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Abstract
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general not optimal to reward the expert if his recommendation is confirmed. The
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∗Part of this research was supported by the National Science Foundation (grant SES-0136817). I would
like to thank Curtis Taylor and Huseyin Yildirim.

†University of Bonn, Institut für Wirtschaftstheorie II, Lennestr. 37, 53113 Bonn, Germany, e-mail:
wolfgang.koehler@uni-bonn.de



1. Introduction

It is a common feature of economic problems that actions have to be taken before the exact

circumstances that determine the outcome are known. In many situations, there are potentially

huge costs of a mismatch between action and the state that is realized after the action has been

taken. In these situations, the decision maker would benefit from access to better information.

Even when it is impossible to completely resolve the uncertainty about the future, in many sit-

uations players can acquire additional information besides what is publicly available. Acquiring

information is costly and it is not necessarily the decision maker who has the lowest cost. In many

professions exist experts who specialize in forecasting, presumably because they have access to a

more efficient technology to acquire information or due to economies of scale. The best known

examples of forecasts are probably weather forecasts and predictions of macroeconomic variables.

Besides that, there exists a variety of financial forecasts, estimates about the demand for new

products or the cost of new technologies, predictions of the outcome of elections, the effect of tax

reforms, etc. In these examples, the one who initiates the forecast and whose decision is based on

the forecast, is usually not the one who acquires the information. But if information acquisition

is delegated to experts, the problem arises how to align the incentives for information acquisition

and for truthful information revelation.

We study optimal incentive contracts for information acquisition and revelation. This paper

contributes to a growing literature that concentrates on asymmetries in the cost of acquiring infor-

mation rather than on asymmetric information. Specifically, we consider the following situation:

A decision maker has to take some action before the state of the world is realized. The better the

action matches the state, the higher is the decision maker’s payoff. Instead of basing the choice of

the action solely on the common prior, the decision maker can contract with an expert to gather

additional information. The decision maker (principal) faces the problem to design a contract

that provides the expert (agent) with incentives to increase the precision of his information and
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to reveal the information.

When effort is not observable, incentives for information acquisition can only be provided if the

agent’s compensation depends on some variable that is correlated with the realized state and on

the report of the agent. Under complete information, a report is equivalent to a recommendation

to implement a certain action. We show that it is in general not optimal to reward the agent when

his recommendation is confirmed by the facts. Under the optimal contract, the agent is (at least

sometimes) rewarded when his recommendation turns out to be wrong but is not rewarded when

the recommendation was correct. The optimal action and, if the agent reveals his information, the

recommendation are functions of the agent’s posterior. In general, a recommendation is confirmed

if the realized state is equal to the agent’s posterior mean. When the agent’s information has the

form of a signal and signal and state are normally distributed, the agent is not rewarded when

the recommendation is confirmed and the state is equal to the agent’s posterior mean but instead

if the state is equal to the signal.

The observation that in reality many experts are rewarded if their recommendations are con-

firmed can be explained by incomplete information about the agent’s cost to exert effort. When

the principal knows the agent’s cost to exert effort, for a given contract, she can compute the

equilibrium precision of the agent’s signal. In this case, the revelation of the agent’s private in-

formation is equivalent to the recommendation of an action. Under incomplete information about

the agent’s cost to exert effort, a recommendation contains more information than the revelation

of the private information of the agent. On the other hand, if the agent recommends an action and

is rewarded if the recommendation is confirmed, he has less incentives to increase the precision of

his signal. When there is a lot of uncertainty about the cost to exert effort, the first effect (more

information) dominates the second (less incentives).

We use the results about optimal incentive contracts to analyze the organization of expertise.

The optimal number of agents depends on the cost of information acquisition. Only if the marginal

cost of precision increases, it is optimal to contract with as many agents as possible. In many
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situations, it is possible to gather information either sequentially or simultaneously. We show that

regardless of the cost function, the timing of expertise does not affect the payoffs and, therefore,

does not affect the equilibrium amount of information that is acquired. Finally, we analyze the

optimal contract when the realized state is not observable or not verifiable. In this case, the

principal contracts with two agents and the wage depends on the reports of both agents. Similar

to the case where the state is observable, an agent is not rewarded if his report is confirmed by

the other agent. Instead, an agent is rewarded if the other agent reports a signal which is more

extreme.

There exists an extensive literature that analyzes and tests different theories about the behavior

of forecasters1 . While these papers are interested in information revelation, they do not model

the decision to acquire information and do not consider the design of incentive contracts.

Ottaviani and Sørensen analyze the strategic behavior of forecasters who are endowed with a

signal. Ottaviani and Sørensen (2003) analyze a situation where forecasters compete in a rank-

order contest where prizes are exogenously determined. In the presence of prior information,

forecasts are excessively differentiated in the sense that the posterior mean lies between the prior

mean and the forecast. Ottaviani and Sørensen (2004) model forecasting as a reputational cheap-

talk game. Similar to Ottaviani and Sørensen, Krishna and Morgan (2001) do not consider

information acquisition or the design of incentive contracts. They analyze strategic information

revelation of biased experts who are perfectly informed about the true state.

Similar to this paper, Osband (1989) is interested in the optimal contract when the principal

observes neither the agent’s information nor the effort that determines the precision of the infor-

mation. His setting differs in that he assumes that the agent is not wealth-constrained. Therefore,

it is optimal to sell the project to the agent.2 Prendergast (1993) analyzes information acquisition

when there is no obvious metric to measure the accuracy of the forecast. The agent receives two

1 E.g., Ehrbeck and Waldman (1996), Hong et al. (2000), Lamont (2002), Laster et al. (1999).

2 When the principal knows the type of agent (i.e., the agent’s cost of effort) she sells the project to the agent.
Under incomplete information, the principal sells only a fraction of the project to reduce information rents.
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signals. The first signal is correlated with the state and the second is correlated with the opinion

of the principal. To provide the agent with incentives to exert effort, the wage has to be tied to

the principal’s opinion. Prendergast shows that the agent’s report is biased towards the agent’s

belief about the opinion of the principal. As a result, the principal cannot infer the signals. If the

agent’s desire to conform with the principal’s opinion is large, the gain from an unbiased report

outweighs the loss from lower precision. In this case, the principal does not offer an incentive

contract but instead pays a fixed wage to guarantee truthtelling.

In a different context, several authors analyze incentives for information acquisition in pro-

curement settings. Crémer and Khalil (1992), Crémer, Khalil, and Rochet (1998), and Lewis and

Sappington (1999) analyze how to deter an agent from acquiring information that generates rents

but has no social value. Lewis and Sappington (1997) consider a situation where the principal

wants the agent not only to acquire but also to reveal information that is socially valuable. The

principal optimally offers a reward schedule with ’super-high-powered’ incentives when costs are

low and a high degree of cost-sharing when costs are high.

Li (2001) and Szalay (2003) examine information acquisition when players have the same

preferences over the implementation of actions and when it is not possible to design monetary

incentives. Li assumes that the action space is binary and that players receive a signal about the

true state where the precision of the signal is increasing in effort. Li shows that commitment to

excessive conservatism in the decision-making of committees can be used to increase the incentives

to acquire information. Szalay considers a situation where the action space is continuous and

assumes that the probability to learn the state is increasing in effort. In a principal-agent setting,

Szalay shows that the principal finds it optimal to let the agent choose the action but excludes

actions from the choice set, which are optimal when no information is acquired. In both papers,

the commitment to ex-post inefficiencies in the choice of the action is used to mitigate the ex-ante

problem to create incentives for the acquisition of information.

Gromb and Martimort (2003) study the implications of optimal incentive contracts for the
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organizational design of expertise. There are two possible states: a project is either profitable or

not. The agent can draw independent binary signals at a fixed cost per signal. After receiving the

signals, the agent recommends to either undertake the project or not. Gromb and Martimort state

a ’Principle of Incentives for Expertise’: It is optimal to reward the agent if his recommendation

is confirmed. We show that this Principle does not necessarily hold when the state and signal

space are continuous.

