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Abstract: The present note shows that the concept of a distribution economy (Hilden-

brand (1974)) is closely related to a framework of an exchange economy in which the

agents’ individual characteristics (i.e. preferences and endowments) are random (Hilden-

brand (1971), Bhattacharya and Majumdar (1973), Föllmer (1974)). A random exchange

economy is fully specified by the distribution of the family of random variables repre-

senting the agents’ individual characteristics. This distribution is a probability measure

µ on (SA,B(S)A) with S denoting the space of individual characteristics, B(S) the

Borel σ-algebra generated by an appropriate topology on S and A a denumerable set of

agents. The linkage between a Hildenbrand distribution economy and an ergodic ran-

dom exchange economy with a countably infinite set of agents endowed with the graph

topology of the integer lattice Zd is established in this paper by a convergence result

for the empirical distribution of the latter. For any increasing sequence of finite subsets

of A exhausting A, the associated sequence of empirical distributions converges almost

everywhere on the underlying probability space to some distribution ν on (S,B(S)). As

far as aggregate variables of the economy, such as the mean demand or the equilibrium

price system are concerned, any infinite random exchange economy with converging

limiting empirical distribution ν is equivalent to a Hildenbrand distribution economy

characterized by the same distribution ν. This relationship suggests an approach to en-

dogenous modelling of distributions of individual characteristics in General Equilibrium

Theory. Thereby, specific distributions of characteristics can be obtained from a specific

stochastic microstructure of local interaction between agents affecting their individual

characteristics.

JEL classification: D50

Key words: General Equilibrium Theory, Arrow-Debreu economy, Random Economy,

Distribution Economy, Empirical Distribution
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1 Introduction

The present note shows that the concept of a distribution economy (Hildenbrand

(1974)) is closely related to a framework of an economy in which the agents’ in-

dividual characteristics (i.e. preferences and endowments) are random. In this

framework, called random exchange economy, to each agent a from a denumerable

set A there is assigned a random variable Xa : Ω → Pmo,sco × T rather than an

element from Pmo,sco × T as in the traditional Arrow-Debreu framework. Here

Pmo,sco denotes the space of monotone, strictly convex preference relations1 and

T the space of initial endowments with T ⊂ RL
++ compact. The product space of

individual characteristics will be denoted by S throughout this paper.

A random exchange economy is fully specified by the distribution of the family

of random variables (Xa)a∈A being a probability measure µ on (SA,B(S)A) with

B(S) denoting the Borel σ-algebra generated by an appropriate topology on S (De-

breu (1969), Hildenbrand (1974)). Random exchange economies, both with and

without the assumption of stochastic independence of agents, have been investi-

gated, for example, by Hildenbrand (1971), Bhattacharya and Majumdar (1973),

Föllmer (1974), Karmann (1976) and Majumdar and Rotar (2001).

The linkage between a distribution economy and an ergodic random exchange

economy with a countably infinite set of agents is provided by a convergence result

for the empirical distribution of the latter. The empirical distribution associated

with some finite set A′ ⊂ A can be interpreted as the (random) relative frequency

of the appearance of individual characteristics from some Borel subset of S within

the subset A′ of agents of the random economy. For any increasing sequence of

finite subsets from A exhausting A, the sequence of associated empirical distribu-

tions converges almost everywhere on the underlying probability space Ω to some

distribution ν on (S,B(S)) (see Proposition 2 of this paper). Although the un-

1The notion of a preference relation and its various properties are defined in Appendix C.
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derlying mathematical statement is well-known (see Varadarajan (1958) for the

case of independent random variables), the relationship between a Hildenbrand

distribution economy and an ergodic random exchange economy has found little

address in economics so far. The result implies that any countably infinite random

exchange economy with empirical distribution ν is equivalent to a Hildenbrand

distribution economy characterized by the same distribution ν, as far as aggre-

gate variables of the economy like mean demand or equilibrium price system are

concerned.

Moreover, the result suggests an approach to endogenous modelling of dis-

tributions of individual characteristics in General Equilibrium Theory. By this

approach, specific distributions of individual characteristics can be obtained from

a specific stochastic microstructure of local interaction of agents. To the author’s

knowledge, such an approach has been first proposed by Grandmont (1992):

An important issue to investigate would then be how such macroeconomic distribu-

tions might arise endogenously from specific socioeconomic interactive processes involv-

ing for instance imitation and/or differenciation effects at the micro-level. One could

for instance envision a more “adaptive” viewpoint, in the spirit of [Hildenbrand (1971),

Föllmer (1974)], in which the decision rule (here the demand function) or the prefer-

ences of an individual are influenced in a stochastic (Markovian) fashion by those of

his immediate neighbor(s), and generate endogenously a macroeconomic distribution by

looking for invariant distributions. The properties of these invariant distributions might

in turn generate enough strong macroeconomic structure to allow us to proceed on se-

cure grounds. These avenues, which might eventually lead to some kind of “Statistical

Economics” (in the sense we talk of “Statistical Mechanics”), may not sound quite or-

thodox after so much emphasis put for so long on ”individual rationality” as the main

structuring language in our profession. Yet they are presumably worth exploring.

