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Increasing attention is being given to the option of engineering the climate via Solar Radiation Manage-
ment (SRM) as a potential component in future climate policies. We set up a quantitative model to an-
alyze efficient levels of SRM deployment against the climatic and economic background conditions
projected by the various Shared Socioeconomic Pathways (SSPs) baseline scenarios for the year 2050.
The model combines three features of the data: i) SRM deployment is regionally uneven in the way it
affects grid-cell temperature and precipitation, ii) temperature and precipitation affect Gross Value
Added (GVA) at the grid-cell level and the effect for both takes the form of an inverted U-shape rela-
tionship, implying that optimal temperature and precipitation levels with respect to output do exist,
and iii) different assumptions about economic growth and its distribution over regions, as projected
by the SSPs, increase the relative share of global GVA for currently rather poor countries with high av-
erage temperatures. We find that in global terms, economically efficient levels of SRM are affected more
by region-specific economic growth projections than by regional climate-change impacts. Globally, the
economically efficient SRM level is proportional to the (global) GVA-weighted mean temperature in-
crease, which varies considerably according to the various growth projections (for equal climatic back-
ground conditions). Achieving the optimal temperature in each scenario is constrained by the influence
of SRM on precipitation.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Engineering the climate via Solar Radiation Management
(SRM) has received increasing attention as a potential scenario
for future climate change policies in particular because SRM tech-
nologies like stratospheric aerosol injection have prospects of al-
tering the global mean temperature at rather low operational
cost and almost instantaneously, i.e. in the time-scale of a year
(Keith, 2000; Crutzen, 2006; Lenton and Vaughan, 2009). How-
ever, projections indicate that SRM deployment will change cli-
mate variables like temperature and precipitation in a regionally
uneven way differing from the effects of climate change (Allen
and Ingram, 2002; Trenberth and Dai, 2007; Rasch et al., 2009;
Ricke et al., 2010; Ricke et al., 2012). Furthermore, SRM is ex-
pected to involve various inherent side effects, ranging from re-
duced occurrence of blue skies to the non-mitigation of carbon-
s).

.V. This is an open access article und
related impacts (e.g., Robock et al., 2008; Robock et al., 2009).
This implies that any decision about SRM deployment will involve
economic trade-offs as well as various social, political, legal, and
ethical considerations (Barrett, 2014; Klepper and Rickels, 2014).
Economic reasoning may be particularly relevant in the decision
on how much SRM should be deployed and accordingly on the de-
gree to which global mean temperature is reduced.

The relation between economic output and temperature can be de-
scribed by an inverted U-shaped function suggesting that some eco-
nomically “optimal” climate exists (Nordhaus, 2006; Tol, 2018, 2019).
Climate change shifts the countries' distribution along the optimal tem-
perature curve to the right, so that “cold” countries move closer to cli-
mate optimum, while “hot” countries move further away from it. SRM
would shift countries to the left and thus have the opposite effect:
“cold” countries move farther away from the climate optimum, while
“hot” countries move closer to it. Accordingly, countries have different
preferences regarding the level of SRM to be deployed. The present
paper discusses SRM deployment scenarios that can be expected given
heterogeneous economic interests with regard to climate change.
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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If the operational costs of SRM are fairly low, the pure non-
cooperative Nash equilibrium outcome would be that the country
with the strongest interest in cooling the climate would apply a high
level of SRM to adjust the global temperature to their preferred level
(Barrett, 2008, 2014). In contrast to the free-rider problem posed by
climate-change mitigation, the actual governance challenge associated
with SRM deployment thus becomes a free-driver problem
(Weitzman, 2015). Assuming the existence of an “optimal” climate
with respect to economic activity, several countries might even have
an incentive to “overcool” the global climate in order to get their indi-
vidual regional climate closer to the optimal climate. Accordingly, not
only climate-change winners but also other countries would face an
overprovision of SRM deployment (Moreno-Cruz, 2015; Weitzman,
2015).

