

where

∀x ∈ R γ(x) ..=


0 if x < 0,

1

(c− 1)m̆F (0)
if x = 0,

x

|1− c− cxm̆F (x)|
if x > 0 .

Proof of Lemma E.1. The proof of Lemma E.1 follows directly from Ledoit and Péché’s (2011)

Theorem 4 and the corresponding proof, bearing in mind that we are in the case c > 1 (which

they call γ < 1) because of Assumption E.1.

Theorem E.1. Under Assumptions E.1, 3.2, and 3.3,

LFRn (Σn, Σ̃n)
a.s.−→
∫ +∞

−∞
x2dH(x) +

κ∑
k=1

∫ bk

ak

[
δ̃(x)2 − 2

δ̃(x)

x|m̆F (x)|2

]
dF (x)

+
c− 1

c

[
δ̃(0)2 − 2

δ̃(0)

(c− 1)m̆F (0)

]
. (E.10)

Proof of Theorem E.1. The proof of Theorem E.1 is similar to the proof of Ledoit and Wolf’s

(2018) Theorems 4.2 and 6.1, so is omitted.

E.3 Shrinkage When p > n

Theorem E.10 shows that, under Assumptions E.1, 3.2, and 3.3, the quantity LFR
n (Σn, Σ̃n),

which represents the Frobenius loss for any covariance matrix estimator Σ̃n in the rotation-

equivariant class of Definition 3.2, converges almost surely as p and n go to infinity together to

the nonrandom limit (E.10). Differentiating with respect to δ̃(x) for any given x and solving the

resulting first-order condition yields the optimum

∀x ∈ R δFR(x) ..=


1

(c− 1)m̆F (0)
if x = 0,

x

|1− c− cxm̆F (x)|2
if x > 0 .

(E.11)

By arguments parallel to those employed in Corollary 6.1 of Ledoit and Wolf (2018), it then

follows that a covariance matrix estimator S̃n minimizes in the class of rotation-equivariant
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estimators described in Definition 3.2 the almost sure limit (E.10) of the Frobenius loss if and

only if its limiting shrinkage function δ̃ verifies ∀x ∈ Supp(F ), δ̃(x) = δFR(x) as defined by (E.11).

Regarding the non-null sample eigenvalues:

∀x ∈ (0,+∞) δFR(x) =
x

|1− c− c x m̆F (x)|2
=

1

x
∣∣m̆F (x)

∣∣2 =
x∣∣m̆Ψ (x−1)

∣∣2 (E.12)

=
1

x−1π2
[
Hψ (x−1)2 + ψ (x−1)2

] . (E.13)

This oracle shrinkage function is estimated by its bona fide counterpart

δ̂n(x) ..=
1

x−1π2
[
H
ψ̂
n

(
x−1

)2
+ ψ̂

n

(
x−1

)2] . (E.14)

A comparison with the estimator proposed in Section 5 reveals that

∀i = p− n+ 1, . . . , p δ̂n (λn,i) =
1

x−1

[
θ̂n

(
λ−1
n,i

)2
+H

θ̂n

(
λ−1
n,i

)2
] = δ̂n,i . (E.15)

Finally, the null space of the sample covariance matrix requires a separate approach. The

shrinkage formula for δ̂n,i (i = 1, . . . , p− n) comes from the following proposition:

Proposition E.1. Under Assumptions E.1 and 3.2,

( p
n
− 1
)
× 1

n

p∑
j=p−n+1

λ−1
n,j

a.s.−→ (c− 1)m̆F (0) . (E.16)

Proof of Proposition E.1. Let X be a random variable with distribution (function) F . Then X

can be written as

X =
c− 1

c
Y +

1

c
Z ,

where Y is a random variable corresponding to a point mass at zero and Z is random variable

corresponding to the continuous part of F , having support in [a, b] for 0 < a < b < +∞.

Under the maintained assumptions, for all n large enough, the collection of sample eigenvalues

{λn,p−n+1, . . . , λn,p} is also contained in [a, b] almost surely, with the empirical distribution

of these n values converging weakly to Z almost surely. This fact implies by the continuous

mapping theorem that the empirical distribution of the n values {λ−1
n,p−n+1, . . . , λ

−1
n,p} converges

weakly to Z−1 almost surely. Further note that that interval [1/b, 1/a] contains the support

of Z−1 as well as the collection {λ−1
n,p−n+1, . . . , λ

−1
n,p}, for all n large enough, almost surely. By

Skorokhod’s representation theorem and the dominated convergence theorem it then follows that

1

n

p∑
j=p−n+1

λ−1
n,j

a.s.−→ E
(
Z−1

)
.