In the same spirit, Blume and Durlauf (2001) comment:
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The interactions approach can contribute to the development of such an understand-

ing by identifying how certain aggregate behaviors emerge from particular classes of

individual characteristics and particular specifications of how individuals interact. One

does not, however, get something for nothing by employing this approach to aggregate

dynamics. Particular emergent phenomena depend upon particular sets of individual

specifications.

The structure of the paper is as follows: Section 2 explains the notion of a ran-

dom exchange economy and, in particular, introduces the framework of a Gibbsian

random exchange economy. Section 3 contains the convergence result for empirical

distributions of ergodic random exchange economies and explains the relationship

with Hildenbrand distribution economies. Section 4 concludes with a discussion of

the results. The appendices contain a short statement of some mathematical and

economic definitions and results on which the paper is based.

2 The notion of a random exchange economy

In economic literature, the argument has been frequently made that individual

choice involves a certain degree of randomness.2 The question why randomness

appears, and, more specifically, whether it is an intrinsic randomness or the arti-

fact of some hidden variables, which, if observed, would again determine individual

choice, is certainly a deep one. Although analogous questions have been posed and

discussed in the context of theories and modelling approaches in several disciplines

of science, and some conclusions from that analysis might well apply to economics,

no attempt will be made in this paper to explain the roots of randomness in in-

dividual economic behaviour . Instead, the paper follows a pragmatic path to use

randomness in the description of large economic systems as a way to circumvent

2See, for example Quand (1956), Davidson and Marschak (1959), Block and Marschak (1960)

and Mossin (1968).
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the complexity of individual behaviour, e.g. with regard to the formation of pref-

erences. By modelling individual characteristics as random variables, the modeller

can embody in a model empirical knowledge, e.g. that, on average, some percent-

age of a population behaves in a certain way without explaining why a particular

individual does or does not.

In the same spirit, Hildenbrand (1971) introduced randomness into General

Equilibrium Theory by specifying an exchange economy with random individual

characteristics. In this framework, there is assigned to each agent a from a finite set

A a random variable Xa assuming values in Pmo,sco×T (where T denotes a compact

set T ⊂ RL
+) rather than a fixed preference relation and a fixed endowment as in

the Arrow-Debreu framework. Consequently, for a given price p ∈ RL
++, individual

demand and aggregate demand are random. As Hildenbrand (1971) assumes that

individual characteristics of agents are stochastically independent, it follows, in

principle from the Law of Large Numbers, that per-capita excess demand converges

to zero (in an appropriate sense) on the underlying probability space in the limit

of countably infinitely many agents.

Bhattacharya and Majumdar (1973) modify Hildenbrand’s framework in two

respects. First, equilibrium price itself is modelled as a random variable equili-

brating supply and demand almost everywhere on the probability space even for

finitely many agents rather than on average as in Hildenbrand’s (1971) framework.3

Second, the convergence of the empirical distribution for dependent sequences of

random agents is shown for the case of exchangeable agents and strong mixing,

thus relaxing the assumption of independent agents.

Indeed, the assumption of independence of agents’ individual characteristics

might, in many cases, neglect an important aspect of socioeconomic phenomena.

3Bhattacharya and Majumdar (1973) also show the convergence of sample distributions of

sequences of finite random economies for certain types of stochastic dependence between agents.

These results are similar to Proposition 2 in section 3 of this note.
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Interaction between individuals affecting their tastes, attitudes and expectations

is likely to be fundamental in explaining a broad range of socioeconomic facts (see

Blume und Durlauf (2001) and Kapteyn et al. (1997)).

