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Abstract: This paper examines the world wheat market leadership using price discovery occurring
in wheat futures markets of the United States (U.S.) and Europe. An error correction model (ECM)
generalized autoregressive conditional heteroskedasticity (GARCH), and semi-parametric dynamic
copula methods are used for this purpose. The results indicate a positive link between U.S. and
Europe price discovery which is stronger, fluctuating less after August 2010 because of a drought
occurring in the Black Sea region, and then lessens, fluctuating more after 2015 with the changing
wheat trade map. Furthermore, after 2015, wheat market leadership moved from the U.S. to the
European market, meaning price discovery is primarily located by the Marché à Terme International
de France (MATIF) futures market.

Keywords: price discovery; wheat market leadership; error correction model-GARCH; cointegration
analysis; dependence analysis; semi-parametric copula

1. Introduction

Following the 2007/2008 food crisis, extreme changes were witnessed in the volume
of trade and pricing of food commodities. These notable changes resulted in the global
food pricing process gaining special attention among economists and policymakers [1]. The
primary blame for the extreme food price fluctuations was futures markets, which were
created to hedge against price volatility [2–4]. A futures contract of a futures market is used
to protect the sellers and buyers in advance from price risk and enhance the performance
of food markets. A futures contract is affected by several factors, such as supply shocks,
demand shocks, and the number of speculators, etc. Supply or demand shocks can lead
to volatility of future food prices, and therefore can be transferred as a jump in food spot
prices, which has a strong negative impact on poor consumers in developing countries that
meet their increased food demand by relying on importing food [5].

The main objective of this paper is to answer the research question about which market
dominates the world wheat futures market by using dynamic copula models that can deter-
mine the time-varying correlation of price discovery. Copula models apply to independent
and identically distributed residuals from the filtration (i.i.d.); for this purpose, an error-
correction type of model and generalized autoregressive conditional heteroskedasticity
(ECM-GARCH) is applied. Using Johansen’s [6] cointegration tests, an ECM is applied to
test for the existence of an equilibrium relationship between the considered price discovery
pairs. A Chi-square test within the Johansen’s framework of weak exogeneity for long-run
parameters is used to explore which futures market leads the world wheat market. Model
residuals are modeled by means of a GARCH specification, which allows for time-varying
and clustering volatility. This paper is relevant for economic agents, policymakers, hedgers,
grain farmers, and grain elevators for making their economic decisions, since price dis-
covery location drives resource allocation, production, and trade decisions that are useful
to them.
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Wheat is the most produced and traded grain around the world. Global wheat
production represents 26% of all cereals produced in 2017 and 41% of the world cereal
trade [7]. Middle East and North Africa countries are the highest wheat importers, with
Egypt being the highest wheat importer globally, with 12.5 million metric tons (MMT)
imported in 2018 [8]. Historically, the USA has been leading the global wheat market with
production and exports. The wheat futures market in the USA served as a benchmark for
traders and farmers to consider before making production decisions to protect themselves
against market risks. Currently, U.S. exports and world share production has decreased [8]
as a result of the strong entry of the former Soviet Union (Kazakhstan, Russia, and Ukraine
(KRU)) and EU countries into the global wheat market [9]. This is due to the following two
reasons: First, the short distance between the former Soviet Union and EU countries and
the Middle East and North African countries, which are the highest wheat importers [8]
has led to reduced transportation costs. Second, the offering prices of wheat from those
countries are less than those provided by the USA [8]. Work by Westcott and Hansen [10]
predicted the world trade and production share of the former Soviet Union, with significant
increases in the world wheat trade share expected from year to year. As a result of new
changes in the trade map, farmers, traders, and other market participants have started
to make decisions and plan for future products and budgeting in advance, based on the
European futures markets rather than that of the U.S. futures market, meaning the USA has
started to lose its wheat market leadership in favor of the aforementioned former Soviet
Union and EU countries [9].

This paper is organized as follows: In Section 2, we present a nomenclature table
(Table 1) describing the model parameters and variables; in Section 3, we describe the
literature review; in Section 4, we describe the methodological approach; Section 5 is
devoted to the empirical implementation used to assess world wheat market leadership;
and finally in Section 6, we offer concluding remarks and insights.

2. Nomenclature Table

Table 1. Nomenclature table describing the model parameters and variables.

Cointegration Relationship and GARCH Model

∆P First difference of logged prices
α Short-run dynamic parameter
β Coefficient functions
ε Normally distributed error terms
δ Error correction term
λtrace Cointegration and cointegration relationship
σ2 Unconditional long-run variance
w Constant of the conditional variance equation
w1and w2 History of the return and volatility of time series, respectively

Copula models

c Density of copula

C(u, v) Two-dimensional distribution function for the variables u and v
uniformed Uni f (0, 1) distribution margins

Fx and Fy Univariate distribution models for two random variables X and Y
fx(X) and fy(Y) Univariate density function of the random variables X and Y
α Short-run dynamic parameter
β Coefficient functions
R Correlation coefficient of the corresponding normal distribution
t Number of observations
n Number of variables
Φ Univariate normal distribution function
∅̂x and ∅̂y Marginal distribution parameters
γ Degrees of freedom
tγ Bivariate t-distribution function
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Table 1. Cont.

θ̂ Estimated statistical copula
V̂α OLS estimate for the covariance matrix

3. Literature Review

More recently, the literature regarding agricultural economics has focused on assess-
ing the behavior of food price discovery occurring in futures markets to study hedging
effectiveness as a result of facilitating price information transfer to traders before deciding
to trade, so that they can better manage price risk. A study by Narayan and Smyth [11]
provided a review of the recent econometric developments in the literature on price dis-
covery and price predictability. They found changes in the literature on price discovery in
terms of econometric developments. They indicated that there were five sets of studies on
price discovery.