The proof is complete by noting that m̆F (0) = E
(
Z−1

)
together with the fact that p/n→ c.
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F Supplementary Monte Carlo Simulations

Further comfort with our approach can be gained by broadening the scope of the numerical

inverstigations beyond those already reported in Section 7.

F.1 Post-Processing With the Pool Adjacent Violators (PAV) Algorithm

The shrunken eigenvalues in the QIS estimator are guaranteed to be strictly positive, as mentioned

in Remark 4.2. However, they are not guaranteed to preserve ordering. This is a matter worth

exploring further, given that Stein’s isotonization algorithm, as detailed by Lin and Perlman

(1985, pp. 426–428), ensures both positivity and order preservation.

In this section, we revisit the convergence graph in Figure 5. The difference is that we

now add the QIS+PAV estimator, which post-processes the QIS eigenvalues through the Pool

Adjacent Violators (PAV) algorithm of Ayer et al. (1955), a commonly used method for restoring

order. Figure 11 displays the results.
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Figure 11: Evolution of the PRIAL as the matrix dimension and the sample size go to infinity

together.

One can see that the circles (representing QIS+PAV) are almost exactly superimposed with the

solid line (representing QIS); therefore, the two respective performances are essentially the same

for practical purposes. In the baseline scenario of Section 7.1, QIS+PAV has a PRIAL of 97.11%

vs. 97.04% for simple QIS, a minute difference. Furthermore, since the QIS+PAV estimator

belongs to the class in Definition 3.2, Theorem 4.1 applies to it as well, implying that QIS+PAV

has the same limiting loss as simple QIS under large-dimensional asymptotics, not lower.

Another way to answer the question is to notice that Proposition 4.2 enjoins us to make

the ith shrunken eigenvalues very close to dn,i ..= u′n,iΣnun,i (for i = 1, . . . , p). These are the

eigenvalues of what we call the FSOPT (for finite-sample optimal) estimator in Section 7. Their

expectations are in order: E[dn,1] ≤ E[dn,2] ≤ · · · ≤ E[dn,p], but they themselves need not be.

To measure the practical importance of this disorder, we use a procedure analogous to the one
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of Ledoit and Wolf (2020, Appendix D.4). We compare the percentage of nearest-neighbor order

violations for FSOPT with that for QIS across the eight (p, n) pairs used to generate Figure 11.

More formally, these percentages are defined as

1

p− 1

p−1∑
i=1

1{dn,i>dn,i+1} and
1

p− 1

p−1∑
i=1

1{δ̂n,i>δ̂n,i+1} , (F.1)

for FSOPT and QIS, respectively. We also record the average magnitudes of the violations,

defined as

1

an

p−1∑
i=1

dn,i − dn,i+1

1

2

(
dn,i + dn,i+1

)1{dn,i>dn,i+1} and
1

α̂n

p−1∑
i=1

δ̂n,i − δ̂n,i+1

1

2

(
δ̂n,i + δ̂n,i+1

)1{δ̂n,i>δ̂n,i+1} , (F.2)

respectively, where an ..=
∑p−1

i=1 1{dn,i>dn,i+1} and α̂n ..=
∑p−1

i=1 1{δ̂n,i>δ̂n,i+1}. Table 6 presents the

results based on the simulations used to plot Figure 11.

p 30 50 100 150 200 300 400 500

n 90 150 300 450 600 900 1200 1500

Average % Violations
FSOPT 37.2 40.5 43.3 44.6 45.3 46.2 46.9 47.1

QIS 34.6 33.6 31.0 28.9 27.5 25.9 24.4 23.6

Average Magnitude (%)
FSOPT 7.94 6.10 4.46 3.64 3.19 2.62 2.28 2.05

QIS 3.15 1.89 0.92 0.59 0.41 0.26 0.19 0.14

Table 6: Summary statistics on order violations for FSOPT and QIS.

Interestingly, FSOPT has order violations in each one of the 4,950 Monte Carlo simulations

generated to produce this table. For every pair of parameters (p, n), QIS has fewer order

violations than FSOPT on average. The comparison is even more striking in terms of magnitude,

as the order violations are systematically bigger for FSOPT than QIS, sometimes by an order

of magnitude. Table 6 indicates that restoring order to QIS eigenvalues through the PAV

algorithm is not a huge priority given that even the FSOPT, which cannot be beaten and

assumes (unrealistic) foreknowledge of the population covariance matrix, tolerates more frequent

and also larger order violations.