A stochastic description of an exchange economy with locally interdependent

characteristics has been proposed by Föllmer (1974) extending the Hildenbrand

(1971) framework. Föllmer considers from the outset a countably infinite random

economy indexed by the d−dimensional integer lattice Zd (i.e. elements of A are

identified with lattice sites). The d−dimensional integer lattice Zd induces a simple

graph topology on A with each agent having 2d next neighbors.4 In this paper,

we follow Föllmer (1974) in assuming the lattice Zd as a simple model of social

influence structures. Following the aproach to infinite random fields introduced

by Dobrushin (1968) and Lanford and Ruelle, the stochastic dependence of agents

resulting from a given microstructure of local interaction is characterized by a

specification γ being an appropriate family of probability kernels.5

The following very general definition characterizes the class of random exchange

economies considered in this paper:

Definition 1. A Gibbsian random exchange economy with specification γ is

a family of random variables (Xa)a∈A with values in (S,B(S)), the distribution of

which is a Gibbs measure with respect to a specification γ (see Appendix A for

the definitions of the mathematical concepts involved).

4The integer lattice has been often used in the context of random-field models in statistical

physics. A related concept of a random economy (including production) on more general graph

structures has been formulated and analysed by Evstigneev and Taksar (1994,1995).
5For a detailed mathematical treatment of random fields see Georgii (1988). Basic notions

are summarized in Appendix A of this paper.
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3 Distribution economies as limiting empirical

distributions of random economies

The notion of a distribution economy, introduced by Hildenbrand (1974), is a gen-

eral framework for the study of large economies in which any individual agent has

little influence on the market outcome. The latter condition, known as perfect

competition, is fundamental for the Walrasian General Equilibrium Theory. His-

torically, there emerged two approaches to the modelling of large economies. In

the first, due to Debreu and Scarf (1964), appropriate sequences of finite economies

with an increasing number of agents, so-called replica economies, are considered.

The second, due to Auman (1964), is based upon the notion of an idealized econ-

omy with a continuum of agents.

However, if the idealized model of an Auman economy is to be considered

as a meaningful formalization of a real economy, one has to show that it is, in

an appropriate sense, the limit of a sequence of finite economies. To establish

this “convergence”, Hildenbrand (1974) has proposed a framework in which the

demand side of a large economy is characterized by a distribution ν on the Polish

space (S,B(S)).6

Consider first an Auman economy E , i.e. a measurable map E : [0, 1] → S. Let

[0, 1] be equipped with the Borel σ-algebra and the normalized Lebesgue measure

λ. The distribution νE of E is defined as the image measure induced by E :

µE(B) = λ({E−1(B)}) ∀ B ∈ B(S).

Vice versa, due to Skorohod’s theorem (Skorokhod (1964)), with any given proba-

bility measure ν on the Polish space (S,B(S)) one can associate an Auman econ-

omy such that µ is its distribution (in the sense of the last equation).

6The fact that, among others, the space of monotone, strictly convex preferences on RL
+ is a

Polish space has been shown by Grodal (1974).
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The crucial fact, established in Theorem 1 of Hildenbrand (1970), is, that any

non-atomic probability measure ν on the space (S,B(S)) (arising as the distribu-

tion of an Auman economy) is the limit (with respect to weak convergence) of a

purely competitive sequence of distributions νn on (S,B(S)) arising from a purely

competitive sequence of finite economies78 En : An → S.

Now we turn to the relationship between random exchange economies and

Hildenbrand distribution economies. This will be illustrated by the following sim-

ple example: Consider a random exchange economy with a countable set of agents

represented by N and a finite space of characteristics S0 = {s1, ..., sN}. To each

agent there is associated a random variable Xa : Ω → S0 defined on some prob-

ability space (Ω,F , P ). For simplicity, assume that the family of random agents

(Xa)a∈N is identically independently distributed. Let ν denote the law of each Xa.

The empirical distribution Yn of the finite family of random agents (Xa)a∈{1,...,n}

is a random distribution,9 i.e. a disribution on S0 depending on ω ∈ Ω. In the

finite case, one can proceed as follows. For any si ∈ S0 define a random variable

Yn(si, ·) : Ω → [0, 1] with

Yn(si, ω) :=
1

n
|{a ∈ {1, ..., n}|Xa(ω) = si}|, (1)

wherein | · | denotes the cardinality of a set. The random variable Yn(si, ·) is the

7A sequence of finite economies En : An → S with finite An is called purely competitive if the

following conditions hold:

(i) the number |An| of agents tends to infinity

(ii) the sequence µEn of preference-endowment distributions converges weakly to a limit ν

8For a finite economy En, one obtains the distribution µEn
via

µEn
(B) =

|E−1
n (B)|
|An|

∀B ∈ B(S)

9A random distribution is a random variable assuming values in the space of probability

measures on some measurable space.
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(random) relative frequency of the realisation si from the finite set of individual

characteristics in a sample consisting of the first n agents.