The first set assesses the information share of trades across several markets and
hedge effectiveness. The work by Harris et al. [12] studied whether the New York, Pa-
cific, and Midwest Stock Exchanges were contributing to price discovery. The study by
Harris et al. [13] analyzed the common factor weight attributable to three informationally-
linked exchanges for the Dow Jones Industrial Average (DJIA) stocks over 1988–1995. De
Jong and Schotman [14] studied the contribution of the intraday variation in price dis-
covery across different exchanges. Westerlund and Narayan [15] explored how to predict
stock returns using more powerful tests by analyzing data for 50 Standard & Poor’s (S&P)
500 stocks in 2013. These studies found evidence that prices in foreign markets respond
and adjust to changes in price discovery that occur in their home country. Nonetheless, the
second set of studies discovered that the relationship between the home and foreign market
could be changed, particularly during extreme market events. One of these studies was
carried out by Fernandes and Scherrer [16], who analyzed the price discovery mechanism
regulating the prices of common and preferred shares in the Sao Paulo Stock Exchange
(BM&FBovespa), as well as the prices of American Depositary Receipt (ADR) program
counterparts in the New York Stock Exchange (NYSE). Caporale et al. [17] investigated the
role of crude oil spot and futures prices in the process of price discovery by using daily data
over the period from January 1992 to September 2012. These studies discovered that the
relationship between the home and foreign market could be changed, particularly during
extreme market events.

Most of the previous studies on this topic have indicated that price discovery oc-
curs in futures markets, while a few studies have found the opposite results, showing
that the futures markets respond to changes that occur in spot markets. A study by
Dolatabadi et al. [18] analyzed the price discovery in the spot and futures markets for
five non-ferrous metals (aluminum, copper, lead, nickel, and zinc). Another study by
Dolatabadi [19] analyzed spot and futures prices for 17 commodity markets using the
fractionally cointegrated vector autoregressive (FCVAR) model. A study by Garcia et al. [4]
assessed the effectiveness of the grain futures market in the United States (USA) from
2005–2010, by examining the ability of the grain future markets to perform their price
discovery and mitigate the risk that could occur in the spot markets. The results indicated
that, during a time of high price volatility, future and spot prices were uncoupled together,
leading to non-convergence, and thus inefficient futures markets. However, the opposite
results were found by Irwin et al. [20] and Hamilton and Wu [21], who evaluated the role
of index funds in recent convergence problems of the Chicago Board of Trade (CBOT) corn,
soybean, and wheat futures contracts, and studied if the positions of index traders could
help to predict changes in the agricultural futures prices, respectively.

The third set of studies estimated the price discovery of credit spreads obtained from
created default swap (CDS), equity, bond, and options markets. A study by Blanco et al. [22]
analyzed the behavior of CDS for a sample of firms and found support for the theoretical
equivalence of CDS prices and credit spreads. The results showed that CDS led bond
markets. Meanwhile, Bai and Collin-Dufresne [23] examined the violation of the arbitrage
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relation between a cash bond and a CDS contract. Their results indicated that price
discovery occurring in the bond market increased during the financial crisis of 2007/2008
and decreased dramatically in the CDS market. The study by Forte and Peña [24] explored
the dynamic relationships among stock market implied credit spread, CDS spreads, and
bond spreads. The study by Norden and Weber [25] analyzed the empirical relationship
among credit default swap, bond, and stock markets during the period 2000–2002, and
found evidence that the equities and CDSs led the bond market.

A fourth set of studies assessed the impact of dark trading on price discovery. In
this set of studies, the market outcome was analyzed when the informed trader splits
trades between exchange and dark pool markets [26–28]. The authors found evidence
that increased black trading negatively affected price discovery, and led to ineffective
futures markets.

The fifth and last area of studies investigated which market led the price discovery
for a particular product. A study by Westerlund et al. [29] assessed the price discovery
leadership for crude oil. The authors analyzed oil prices in Oman, the USA, and the United
Kingdom. Their results indicated that Oman led this market and that price discovery
occurred in the Oman market. Janzen and Adjemian [9] examined the locations of world
wheat price discovery and assessed the leadership roles in the world wheat market. These
authors found evidence that, after August 2010, the U.S. futures wheat market started
losing its leadership role in favor of the European’s futures market, represented by the
Marché à Terme International de France (MATIF) Paris market.

Previous studies have focused on measuring price discovery occurring in futures
markets using different econometric approaches. A work by Narayan and Smyth [11]
indicated that there were three steps for estimating price discovery. The first step involves
investigating the long-run relationship between two prices, and if a link between both
prices is found, the changes in one price will be transmitted to the other. The second step
involves examining the cointegration to assess the existence of an equilibrium relationship
between the pairs of prices studied. The third step is testing for weak exogeneity of long-
run parameters, which can show which price is responsible for maintaining an equilibrium
by responding to the deviations, and therefore the market causing price discovery is
determined. The estimation can be applied using two methodological approaches. First,
by using an error correction model [30] to assess the long-run equilibrium price with the
relative speed of adjustment. Second, by analyzing the information share (IS) and the
component share (CS) from the error-correction model [9,31].

Most of the previous studies that have measured price discovery occurring in futures
markets have depended on using the IS and CS based on a vector error-correction model
(VECM), first applied by Engle and Granger [32]. IS and CS can be estimated using a
combination of a reduced-form VECM [9,31]. A VECM is widely used to study price
transmission, especially in the agricultural sector, as it can assess the shocks that happen
in one market that can be transmitted to other markets. Garbade and Silber [33] and
Figuerola-Ferretti and Gonzalo [34] studied the characteristics of price movements in spot
markets and future markets for storable commodities. They applied the CS approach based
on the cointegrated vector autoregressive (CVAR) model [35] by extending the CS approach
proposed by Garbade and Silber [33] to assess price discovery. The CVAR model has also
been extended by developing fractionally cointegrated vector autoregressive (FCVAR)
model to examine market leadership, and if a dominant market is determined, the follower
markets can, thus, be forecasted and predicted using the information obtained from the
dominating market [18,19].

CS and IS are static approaches [11,31,36] which cannot test price discovery nor allow
the parameters to change with changing market conditions (e.g., in the time of a crisis
or extreme market event). To overcome this limitation, studies by Yan and Zivot [31],
Putnin, š [37], and Janzen and Adjemian [9] have explored the dominant price discovery by
assessing which market was the first to reflect new information about a fundamental value.
They used the information leadership share (ILS) method based on CS and IS, to test price
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discovery by assessing the dynamic response of shocks transmitted from one price series
to another.

Other studies have tested price discovery using time-varying and clustering volatil-
ity through generalized autoregressive conditional heteroskedasticity (GARCH) models.
Research by Avino et al. [38] studied time varying price discovery to estimate the infor-
mation share (IS) using daily data of bond yields, CDS mid-quotes, equity prices, and
option-implied volatilities for Marks and Spencer Plc. These authors used BEKK-GARCH
specification for the VECM to estimate the daily time varying IS.