The overall trade-off is between, on the one hand, extra complexity (in moving from a

closed-form solution to an iterative numerical algorithm) versus, on the other hand, a gain in

accuracy so small as to be virtually negligible. Everybody is free to make their own decisions,

but we believe that, on balance, the scales tip in favor of keeping the simple version of QIS

without PAV.
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F.2 Choice of the Kernel

In the main body of the paper, we select the Cauchy kernel for its simplicity, and also because

its formula dovetails nicely with the classic work of Stein (1986). Equation (3.4) shows direct

visual concordance between the original Stein shrinker and our own smoothed Stein shrinker.

Statisticians who are familiar with the former will be comfortable with the latter. Not only is

the formula built on the Cauchy kernel elegant, but its conjugate signal (required for handling

Frobenius loss) is equally simple, cf. Proposition 4.4. The same cannot be said for other kernels.

Nonetheless, it is valuable as a sanity check to run a brief numerical comparison between

various kernel choices. The default expectation is that they should have broadly similar

performances. There is not much guidance from theory as to which kernel to choose in this

context. The asymptotic theorems hold with a variety of standard kernels. An obvious family of

alternatives are the kernels with compact support, which is well represented by the Epanechnikov

(1969) kernel because it has some error-minimization properties, and has been used successfully

by Ledoit and Wolf (2020). Another obvious alternative kernel is the Gaussian.

The first order of business is to adjust the shrinkage formulas to incorporate alternative

kernels. This is mathematically tedious, so we will only report the shrinkers, leaving their

conjugates and amplitudes to be worked out by the reader.

Stein: θ̃n(x) =
1

p− 1

p∑
j=1

λ−1
n,j
6=x

λ−1
n,j

1

λ−1
n,j − x

(F.3)

Cauchy: θ̂n(x) =
1

p

p∑
j=1

λ−1
n,j

λ−1
n,j − x(

λ−1
n,j − x

)2
+ h2

nλ
−2
n,j

(F.4)

Epanechnikov: θ̂En (x) ..=
3

p hn

p∑
j=1

{
λ−1
n,j − x

10hnλ
−1
n,j

+
1

4
√

5

1−

(
x− λ−1

n,j

)2

5h2
nλ
−2
n,j


× log

∣∣∣∣∣
√

5hnλ
−1
n,j − x+ λ−1

n,j√
5hnλ

−1
n,j + x− λ−1

n,j

∣∣∣∣∣
}

(F.5)

Note that the expression between curly brackets is not defined when |x− λ−1
n,j | =

√
5hnλ

−1
n,j , so

in this case it should be interpreted as just
λ−1
n,j−x

10hnλ
−1
n,j

.

Gaussian: θ̂Gn (x) = −
√

2

p hn

p∑
j=1

D

(
x− λ−1

n,j√
2hnλ

−1
n,j

)
, (F.6)

where D denotes the Dawson integral: D(x) ..= e−x
2 ∫ x

0 e
t2dt, a higher-transcendental function

which is very slow to compute.

Once again, we re-run the convergence graph in Figure 5 but this time adding the

Epanechnikov kernel. We also ran the Gaussian kernel, but the results were so close to

Epanechnikov that it would have brought nothing of value to plot them, and only would have
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reduced the legibility of the figure. So the results labeled “Epanechnikov” can actually be viewed

as meaning “Epanechnikov and Gaussian” together. Figure 12 displays the results.
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Figure 12: Evolution of the PRIAL as the matrix dimension and the sample size go to infinity

together.

As expected, the results are very close. The performance gap between the estimators using

different kernels is less than half the performance gap between the two numerical estimators

(QuEST vs. NERCOME). This is very reassuring because it means that the method promoted

here is robust against tweaks such as kernel modification. Although it is a little bit disappointing

that the Cauchy kernel is not the best one in terms of performance (at least in this particular

simulation), this is not why it was chosen in the first place. It was chosen for its close connection

with Stein’s nonlinear shrinkage formula and for its simplicity, as visual inspection of Equations

(F.3)–(F.6) makes obvious.7

Another interesting piece of information to come out of Figure 12 is the comparison of the

Analytical estimator (dashed line) with the QIS estimator smoothed by the Epanechnikov kernel

(circles). They both use the same kernel, Epanechnikov, but differently. The former uses it

to estimate the derivative of the c.d.f. of the spectral distribution of the sample covariance

matrix, whereas the latter uses it to estimate the derivative of the first incomplete moment

function of the spectral distribution of the sample precision matrix. Given that the results come

out so close to each other, it indicates that the two approaches are essentially interchangeable

for practical purposes. The main differences are in the mathematical proofs, and in the elegance

of the resulting formulas. In this respect, we believe that the QIS approach (based on inverse

eigenvalues) adheres more closely to the intrinsic nature of the mathematical problem at hand.