The paper is organized as follows: Section 2 describes the model. Section 3 derives the optimal

contract when the principal knows the agent’s cost to exert effort. Section 4 discusses the effect of

uncertainty about the agent’s cost on the optimal contract. Section 5 examines situations where

the principal can contract with multiple agents. We analyze the optimal number of agents and

show that the equilibrium payoffs and precision do not change when agents acquire information

sequentially instead of simultaneously. We also analyze how to provide incentives to acquire

information when the agent has to be paid before the state of the world is realized or if the state

is not verifiable. Section 6 concludes.

2. The Model

Consider a principal whose expected payoff depends on the precision of her estimate about the

realization of some random variable. The principal has to take some action a before the future

state of the world is realized. The principal’s payoff is decreasing in the distance between the

action and the realized state x where x, a ∈ R. Let l denote the loss function that describes the

payoff and let V = −E [l(|a− x|)] denote the expected loss with l0 > 0.

There exists a common prior that the future state x is distributed normally with mean µ

and precision ν < ∞, i.e., x ∼ N
¡
µ, 1ν

¢
. The agent has access to a technology that generates

information about the future state of the world. When the agent exerts effort, he draws a signal

s. The signal is distributed normally and the mean of the signal is the future state of the world,
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s ∼ N
¡
x, 1τ

¢
. The precision τ of the signal depends on how much effort the agent exerts. The

disutility of the effort that is necessary to generate a signal with precision τ is given by c(τ) where

c is continuously differentiable with c(0) = 0, c0(0) = 0, c0(τ) > 0 for all τ > 0, and c00 ≥ 0.

The principal observes neither the signal nor the precision. To improve the precision of her

estimate about the future state, the principal can offer a contract to the agent. The agent can

costlessy send a message m ∈ R. While signal and precision are not observed by the principal,

we assume that the message, the action, and the realized state are verifiable. Let E[w] be the

expected wage payment. The expected payoff of the principal is V −E[w]. The payoff of the agent

depends on the wage w and the disutility of effort. To isolate the problem to create incentives for

information acquisition and revelation from the effects of risk-aversion, we assume that the agent

is risk-neutral and has zero liability. If the agent accepts the contract, his payoff is w − c(τ). If

the agent rejects the contract, he receives a payoff of zero.

The timing is as follows: The principal offers a contract. The agent accepts or rejects. If he

accepts, he exerts effort and draws a signal with the corresponding precision. After observing the

signal, the agent sends a message. Given the message, the principal updates her belief about the

future state and chooses an action. Finally, the state is realized, the wage is paid, and payoffs are

realized.

After the principal receives the message, she updates her beliefs about the distribution of x and

chooses an action to minimize the expected loss. Choosing an action is equivalent to computing

the appropriate estimator where the estimator minimizes the expected value of the error function

l (i.e., of the loss function). The error of the estimator and, therefore, the expected payoff of

the principal, depend not only on the precision of the signal but also on how much information

the message reveals about the signal. For any non-trivial mapping from signals to messages, the

expected payoff of the principal is increasing in the precision of the signal. Similarly, for any

precision τ > 0, the expected payoff of the principal increases if the measures of all sets of signals,

which induce the same message, decrease. If the contract induces a one-to-one mapping from
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signals to messages, the principal learns the signal and her posterior can be described by a normal

distribution.

Lemma 1When the principal learns the signal and the precision, she chooses the action equal

to her posterior mean.

All proofs are relegated to the appendix.

Given that the message reveals the signal, let ∂V
∂τ be the marginal change of the expected loss

from a mismatch between action and state with respect to the precision of the signal.

Benchmark: The First-Best Solution

Suppose the principal can observe τ and s or can sell the project to a risk-neutral agent with

unlimited liability. In this case, in equilibrium, a = τ∗∗s+νµ
τ∗∗+ν , the agent exerts the first-best effort,

and the first-best precision τ∗∗ is defined by

∂V

∂τ
= c0(τ∗∗)

When the precision of the signal is not observable and the agent is either wealth constrained

or risk-averse, implementation of the first best effort is not optimal. In this case, the principal

faces the problem to design a contract that provides the agent with incentives to exert effort and

to reveal his information.

3. The Optimal Contract

Since signal and effort are not observed by the principal, the wage can only be conditioned

on the message, the action, and the realized state. If the wage depends only on the message or

only on the state, the agent has no incentive to exert effort. Since ν <∞, additional information

about the future state is valuable for principal. The assumptions on c imply that at τ = 0, the
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marginal cost to provide the agent with incentives to exert effort is zero. Therefore, it cannot be

optimal to offer a contract where the wage depends only on the message or only on the state.

On the other hand, contracts where the wage depends on the action are feasible, but not opti-

mal. Since the agent’s payoff does not directly depend on the action, it is not possible to provide

additional incentives to exert effort by making the wage dependent on the action. Additionally, if

the wage depends in a non-trivial way on the action, the choice of the action is distorted, because

the principal takes into account how the action affects the wage. Therefore, under the optimal

contract, the wage is a function of message and state only.

We derive the optimal contract in two steps. Initially, we suppress the question whether

signals are revealed and characterize the contract that maximizes the incentive to exert effort for

an arbitrary expected wage payment. Using the result that under these contracts the message

reveals the signal, we compute the optimal precision that the principal implements.

Given a signal s with precision τ , the agent’s conditional expectation is E[x|s, τ ] = τs+νµ
τ+ν .

From the perspective of the agent, the future state is distributed normally with x|s, τ ∼ N
³
τs+νµ
τ+ν , 1

τ+ν

´
.

Let q(x|s, τ) denote the corresponding conditional density with q(x|s, τ) =
√
τ+ν√
2π
exp−12

©
(x−E[x])2(τ + ν)

ª
.

Let w(m,x) denote the agent’s wage if he sends message m and the realized state is x. Given w,

let p(m, s, τ) denote the expected utility from wages given message m and signal s observed with

precision τ ,

p(m, s, τ ) =

Z
w(m,x)q(x|s, τ)dx (1)

Let m∗(s, τ) be the message that maximizes p(m, s, τ). We suspend the proof that m∗ is unique

until Proposition 1.

Before the agent observes a signal, he chooses effort to maximize his payoff

Z Z
w(m∗, x)q(x|s, τ)dxf(s, τ)ds− c(τ) (2)

where f(s, τ) denotes the unconditional density of the signal as a function of the effort. Since

the conditional distribution of s is normal with s ∼ N
¡
x, 1τ

¢
and since x ∼ N

¡
µ, 1ν

¢
, the un-
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conditional distribution of s is normal with s ∼ N
¡
µ, τ+ντν

¢
and f(s, τ) is given by f(s, τ) =

√
τν√

2π
√
τ+ν

exp−12
n
τν(s−µ)2

τ+ν

o
.

Let τ∗ be the precision that maximizes the agent’s payoff. The first order condition that

corresponds to the agent’s problem to maximize eqn.(2) is given by:

R hR ³
∂q
∂τ +

∂q
∂E[x]

∂E[x]
∂τ

´
w(m∗, x)dx+ ∂p(m,s,τ∗)

∂m
∂m
∂τ

i
fds

+
R R

w(m∗, x)qdx∂f∂τ ds = c0(τ∗)
(3)

where w is evaluated at m∗. Since m∗ is the message that maximizes the agent’s payoff,

∂p(m,s,τ)
∂m = 0 at m∗. After substituting for q, f , and E[x], the first-order condition in eqn.(3) can

be written as

Z Z µ
1

2τ∗
− 1
2
(x− s)2

¶
w(m∗, x)q(x|s, τ∗)dxf(s, τ∗)ds = c0(τ∗) (4)

where the LHS of eqn.(4) is the marginal increase of the expected wage if the precision of his

signal increases.