4. Materials and Methods

Research by Lehecka et al. [39] focused on studying corn futures markets, while
research by Bunek [40] and Janzen and Adjemian [9] looked at wheat futures markets.
These authors found evidence that grain prices significantly changed as a reaction to
information generated by USDA reports on expected grain production conditions, the
area cultivated, inventories, etc. Janzen and Adjemian [9] indicated that price discovery is
generated in a market that is adjusting to crises or shocks more rapidly than others.

For this purpose, this study depends on examining the price discovery of futures
markets in the USA (the Chicago Board of Trade (CBOT), Kansas, and Minneapolis) and
France (Marché à Terme International de France, MATIF). MATIF represents the futures
exchange in France, which is currently merged with the Euronext NV (European New
Exchange Technology) to Euronext Paris. Euronext Paris (formerly MATIF) is the Euronext
milling wheat future prices that is commonly used as an indicator for wheat prices in
Europe [9]. In this regard, we assessed the dependency between the U.S. futures markets
and France using copula models to analyze the correlation between variables in the central
area of the distribution, as well as the distribution in the tail, and assessed the links among
the extreme market events. The statistical copula provides the natural way to characterize
the dependence between variables, which is commonly used in the financial economics
literature, for example in [41–43]. However, copula models have started to gain popularity
in the food sector, particularly for studying food price transmission and measuring the
connectedness of the agri-food sector [44–46].

A multivariate copula overcomes the deficiency of using the univariate distribution,
which is characterized by excess, kurtosis, skewness, and non-morality [46]. Additionally,
food prices show asymmetric transmission, implying multivariate nonmorality [41]. Given
the certainty that multivariate distribution is scarce, copula models depend on univariate
distribution, instead of multivariate ones.

The distributed copula is a multivariate distribution function based on Sklar’s [47]
theorem that defines the univariate marginal on the unit cube [0, 1]n, the uniformly marginal
distribution of two or more variables is drawn between the parenthesis. The theorem
shows that multivariate distribution functions, characterizing dependence between n
variables, can be decomposed into n univariate distributions and a copula model, which
fully captures the dependence structure between variables. Sklar’s theorem depends on
modeling univariate distributions, which leads to a better formulation of models [45]. Fx
and Fy represent the univariate distribution models for two random variables X and Y,
while the joint distributing function can be represented by H copula model C(.) which can
be captured as follows:

H(x, y) = C
(

Fx(X), Fy(Y)
)
= C(u, v), (1)

where C(.) is a two-dimensional distribution function for the u and v uniformed Uni f (0, 1)
distribution margin. The joint density function could be expressed as:

h(x, y) = fx(X) fy(Y)c(u, v), (2)

where c represents the density of copula and fx(X) and fy(Y) are the univariate density
functions of the random variables Y and X.
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There are two copula specifications that represent different dependence structures,
i.e., elliptical and Archimedean copulas. Elliptical copulas represent elliptical distribution,
while Archimedean copulas are a group of associative copulas that have tails to reduce the
dimensionality of the distributions during the dependency measurement. Copula models
can also be categorized as static and time varying. A static copula estimates the dependency
between variables with a supposing constant over time, while a dynamic copula estimates
the dependency supposing the time variance within a changing environment. The GoF
tests are used to select the best fit copula with our data. In addition, the time-varying
dependence tests are conducted to assess whether the dynamic copulas could be considered.
The test of rank correlation breaks between u and v are applied at some unknown date and
is based on the “sup” test statistic [48]:

B̃sup = max
t∗∈[t∗L ,t∗U ]

|ϑ1,t − ϑ2,t|, (3)

where ϑ1,t∗ ≡ 12
t∗ ∑t∗

t = 1 1tut − vt − 3 and ϑ2,t∗ ≡ 12
T−t∗ ∑t∗

t = 1 1tut − vt − 3, t is the number of
observations. The critical value of B̃sup can be estimated by a bootstrap process explained
in detail by Patton [48]. The ARCH LM test for time-varying volatility [49] is also applied.
This test is based on autocorrelation independence, defined by an autoregressive model and
expressed as the following: utvt = α0 + ∑

p
i = 1 αiut−ivt−i + et, where et is the error term.

With this test, the constant copula can be tested by the following statistic: αi = 0, ∀i ≥ 1,

Âp = α̂R′
(

RV̂αR′
)−1Rα̂, where α̂ ≡

[
α0, . . . . . . , αp

]′, R =

[
0p×1

...Ip

]
and V̂α is the OLS

estimate for the covariance matrix. We have applied the bootstrap process following a
Patton [48] estimation to identify the test critical values. These tests show the restriction
of the copula by static, providing evidence in favor of dynamic copulas. The GoF tests
support the use of the dynamic student’s t, which can be used to capture the correlation
between variables over time, as shown in Equation (4) below [48]:

Rt = Λ
(

ωρ + βRRt−1 + αR
1

10 ∑10
i = 1 t−1

γ (ut−i)t−1
γ (vt−i)

)
(4)

The GoF tests are conducted for a set of copulas to identify the copulas that fit the data
used for the analysis. The results indicate that the best fit static copulas are Gaussian and
Student’s t. The log-likelihood values have been estimated for different types of copula
models to select the highest four log-likelihood values for a more in-depth analysis. The
highest four copulas are Gaussian, Student t, Plackett, and symmetrize Joe–Clayton (SJC).

The analysis is based on price discovery pairs (France represented by MATIF and the
USA represented by the CBOT, Kansas, and Minneapolis), therefore, we considered the
bivariate n = 2 Gaussian copula, which can be specified as:

CGa
R (u, v; R12) =

∫ Φ−1
(u)

−∞

∫ Φ−1
(v)

−∞

1

2π
√(

1− R2
12
) exp

{
−
(
r2 − 2R12rs + s2)

2
(
1− R2

12
) }

drds, (5)

where R12 represents the correlation coefficient of the corresponding bivariate normal
distribution, −1 < R12 < 1, and Φ denotes the univariate normal distribution function.
The shortcoming of the Gaussian copula is that it supposes the variables u and v are
independent in the extreme tails of the distribution. Since the Gaussian copula does
not have lower and upper tail dependence, it assesses the dependence of the correlation
between variables in the central region of the distribution. A bivariate student’s t copula
can be formulated as:

Ct
γ,R(u, v) =

∫ t−1
γ (u)

−∞

∫ t−1
γ (v)

−∞

1

2π
√(

1− R2
12
) exp

{
1 +

r2 − 2R12rs + s2

γ
(
1− R2

12
) }−(γ+2)/2

drds (6)
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where R12 represents the correlation coefficient of the corresponding bivariate t-distribution,
tγ denotes the bivariate distribution function, and γ the degrees of freedom. The Student’s
t copula is that it supposes the variables u and v assume positive and symmetric lower and
upper tail dependence.