7It is unlikely that there exists a ‘best’ kernel across the board: indeed, Epanechnikov is slightly better than

Gaussian in the lower dimensions (p ≤ 300), whereas it is the reverse in the higher dimensions (400 and 500).

Even if one embarked on a broader study of the question (which we shall not do here), the results would be purely

experimental and contingent upon the specific setup of the Monte Carlo simulations, as there is no general theory

to back them up.
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F.3 Alternative Loss Functions

Even though the Frobenius loss is widely employed, the other two loss functions mentioned in

Section 4 also have their respective advantages. In this section, we revisit the convergence graph

of Figure 5, first by using the Inverse Stein’s loss instead of Frobenius. Figure 13 displays the

results.
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Figure 13: Evolution of the PRIAL as the matrix dimension and the sample size go to infinity

together.

They are mostly analogous to Frobenius-loss results. If anything, Inverse Stein seems a bit

more forgiving of the suboptimality of linear shrinkage (see the scale of the vertical axis). We

then reconduct the same exercise, but this time with respect to the Minimum Variance loss of

Definition 4.3. Figure 14 displays the results.
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Figure 14: Evolution of the PRIAL as the matrix dimension and the sample size go to infinity

together.
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One can see that there is essentially no difference in terms of numerical performance, relative

the corresponding simulations under Frobenius loss. This is what we expected based on the

theoretical results of Corollary 4.1.

F.4 Smoothing Hyperparameter

In Section 6.2, we presented the surface of optimal hn’s as a function of (p, n). Each point in

Figure 4 was the average of 12,000 numbers: 6 population spectra × 2 loss functions × 1,000

simulations. It is worthwhile checking whether the inverted V-shaped pattern remains the same

when we partial out the simulations by shape of population spectrum. In this exercise, we will

obtain 6 different optimal smoothing parameter surfaces, and each point in each figure will be

the average of ‘only’ 2000 simulations. Figure 15 displays the results.

Figure 15: Optimal smoothing parameter as a function of the matrix dimension and the sample

size for various shapes of the population spectrum.

The consistency across scenarios demonstrates the robustness of our choice of smoothing
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parameter. In order to further explore this question, we fit the linear regression model of

Equation (6.2) separately for each population-spectrum shape. Table 7 presents the results.

Population Identity+ High Spectral Upper Lower Skewed

Spectrum Fat Tails Condition Separation Spike Spike

Intercept 0.118 0.444 −0.214 0.316 0.252 0.620

(0.082) (0.073) (0.108) (0.078) (0.079) (0.074)

log
[
min(p/n, n/p)

]
0.757 0.623 0.662 0.669 0.671 0.574

(0.020) (0.018) (0.026) (0.019) (0.020) (0.018)

log[p] −0.378 −0.421 −0.306 −0.404 −0.394 −0.447

(0.015) (0.013) (0.020) (0.014) (0.015) (0.013)

n 192 192 192 192 192 192

R2 0.914 0.919 0.816 0.913 0.909 0.916

Table 7: Linear regression fits of model (6.2) to the optimal bandwidth in log-space.

The results are very similar across population spectra. The coefficient on log
[
min(p/n, n/p)

]
is

close to 0.70, give or take some, and the coefficient on log[p] is close to −0.35.

Also of interest is the extent to which the performance of the QIS estimator is affected if we

change the formula for the smoothing parameter. We consider a general specification:

hn ..= κ×min

(
p2

n2
,
n2

p2

)α
× p−β . (F.7)

The formula promoted in Section 6.3 corresponds to the particular case κ = 1, α = β = 0.35.

In order to measure performance, we start from the baseline scenario and vary p and n as per

Section 6.2, then average the Frobenius PRIALs. Since there are 8 × 12 = 96 pairs of (p, n)

parameters, and we run 1,000 Monte Carlo simulations for each (p, n), each cell in Table 8 below

represents and average of 96, 000 simulations.

β = 0.30 α = 0.30 α = 0.35 α = 0.40

κ = 0.5 96.6 96.5 96.3

κ = 1 96.1 96.3 96.5

κ = 2 92.9 93.6 94.1

β = 0.35 α = 0.30 α = 0.35 α = 0.40

κ = 0.5 96.2 96.0 95.6

κ = 1 96.5 96.7 96.7

κ = 2 94.3 94.8 95.3

β = 0.40 α = 0.30 α = 0.35 α = 0.40

κ = 0.5 95.5 95.1 94.5

κ = 1 96.7 96.7 96.7

κ = 2 95.4 95.8 96.0
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Table 8: Average Frobenius PRIAL (in %) for 27 variants of the smoothing parameter.