The principal designs a contract to maximize her payoff

V −
Z Z

w(m∗, x)q(x|s, τ∗)dxf(s, τ∗)ds

where second term is the expected payment to the agent. The contract specifies a non-negative

wage for every message and for every realized state.

If the optimal contract induces the agent to reveal his signal, it follows from the revelation

principle that it is sufficient to restrict attention to contracts where m∗(s) = s and the agent

announces his signal. If signals are revealed, maximizing the payoff of the principal is equivalent

to maximizing the incentive to increase the precision subject to the constraint that wages are

non-negative, that the agent reveals the signal, and that the expected wage payment is less or

equal to some optimally chosen constant.

The incentive to increase the precision is the marginal effect of precision on the expected

wage and is equal to the LHS of eqn.(4). Since m∗(s) = s, the expected wage E[w] is equal
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to
R R

w(s, x)q(x|s, τ∗)dxf(s, τ∗)ds. For any E[w] > 0, a necessary condition for the LHS of

eqn.(4) to be maximal is that w(s, x) = 0 for x 6= s and that w(s, s) > 0 for some s. Hence, the

principal pays a positive wage only if the realized state is equal to the signal. Using the result

that w(s, x) = 0 if x 6= s, eqn.(4) can be written as

1

2τ∗

Z Z
w(s, s)q(s|s, τ∗)dxf(s, τ∗)ds = c0(τ∗) (5)

Eqn.(5) is derived from the maximization of E[w]− c(τ). The LHS of eqn.(5) is equal to ∂E[w]
∂τ .

Since E[w] =
R R

w(s, x)q(x|s, τ)dxf(s, τ)ds, the expected wage can be written as a differential

equation with ∂E[w]
∂τ = 1

2τE[w]. Then

E[w] = K
√
τ (6)

where K is a constant that is chosen by the principal.

Proposition 1 summarizes the equilibrium.3

Proposition 1 The principal offers the following contract:

w(m,x) = k exp
©
1
2νm

2 − νmµ
ª
if m = x

w(m,x) = 0 otherwise

(i) The agent accepts and sends message m(s) = s.

(ii) The principal believes that x ∼ N
³
τ∗m+νµ
τ∗+ν , 1

τ∗+ν

´
and chooses action a = τ∗m+νµ

τ∗+ν .

(iii) The equilibrium precision τ∗ is defined by ∂V
∂τ = 2c

0(τ∗) + 2τ∗c00(τ∗).

(iv) In equilibrium, E[w] = 2τ∗c0(τ∗). The expected equilibrium payoff of the agent is 2τ∗c0(τ∗)−

c(τ∗) and the expected equilibrium payoff of the principal is V (τ∗)− 2τ∗c0(τ∗).

3 The assumption that state and signal are normally distributed simplifies the analysis and allows to compute
explicit solutions but complicates the interpretation of the results. The probability that the state is equal to
the signal is zero. Since the support of the normal distribution is unbounded, the wage is unbounded. Since
w(s, s)q(s|s, τ)f(s, τ) is constant, for 0 < k <∞, the expected wage is positive and finite although the wage is paid
with probability zero. The technical reason for this zero-probability result is that at the optimum, the principal
rewards the agent if the state lies in the smallest interval that is centered aroud the signal. Therefore, equilibrium
existence requires that the agent is rewarded only if x = s, which occurs with probability zero. On the other hand,
it is impossible to measure the realization of a continuous variable (e.g., GDP) with infinite accuracy. Proposition
1 should be interpreted as the wage being positive if the state lies in some small interval that is centered around
the message.
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One advantage of the model is that it allows to compute explicit expressions for the equilibrium

precision and the equilibrium payoffs.

Example: Suppose that the loss is quadratic with l (|x− a|) = (x − a)2, that c(τ) = τ , and

that ν <
q

1
2 . (Since c(τ) = τ does not satisfy c0(0) = 0, the assumption that ν <

q
1
2 is necessary

to guarantee an interior solution.)

At the equilibrium, ∂V
∂τ = 2c

0(τ∗) + 2τ∗c00(τ∗). From ∂V
∂τ =

1
(τ+ν)2 and c0(τ) = 1 follows that

τ∗ =
q

1
2 − ν. From eqn.(6) and the equilibrium condition that ∂E[w]

∂τ = c0(τ∗) at τ∗ follows that

the expected wage is E[w] =
√
2 − 2ν. The expected payoff of the principal is −2√2 + 2ν, and

the expected payoff of the agent is
q

1
2 − ν.

Gromb and Martimort (2003) consider an agent who can pay a fixed cost to draw a binary

signal. There are two states: a project is either profitable or not. The agent recommends to either

undertake the project or not. Gromb and Martimort state a ’Principle of Incentives for Expertise’:

It is optimal to reward the agent if his recommendation is confirmed (either by the facts or by the

recommendation of another expert).

Similar to the setting of Gromb and Martimort, in the model above, the agent is indifferent

towards which action is chosen. The contract in Proposition 1 is equivalent to a contract where

the agent recommends to choose the action τs+νµ
τ+ν and the principal uses the recommendation

to compute the agent’s signal and pays the same wages as in Proposition 1. Contrary to the

binary setting of Gromb and Martimort, their ’Principle of Incentives for Expertise’ does not

hold in the continuous environment that is considered here. Contrary to common intuition, this

paper shows that it is in general not optimal to reward the agent when his recommendation is

confirmed. Specifically, under the optimal contract, the agent is rewarded (at least sometimes)

when his recommendation is wrong but not rewarded when his recommendation is confirmed.

The principal faces two problems: To design a contract and to choose the action that maximizes

her expected payoff. The objective in the first problem is to maximize the agent’s incentive to
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exert effort and to ensure that the agent reveals his information. The objective in the second

problem is to maximize the expected payoff after the agent has revealed his private information.

To provide the agent with incentives to exert effort, the wage has to depend on the realized state

and the message (i.e., the recommendation). However, there is no reason why the wage should be

tied to the question how well the recommendation matches the state.

In the model above, the recommendation of an action is equivalent to the announcement of

the posterior mean and the recommendation is confirmed if it is equal to the realized state.4

To see why it is not optimal to reward the agent if his recommendation is confirmed, fix an

arbitrary signal s. Given s, from the perspective of the agent, an increase of the precision implies

that the likelihood that some states are realized increases
³
dq(x|s,τ)

dτ > 0
´
and decreases for others³

dq(x|s,τ)
dτ < 0

´
. The principal chooses when to reward the agent. Hence, the principal maximizes

the RHS of eqn.(3) with respect to x. It is optimal to reward the agent when the relative effect of

an increase of the precision on the likelihood that a certain state is realized, is maximal. Therefore,

if the agent observes (and reveals) s, it is optimal to reward him when the realized state is equal

to the maximizer of dq(x|s,τ)
dτ

1
q(x|s,τ) . Note that eqn.(3) makes no use of the assumption that

state and signal are normally distributed. In the special case where state and signal are normally

distributed, x = s is the maximizer of dq(x|s,τ)
dτ

1
q(x|s,τ) and it is optimal to reward the agent when

the state is equal to the signal.

In the following paragraphs, we summarize a few results which follow from Proposition 1. Not

only are signals revealed under the optimal contract, but the equilibrium precision and expected

wage payment are the same as when the signal is verifiable.

Result 1 The principal implements the same effort level regardless whether the signal is veri-

fiable or not.

4 More general, the optimal action and, therefore, the recommendation, are functions of the posterior mean and
a recommendation is confirmed if the realized state is equal to the agent’s posterior mean.
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The optimal contract in Proposition 1 is derived for the case where the signal is not observable.

Result 1 shows that the analysis applies not only to the case where information is soft (i.e., where

the signal is not observed or is not verifiable) but also to the case where information is hard and

the agent’s signal can be verified. In both cases, the contract described in Proposition 1 is optimal.