However, following the international logic of multilateralism,
Horton (2011) argues that given the various retaliation channels in
combination with the rules of international law, it is rather unlikely
that SRM measures would be applied unilaterally regardless of other
countries' interests. In the same vein, Parson and Ernst (2013) argue
that in terms of financial, technological, logistical, andmilitary strength,
only a very small number of states would be capable of upholding SRM
against international opposition, implying at the same time that coun-
tries without coalition commitments can be expected to be capable of
imposing externalities on coalition members. Accordingly, it appears
unlikely that independently of agreements and against international
opposition, countries with a preference for the coolest possible climate
would be able to impose their preferred degree of SRM without com-
pensating SRM losers.

In addition, SRM deployment influences not only temperature but
also other climate variables like precipitation. Increasing temperatures
resulting from increased GHG concentration also influence the hydro-
logical cycle, and increased GHG concentration itself influences the hy-
drological cycle directly. Temperature-induced influence increases the
intensity of the hydrological cycle, while GHG-induced influence re-
duces it (Allen and Ingram, 2002). The temperature influence domi-
nates, implying that increased GHG concentration will tend to
increase mean global precipitation. However, the precipitation increase
is less than proportional to the temperature increase. Consequently,
SRM deployment cannot control temperature and precipitation simul-
taneously because fully compensating for the increase in mean temper-
ature will actually overcompensate for the increase in mean
precipitation (e.g., Ricke et al., 2012), resulting in a drop inmean precip-
itation. Also, while GHG-induced radiative forcing is more or less equal
across the globe, negative radiative forcing of RM measures would be
strongest in locations with high irradiation. As a result, temperature
and precipitation react differently to SRM depending on the region in
question (e.g., Trenberth and Dai, 2007; Rasch et al., 2009; Ricke et al.,
2010; Ferraro et al., 2014).

In this paper we propose a stylized model characterizing the
level of SRM deployment that is globally efficient, i.e. that maxi-
mizes global gross value added (GVA). We find that this is the
level of SRM that minimizes the global GVA-weighted average
gap between the country-specific actual climate on the one hand
and its output-maximizing climate on the other. The (regional)
climate is measured by both mean temperature and mean precip-
itation. Since regional variation in economic output is much stron-
ger than variations in local temperature and precipitation
sensitivity to SRM, the gaps in high-income locations are the
main drivers behind the globally efficient SRM level. We quantify
these effects for hypothetical SRM deployment in the middle of
the century. In our analysis we combine data on the influence of
SRM on grid-cell temperature and precipitation derived from
earth-system model simulations (Ricke et al., 2012), data on the
influence of temperature and precipitation on grid-cell gross
value added from the G-Econ database (Nordhaus, 2006), and
data on the future distribution of economic output from the SSP
database for different growth assumptions (Cuaresma, 2017;
Dellink et al., 2017). Our analysis shows that the globally efficient
level of SRM deployment strongly depends on the background
conditions projected under the five baseline scenarios of the
Shared Socioeconomic Pathways (SSP).

Our work contributes to the literature analyzing challenges to SRM
governance. Moreno-Cruz et al. (2012) and Ricke et al. (2013) take
SRM's regionally uneven effect on temperature and precipitation into
account and investigate the optimal level of SRMdeployment. However,
both assume that there are no climate-change winners and that all
countries face climate damages associated with deviations in tempera-
ture or precipitation from the country-specific preindustrial level. Ac-
cordingly, they find that there is a degree of SRM that reduces climate
damages for all countries, albeit in different proportions. More specifi-
cally, Moreno-Cruz et al. (2012) investigate the level of SRM that
would bring a Pareto improvement over and against the case without
SRM, while Ricke et al. (2013) investigate the SRM level that would be
optimal for different coalitions of countries.