We have applied semi-parametric copulas that can be estimated through a two-stage
estimation procedure. The marginal distribution models are estimated in the first stage to
allow for deriving standardized, independent, and identically distributed (i.i.d.) residuals
from the filtration, which will be transformed to Uni f (0, 1) using the non-parametric
empirical cumulative distribution function (CDF). In the second stage, copula parameters
can be estimated conditional upon the results from the first stage. The two-stage procedures
technique can be expressed as follows [48]:

∅̂x = argmax∅x

1
T ∑T

J = 1 log fi
(
xj;∅x

)
(7)

∅̂y = argmax∅y

1
T ∑T

J = 1 log fi
(
yj;∅y

)
(8)

θ̂ = argmaxθ
1
T ∑T

J = 1 log C(F
(
xj;∅x

)
, F
(
yj;∅y

)
; θ) (9)

where ∅̂x and ∅̂y are the marginal distribution parameters, while the copula estimated
parameters is represented by the vector θ̂. Since statistical copula could only be estimated by
stationary time series, unit root tests were conducted. Augmented Dickey and Fuller [50]
and KPSS [51] tests for unit root showed that the data series were non-stationary and
contained a unit root. The cointegration test were conducted using Johansen’s model [6],
which indicated that the price discovery pairs that occurred in the U.S. and France’s futures
markets considered were found to maintain equilibrium parity. The univariate ECM-
GARCH models were applied to obtain the standardized, independent, and identically
distributed (i.i.d.) residuals. The wheat price discovery for the U.S. and France’s price
pairs used for the analysis are formulated as an error-correction type of model (ECM),
while the results can be obtained from GARCH (1,1), allowing for volatility clustering.
ECM-GARCH (1,1) can be expressed as follows:

∆px,t = αx + λxδt−1 + ∑2
i = 1 αxxi ∆Px,t−i + ∑2

i = 1 αxyi ∆Py,t−i + εx,t (10)

σ2 = wx + wx1ε2
x,t−1 + wx2σ2

x,t−1 (11)

λyδt−1 + ∑2
i = 1 αyyi ∆Py,t−i + ∑2

i = 1 αyxi ∆Px,t−i + εy,t (12)

σ2 = wy + wy1ε2
y,t−1 + wy2σ2

y,t−1 (13)

where ∆Pjt, j = x, y is the first difference of logged U.S. and France’s prices discovery
and αj,n,i, j, n = x, y are short-run dynamic parameters that measure the influence of past
price discovery differences on current differences; δt represents the error correction term
derived from the long-run equilibrium relationship, while the long-run price dynamics
can be measured by λj, j = x, y. The normally distributed error terms are presented by
ε jt, j = x, y.

The goodness of fit tests on the marginal models were applied and essential for copula
model estimation. The LM tests of serial independence of the first four moments using
10 lags of Ut and Vt were conducted by regressing (ut − u)k and (vt − v)k for k = 1, 2,
3, 4. Furthermore, the Kolmogorov–Smirnov (KS) test was used to assess whether the
transformed series were correctly transformed Uni f (0, 1).

5. Results and Discussion

The analysis is based on daily settlement prices occurring in France, as represented
by the MATIF futures market for milling wheat contracts and in the USA as represented
by wheat contracts in Chicago for soft red winter wheat (CBOT futures market), Kansas
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for hard red winter wheat (Kansas futures market), and Minneapolis (Minneapolis futures
market) for hard red spring wheat. Our wheat price discovery is obtained from the
Agriculture and Horticulture Development Board (AHDB) for the period from 1 August
2006 to 24 July 2019, yielding a total of 2484 observations (see Figure 1). We split the data
into the following three periods: the first period, from 1 August 2006 to 31 July 2008; the
second period, after August 2010 to assess the impact of extreme droughts that occurred
in the Black Sea region (specifically in KRU) at the beginning of August 2010, resulting in
supply shocks and leading to export bans that affected global price discovery [9,52]; and
the third period, after 2015 when KRU wheat exports increased dramatically, with Russian
exports surpassing U.S. exports in particular [9]. For this purpose, the data series were
split to before and after 2015 to measure the effects of the changing international trade
map on wheat price discovery. Prices are expressed in US Dollars per bushel and studied
in pairs. Logarithmic transformations of price series are used in the empirical analysis.
Table 2 presents summarized statistics for the first differenced logged price series, and the
results provide evidence of non-normal price series characterized by skewness, kurtosis,
and ARCH effects.
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Figure 1. Daily settlement price series for wheat future contracts (the Chicago Board of Trade (CBOT), the Marché à Terme
International de France (MATIF), Kansas, and Minneapolis) expressed in US Dollars/bushel. Source AHDB, 2019.

Table 2. Summary statistics first differenced logged price discovery for CBOT, MATIF, Kansas,
and Minneapolis.

CBOT MATIF Kansas Minneapolis

Mean 0.001 0.001 −0.003 0.004
Standard deviation 0.024 0.019 0.023 0.022

Skewness 0.084 * −0.137 * −0.083 * −0.491 *
Kutosis (excess) 2.412 * 7.770 * 2.810 * 26.588

Anderson–Darling test 11.262 * 38.313 * 11.800 * 41.653 *
ARCH LM test 14.850 * 6.842 * 13.276 * 6.842 *

Number of observations 2483
Note: * Indicates rejection of the null hypothesis at the 5% significance level. The Anderson–Darling is the
well-known test for normality. The ARCH LM test of Engel [53] is conducted using 10 lags.

Johansen’s [6] cointegration tests are applied to examine the existence of an equilib-
rium relationship between the pairs of prices studied. The results suggest that there is a
long-run relationship between the U.S. and France’s wheat price discovery (see Table 3). A
Chi-square test, presented in Table 4, of weak exogeneity for long-run parameters within
the Johansen’s framework shows, on the one hand, that price discovery occurring in the
MATIF (France) futures market, in the first and second periods, are responsible for main-
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taining such equilibrium by responding to the deviations that can occur. In the third period,
on the other hand, the price discovery occurring in the U.S. futures markets is considered
to be responsible for maintaining such equilibrium.