By the strong law of large numbers we have weak convergence of the sequence

almost everywhere on Ω:

lim
n→∞

Yn(si, ·) → ν(si) P − a.s.

The result vindicates the intuition that the relative frequency of si in the infinite

sequence (Xa)a∈N is equal to ν(si). By a similar argument, we can obtain con-

vergence of the empirical distribution without the assumption of stochastic inde-

pendence of (Xa)a∈N, if we consider states which are ergodic w.r.t. an appropriate

measure-preserving transformation on Ω.

As a result, in the simple setup described above the limiting empirical distri-

bution specifies a Hildenbrand distribution economy. The main conceptual point

of this paper is that any Hildenbrand distribution economy described by a proba-

bility measure on the full space of individual characteristics can be derived as the

empirical distribution from some random economy (Xa)a∈Zd . Vice versa, every er-

godic random economy gives rise to some Hildenbrand distribution economy given

by the empirical distribution of the random economy.

It is important to emphasize that the empirical distribution contains much

less information about the economy than does the law of (Xa)a∈Zd . There will

be a multiplicity of quite different random economies sharing the same limiting

empirical distribution. Nevertheless, the information contained in the empirical

distribution suffices for the computation of any macroscopic variable considered

by the classical Arrow-Debreu general equilibrium model.

The remainder of this section extends the argument presented above to general

spaces of individual characteristics considered in General Equilibrium Theory. In

doing so, we first consider the case of independent agents (Proposition 1), then

the general case of dependent agents (Gibbsian random economies) will be tackled

10



(Proposition 2).

First, the notion of an empirical distribution has to be extended to processes

with a general state space. For a finite sequence of random variables we have

Definition 2 Let X = (X1, . . . , Xn) be a finite sequence of random variables

defined on some probability space (Ω,F , P ) with values in a measurable space

(E, E). The empirical distribution of X, denoted by Yn(·, ·), is a random distribu-

tion on (E, E), i.e. a map Yn : E × Ω → [0, 1], which is specified setwise by

Yn(B, ·) =
1

n

n∑
k=1

IB ◦Xk(·), B ∈ E (2)

where IB denotes the indicator function of B.

Yn(B, ·) can be interpreted as the “relative frequency” of the appearance of a value

from B in the finite sequence. This “relative frequency” is itself a random variable

on Ω.10

For infinite sequences of random variables, the empirical distribution is defined

as the limit of the sequence (Yn)n∈N for n →∞ with respect to weak convergence,

if this limit exists.

Definition 3 Let X = (X1, X2, . . . ) be an infinite sequence of random variables

defined on some probability space (Ω,F , P ) with values in a measurable space

(E, E). If there exists a probability measure Y on (E, E) such that the sequence of

empirical distributions (Yn)n∈N, where Yk is the empirical distribution of the finite

10Note that the empirical distribution can also be written as

Yn(B, ·) =
1
n

n∑
k=1

δXk(·)(B) ∀B ∈ E (3)

with the Dirac measure δx(·) on (E, E), with x ∈ E, defined as

δx(B) =


1 if x ∈ B,

0 else
∀B ∈ E . (4)
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sequence (X1, . . . , Xk), for P−almost every ω ∈ Ω weakly converges to Y with

respect to weak convergence of probability measures, i.e.

P{ω ∈ Ω | Yn(·, ω) → Y (·)} = 1

then Y is called limiting empirical distribution of X (or simply empirical distribu-

tion of X).

The following proposition asserts that the empirical distribution of a ran-

dom economy with identically independently distributed agents converges on Ω

(P−a.s.). The result can be found already in Hildenbrand (1971). We provide a

slightly more explicit proof based on Dudley (1989).

Proposition 1 (Hildenbrand) Let E denote a countably infinite random

economy with independently identically distributed random agents, i.e. an i.i.d.

family of random variables (Xa)a∈N on some probability space (Ω,F , P ) taking

values in the Polish space S of individual characteristics. Let ν denote the dis-

tribution of each Xa on (S,B(S)). Then the limiting empirical distribution of E

exists and is equal to ν P−a.s. on Ω.

PROOF: Let An denote the finite subset of agents consisting of agents 1, . . . , n

constituting the finite random economy En and let YEn denote the empirical distri-

bution of the finite random economy En. We have to show that for P−almost any

ω ∈ Ω the sequence of probability measures YEn(ω) converges to ν for n →∞. We

remind that a sequence of probability measures Mn on a topological space (G, T )

converges weakly to a probability measure M if for any continuous bounded func-

tion f : G → R we have
∫

G
fdMn −→

∫
G

fdM for n →∞.