By contrast, Tol's (2016) starting point—an inverted U-shape rela-
tionship between economic output and temperature—implies that
some countrieswould gain from climate change. He investigates the de-
cision on optimal global temperature as an analogy for SRM deploy-
ment. His analysis is based on a meta-analysis of climate change
impact functions derived from integrated assessment models (Tol,
2018, 2019). In his analysis climate change has very different impacts
on different countries, and there would be disagreement about the de-
sired level of SRMdeployment, also implying that SRMdeployment can-
not represent a Pareto optimum. He derives a Kaldor-Hicks efficient
global optimal temperature level, requiring compensation for countries
that prefer a lower level of temperature and suggests income transfers
for that purpose. Like Tol (2016), we derive the globally efficient solu-
tion in accordance with the Kaldor-Hicks criterion. The added value of
our contribution lies in the fact that we explicitly take into account
the regionally uneven influence of SRM on temperature and precipita-
tion, which shows in particular that the influence of SRM on precipita-
tion leads to a trade-off between improving on precipitation and
coming closer to the global “optimal” temperature. Tol (2016) also in-
vestigates country-specific incentives and contributions deriving
willingness-to-pay and willingness-to-accept estimates for changing
the temperature from the optimal country-specific temperature levels.
This derivation operationalizes the Shapley value (Shapley, 1953) and
thus provides information on country-specific payments and compen-
sations. We take a different line, deriving country-specific contributions
under the Vickrey-Clarke-Groves (VCG) mechanism (Vickrey, 1961;
Clarke, 1971; Groves and Loeb, 1975). We rather focus on the country-
specific incentives to join a global SRM agreement in terms of paying
for turning the global thermostat more into the preferred direction.
Even if the optimal country-specific climate would be private informa-
tion, the VCG mechanism would lead to the efficient solution as truth-
fulness is a dominant strategy (though at the cost of losing the
budget-balance feature).

The paper is structured as follows: Section 2 introduces our decision
framework for global SRM deployment and explains the calibration for
the quantitative illustration. Section 3 presents our results, discussing
the efficient global level of SRM deployment (Section 3.1), the individ-
ual country incentives (Section 3.2), the participation gains in a global
agreement on SRM deployment (Section 3.3), and the implications for
coalition formation (Section 3.4). Section 4 concludes.

2. Methods

2.1. Model

To analyze country-specific interests regarding the level of SRM de-
ployment, we assume that countries will prefer a climate that benefits
their current economic output. Global economic efficiency thus requires
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maximizing global economic output. One appealing approach in norma-
tive termswould be tomaximize some social-welfare function embody-
ing concerns for global economic justice. If international transfers of
economic resources are freely possible and thewelfare function satisfies
the common strong Pareto assumption, maximizing efficiency is a nec-
essary condition for welfare maximization. We thus take the first step
before the second and ask what an efficient climate policy would look
like.1

In addition, we assume that climate conditions exist that
maximize economic output in any region. As climatic conditions
differ across the globe, not all countries face the output-
maximizing climate at the same time. In general, climate is under-
stood as the (full) weather statistics in a large region (such as a
significant section of a country) over a long period (such as
30 years). In this paper we consider a stylized static framework
and represent the climate by country-specific climate conditions.
At this point we present the approach in terms of temperature
only, in the quantitative analysis we also include precipitation.
We set up the model such that there is a unique output-
maximizing temperature level, showing that the globally efficient
level of SRM deployment minimizes an economic output-
weighted average of the gap between current country-specific
temperature and the output-maximizing level.

We assume that country i's economic output, Yi, at time t can be rep-
resented by

lnYi tð Þ ¼ Fi tð Þ−φ Ti tð Þ−T�ð Þ2 ð1Þ

where parameter φ represents the sensitivity of Y to local temperature
and parameter T⁎ is the output-maximizing temperature, which we
assume to be time-invariant. The term Fi tð Þ encompasses all other
country-specific terms. We model local (country-specific) temperature
at time t as