The Precision of the Prior

The wage is convex in the message with a minimum at m = µ. This is the consequence of the

result that it is optimal to reward the agent only if the realized state is equal to the signal. Since

q(s|s, τ) decreases in |s− µ|, the larger the distance between signal and prior mean, the smaller

is the likelihood that the state is equal to the signal. To ensure that the agent reveals the signal,

the wage has to be convex. The difference between posterior mean and prior mean depends on

signal and precision. If the prior is very precise, the agent expects (before he draws the signal)

that his posterior mean is fairly close to the prior mean. Therefore, the probability that the state

is equal to the signal decreases faster in the distance between signal and prior mean, if the prior

is more precise. This is the reason that the convexity of the wage increases when the precision of

the prior increases.

Result 2 The convexity of the wage is increasing in the precision of the prior: w00
w0 increases

(decreases) in ν for m > µ (m < µ).

When the precision of the prior is high, the agent has a fairly good idea about the future state

even if he exerts no effort. Intuitively, one would expect that this makes it more costly to induce

the agent to exert effort when the precision of the prior is high.5 It turns out that this intuition

is wrong. Under the optimal contract, the incentive to exert effort depends only on the expected

wage E[w]. If ν increases, the optimal contract changes as the wage becomes more convex, while

the equilibrium effort of the agent does not change as long as E[w] does not change.

5 For the simple (suboptimal) contract where the agent is rewarded if his recommendation is correct, it is
straightforward to show that it is more costly to induce effort for higher values of ν. In this case, the marginal
incentive to exert effort is 1

2(τ+ν)
E[w] which is decreasing in ν.
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Result 3 The expected wage that is necessary to implement a given effort does not depend on

the precision of the prior.

Of course, if the precision of the prior increases, the marginal value of the precision of the

agent’s signal decreases. Therefore, the principal implements a lower effort level if the precision

of the prior is high.

Compared to a signal that is close to the prior mean, extreme signals contain more information.

More extreme signals trigger a larger change in the action that the principal chooses compared to

the action that would have been chosen if no signal were observed. In this sense, extreme signals

are more valuable for the principal. On the other hand, the observation of an extreme signal is

good news for the agent since the expected wage payment is increasing in the distance between

signal and prior mean. However, the fact that the expected wage for extreme signals is higher has

nothing to do with the fact that extreme signals are more valuable for the principal. The only

reason for the higher wage is to ensure that the agent reveals the signal.

4. Incomplete Information

Proposition 1 shows that it is optimal to reward the agent if the state is equal to the signal.

This seems to contradict the observation that many experts are rewarded if their recommendation

is confirmed by the facts. We show in this section that incomplete information about the agent’s

cost to exert effort offers an explanation for this observation.6

In the model above, the optimal action coincides with the posterior mean. This coincidence is

a result of the assumptions on the loss function but does not restrict the generality of model. The

6 There are other explanations. If the agent is risk-averse, it is optimal to reward the agent if the state lies in
an interval that is centered around a value between τs+νµ

τ+ν
and s (and might include τs+νµ

τ+ν
). Since q(s|s, τ) is

decreasing in |s− µ|, it gets increasingly costly to reward the agent when the interval is centered around s.
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recommendation of an optimal action is equivalent to the revelation of the agent’s posterior mean.

A recommendation of the agent is confirmed by the facts if the realized state coincides with the

recommended action.

The optimal contract in Proposition 1 is derived under the assumption that the principal knows

the agent’s cost to exert effort. The contract in Proposition 1 is equivalent to a contract where

w(es, x) = k exp
©
1
2νes2 − νesµª if es = x and w(es, x) = 0 otherwise where es = m(τ+ν)−νµ

τ . The

agent ’recommends an action’ by sending a message that is equal to his posterior: m(s) = τs+νµ
τ+ν .

The principal follows the recommendation and implements a = m.

When the principal does not know the agent’s cost to exert effort, the revelation of the signal is

no longer equivalent to the revelation of the posterior. Agents with different costs, exert different

effort levels and receive signals with different precision. In this case, the principal does not know

the precision of the signal which underlies the agent’s report. If the principal learns the signal but

does not know the precision of the signal, she cannot compute the efficient action.

On other hand, the principal can design a contract such that the agent recommends the efficient

action regardless of the precision of his signal. The optimal contract that ensures that the agent

always recommends the efficient action can be written as: w(m,x) = k if m = x and w(m,x) = 0

if m 6= x. Under this contract, the agent sends the message m(s) = τs+νµ
τ+ν . The agent is

rewarded if and only if his recommendation is confirmed by the facts and the principal follows the

recommendation. To avoid confusion, from now on, the term ’contract where agent recommends

an action’ refers to a contract where the agent recommends the efficient action regardless of the

precision of his signal.

The incentive to exert effort is maximal if the agent is rewarded only if x = s. But if the

principal does not know the cost to exert effort and the agent recommends an action, the principal

does not learn the signal and it is not possible to reward the agent only if x = s.

Under some conditions, this problem has a simple solution: The principal asks the agent to

make two reports. The first report reveals the signal, the second reveals the precision of the
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signal, and wages are the same as in Proposition 1. Since the wage is independent of the reported

precision, the agent has no incentive to misreport the precision and there is no efficiency loss

through incomplete information.

The separation of types can be costly and is not always possible. Consider the case where the

cost to exert effort is either high or low. The simple solution where the agent sends two reports

does not work if the benefit for the high cost type if he is seen as the low cost type is larger

than the loss for the low type if he is seen as the high type.7 In this case, the principal faces

a trade-off: A contract where the agent is rewarded if the state is equal to the signal maximizes

the incentive to increase the precision of the signal. But for a given precision, it is optimal if the

agent recommends an action because only this guarantees that the principal learns all relevant

information.

For a given contract, let τ l and τh be the lowest and the highest precision that different types

of the agent choose. If the contract asks the agent to recommend an action, a type i agent

recommends E[x|s, τ i], the principal follows the recommendation and, therefore, implements the

optimal action. If the principal offers a contract under which she learns the signal but not the

precision, the action that the principal chooses lies between E[x|s, τ l] and E[x|s, τh].8 Except

for possibly one type j, for who E[x|s, τ j ] equals the action, the principal does not implement

the optimal action. Contrary to the posterior mean E[x|s, τ i], the signal s does not contain all

information that is relevant for the principal. Therefore, for a given precision, the payoff of the

principal is maximal when the agent is asked to recommend an action (Information Effect).

On the other hand, if the agent only recommends an action (i.e., reports his posterior mean),

the principal cannot infer the signal and it is not possible to reward the agent when the state is

equal to the signal. Instead, the agent is rewarded if the recommendation is confirmed, i.e., if the

7 There exists an extensive literature that discusses career concerns and reputation building as reasons for the
benefit or loss from being perceived as a certain type (e.g., Chevalier and Ellison (1999) and Hong et al. (2000)).

8 The density function f that describes the unconditional distribution of s is a function of τ . When the agent
reports a signal, the principal updates her beliefs over the type of the agent. The action that the principal chooses
depends on the loss function and on the updated belief over the type of the agent.
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state is equal to E[x|s, τ i]. In this case, at the equilibrium precision τ∗ holds 1
2(τ∗+ν)E[w] = c0(τ∗).

Comparison with eqn.(5) reveals that the equilibrium precision is lower when the agent is rewarded

if his recommendation is correct (Incentive Effect).

Suppose that the principal does not know the agent’s cost to exert effort and that it is not

possible to separate the types. Under incomplete information, neither the contract in Proposition

1 where the agent reveals the signal regardless of his precision nor the contract where the agent

reveals the posterior regardless of his precision is optimal. Instead, under the optimal contract,

the agent is rewarded if the realized state is equal to some value which lies between the agent’s

posterior and the signal.