Table 3. Johansen λtrace test for cointegration and cointegration relationship.

CBOT–MATIF Kansas–MATIF Minneapolis–MATIF

First Period

H0 Ha λtrace p-value λtrace p-value λtrace p-value

r = 0 r > 0 29.323 0.002 31.358 0.001 20.107 0.005
r ≤ 1 r > 1 4.592 0.360 6.071 0.210 4.484 0.321

Cointegration

Pmatif − 0.983 ∗∗ Pcbot − 0.113 ∗∗

(−22.744) (−1.558)
Pmatif − 0.943 ∗∗ Pkan. − 0.061 ∗∗

(−19.594) (−0.725)
Pmatif − 0.942 ∗∗ Pminn. − 0.038 ∗∗

(−5.806) (−1.033)

Second period

H0 Ha λtrace p-value λtrace p-value λtrace p-value

r = 0 r > 0 26.252 0.005 31.358 0.001 18.360 0.008
r ≤ 1 r > 1 5.032 0.277 6.071 0.210 4.076 0.396

Cointegration

Pmatif − 0.956 ∗∗ Pcbot − 0.187 ∗∗

(−8.769) (−0.927)
Pmatif − 0.924 ∗∗ Pkan. − 0.165 ∗∗

(−6.982) (0.663)
Pmatif − 0.837 ∗∗ Pminn. − 0.282 ∗∗

(−6.025) (−1.005)

Third period

H0 Ha λtrace p-value λtrace p-value λtrace p-value

r = 0 r > 0 29.533 0.002 21.526 0.003 20.164 0.005
r ≤ 1 r > 1 7.182 0.126 6.934 0.144 9.142 0.244

Cointegration

Pcbot − 0.570 ∗∗ Pmatif − 0.575 ∗∗

(−3.704) (−2.211)
Pkan. − 0.566 ∗∗ Pmatif − 0.563 ∗∗

(−3.076) (1.796)
Pminn. − 0.284 ∗∗ Pmatif − 1.215 ∗∗

(−2.094) (−5.286)

Note: r is the cointegration rank; ** denotes statistical significance at the 5% level.

Table 4. A Chi-square test of weak exogeneity.

MATIF-CBOT MATIF-Kansas MATIF-Minneapolis

MATIF CBOT MATIF Kansas MATIF Minneapolis

First period

Chi− square (r)
p-value

20.477
(0.000)

0.730
(0.393)

20.284
(0.000)

1.838
(0.175)

11.233
(0.001)

0.113
(0.736)

Critical value 3.841

Second period

Chi− square (r)
p-value

9.807
(0.002)

0.001
(0.982)

10.023
(0.001)

0.481
(0.488)

5.180
(0.031)

1.397
(0.237)

Critical value 3.841

Third period

Chi− square (r)
p-value

1.386
(0.239)

12.612
(0.000)

0.506
(0.477)

10.030
(0.002)

0.983
(0.321)

14.696
(0.000)

Critical value 3.841
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As a result, in the first and second periods, U.S. futures markets may be considered
to be price leaders and the MATIF (France) futures market should be classified as a price
follower. In contrast, in the third period, the MATIF (France) market may be considered
to be a price leader and U.S. futures markets should be classified as price followers. This
reflects the changing trade map of the KUR and EU dominating the global wheat trade
after 2015. The existence of cointegration suggests the presence of information flows from
U.S. futures market areas (CBOT, Kansas, and Minneapolis) to France (MATIF). Given
that the price time series are transformed in logarithms, the cointegration parameters can
be implemented as price elasticities. In the first period, price transmission elasticities
are strong for the three models, that is, CBOT-MATIF (0.983), Kansas-MATIF (0.943), and
Minneapolis-MATIF (0.942). In the second period, the price transmission elasticity between
the U.S. and France’s futures markets remains high, equaling 0.956, 0.942, and 0.837 of the
CBOT-MATIF, Kansas-MATIF, and Minneapolis-MATIF, respectively. In the third period,
when the leadership moved from U.S. futures wheat markets to MATIF (France) futures
markets, reflective of EU and KRU wheat markets, the elasticities are 0.570, 0.566, and 0.284
for the CBOT-MATIF, Kansas-MATIF, and Minneapolis-MATIF models, respectively.

Marginal models are specified as univariate error-correction types of models. The
results of the univariate ECM-GARCH model estimation are presented in Tables 5–7 for the
pairs of price discoveries considered. In the first and second periods, short-run parameters
show that current changes in U.S. futures markets have a relevant autoregressive compo-
nent. As noted above, U.S. futures market prices are exogenous for long-run parameters in
the first and second periods. The conditional mean equation shows that the current changes
in the MATIF futures market are explained by past changes in the U.S. futures market, as
well as by the deviations from the long-run equilibrium. The conditional variance equation
shows that past market shocks contribute to increased U.S. and MATIF futures market
price volatility. The GARCH (1,1) model parameters are all positive, which indicates that
in- and out-sample variance estimates are positive. Since Wi1 + Wi2 < 1, we conclude that
the GARCH process is stationary.

Table 5. Results for the univariate error-correction type of model and generalized autoregressive conditional heteroskedas-
ticity (ECM-GARCH) (1,1) model for the first period.

MATIF-CBOT MATIF-Kansas MATIF-Minneapolis

Variable MATIF CBOT MATIF Kansas MATIF Minn.