By equation (3) one can see that for any bounded continuous function f : S →

R we have ∫
S

fdYEn =
1

n
(f(X1) + · · ·+ f(Xn)).

This expression converges for n → ∞ due to the strong law of large numbers to

12



∫
S

fdν P−almost surely on S.

Because the set of measure 0 (w.r.t. P ) for which convergence does not occur

might depend on f , it remains to be shown that the measure of the set on which

the empirical distribution converges has measure 1. As any separable metric space

has a totally bounded metrization, we can assume that (S, d) is compact. By

Theorem 11.3.3 from Dudley (1989), it suffices to show that we have convergence

for all f ∈ BL(S, d) where BL(S, d) denotes the set of bounded Lipschitz functions

on (S, d).11

Because BL(S, d) is itself separable with respect to the supremum norm

‖ · ‖∞ (cf. Dudley (1989), p.308), there exists a countable dense subset (fm)m∈N

of BL(S, d). Take any f ∈ BL(S, d). For any ε > 0 there is a m(ε) such that:

‖f − fm(ε)‖∞ < ε
4
. Then for any f ∈ BL(S, d) we can estimate

∣∣ ∫
fdYEn −

∫
fdν| = |

∫
(f − fm(ε) + fm(ε))dYEn −

∫
(f − fm(ε) + fm(ε))dν|

≤ |
∫

(f − fm(ε))dYEn|+ |
∫

(f − fm(ε))dν|+ |
∫

fm(ε)dYEn −
∫

fm(ε)dν|

Therefore we have convergence for all f ∈ BL(S, d) provided it is the case for

(fm)m∈N. But for functions from (fm)m∈N the set of possible non-convergence

points is a denumerable union of sets of measure zero and therefore also has mea-

sure zero. �

Now we turn to the case of a Gibbsian random exchange economy introduced

in Definition 1. Such an economy is a random field (Xa)a∈Zd with each random

variable Xa taking values in S. The distribution of a Gibbsian random economy

11Let (S, d) be a metric space. For a real-valued function f on S, let ‖f‖L denote the Lipschitz

seminorm defined by

‖f‖L = supx6=y
|f(x)− f(y)|

d(x, y)

Let ‖f‖∞ denote the supremum norm ‖f‖∞ = supx|f(x)|. We obtain a norm by setting ‖f‖BL =

‖f‖L + ‖f‖∞. Functions from BL(S, d) = {f : S → R | ‖f‖BL < ∞} are called bounded

Lipschitz functions on S.
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is a probability measure on the product space (SZd
,B(S)Zd

). We confine our

consideration to shift-invariant Gibbs measures µ, which are ergodic with respect

to lattice shift (See Appendix B for details). Whereas for our present argument

we take ergodicity as an assumption, it is argued elsewhere using a dynamical

framework (Hohnisch and Kondratiev (2003)) that ergodic Gibbs measures are

the only appropriate measures within the class of shift-invariant Gibbs measures

to represent equilibrium states of real economic systems.

The limiting empirical distribution for a Gibbsian random economy on the

integer lattice Zd can be defined as follows: A finite subset Λ ⊂ Zd is called

finite volume. For a sequence of finite volumes (Λn)n∈N let (Λn) ↗ Zd denote the

situation that Λn ⊂ Λn+1 and
⋃

n∈N Λn = Zd. For any finite volume Λn ⊂ Zd and

any set B ∈ B(S) the empirical distribution can be defined as

YΛn(B) =
1

|Λn|
∑
k∈Λn

1B ◦Xk

for any B ∈ B(S). The following result is the generalization of Proposition 1 to

the case of Gibbsian random economies.

Proposition 2 Let (Xa)a∈Zd denote an ergodic (with respect to lattice shift)

Gibbsian random economy with distribution µ on (SZd
,B(S)Zd

). Let ν denote the

marginal distribution of each Xa on (S,B(S)). Then for any sequence of finite

volumes with (Λn) ↗ Zd limn→∞ YΛn exists and is equal to ν µ-a.s. on Ω.