The first step to find the optimal contract is to determine for which realized state the agent

gets rewarded. Wlog. let the message be such that the agent gets rewarded if and only if the

message is equal to the realized state. If m = E[x|s, τ ], the principal chooses a = m. If the

message is marginally larger or smaller than E[x|s, τ ], the principal does not learn which action

is efficient. However, since ∂V
∂a = 0 at a = E[x|s, τ ], the principal incurs only a second-order loss

if the message differs marginally from E[x|s, τ ].9

On the other hand, from eqn.(4) follows that at m = E[x|s, τ ] we have ∂( ∂E[w]∂τ )
∂m > 0 for m > µ

(and
∂( ∂E[w]∂τ )

∂m < 0 for m < µ). Recall that ∂E[w]
∂τ is the incentive to exert effort. Hence, at

m = E[x|s, τ ], changing the contract such that the message is marginally closer to s results in a

first-order increase in the incentive to exert effort.

Similar, at m = s, changing the contract such that m is marginally closer to E[x|s, τ ] results

in a second-order decrease in the incentive to exert effort but in a first-order gain from a more

efficient action.

9 If the agent is rewarded when the message is equal to the state, the agent sends the message where
∂q(m|s,τ)

∂m
1

q(m|s,τ) = −∂w(m,m)
∂m

1
w(m,m)

. Hence, agent i sends the message m∗i (s) =
∂w(m,m)

∂m
1

w(m,m)
1

τi+ν
+

E[x|s, τ i]. From the perspective of the principal, the message is equal to the posterior plus noise (because the

principal does not know the agent’s type, i.e., does not know τ i). The smaller
∂w(m,m)

∂m
1

w(m,m)
, the smaller is the

noise term. Therefore, the smaller ∂w(m,m)
∂m

1
w(m,m)

, the smaller is the expected difference between the action that
the principal chooses and the efficient action.
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Therefore, under the optimal contract, the agent sends a message that lies between E[x|s, τ i]

and s and the agent is rewarded if the realized state is equal to the message.

Suppose that the agent’s cost to exert effort is either high or low. If the difference between high

and low costs is large, the difference between equilibrium precisions τ∗l and τ
∗
h is large. Consider a

contract as in Proposition 1 where the principal learns only the signal. If the difference between τ∗l

and τ∗h is large, the expected difference between
τ∗l s+νµ
τ∗l+ν

and τ∗hs+νµ
τ∗h+ν

is large and the information

loss when the principal learns the signal instead of the posterior mean τ∗i s+νµ
τ∗i+ν

is large. If the

difference between τ∗l and τ∗h is large enough, the Information Effect dominates the Incentive

Effect. In this case, under the optimal contract, the agent is rewarded if the realized state is close

to the posterior mean E[x|s, τ ]. If the difference between the equilibrium precisions is small, the

Incentive Effect dominates. In this case, the agent is rewarded if the realized state is close to his

signal.

The probability distribution over the types of the agent also affects the design of the optimal

contract. If there is little uncertainty over the cost of the agent, the Incentive Effect dominates

the Information Effect. Suppose that the probability that the agent has high costs is close to

one. If the principal learns only the signal, she chooses an action close to τ∗hs+νµ
τ∗h+ν

. With high

probability, the principal’s action is close to the efficient action and only with small probability,

there is a large difference between the principal’s action and the efficient action. Therefore, if the

probability that the agent has high costs is either large enough or small enough, the Incentive

Effect dominates the Information Effect. In this case, the agent is rewarded if the realized state

is close to his signal.

5. Multiple Experts, the Timing of Expertise, and Non-Verifiable States

Decision makers routinely seek the advice of more than one expert. Especially in the public

policy area, it is common that several experts comment on projects. Duplication of expertise
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is usually justified with benefits from including different points of view in the decision making

process. Several authors examine situations where a principal can contract with several experts to

acquire information. Pesendorfer and Wolinsky (2003) analyze the optimal strategy of a principal

who has to rely on experts to identify the correct type of service that is needed. The principal

samples experts until he receives two matching recommendations. Krishna and Morgan (2001)

find that a principal, who faces biased experts, benefits from consulting two experts if the biases

are opposed. In a binary model, Gromb and Martimort (2003) show that agency costs exhibit

diseconomies of scale and that contracting with multiple experts reduces costs. Contrary to Gromb

and Martimort, we show that in the continuous model that is discussed above, agency costs do

not exhibit diseconomies of scale (at least if the marginal cost of precision is constant as assumed

by Gromb and Martimort).

With respect to the organization of expertise, we are interested in two questions: What is

the optimal number of agents with who the principal contracts and what is the optimal timing

of expertise. We consider two different timings. Under ’simultaneous expertise’, agents acquire

information simultaneously and agents cannot communicate with each other before they send a

message to the principal. The assumption that communication is impossible rules out collusion.

Under ’sequential expertise’, agents acquire information sequentially and agents observe earlier

messages and contracts.

Suppose there is a pool of N < ∞ identical agents. Let i denote an arbitrary agent with

whom the principal contracts and let τ∗i be the equilibrium precision of agent i’s signal and let

τ∗ =
P

τ∗i . Let
∂V
∂τ be the derivative with respect to τ∗. Let n∗ be the equilibrium number of

agents who contract with the principal.10

Proposition 2 (i) If signals are conditionally independent, n∗ = 1 if c00 < 0, n∗ = N

if c00 > 0, and n∗ = 1, 2, .. N if c00 = 0. The equilibrium precision τ∗ is defined by ∂V
∂τ =

10 In the model above, we assumed that c00 ≥ 0 to ensure that there exists a unique precision that maximizes the
principal’s payoff. If c00 < 0, Proposition 2 refers to the case when τ∗ is unique.
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2c0
³
τ∗
n∗

´
+ 2τ∗i c

00
³
τ∗
n∗

´
. If c00 6= 0, τ∗i =

τ∗
n∗ . If c00 = 0,

P
τ∗i = τ∗ and τ∗i ≥ 0 for all i. In

equilibrium, E[wi] = 2τ
∗
i c
0(τ∗i ). The expected equilibrium payoff of the agent is 2τ∗i c

0(τ∗i ) − c(τ∗i )

and the expected equilibrium payoff of the principal is V (τ∗)− 2τ∗c0(τ∗i ).

(ii) For any vector τ∗i , τ
∗
j , ... , payoffs and expected wages are the same under simultaneous

and sequential expertise.

Proposition 2 shows that the costs of expertise are independent of the timing of expertise.

Besides a possible preference to receive information early, there exist other factors that influence

the timing of expertise. When the loss of the principal is a function of the action11 , sequential

expertise can be optimal even when c00 < 0. Consider a firm which has to decide whether or not

to invest in a project. The project is profitable only if the state is above some threshold. In this

case, it can be optimal that the agent initially exerts only little effort and acquires only general

information. Only if the first assessment is not too negative, it is worthwhile to ask an agent to

acquire more detailed information.12

A different reason for sequential expertise or contracting with multiple agents is that it is not

always possible to write contracts where transfers are contingent on the realized state. If the

state is realized at some distant point in the future, it might be necessary to pay the agent before

the state is realized. Additionally, in some situations, the realized state is not verifiable while

messages are. Consider an expert who is asked to estimate how many people will be killed by a

disease. While the actual number of deaths might not be verifiable, an estimate is a number that

the expert announces and there is no reason why it should not be possible to contract on this

11 In the model above, we assume that the loss function is symmetric and that it depends only on the distance

between action and state. This assumption simplifies the proof of uniqueness because it guarantees that ∂2V
∂2τ

< 0.
Except to ensure uniqueness, there are no other reasons for this assumption.