Constant 3.527 × 10−5

(6.970 × 10−4)
−4.655 × 10−4

(1.029 × 10−3)
1.742 × 10−4

(7.322 × 10−4)
0.005

(0.008)
3.809 × 10−4

(6.917 × 10−4)
−1.739 × 10−5

(9.40 × 10−4)

∆pU.S., t−1
0.036

(0.032)
−0.119 **

(0.045)
0.023

(0.036)
−0.082 **

(0.045)
0.020

(0.031)
−0.119 **

(0.051)

∆pmati f .t−1
−0.054
(0.046)

0.149 **
(0.058)

−0.059 **
(0.046) 0.110 **(0.052) −0.017

(0.038)
0.098 **
(0.051)

δU.S.,mati f
−0.022 **

(7.013 × 10−3)
−0.043
(0.010)

−0.012 **
(7.750 × 10−3)

0.003
(0.059)

−7.851e−03 **
(5.719 × 10−4)

0.024
(0.095)

Wi
3.871 × 10−6 **
(2.176 × 10−6)

3.994 × 10−5

(5.502 × 10−6)
4.197 × 10−6 **
(2.232 × 10−6)

0.001
(0.001)

4.228 × 10−6 **
(2.2599 × 10−6)

5.184 × 10−6 **
(3.337 × 10−6)

Wi1
0.055 **
(0.011)

0.059 **
(0.015)

0.056 **
(0.012)

0.053 **
(0.017)

0.057 **
(0.012)

0.070 **
(0.015)

Wi2
0.942 **
(0.012)

0.891 **
(0.014)

0.939 **
(0.012)

0.924 **
(0.028)

0.938 **
(0.013)

0.929 **
(0.013)

Ljung–Box Q(10)
(p-value)

6.848
(0.739)

4.103
(0.942)

5.405
(0.862)

6.948
(0.730)

5.342
(0.867)

7.705
(0.658)

Note: (**) Denotes statistical significance at the 10% (5%) level.
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Table 6. Results for the univariate ECM-GARCH (1,1) model for the second period.

MATIF-CBOT MATIF-Kansas MATIF-Minneapolis

Variable MATIF CBOT MATIF Kansas MATIF Minn.

Constant 3.016× 10−4

(6.181 × 10−4)
−4.821× 10−4

(7.348× 10−5)
−5.008× 10−5

(7.845× 10−5)
−6.665× 10−4

(6.783× 10−4)
1.945× 10−4

(7.365× 10−5)
−1.543× 10−3**
(6.5112× 10−4)

∆pU.S.,.t−1
0.020

(0.040)
−0.063 **

(0.049)
0.012

(0.045)
−0.066 **

(0.041)
0.020

(0.042)
−0.068 **

(0.038)

∆pmati f .t−1
−0.089 **

(0.049)
0.128 **
(0.049)

−0.105 **
(0.054)

0.154 **
(0.043)

−0.065
(0.046)

0.104 **
(0.038)

δU.S.,.mati f
−0.032 **

(0.010)
−0.019
(0.010)

1.796 × 10−3

(0.010)
0.012**

(9.830 × 10−3)
−3.629× 10−3 **
(6.800 × 10−3)

0.010
(6.571× 10−3)

Wi
8.542 × 10−6 **
(3.6958× 10−6)

2.240 × 10−6

(1.641× 10−6)
1.088 × 10−5 **
(4.745× 10−5)

2.582 × 10−6**
(1.672× 10−6)

9.108 × 10−6 **
(4.022 × 10−6)

5.999 × 10−6 **
(3.469 × 10−6)

Wi1
0.088 **
(0.024)

0.0482 **
(0.014)

0.095 **
(0.029)

0.034 **
(0.011)

0.089 **
(0.031)

0.059 **
(0.019)

Wi2
0.896 **
(0.026)

0.948 **
(0.013)

0.889 **
(0.031)

0.962 **
(0.013)

0.895 **
(0.032)

0.926 **
(0.025)

Ljung–Box Q(10)
(p-value)

5.715
(0.839)

2.978
(0.982)

5.729
(0.837)

3.466
(0.968)

5.342
(0.867)

7.705
(0.658)

Note: (**) Denotes statistical significance at the 10% (5%) level.

Table 7. Results for the univariate ECM-GARCH (1,1) model for the third period.

MATIF-CBOT MATIF-Kansas MATIF-Minneapolis

Variable MATIF CBOT MATIF Kansas MATIF Minn.

Constant 0.0001
(0.004)

2.896× 10−5

(6.604× 10−4)
−8.101× 10−5

(4.422× 10−4)
0.006

(0.006)
0.004

(0.005)
2.8658× 10−4

(4.786× 10−4)

∆pU.S.,t−1
0.131 **
(0.028)

0.044
(0.038)

0.101 **
(0.026)

0.056
(0.038)

0.089 **
(0.035)

−2.927× 10−4

(0.034)

∆pmati f .t−1
−0.132 **

(0.042)
5.067× 10−4

(0.053)
−0.125 **

(0.042)
0.037

(0.033)
−0.088 **

(0.041)
0.034

(0.032)

δU.S.,mati f
−0.004
(0.006)

−0.041 **
(9.654× 10−3)

5.424× 10−3

(7.692× 10−3)
−0.036 **

(0.009)
0.003

(0.005)
−0.018 **

(6.051× 10−3)

Wi
0.004 **
(0.001)

1.279× 10−5 **
(7.273× 10−6)

2.893× 10−5 **
(9.411× 10−6)

0.002**
(0.001)

0.004 **
(0.001)

3.955× 10−6**
(1.616× 10−6)

Wi1
0.194 **
(0.051)

0.039 **
(0.015)

0.169 **
(0.043)

0.095 **
(0.030)

0.175**
(0.045)

0.057 **
(0.013)

Wi2
0.642 **
(0.098)

0.929 **
(0.026)

0.717 **
(0.066)

0.570 **
(0.236)

0.680 **
(0.074)

0.926 **
(0.013)

Ljung–Box Q(10)
(p-value)

12.823
(0.234)

5.808
(0.831)

13.433
(0.200)

9.386
(0.496)

12.732
(0.239)

12.052
(0.281)

Note: (**) Denotes statistical significance at the 10% (5%) level.

In the third period, the short-run parameters show that current changes in the MATIF
futures market have a relevant autoregressive component. The conditional mean equation
shows that the current changes in the U.S. futures markets are explained by past changes
in the MATIF futures market, as well as by the deviations from the long-run equilibrium.
The conditional variance equation shows that past market shocks contribute to increased
U.S. and MATIF futures market price volatility. The GARCH process is stationary, as
Wi1 + Wi2 < 1. The GARCH (1,1) model parameters are all positive, which indicates that
in- and out-sample variance estimates are positive.

The Ljung–Box test for autocorrelation, presented in Tables 5–7, allow for the null hy-
pothesis of no autocorrelated residuals to be accepted. We also implement the Kolmogorov–
Smirnov (KS) test to confirm that the transformed series are Unif (0,1) [48]. The results of
the time-varying dependence are presented in Table 8, which show the presence of breaks
between the pair prices; thus, the tests support the use of the dynamic copulas.
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Table 8. Time-varying rank correlation between prices discovery.