PROOF: The proof is almost identical to that of Proposition 1 except that

a generalized law of large numbers has to be used. For any bounded continuous

function f : S → R we have∫
S

fdYΛn =
1

|Λn|
∑
a∈Λn

f(Xa)

This expression converges for n →∞ by the multidimensional version of Birkhoff’s

ergodic theorem to
∫

S
fdν µ−almost surely on Ω (See Appendix B). The same
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argument as in Proposition 1 can be used to show that the measure of the set on

which convergence does not occur is zero. Therefore ν is the limiting empirical

distribution of E . �

Proposition 2 has the following implication: The convergence of the empiri-

cal distribution of an ergodic Gibbsian random exchange economy allows to as-

sociate to any such economy a Hildenbrand distribution economy specified by a

probability measure ν on (S,B(S)) in the sense that properties of the latter, e.g.

equilibrium prices, per-capita aggregate demand and per-capita aggregate excess

demand, could be as well obtained from a random economy with the same dis-

tribution ν as limiting empirical distribution. Therefore, given a market outcome

we cannot distinguish whether the underlying framework is a Gibbsian random

economy or an Arrow-Debreu economy. This result might be surprising in that it

shows that, if one is interested in global variables, the Arrow-Debreu framework

is equivalent to an economy with random characteristics, provided we have reason

to admit only ergodic states to represent real economic systems.12

A comment on the interplay of the two forms of interaction in the model of a

Gibbsian random economy, namely the interaction of agents’ characteristics and

market interaction (the coordination via the price system), seems appropriate.

An equilibrium price exists once we are in the case of proposition 2, i.e. the

distribution of the individual characteristics is an ergodic probability measure or,

intuitively, once the system has “settled down” into equilibrium. In that case we

have a complete separation of the two types of interaction, the former endogenizing

the distribution of individual characteristics, the latter the price system.

12See Hohnisch and Kondratiev (2003)
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4 Discussion

Having established the consistency of the notion of a Gibbsian random exchange

economy within the Walrasian equilibrium concept, we argue that the notion of

a Gibbsian random exchange economy provides a framework to study structural

properties of an economic system which are beyond the scope of the Arrow-Debreu

model with fixed individual characteristics. The distribution of individual charac-

teristics is endogenous in the Gibbsian framework. The local structure of a spatial

process indexed by the integer lattice Zd is given by its specification, a family of

appropriate probability kernels. In the case that one considers a finite state space

of individual characteristics and finite range interaction, these kernels reduce to a

particularly simple form, namely to the conditional probabilities of a single agent

to be in any of the possible states given a fixed configuration of states in his neigh-

borhood. Also, the set of Gibbs measures can be easily constructed in that case.

Moreover, these conditional probabilities can be investigated both experimentally

and empirically. Thus it is possible, at least in simple cases, to model a distribution

of characteristics in a population of economic entities from direct observation.
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Appendices

A Spatial stochastic processes (Random fields)

The mathematical concepts discussed in this Appendix are widely applied in dif-

ferent areas of science to model random systems consisting of many interacting

entities, each capable of being in different states. Depending on the particular

area of application, the entities are economic agents, internet servers, neurons or

molecules. The denumerable set of these entities will be denoted by A. For each

entity, the set of possible states will be assumed the same, for simplicity. This set

is called state space. The general notions can be defined with the state space being

any measurable space (E, E). The stochastic description of such systems starts

with the following definition:

Definition A.1 A spatial stochastic process (or random field or stochastic field)

is a family of random variables (Xa)a∈A defined on some probability space (Ω,F , P )

with values in a measurable space (E, E) and with the index set A countably

infinite.

The mathematical problem is how to derive global properties of a random field

from the local structure of stochastic dependence between individual variables, in

the same sense as the law of a random chain can be constructed immediately from

its transition probabilities. The appropriate framework to study this problem for

random fields has been suggested by Dobrushin (1968) and Lanford and Ruelle

(1969) and is referred to as the DLR-approach. Initially, the DLR-approach con-

sidered a particular spatial structure of the index set A, namely the d-dimensional

integer lattice, i.e. A = Zd, but an extension to more general structures of the in-

dex set has been soon provided by Preston (1974). In Preston’s general approach,

the set of entities A is equipped with a neighborhood structure assigning to each

17



a ∈ A the finite set N (a) ⊂ A of next neighbors of a. Any such neigborhood

structure can be represented by a graph. The elements of A are then identified

with the nodes of the graph.13 This review will be confined to the case of Zd as

index set for simplicity.

The surprising fact resulting from the analysis of random fields is that a local

dependence structure of the random field, represented by an appropriate family of

probability kernels discussed later in this section, does not, in general, determine

uniquely the global law of the field if d ≥ 2. This phenomenon is known as

phase multiplicity. It is extensively discussed in several monographs, e.g. (Georgii

(1988)), and the reader is referred to them for a detailed treatment.

In the following, some of the technicalities underlying the DLR-framework will

be explained. We start with the notion of a probability kernel.