12 Whenever τ∗ > 0, the agent earns some rent. If there is only one agent, the agent takes into account that only
a message that induces an optimistic belief guarantees that the principal wants to acquire additional information
which generates additional rents for the agent. To ensure that the agent reveals the signal, the wage has to be
adjusted. Specifically, for low signals (where the principal does not ask the agent to acquire additional information)
the wage is higher compared to the contract in Proposition 1. The agent’s concern about future rents makes initial
information acquisition more costly and, therefore, leads to inefficiencies. If there are many agents, the source of
the inefficiencies disappears. After every message, the principal decides whether she should ask another agent to
acquire additional information.
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announcement.

When the state is either not verifiable or is not observed before wages are paid, the contract

cannot specify wages as a function of the realized state. In order to provide the agent with

incentives to acquire information, the principal has to contract with a second agent.13 Since

signals are correlated with the true state, information about the signal of a second agent can be

used to provide the first agent with incentives to exert effort. The cost to provide an agent with

incentives to exert effort depends on the precision of the signal of the other agent. The less precise

the signal of the other agent, the more expensive it is to provide an agent with incentives to exert

effort. In the limit as the precision of the signal of the other agent goes to infinity, the principal

is in the same situation as in Proposition 1 where state is observable.

We do not consider collusion. Collusion is a less severe problem than one would expect. Under

the equilibrium contract in Proposition 3, at most one agent receives a positive transfer (except

if both send the message m = µ). If side payments between agents are not possible, the principal

can prevent collusion by setting the wage for m = µ to zero.

Suppose that the principal can contract with two agents and let i, j denote the agents. Addi-

tionally, we assume that c000 ≥ 0.14

Proposition 3 (i) If transfers cannot be conditioned on the state, the principal contracts with

both agents. Each agent is offered the following contract:

wi(mi,mj) = k exp
n³
1 + ν

τ∗j

´ ¡
1
2νm

2
i − νmiµ

¢o
if mj = mi +

ν(mi−µ)
τ∗j

wi(mi,mj) = 0 if mj 6= mi +
ν(mi−µ)

τ∗j

The agents accept and send the message m(s) = s.

(ii) The principal believes that x ∼ N
³
τ∗imi+τ

∗
jmj+νµ

τ∗i+τ
∗
j+ν

, 1
τ∗i+τ

∗
j+ν

´
and chooses action a =

13 In our model, the principal has no private information. Prendergast (1993) analyzes a situation where the
state is not observed and where the principal receives a signal about the true state that is her private information.

14 This assumption is only necessary to derive an explicit expression for the equilibrium precision. Proposition
3(i)-(ii) do not change if c000 < 0. However, if c000 < 0, it is possible that the principal offers different contracts to
agent i and j and, therefore, that the equilibrium precisions τ∗i and τ∗j differ.
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τ∗imi+τ
∗
jmj+νµ

τ∗i+τ
∗
j+ν

.

(iii) In equilibrium, τ∗i = τ∗j . The equilibrium precision τ∗ is defined by ∂V
∂τ =

µ
4− 2ν2

(τ∗i+ν)
2

¶
c0
³
τ∗
2

´
+µ

2 +
2τ∗i

2

(τ∗i+ν)

¶
c00
³
τ∗
2

´
with τ∗ = τ∗i + τ∗j .

(iv) In equilibrium, E[wi] = E[wj ] =
2τ∗2+2τ∗ν
τ∗+2ν c0

³
τ∗
2

´
. The expected equilibrium payoff of

an agent is 2τ∗2+2τ∗ν
τ∗+2ν c0

³
τ∗
2

´
− c

³
τ∗
2

´
and the expected equilibrium payoff of the principal is

V (τ∗)− 4τ∗2+4τ∗ν
τ∗+2ν c0

³
τ∗
2

´
.

Contrary to common intuition, agents are not rewarded if they confirm the recommendation

of each other. If both agents receive the same signal, they send the same message. Except if

s = µ, agents receive a wage of zero. An agent is rewarded only if the other agent received a signal

which is more extreme. The reason for this result is similar to the reasoning behind Proposition 1.

Under the optimal contract, the agent reveals his signal. For each signal si, the principal decides

for which realizations of the other signal sj agent i is rewarded. It is optimal to reward the agent

when the relative effect of an increase of the precision on the likelihood that the other agent

receives a certain signal, is maximal. If agent i observes si, it is optimal to reward him when sj

is the maximizer of dq(sj |si,τ i,τj)
dτ i

1
q(sj |si,τ i,τj) .

For a given precision, agents earn a higher rent when the state is not observable or not verifiable.

In this case, wages depend on the signal of the other agent. Since agents are protected by zero

liability, the expected wage that is necessary to implement a certain precision, increases in the

variance of the signal of the other agent.

6. Conclusion

It is common that decision makers ask experts to acquire additional information and to recom-

mend an action. When information acquisition is delegated, the problem arises how to align the
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incentives for information acquisition and for truthful information revelation. This paper analyzes

the optimal design of contracts that provide incentives to acquire and reveal information.

We show that it is in general not optimal to reward the expert when his recommendation is

confirmed by the facts. Under the optimal contract, the expert is (at least sometimes) rewarded

when his recommendation turns out to be wrong but is not rewarded when the recommendation

was correct. When the signal of the expert and the state are normally distributed, the expert

is rewarded when the state is equal to his signal. The reason for this surprising result is that

it is optimal to reward the expert when the relative effect of an increase of the precision on the

likelihood that a certain state is realized, is maximal.

While it runs against common intuition to reward an expert when his recommendation was in-

correct but not when it was correct, it also seems to contradict the observation that many experts

are rewarded when their recommendation is confirmed. We show that incomplete information

about the expert’s cost to exert effort can explain why many experts are rewarded if their recom-

mendations are confirmed. When the principal knows the expert’s cost to exert effort, she also

knows the equilibrium precision of the expert’s signal. In this case, the revelation of the signal is

equivalent to the recommendation of an action. When there is incomplete information about the

expert’s cost to exert effort, a recommendation contains more information than the revelation of

the private information. On the other hand, if the expert recommends an action and is rewarded

if the recommendation is confirmed, he has less incentives to increase the precision of his signal.

When there is a lot of uncertainty about the cost to exert effort, the first effect (more precise

information) dominates the second (less incentives).

One advantage of the model is that it generates explicit solutions. This allows to analyze the

optimal organization of expertise. We show that the cost of expertise is exclusively determined by

the cost to acquire information. The optimal number of agents depends on the cost of information

acquisition. Only if the marginal cost of precision increases, the costs of expertise exhibit disec-

onomies of scale and it is optimal to contract with as many agents as possible. In many situations,
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it is possible to gather information either sequentially or simultaneously. We show that regardless

of the cost function, the timing of expertise does not affect the payoffs and, therefore, does not

affect the equilibrium amount of information that is acquired. Finally, we analyze the optimal

contract when the realized state is not observable or not verifiable. In this case, the principal

contracts with two agents and the wage depends on the reports of both agents. Similar to the

case where the state is observable, an agent is not rewarded if his report is confirmed by the other

agent. Instead, an agent is rewarded if the other agent reports a signal which is more extreme.

Appendix

Proof of Lemma 1

If the principal learns the signal s and precision τ , her posterior belief is that x is distributed

normally with x ∼ N
³
τs+νµ
τ+ν , 1

τ+ν

´
and her posterior mean is E[x] = τs+νµ

τ+ν . Let qp denote the

associated density function. The principal solves

min
a

Z
l (|a− x|) qp(x|s, τ)dx

Write the first-order-condition as

Z a

−∞
l0 (|a− x|) qp(x|s, τ)dx−

Z ∞
a

l0 (|a− x|) qp(x|s, τ)dx = 0 (A1)

Since qP is normal, qp(E[x]−4|s, τ) = qp(E[x] +4|s, τ). Hence, eqn.(A1) holds at a = E[x]. To

see that a = E[x] is the absolute minimum of the expected loss, let 4 = a − E[x]. Rewrite the

first-order-condition in eqn.(A1) as

E[x]+4Z
−∞

l0 (|E[x] +4− x|) qp(x|s, τ)dx−
∞Z

E[x]+4

l0 (|E[x] +4− x|) qp(x|s, τ)dx = 0 (A2)
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For x1 ≤ E[x] +4, define x2 = 2E[x] + 24− x1. Then l (|E[x] +4− x1|) = l (|E[x] +4− x2|).