Five different specifications, including our default one, achieve the best score of 96.7%. The

only universal pattern that emerges is that κ = 2 is always worse than κ = 1. Apart from that,

the results are distributed irregularly. 22 out of 27 configurations fall within 1% of the overall

mean (which is 95.7%). The worst performance is 92.9%, still a honorable PRIAL. On this

basis, we can safely conclude that performance is not sensitive to the choice of the smoothing

hyperparameter, as long as it remains generally in the same neighborhood as the formula adopted

in Equation (6.3).

F.5 Comparison With Stein’s Original Estimator

Given that the Stein (1986) estimator plays an important part as starting point of our

investigation, it would be interesting to see how it performs compared to the two estimators

that we have obtained: the Linear-Inverse Shrinkage (LIS) estimator of Equation (3.5), and the

Quadratic-Inverse Shrinkage (QIS) estimator of Equation (4.16). Indeed, one can consider these

three estimators a family that stands apart from other strands of the literature on covariance

matrix estimation: Going from Stein’s original to LIS is just a matter of inverting the order of

the shrinkage step and the regularization step; which then enables us to go to QIS in order to

deal with loss functions other than Stein’s loss, bring the amplitude into play, and address the

p > n case.

Stein, LIS, and QIS are optimized with respect to different loss functions, so it is only fair to

compare them with respect to all the loss functions mentioned in the main body of the paper:

Stein’s loss, Inverse Stein’s loss, Frobenius loss, and Minimum Variance loss. So there are 3

estimators and 4 loss functions, yielding 3× 4 = 12 different PRIALs. Given that this number is

starting to get unwieldy, and that this exercise is somewhat derivative to the main thrust of the

paper, we content ourselves with looking at the baseline scenario of Section 7.1, which should be

representative of the broader patterns. Table 9 presents the results, each cell representing an

average of 500 simulations.

Prial (%) Stein’s loss Inverse Stein’s loss Frobenius loss Minimum Variance loss

Stein 97.9 84.5 78.5 95.2

LIS 96.4 87.4 82.6 93.4

QIS 66.5 98.6 97.1 96.2

Table 9: Comparing three estimators with respect to four different loss functions.

As expected, Stein’s original estimator and the LIS estimator do well with respect to Stein’s

loss, since this is the loss function with respect to which they are optimized; and they do less
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well with respect to the other three loss functions. Conversely, the QIS estimator does well with

respect to Inverse Stein’s loss, Frobenius loss, and Minimum Variance loss, since it is optimized

with respect to all three; and less well with respect to Stein’s loss.

As a secondary observation, there is no strict ordering between Stein’s estimator and the

LIS estimator: it depends on the particular loss function. One can also see that, whereas the

three loss functions that belong in the same group (Inverse Stein’s loss, Frobenius loss, and

Minimum Variance loss) treat the QIS estimator in very much the same way, there is considerable

variation between them on how lenient they are with respect to estimators optimized for Stein’s

loss. For example, Stein’s original estimator scores a markedly lower (but still respectable)

PRIAL of 78.5% with respect to Frobenius loss, and a much higher one of 95.2% with respect

to the Minimum Variance loss. Overall, the Minimum Variance loss seems the most tolerant

of nonlinear shrinkage estimators that are optimized with respect to the ‘wrong’ loss function.

By contrast, in Section F.3, it was the Inverse Stein’s loss that was most forgiving of linear

shrinkage.

From this investigation, we can conclude that the original estimator of Stein (1986) holds

its own surprisingly well. By working to improve upon it, we are taking on not a minnow but

a giant. In particular, it is hard to promote the LIS estimator over Stein’s original one, since

the inversion of order between the nonlinear shrinkage step and the numerical regularization

step (isotonization for Stein, kernel smoothing for LIS) does not make enough of a difference

in practice. The main advantage is theoretical in the sense that LIS can prove optimality by

harnessing the power of large-dimensional asymptotics. This is to a large extent why this paper

has not promoted the LIS estimator as strongly as the QIS estimator. Speaking of which, Table 9

shows that it makes much difference if one employs an estimator optimized with respect to the

‘right’ loss function (as determined by the problem at hand). It would be hard to recommend

the Stein (1986) estimator for anyone interested in the Inverse Stein’s loss, the Frobenius loss,

or the Minimum Variance loss. In all such cases, the QIS estimator is more suitable, as we do

not know a priori to what extent the Stein estimator will underperform.
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