Ti tð Þ ¼ Ti þ σ iS tð Þ−θiR tð Þ; ð2Þ

where local temperature responds to non-SRM anthropogenic forcing, S
(t), and SRM, R(t), in a country-specific way, as captured by the
positively valued parameters σi and θi, respectively, and where Ti

encompasses all other country-specific temperature determinants.
We impose the constraint R(t) ≥ 0, i.e. we do not study the possibility
of (solar) radiationmanagement deployment to increase global temper-
atures, as counter-climate engineering measures are expected to face
considerable practical obstacles (Parker et al., 2018; Heyen et al.,
2019). In the following, we suppress the time argument (t) to simplify
notation. The effect of SRM on the economic output of country i is
now given by.

dYi

dR
¼ θiYi2φ �Ti þ σ iS� θiR� T�� �

: ð3Þ

The expression measures the marginal private benefits of global
SRM. The incentives to engage in SRM depend positively, first, on effec-
tive market size θiYi and, second, on local temperature if it greatly ex-
ceeds optimal temperature (without the constraint R ≥ 0, the second
aspect would generalize to large incentives if local temperature differed
widely from optimal temperature).

We assume that SRM deployment generates cost C(R) = cR,
where c > 0 is the constant marginal cost of SRM. By summing
expression (3) over countries i, equating the sum to marginal
1 If international transfers are not freely possible, a welfare maximummight not maxi-
mize aggregate economic output. However, in that case the key question becomes what
exactly are the limits to international transfers of economic resources andwhether it is re-
ally optimal to usemodifications of the climate system to compensate for non-existent op-
portunities for the transfer of economic resources. Such an analysis would focus on the
institutional ties of international politics to an extent that goes beyond the scope of the
present paper.
cost c, and solving for R, we find that the level of SRM that maxi-
mizes the aggregate output of a group of countries I (all or a sub-
set, i.e., coalition) is characterized by2

RI tð Þ ¼
X
iϵI

 
θiYi tð ÞX

jϵJ

θ j
� �2Y j tð Þ

!
σ iS tð Þ þ �Ti−T�� �

−
c=2φX

jϵJ

θ j
� �2Y j tð Þ

ð4Þ

The second term is the marginal cost of SRM corrected for the effect
of SRM on aggregate output. Most action comes from the first term,
representing marginal benefits. In the first term, the second factor is
i's deviation from optimal temperature in the absence of SRM, “temper-
ature gap” for short. Obviously, if this gap were zero for all countries,
there would be no incentive for SRM. If each country would consider
its original temperature level as optimal, i.e. if T ∗= Ti in (4), we would
encounter the problem addressed by Moreno-Cruz et al. (2012) and
Ricke et al. (2013) (and by assuming c= 0, as they neglect operational
cost for SRM application). With perfect SRM (i.e., σi = θi), the efficient
level of SRM would simply offset greenhouse-gas forcing (S = R) in
their problem.

Here, with an optimal temperature T ∗ and asymmetric countries,
geographical heterogeneity (captured in Ti) makes it impossible for
SRM to optimize temperature everywhere simultaneously. In this case,
the efficient level of SRM will respond to the weighted average of tem-
perature gaps across the countries, where the relative weights (the
terms in long brackets) are governed by the relative local sensitivity of
temperature to SRM (θi) and relative output. When output variation is
stronger than the variation in local temperature sensitivity to SRM, the
temperature gaps of high-income locations will be the main drivers be-
hind the efficient level of SRM.

Accordingly, eq. (4) reveals the effects on SRM of changes in the
background climate conditions S(t), the background economic condi-
tions, Yi(t) or a change in the coalition I of countries that jointly decides
on the level on the efficient SRM level. First, when S is higher (as climate
change progresses), the efficient level of SRM is affected through the
temperature gap. Due to a higher S, temperature is higher in all loca-
tions, which for given weights increases the demand for SRM: warm
countries will prefermore cooling and cool countries lesswarming. Sec-
ond, the weights shift under changing economic conditions. Conver-
gence in economic growth would imply that currently rather poor
(and mostly warm countries) will in economic terms gradually catch
up with developed countries, their relative weight would increase in
(4) and the globally efficient SRM level becomes higher (under the as-
sumption that this effect dominates a possible increase in “optimal”
temperature due to adaptation). The third point refers to the coalition
case: we see that when a new country joins the coalition, efficient
SRMmoves in the direction that the joining country prefers since the co-
alition starts weighting the output contribution of the new member:
more SRM if a warm country joins, as measured by the temperature
gap �Ti þ σ iS−T� , and less SRM if a cold country joins. We analyze
these implications in more detail below.