Rewrite eqn.(A2) as

E[x]+4Z
−∞

l0 (|E[x] +4− x1|) · (qp(x1|s, τ)− qp(x2|s, τ)) dx1 (A3)

For 4 < 0, |E[x]− x1| > |E[x]− x2| and since qp is normal, qp(x1|s, τ) < qp(x2|s, τ) and eqn.(A3)

is negative. Similarly, for 4 > 0, |E[x]− x1| < |E[x]− x2| and, therefore, qp(x1|s, τ) > qp(x2|s, τ)

and eqn.(A3) is positive. Hence, a = E[x] minimizes the principal’s loss.

Before the proof of Proposition 1, we introduce a technical Lemma.

Lemma A1 ∂2V
∂2τ < 0

Recall that ∂V
∂τ is defined as the marginal change in the principal’s payoff given that the message

reveals the signal.

Proof: The principal’s payoff (excluding wages) is given by

V = −
Z Z

l (|x− a|) q(x|s, τ)dxf(s, τ)ds

with a chosen optimally. Then

dV

dτ
= −∂V

∂a

∂a

∂τ
−
Z Z

l (|x− a|) dq(x|s, τ)
dτ

dxf(s, τ)ds+

Z Z
l (|x− a|) q(x|s, τ)dx∂f

∂τ
ds (A4)

At the optimal action, ∂V∂a = 0. Note that V is a function of |x− a| but not of x. Therefore, V is

independent of s. Hence,
R
l (|x− a|) q(x|s, τ)dx is independent of s and, therefore, the last term

in eqn.(A4) is zero. Recall that dq
dτ =

∂q
∂τ +

∂q
∂E[x]

∂E[x]
∂τ with ∂q

∂E[x]
∂E[x]
∂τ = (x−E[x])ν(s−µ)τ+ν q(x|s, τ).

From Lemma 1, a = E[x]. Since l is symmetric around a with a = E[x] and q is symmetric around

E[x], we have
R
l (|x− a|) ∂q

∂E[x]
∂E[x]
∂τ dx = 0. Then

dV

dτ
= −

Z Z
l (|x− a|)

µ
1

2(τ + ν)
− 1
2
(x−E[x])2

¶
q(x|s, τ)dxf(s, τ)ds
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and

d2V

d2τ
= −

Z Z
l (|x− a|)

Ã
− 1

2(τ + ν)2
+

µ
1

2(τ + ν)
− 1
2
(x−E[x])2

¶2!
q(x|s, τ)dxf(s, τ)ds

Write d2V
d2τ as d2V

d2τ = − R ψ(s)f(s, τ)ds. By same reasoning as above, since a = E[x], the

interior integral ψ(s) depends on x and E[x] but not on s. Hence

d2V

d2τ
= −

Z
l (|x− a|)

Ã
− 1

2(τ + ν)2
+

µ
1

2(τ + ν)
− 1
2
(x−E[x])2

¶2!
q(x|s, τ)dx

Note that
R ³

1
2(τ+ν) − 1

2(x−E[x])2
´2

q(x|s, τ)dx can be written as
1
4

R ³
1

(τ+ν)2 − 2 1
(τ+ν) (x−E[x])2 + (x−E[x])4

´
q(x|s, τ)dx. Of course,

R
(x − E[x])2q(x|s, τ)dx

is the variance of x given s and is equal to 1
(τ+ν) . Similar,

R
(x − E[x])4q(x|s, τ)dx is the

fourth centered moment of a normal distribution and is equal to 3σ4 with σ2 = 1
τ+ν . There-

fore,
R ³

1
2(τ+ν) − 1

2(x−E[x])2
´2

q(x|s, τ)dx = 1
2σ

4 = 1
2(τ+ν)2 which is, of course, the same

as
R

1
2(τ+ν)2 q(x|s, τ)dx. Hence, if l is constant, d2V

d2τ = 0. To show that d2V
d2τ < 0, define

Iτ =
h
E[x]− 1

τ+ν , E[x] +
1

τ+ν

i
. For x ∈ Iτ we have − 1

2(τ+ν)2 +
³

1
2(τ+ν) − 1

2(x−E[x])2
´2
≤ 0

and for x /∈ Iτ we have − 1
2(τ+ν)2 +

³
1

2(τ+ν) − 1
2(x−E[x])2

´2
> 0. Note that principal chooses

a = E[x]. Since l0 > 0, for any x ∈ Iτ , l (|x− a|) is smaller than l (|x− a|) for x /∈ Iτ . Hence,

d2V
d2τ < 0.

Proof of Proposition 1

(i) The contract in Proposition 1 was derived under the restriction that all signals are revealed.

For a given precision, V is maximal if all signals are revealed. For a given expected wage, the

contract in Proposition 1 maximizes the incentive to exert effort (i.e., the precision). Since all

signals are revealed, the contract in Proposition 1 is optimal.

We show first that the agent announces the signal, i.e., that m∗(s) = s. Since w(m,x) = 0 if

m 6= x, eqn.(1) can be rewritten as
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max
m

q(m|s, τ) · w(m,m) (A5)

Substituting for q and w shows that the first-order condition that corresponds to eqn.(A5)

holds with equality at m = s. The second-order condition is satisfied. Hence the agent announces

the signal. Since the agent is risk-neutral, the wage is unique up to randomization, i.e., given

signal s and optimal message m∗(s) = s, the expected wage E[w] is unique.

It remains to show that the agent accepts the contract. Eqn.(5) can be rewritten as E[w] =

2τ∗c0(τ∗). From c(0) = 0 and c00 ≥ 0 follows that c(τ∗) ≤ τ∗c0(τ∗). Hence, at the equilibrium,

E[w]− c(τ∗) > 0 and the agent accepts the contract.

(ii) Since the agent announces the signal, the principal’s posterior is normal. From Lemma 1

follows a = τs+νµ
τ+ν .

(iii) There exists a unique τ∗ that maximizes the expected payoff of the agent. This follows

from ∂E[w]
∂τ = c0(τ∗) and E[w] = K

√
τ (eqn.(6)).

There exists a unique τ∗ that maximizes the payoff of the principal. The principal maximizes

V −E[w]. We can write E[w] implicitly as a function of the precision τ∗ that the principal wants

to implement with E[w] = 2τ∗c0(τ∗). Hence, the principal wants to implement the precision τ∗

for which

∂V

∂τ
= 2c0(τ∗) + 2τ∗c00(τ∗) (A6)

and, therefore, chooses E[w] (i.e. chooses k) such that E[w] = 2τ∗c0(τ∗). Uniqueness of τ∗ follows

from ∂2V
∂2τ < 0 (Lemma A1) and the fact that the RHS of eqn.(A6) is increasing in τ .

(iv) Eqn.(5) can be written as E[w] = 2τ∗c0(τ∗). The equilibrium payoffs follow immediately.

Result 1 The principal implements the same effort level regardless whether the signal is veri-

fiable or not.
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Proof: If the signal is observed, the wage can be conditioned on x, s, and m. Since m does

not contain any additional information, we can wlog. restrict attention to wages schedules that

depend only on x and s. If the wage depends only on s, the agent is only rewarded if s = µ and

at the equilibrium precision ν
2τ(τ+ν)E[w] = c0(τ). Since ν

2τ(τ+ν) <
1
2τ , this cannot be optimal.