Definition A.2 Let (X,X ) and (Y,Y) be measurable spaces. A function

π : X × Y → [0,∞] is called a probability kernel from (Y,Y) to (X,X ) if:

(i) π(·|y) is a measure on (X,X ) for all y ∈ Y

(ii) π(A|·) is Y-measurable for each A ∈ X

(iii) π(X|·) = 1

Further, let X0 be a sub-σ-algebra of X . A probability kernel from (X,X0) to

(X,X ) is said to be proper if π(A ∩ B|·) = π(A|·) ◦ 1B for every A ∈ X and

B ∈ X0.

Proposition A.1 Let P(X,X ) and P(Y,Y) denote the spaces of probability

measures on (X,X ) and (Y,Y), respectively.

13The extension of the DLR-approach from the integer lattice Zd to more general spatial

structures for the index set A is especially important for applications in economics, as the integer

lattice Zd provides only a crude model for socioeconomic communication and influence networks,

created e.g. by peer relationship within a social group. A random economy framework with an

underlying graph structure has been proposed by Evstigneev and Taksar (1994)(1995).
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(i) Let µ ∈ P(Y,Y). A probability kernel π from (Y,Y) to (X,X ) defines a

mapping from P(Y,Y) to P(X,X ) via

(µπ)(A) :=

∫
dµπ(A|.) ∀ A ∈ X .

(ii) For each measurable f : X → R a probability kernel π induces a measurable

function πf :=
∫

π(dx|·)f(x).

(iii) Let (Z,Z) denote a third measurable space. The composition π1π2 of a prob-

ability kernel π1 from (Z,Z) to (Y,Y) and π2 from (Y,Y) to (X,X ) defined by the

formula

π1π2(A|z) =

∫
π1(dy|z)π2(A|y) ∀ A ∈ X , z ∈ Z.

is a probability kernel from (Z,Z) to (X,X ).

PROOF: Preston (1982)

The relationship between a proper probability kernel and conditional probabil-

ities is characterized by the following proposition:

Proposition A.2 Let (X,X ) be a measurable space, B a sub-σ-algebra of X ,

π a proper probability kernel from (X,B) to (X,X ) and µ ∈ P(X,X ). Then

µ(A|B) = π(A|·) µ− a.s. ∀ A ∈ X

if and only if µπ = µ.

PROOF: Georgii (1988), p.15

Following the standard approach in the theory of stochastic processes, we set

Ω = EZd
with EZd

= {ω = (ωa)a∈Zd : ωa ∈ E}. The associated σ-algebra on

Ω is the product σ-algebra EZd
. It will be denoted by F . The variable Xa is

then a projection map Xa : Ω → E taking ω → ωa for each ω ∈ Ω. Further,

for each Λ ⊂ Zd let XΛ : Ω → EΛ denote the projection onto the coordinates

in Λ. For any ∆ ⊂ Zd, F∆ denotes the σ-algebra of events involving knowledge
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only about variables inside ∆, i.e. F∆ is generated by the events {σΛ ∈ A} with

Λ ∈ A, Λ ⊂ ∆; A ∈ EΛ and A := {Λ ⊂ Zd|0 < |Λ| < ∞}.

It turns out that the appropriate local structure characterizing the random

field (Xa)a∈Zd is provided by a family of probability kernels (γΛ)Λ∈A required to be

versions of conditional distributions of the random field relative to certain sub-σ-

algebras of F . More precisely, for each finite non-empty set Λ ⊂ Zd, the probability

kernel γΛ(A|·) from (Ω,FZd\Λ) to (Ω,F) is required to be equal almost everywhere

on Ω to the conditional distribution µ(A|FZd\Λ) relative to the σ-algebra FZd\Λ of

events outside Λ.

Due to this requirement, the probability kernels (γΛ)Λ∈A have to fulfill certain

a-priori consistency conditions:

Definition A.3 A family of proper probability kernels γ = (γΛ)Λ∈A which sat-

isfy the consistency condition γΛγΛ0 = γΛ for any Λ0 ⊂ Λ is called a specification

for the random field.

The next definition introduces the notion of a Gibbs measure:

Definition A.4 A probability measure µ is said to be admitted by a specifica-

tion γ if the following condition holds:

µ(A|FZd\Λ) = γΛ(A|·) µ− a.s. ∀ A ∈ F .

The set of all probability measures admitted by the specification γ will be denoted

by G(γ). Measures from G(γ) are called Gibbs measures (with respect to γ).14

For a comprehensive discussion of existence and uniqueness results for Gibbs

14The abstract notion of a specification would be of little practical relevance without a con-

structive approach to obtain specifications for concrete systems. The great success of the DLR-

approach lies in the fact that it allows to explicitely derive specifications from interaction poten-

tials (see Georgii (1988), chapter 2). In economics, interaction potentials can be obtained e.g. in

appropriate experiments.
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measures the reader is referred to Georgii (1988). The basic surprising result is

that G(γ) might not be a singleton if d ≥ 2.