2.2. Calibration

To account for the (regionally) uneven influence of SRMdeployment
on climate, we include not only the effect on temperature but also the
effect on precipitation, both measured at the 1-degree latitude by 1-
degree longitude grid-cell level. Both temperature and precipitation af-
fect grid-cell economic output. The former is calibrated on the basis of
Earth-system model simulations from Ricke et al. (2012) and the latter
is calibrated on the basis of the G-Econ data (Nordhaus, 2006). The
2 The expression is not a closed-form solution since the RHS contains Y,which depends
on R. Nevertheless, the expression allows for straightforward comparative statics since the
Y-dependentweights addup to unity (aftermultiplying and dividing the expression inside
the summation sign by θi).
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G-Econ data provides information on Gross Cell Product (gross value
added at the grid-cell level) and long-term average temperature and
precipitation conditions (1975–2005). For the SRM decision, we con-
sider climate and economic background conditions possibly prevailing
in the middle of the century (year 2050) as projected by the baseline
SSP scenarios (Riahi et al., 2017)

For our calibration, we assume that average grid-cell temperature
and precipitation, Tj and Pj, respectively, affect gross grid-cell product
GCPj and are determined by the global level of SRM deployment and
the (multidimensional) state of non-SRM anthropogenic forcing, R and
S, respectively (bothmeasured inW/m2). The state of non-SRM anthro-
pogenic forcing is determined by prevailing greenhouse-gas (GHG)
forcing and tropospheric-aerosol forcing (saer). As the effect of SRMde-
ployment on global and regional climate is very much faster than
greenhouse-gas-driven climate change (Lenton and Vaughan, 2009;
Klepper and Rickels, 2014), we consider S as exogenously given (repre-
sented by St to reflect the different climate background conditions
across thefive baseline SSP scenarios in 2050, Riahi et al., 2017). Accord-
ingly, the only decision variable for countries that allows a rapid change
in temperature and precipitation is R, and country i’s economic output,
measured by gross value added (GVA), is given by the sum of the grid-
cell products (GCP) either fully or partly located in country i, j ∈ Ji,

GVA R; St ; Zit

� �
¼ ∑ j∈ Ji GCP T j R; St

� �
; P j R; St
� �

;X j;Aj; Zit

� �
ð5Þ

Here we include argument t to take into account different back-
ground conditions. Xj summarizes parameters describing cell-fixed geo-
graphic control variables, Aj specifies the area size of grid cell j in country
i, and Zi specifies country-fixed effects for country i, the latter also cap-
turing the SSP-specific growth projections for economic output.

Globally, the optimal level of SRM maximizes aggregate economic
output of all N grid cells, net of the cost of SRM:

max
R

XN
j¼1

GCP T j R; �St
� �

; P j R; �St
� �

;X j;Aj; Zjt
� �

−C Rð Þ s:t: R≥0;

Z jt ¼ Zit for all cells j in country i

ð6Þ

with the first-order condition for a globally efficient solution:

XN
j¼1

∂GCP
∂T j

∂T j

∂R
þ ∂GCP

∂P j

∂P j

∂R

 !
−c ¼ 0 ð7Þ

We estimate changes in GCP as a function of grid-cell temperature
and precipitation with a cross-section estimation following Nordhaus
(2006), also including other geographic control variables like distance
to coast or elevation (Appendix B). The 1-degree latitude by 1-degree
longitude grid cells are assigned to countries proportionally to the
area of the country in the grid cell, yielding a total number of 16,082
GCP observations.