If the wage depends on s and x, the agent chooses effort to maximizeZ Z
w(s, x)q(x|s, τ)dxf(s, τ)ds− c(τ)

which results in the f.o.c.Z Z µ
1

2τ
− 1
2
(x− s)2

¶
w(s, x)q(x|s, τ)dxf(s, τ)ds = c0(τ)

Given any expected wage payment, the incentive to exert effort is maximal if w(s, x) = 0 if s 6= x

and w(s, x) ≥ 0 if s = x. Hence, the f.o.c. can be written as 1
2τE[w] = c0(τ) which is the same as

in the case where the signal is unobservable.

Result 2 The convexity of the wage is increasing in the precision of the prior: w00
w0 increases

(decreases) in ν for m > µ (m < µ).

Proof: The result follows immediately from the expression for w(m,x).

Result 3 The expected wage that is necessary to implement a given effort does not depend on

the precision of the prior.

Proof: Since w(m,x) = 0 for m 6= x, eqn.(5) can be rewritten as 1
2τ∗E[w] = c0(τ∗). This

proves the claim.

Proof of Proposition 2 (i) If the messages of all agents reveal the signal, the precision of

the posterior of the principal is τ∗+ ν and the posterior mean is
P

τ∗i si+νµ
τ∗+ν . Signals contain noisy

information about the state. Since the state is observed, the principal cannot gain from making

the wages dependent on the signals of other agents. Therefore, contracts have the same form as

in Proposition 1.
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Let E[wi] be the expected wage of agent i. As shown above: E[wi] = 2τ∗i c
0(τ∗i ). Then n∗

follows immediately. For each agent, the principal chooses the equilibrium precision to minimize

the sum of expected wages. Then τ∗i =
τ∗
N if c00 > 0 and τ∗i = τ∗ if c00 < 0 follow immediately. If

c00 = 0, the only restriction on τ∗i is that
P

τ∗i = τ∗ and that τ∗i ≥ 0 for all i.

Note that ∂V
∂τ is the derivative with respect to τ

∗ with ∂V
∂τ =

Ph
2c0(τ∗i )

∂τ∗i
∂τ∗ + 2τ

∗
i c
00(τ∗i )

∂τ∗i
∂τ∗

i
.

To see that at τ∗ we have ∂V
∂τ = 2c

0(τ∗i ) + 2τ
∗
i c
00(τ∗i ), note that either n

∗ = 1 (if c00 < 0) or that

τ∗i =
τ∗
N with ∂τ∗i

∂τ∗ =
1
N (if c00 > 0) or that

P ∂τ∗i
∂τ∗ = 1 and c00 = 0.

(ii) Under simultaneous expertise, the principal offers the same contract as in Proposition

1. Under sequential expertise, the second agent knows the contract and the message of the first

agent. Therefore, the second agent and the principal update their prior. The updated prior is that

x ∼ N
³
τ∗1s1+νµ
τ∗1+ν

, 1
τ∗1+ν

´
. Hence, the optimal contract for the second agent is the same contract as

in Proposition 1 except that µ is replaced with τ∗1s1+νµ
τ∗1+ν

and that ν is replaced with τ∗1 + ν. As

shown in Proposition 1, the expected wage depends only on the implemented precision but not

on µ and ν. Hence, the expected wage of the second agent is the same under simultaneous and

under sequential expertise. From induction follows that for arbitrary vector τ∗i , τ
∗
j , ... , payoffs and

expected wages under simultaneous and sequential expertise are the same

Proof of Proposition 3

(i) The proof is similar to the proof of Proposition 1. Using the revelation principle, let

m∗(s) = s. Let wi(si, sj) be the wage of agent i when the signals are si and sj . Agent i chooses

effort to maximize Z Z
wi(si, sj)q(sj |si, τ i, τ j)dsjf(si, τ i)dsi − c(τ i)

where τ i and τ j are the precision of the signals and q(sj |si, τ i, τ j) is the conditional density of sj .

The signals are normal with mean x. Given si, we have E[x|si] = τisi+νµ
τ i+ν

. From the perspective

of agent i, the signal of agent j is normal with mean τ isi+νµ
τ i+ν

. Conditional on si, the variance of sj
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is the variance of E[x|si] plus the unconditional variance of sj , i.e. 1
τ i+ν

+ 1
τj
=

τj+τ i+ν
τj(τi+ν)

. Hence

q(sj |si, τ i, τ j) =
p
τ j(τ i + ν)√

2π
√
τ j + τ i + ν

exp−1
2

(µ
sj − τ isi + νµ

τ i + ν

¶2
τ j(τ i + ν)

τ j + τ i + ν

)

Then

∂E[wi]

∂τ i
=

Z Z
τ j + ν

2τ i(τ j + τ i + ν)
− 1
2

µ
sj − τ isi + νµ

τ i + ν

¶2 τ2j
(τ j + τ i + ν)2

+

³
sj − τ isi+νµ

τ i+ν

´
τ jν(si − µ)

(τ j + τ i + ν)(τ i + ν)
− 1
2

ν2(si − µ)2

(τ i + ν)2
wqdsjfdsi (A7)

The principal decides for which signal sj agent i is rewarded. Hence, the principal maximizes

∂E[wi]
∂τ i

with respect to sj. Eqn.(A7) is maximal at sj = si +
ν(si−µ)

τj
. Let esj(si) = si +

ν(si−µ)
τj

.

Hence, wi(si, sj) = 0 if sj 6= esj(si). Then

∂E[wi]

∂τ i
=

Z Z ·
τ j + ν

2τ i(τ j + τ i + ν)

¸
w(si, esj(si))q(esj(si)|si, τ i, τ j)desj(si)fdsi

=
τ j + ν

2τ i(τ j + τ i + ν)
E[wi] (A8)

Note that if τ j =∞, the signal of agent j reveals the state and the contract is the same as if the

state is observable with ∂E[wi]
∂τ i

= 1
2τ i

E[wi].

Given that w(mi, sj) = 0 if sj 6= esj(mi), agent i chooses a message to maximize his expected

payoff. Formally

max
mi

q(esj(mi)|si, τ i, τ j) · wi(mi, esj(mi))

Hence, for all m

∂q

∂esj(mi)

∂

∂mi

1

q
= − ∂wi

∂mi

1

w(mi, esj(mi))

After substituting for q and solving the differential equation for wi, we have

wi(mi, esj(mi)) = k exp

½µ
1 +

ν

τ j

¶µ
1

2
νm2

i − νmiµ

¶¾

and, of course, wi(mi,mj) = 0 whenever mj 6= esj(mi).
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Whenever τ∗ > 0, the agent earns rent and, therefore, accepts the contract.

(ii) Follows from Lemma 1 and the fact that m(s) = s.

(iii) The principal chooses τ i, τ j to minimize E[wi] + E[wj ] given that τ i + τ j = τ∗. At the

precision that maximizes the payoff of the agent, we have ∂E[w]
∂τ = c0(τ). From eqn.(A8) follows

that E[wi] =
2τi(τj+τ i+ν)

τj+ν
c0(τ i). Hence, the principal minimizes

2τ i(τ j + τ i + ν)

τ j + ν
c0(τ i) +

2τ j(τ j + τ i + ν)

τ i + ν
c0(τ j) s.t. τ i + τ j = τ∗ (A9)

Since c000 ≥ 0, from eqn.(A9) follows immediately that τ∗i = τ∗j . Hence, E[wi] =
2τ∗i (2τ

∗
i+ν)

τ∗i+ν
c0(τ∗i ).

At the optimal precision that the principal implements we have ∂V
∂τ = 2

dE[wi]
dτ∗i

∂τ∗i
∂τ∗ . Hence, at τ

∗

we have ∂V
∂τ = 4c

0(τ∗i )− 2ν2

(τ∗i+ν)2
c0(τ∗i ) + 2τ

∗
i c
00(τ∗i ) +

2τ∗i
2

τ∗i+ν
c00(τ∗i ).

(iv) Follows immediately from substitution.
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