Price Pair Break Occurring Anywhere
AR (p)

1 5 10

First period

CBOT-MATIF 0.049 0.802 0.009 0.000
Kansas-MATIF 0.182 0.734 0.005 1.000

Minneapolis-MATIF 0.254 0.533 0.018 0.004

Second period

CBOT-MATIF 0.130 0.060 0.037 0.009
Kansas-MATIF 0.469 0.021 0.084 0.029

Minneapolis-MATIF 0.603 0.081 0.050 0.032

Third period

CBOT-MATIF 0.780 0.404 0.095 0.084
Kansas-MATIF 0.469 0.214 0.043 0.293

Minneapolis-MATIF 0.373 0.732 0.006 0.003
Note: This table presents p-values from one-time break correlations and autocorrelation (AR) tests for time-varying
dependence using 1000 bootstrap replications. The left panel test focuses on rank correlation breaks between
u and v at some unknown date. The right panel is the ARCH LM test for time-varying volatility proposed by
Engle [49] that focuses on autocorrelation in dependence.

Next, we discuss the results of static and dynamic copula in Tables 9–12. Copula
models are a flexible, alternative technique for studying short-run dependency among the
two pairs of prices discoveries considered. Results of the static Gaussian copula indicate
that there is a positive correlation between the price discoveries occurring in U.S. and
MATIF futures markets in the first, second, and third periods. However, the dependency
between price discoveries decreased in the second period and continued decreasing in the
third period.

Table 9. Results from static copulas for the first period (2006–2010).

CBOT-MATIF

Gaussian 0.576 **
(0.027)

Log likelihood 153.891

Student’s t
(

R, γ−1) 0.587 **
(0.025)

0.167 **
(0.040)

Log likelihood 166.213

Kansas-MATIF

Gaussian 0.567 **
(0.029)

Log likelihood 147.767

Student’s t
(

R, γ−1) 0.579 **
(0.026)

0.164 **
(0.045)

Log likelihood 159.137

Minneapolis-MATIF

Gaussian 0.501 **
(0.027)

Log likelihood 109.993

Student’s t
(

R, γ−1) 0.509 **
(0.028)

0.178 **
(0.044)

Log likelihood 121.035
Note: (**) Denotes statistical significance at the 10% (5%) level.
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Figure 2. Time varying Student t copula for CBOT-MATIF price pair.
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Figure 3. Time varying Student t copula for Kansas-MATIF price pair.
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Table 10. Results from static copulas for the second period (2010–2014).

CBOT-MATIF

Gaussian 0.636 *
(0.029)

Log likelihood 210.081

Student’s t
(

R, γ−1) 0.652 **
(0.023)

0.168 **
(0.041)

Log likelihood 228.285

Kansas-MATIF

Gaussian 0.639 **
(0.029)

Log likelihood 213.078

Student’s t
(

R, γ−1) 0.658 **
(0.024)

0.194 **
(0.042)

Log likelihood 232.741

Minneapolis–MATIF

Gaussian 0.517 **
(0.034)

Log likelihood 125.949

Student’s t
(

R, γ−1) 0.546 **
(0.029)

0.201 **
(0.045)

Log likelihood 144.508
Note: (**) Denotes statistical significance at the 10% (5%) level.

Table 11. Results from static copulas for the third period (2015–2019).

CBOT-MATIF

Gaussian
0.547 **
−0.026

Log likelihood 163.503

Student’s t
(

R, γ−1) 0.557 ** 0.086 **
−0.025 −0.032

Log likelihood 167.42

Kansas-MATIF

Gaussian
0.521 **
−0.027

Log likelihood 145.479

Student’s t
(

R, γ−1) 0.538 ** 0.130 **
−0.026 −0.045

Log likelihood 154.752

Minneapolis-MATIF

Gaussian
0.435 **
−0.034

Log likelihood 96.514

Student’s t
(

R, γ−1) 0.451 ** 0.112 **
−0.041 −0.029

Log likelihood 103.862
Note: (**) Denotes statistical significance at the 10% (5%) level.
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Table 12. Time varying Student’s t copula.

CBOT-MATIF Kansas-MATIF Minneapolis-MATIF

First period

Constant 0.983 **
(0.002)

0.403 **
(0.003)

0.109 **
(0.015)

α
0.161 **
(0.017)

0.083 **
(0.007)

0.079 **
(0.012)

β
0.096 **
(0.003)

0.699 **
(0.001)

0.904 **
(0.014)

γ−1 0.166 **
(0.038)

0.143 **
(0.051)

0.172 **
(0.039)

Log likelihood 164.291 158.845 122.342

Second period

Constant 0.229 **
(0.089)

0.212 **
(0.001)

0.205 **
(0.083)

α
0.078 **
(0.017)

0.079 **
(0.031)

0.119 **
(0.087)

β
0.855 **
(0.136)

0.867 **
(0.011)

0.834 **
(0.067)

γ−1 0.152 **
(0.022)

0.193 **
(0.027)

0.179 **
(0.103)

Log likelihood 122.705 194.880 127.678

Third period

Constant 0.184 **
(0.002)

0.174 **
(0.074)

0.090 **
(0.021)

α
0.163 **
(0.108)

0.074 **
(0.024)

0.124 **
(0.007)

β
0.856 **
(0.012)

0.853 **
(0.059)

0.906 **
(0.193)

γ−1 0.079 **
(0.018)

0.109 **
(0.033)

0.092 **
(0.032)

Log likelihood 211.016 190.258 90.881
Note: (**) Denotes statistical significance at the 10% (5%).

The time varying student’s t copula shows how dependency among the pairs of
prices considered changes over time (Table 12). The dynamic student’s t copula, shown
in Figures 2–4, explains the changing of the dependency over time. In the first period,
the dependency between price discovery in the U.S. and MATIF futures markets always
fluctuates (Figures 2–4 in panel A) in the range from 0.40 to 0.60, which reflects the
2007/2008 food crisis and another wave of the food crisis in the beginning of 2010.

In the second period, a higher dependency is observed (Figures 2–4 in panel B) that
fluctuates less than in the first and third periods, in a range from 0.50 to 0.70. This may be
explained by the fact that MATIF has generated an increasing share of information about
wheat market conditions, which is reflected in the price discovery occurring in this market.
Hedgers, traders, and farmers interested in trade within the European continental markets
became more active in this market, acting based on information provided by the MATIF
market on the value of the wheat. The information provided by the market led to more
trading activity, especially following the wheat supply shock in KRU, during the summer
of 2010, which may have resulted in the start of shifts of the wheat price leadership from
the USA to MATIF [9].