We use a linear quadratic specification for the global influence of
temperature and precipitation to explain GVA-weighted variation in
the logarithm of GCP. In contrast, Nordhaus (2006) bases his forecast
of the economic impact of climate change on country-specific impacts
of temperature change and a unique global impact of the influence of
precipitation changes.3 While such an approach is suitable for
predicting the impact of a given climate-change scenario, it is not suit-
able for optimizing the impact of the climate (via SRM) because the
3 In his approach to explaining the influence of climate on economic output, he takes
into account higher moments of the climate statistics (e.g., maximum of temperature).
This is reasonable because the impact of regional climate on economic output is probably
not restricted to themean values for temperature and precipitation. But there is rarely any
comprehensive forecast available on how higher features respond to climate change, not
tomention SRM at the grid-cell level. However, restricting the forecast of impacts tomean
temperature and precipitation changes is meaningful because moments of climate statis-
tics tend to scale with the mean changes (e.g. Osborn et al., 2018).
coefficients of Nordhaus's specification imply implausible results for
several specific cases, including for example optimal temperatures for
the US of 80.05 °C, Canada of 141.86 °C, Botswana −406.18 °C, and
Egypt−229.12 °C. For that reason, we have restricted our specification
to the global influence of temperature and precipitation on economic
output. Given the high leverage of SRM and the possibility of
overcooling, we believe that a global specification is a meaningful way
of capturing the possible range of the temperature and precipitation re-
sponse to SRM deployment. The specification provides unique optima
for temperature and precipitation.

We have estimated Tj(R,S) and Pj(R,S) as linear functions of SRM and
the state of the climate by using the HadCM3L general-circulation
model as set out in Ricke et al. (2012) (Appendix A). We have thus ob-
tained estimates for 20,577 grid cells (of which 16,082 are matched
with the information on GCP in the corresponding cells). For all grid
cells, the deployment of SRM reduces grid-cell temperature, ∂Tj/
∂R< 0, albeit to different magnitudes. In 14,646 grid cells, SRM reduces
precipitation (∂Pj/∂R<0), but in the remaining grid cell it increases pre-
cipitation (∂Pj/∂R> 0). The influence of future GHG and SRM forcing on
grid-cell temperature and precipitation is uncertain. Both the magni-
tudes and the patterns of the projected changes vary greatly (Collins
et al., 2013): (i) by scenario and (ii) by model (the GCM selected here
for illustration –HadCM3 – is a model with middling climate sensitivity
in terms of the range simulated by various models). Still, the estimates
for grid-cell change in temperature and precipitation applied here pro-
vide a reasonable representation of regional variation in the effective-
ness of SRM in compensating for GHG-induced changes (Ricke et al.,
2012).

The estimation suggests a GVA-maximizing temperature increase of
1.49 °C [0.47 °C] above the average temperature between 1975 and
2005 (i.e. the linear influence of temperature and precipitation is posi-
tive and the quadratic influence is negative).4 It should be noted that
the estimates on optimal temperature increase estimates are not di-
rectly comparable to estimates from integrated assessment models be-
cause the latter usually use global mean temperature (increase) as an
indicator with full spatial coverage including temperature increase
over the oceans, whereas our temperature data covers only a subset,
i.e. the terrestrial grid cells.5 Still, the estimated GVA-maximizing tem-
perature is in the same ballpark as the IAM-meta-analysis-based esti-
mate by Tol (2016), who derives an average optimal temperature
increase of 1.7 °C (with a standard deviation of 1.5 °C) if countries are
weighted by their 2005 GDP levels.6 The specification is robust against
different representation of cell area size (which is decreasing with lati-
tude). Using instead GVA density (i.e. ln(GVA/area)) as dependent var-
iable also suggests an optimal temperature increase of 1.49 °C [1.00 °C].
Using latitude as further explanatory variable is prevented by
multicollinearity issues and instability in the coefficients of interest
(i.e. with respect to temperature and precipitation). We include a
dummy variable to account for cells close to and above the polar circle.
Dropping this dummy variable would instead imply an optimal temper-
ature increase of 1.59 °C [0.45°]. Table B.T1 in Appendix B provides de-
tails on the different specifications.