B Ergodicity of random fields on the integer

lattice Zd

In this section, basic notions related to ergodicity of spatial stochastic processes

(random fields) are summarized. In particular, the generalized Birkhoff ergodic

theorem is used in Section 3 to derive the main result of this paper. For a detailed

treatment see Georgii (1988).

The starting point of ergodic theory is the notion of a transformation that

preserves the structure of the measurable space, as defined below.

Definition B.1 Let (Ω,F , µ) be a probability space, and T a measurable

transformation on (Ω,F , µ). The transformation T is said to be measure preserving

if

µ(T−1A) = µ(A) ∀ A ∈ F .

To formulate ergodicity for random fields, one has to keep in mind that the

linearly ordered index set referring to time is replaced by a more general index set.

In this appendix, the d−dimensional integer lattice Zd is taken as index set. Let

(E, E) denote a measurable space and let (Xi)i∈Zd be a random field with state

space (E, E). The distribution of (Xi)i∈Zd is a probability measure on (Ω,F) with

(Ω,F) = (EZd
, EZd

).

Stationarity of a random process corresponds in this situation to invariance of

its distribution with respect to lattice shift.

Definition B.2 For any j ∈ Zd the map θj : Ω → Ω given by

θj(ω) = (ωi−j)i∈Zd
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is called a lattice shift.

With this definition one can define a property analogous to stationarity.

Definition B.3 A measure µ on Ω is called shift-invariant if µ(A) = µ(θj(A))

for any A ∈ F and any j ∈ Zd. A random field is called shift invariant, if its

distribution is shift invariant.

In defining the notion of ergodicity for random fields on the integer lattice, the

role of the σ-algebra of (time-) shift invariant events is taken by the set J of events

invariant with respect to lattice shift.

Definition B.4 The sub-σ-algebra of F

J = {A ∈ F : θj(A) = A ∀ j ∈ Zd}

is called σ-algebra of lattice-shift-invariant events.

Definition B.5 A random field with a shift invariant law µ on (EZd
,F) is

called ergodic (with respect to lattice-shift) if it is trivial on J , e.g. for any A ∈ J

we have µ(A) = 1 or µ(A) = 0.

The following statement generalizes Birkhoff’s ergodic theorem.

Theorem B.1 Let (Ω,F , µ) be a probability space and (θj)j∈Zd measure-

preserving transformations on Ω. Then for each increasing sequence of finite vol-

umes (Λn)n∈N exhausting Zd and any f ∈ L2(Ω,F , µ)

lim
n→∞

1

n

∑
j∈Λn

f ◦ θj = µ(f |J )) µ− a.s.

PROOF: Georgii (1988)
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C Properties of individual preferences

The individual taste of each agent is formalized by a binary relation on Xa, i.e. a

subset of Xa×Xa. It is customary to denote such a binary relation by the symbol

%a and for any pair of consumption bundles (xa, ya) ∈%a to write xa %a ya with

the interpretation that agent a considers the bundle xa as at least as good as ya.

The neoclassical notion of rationality implies in particular that a binary relation

formalizing individual taste possesses the following three properties:

(P1) x % y or y % x (or both) ∀ x, y ∈ RL
+ (completeness)

(P2) if x % y and y % z then x % z ∀ x, y, z ∈ RL
+ (transitivity)

(P3) the sets {x|y % x} and {x|x % y} are closed sets (continuity)

A binary relation on RL
+ possessing these three properties is called a preference

relation. Let P denote the set of all preference relations on Xa = RL
+. From a

preference relation % one can derive two related binary relations on Xa = RL
+:

(i) The indifference relation ∼, defined by: x ∼ y :⇔ x % y and y % x

(ii) The strict preference relation �, defined by: x � y :⇔ x % y but not

y % x.

There are two further standard assumptions on a preference relation:

(MO) A preference relation %∈ P is called monotonic if x � y for every

x, y ∈ RL
+ with xj > yj for at least one component and xj ≥ yj for all other

components.

(SCO) A preference relation %∈ P is called strongly convex if x, y ∈ RL
+ with

x ∼ y and x 6= y implies that λx + (1− λ)y � y for every λ, 0 < λ < 1.

The set of all preference relations that satisfy the properties (MO) and (SCO) will

be denoted by Pmo,sco.

For details, see Debreu (1959).
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