In the third period, time-varying student’s t tail dependence, displayed in Figures 2–4
in panel C, shows a lower dependency between future markets in MATIF (Paris) and the
USA than the first and second periods. This result supports what was described above
by the ECM-GARCH, i.e., that the wheat market leadership has been taken over by the
MATIF instead of acting as a complimentary market to the U.S. futures markets. The third
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period shows that the prices are as highly fluctuated as in the first period, which is in the
order of the range from 0.20 to 0.60. This may be explained by the extreme market events
that occurred in KRU wheat markets, including the ban of food exports to Russia that was
imposed by the USA and some of the EU countries, as well as the economic crisis faced
by Russia as a result of the extreme decline in world oil prices. Given that the Russian
economy highly depends on energy exports, this led to a major depreciation of the Russian
currency (ruble) and other currencies in some former Soviet Union countries against the
US Dollar, which was followed by increased food prices. The higher food prices caused
government jurisdictions within Russia to boost agricultural production and reduce their
dependence on imports. This led to significant increases in agricultural production and
more grain exports, especially wheat, with a more than 50% increase [53,54]. This resulted
in major changes to the world’s wheat trade map after 2015.

After the wheat supply shocks in 2010 and shifts to the world wheat trade map in
2015, hedgers, traders, and farmers looked into the MATIF (Paris) wheat futures market
as a reflection of KRU and EU wheat markets for hedging effectiveness and to protect
themselves against market risks with regard to future production decisions. The U.S. wheat
market acted as a world benchmark and has been substituted by MATIF wheat markets as
a result of increased KRU and EU wheat trading share.

Generally, the results from estimating the ECM-GARCH and semi-parametric copula
models indicate that, until August 2010, the USA was the wheat market leadership, while
after this date the leadership started moving from the U.S. to the European market. After
2015, the leadership moved to the European market, with the increasing wheat export
share by the KRU and EU countries. This means that price discovery is primarily located
by the MATIF futures market, which is used as an indicator for wheat prices in Europe and
representing the European wheat market.

These results are consistent with de la Hamaide [55] and Janzen [56] financial reports,
which put forward that the MATIF (Paris) futures market was the first to reflect new
information regarding world wheat market conditions and values. They also pointed out
that the U.S. leadership within the global wheat market has transitioned from the USA to
the European continent.

Figure 4. Cont.
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Figure 4. Time varying Student t copula for Minneapolis-MATIF price pair.

6. Conclusions

Futures markets are created to hedge against market risks by providing farmers,
traders, and policymakers information that can serve as a shield against the risks of price
volatility. Thus, they are the first thing to blame in the event of instability in a market, which
is what really happened after the global 2007/2008 food crisis, as futures markets did not
protect food markets from destabilization. Farmers, traders, speculators, and policymakers
are always looking to futures markets to hedge against market risks.
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In this paper, we assess the world wheat market leadership after August 2010, when,
because of drought, supply shocks occurred in KRU countries, leading to major changes in
price discovery, as well as shifts to world wheat trade after 2015, with the share of KRU
and EU increasing dramatically.

For this purpose, in this paper, we test the price discovery in three wheat futures
markets in the United States and one futures market from the European continent, with
each market representing a different class of wheat. Chicago’s futures market (CBOT)
represents the soft red winter wheat (SRW) futures contracts, while Minneapolis represents
hard red spring wheat (HRS) futures contracts. The Kansas futures market represents
hard red winter wheat futures contracts (HRW) and the EU’s futures market represents the
milling wheat futures contracts traded at Paris (MATIF).

An ECM is used to study the cointegration between price discovery occurring in
the U.S. and the EU futures market. Johansen’s [6] cointegration tests are applied using
a Chi-square test to examine for weak exogeneity for long-run parameters. Static and
dynamic copula models are also used to assess dependence between the price discoveries
of the futures markets considered. Since copulas use the univariate distribution to obtain
a multivariate distribution for jointness with a particular dependence structure, ECM-
GARCH is used for univariate models to obtain the i.i.d. distribution.

The results indicate that cointegration between U.S. and MATIF (Paris) price discovery
in these futures markets exists. Results from estimating a Chi-square test imply that, before
and after August 2010, the wheat futures market in the USA was leading the world wheat
market. After 2015, however, the leadership of the wheat futures markets transitioned from
the U.S. to the MATIF futures market, because of a higher share of EU and KRU wheat
trade than the USA. Thus, the volume of MATIF wheat futures contracts increased. The
results also indicate a positive link between the share of price discovery and the increasing
trade volume, since the wheat trading volume by Europe, particularly by KRU, has been
increasing dramatically the last few years.

Results of the static and dynamic copula models show that positive correlations are
always observed between the price discoveries in both the U.S. and MATIF futures markets.
This increased in the second period (after 2008) and decreased in the third period (after
2015), as the dependency between the two pairs of prices decreased, moving the leadership
of the wheat market from the USA to MATIF. Low dependency in the third period may be
explained by the KRU and EU’s shift in their share of wheat trade, which led to a drop in
U.S. wheat leadership to KRU and the EU. This means that, after 2015, the KRU and EU
started to dominate the world wheat market with increased production and world trade
share. The dynamic copula illustrates that the prices fluctuate highly in the first and third
periods and less in the second period. The first period of our analysis encompassed the first
food crisis of 2007/2008, while the third period covered the economic crisis in Russia as a
result of the decline in oil prices, as well as the food product export ban from the United
States and some European Union countries. As a result, the Russian ruble floated, which
led to the influence of many former Soviet Union countries and high food prices. This
forced the Russian government to reduce the country’s dependence on importing food
products and to encourage local production, especially for meats and cereals, which led to
increased grain production, especially wheat, and an increase in exports by more than 50%.
This increase in the wheat supply of the European continental market resulted in decreased
price discovery in the MATIF market, while the price discovery was kept at the same level
in the U.S. futures markets.

Studying price discovery during economic crises, expansions, and recessions, par-
ticularly by using regime-switching models, can and should be applied in future studies.
Markov-switching GARCH and regime dependent adjustment speeds are additional meth-
ods that could complement the present estimation results.
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