The estimation suggests a GVA-maximizing precipitation increase of
979mm/m2/year [58.42] above the average precipitation between 1975
and 2005. While some IAM-based analyses explicitly take the influence
of precipitation into account (e.g., Tol, 2002, Aaheim et al., 2012),we are
The standard errors have been approximated by the propagation of error from the
standard errors of the linear and quadratic term in the estimation, i.e. Topt ¼ ∂ lnGVA=∂T ¼
β1−2β2 ¼ 0 and σTopt=Topt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σβ1=β1

� �2 þ σβ2=β2

� �2q
:

5 An increase of global mean temperature by 1.5 °C implies substantially higher
warming over land. For example, Seneviratne et al. (2018) show fromEarth SystemModel
simulations increases of 2 °C and 2.3 °C respectively over continental USA and central
Brazil.

6 UsingGVAmeasured in PPP instead ofmarket exchange rates (both for 2005) suggests
an GVA-maximizing temperature increase of 1.53 °C [0.91 °C, 2.16 °C].
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not aware of any studies providing information with respect to optimal
precipitation. Compared with the status quo, our estimated increase is
in the vicinity of current mean global precipitation, pointing up the
limitations of our specification and indicating that our optimal value
is probably too high.7 But reduced precipitation (or changed precipita-
tion patterns) are considered a critical impact limiting or even
preventing the deployment of SRM (e.g. Robock et al., 2008). An alter-
native would have been to include a lower limit on precipitation as a
constraint. Roshan et al. (2019) show that under such regional con-
straints on precipitation (derived to correspond with the Paris tem-
perature targets) SRM deployment is greatly reduced in comparison
with a temperature-constraint-only framework. However, there is no
globally agreed lower level for annual precipitation, and we are
more interested in the trade-off between moving temperature closer
to its optimum at the cost of moving further away from the precipita-
tion optimum. Note that the latter has a much smaller curvature than
the former.8

For our calculations of gains or potential payments as part of the
global SRM decision, we require information about GVA in levels, not in
logarithms. When making the transformation we need to take into ac-
count that the exponent of the expectation is not the expectation
of the exponent. If error terms are normally distributed, retransforming
a log-linear model of the form ln yð Þ ¼ βxþ ε would be achieved
via E yjx½ � ¼ exp βxð Þ exp 0:5σ2

ε
� �

(e.g., Manning and Mullahy, 2001).
Alternatively, if the assumption of non-normal distributed error terms

is violated, Duan's smearing retransformation can be used, E yjx½ � ¼
exp βxð Þ 1

N∑
N
i exp εið Þ (Duan, 1983). However, to provide unbiased esti-

mates, the smearing retransformation requires homoscedastic error
terms. FollowingNordhaus (2006) in estimating the impacts of (avoided)
climate change,wehave chosen aweighting strategy enablingus tomax-
imize accuracy and not to minimize heteroscedasticity (which would
have required a different weighting scheme). Accordingly, in focusing
on predicting the impacts of changes in temperature and precipitation
to calibrate ourmodel, our aimwas tominimize the standard error of es-
timation calculated not at the grid-cell but at the country level. Lütkepohl
and Xu (2012) show that although in theory an optimal predictor (i.e.
with correction) will minimize forecast standard error, the absence of
proper estimation of forecast error variance implies that the optimal pre-
dictor does not have necessarily an advantage over the naïve predictor
(i.e. without correction). With our calibration, the SE of the estimate at
the country level is 510.781 with country-specific smearing corrections
and 283.972 without them. Accordingly, we focus on the naïve forecast.

With our relatively large observation units (spatial resolution 1 de-
gree latitude by 1 degree longitude) we assume that spatial spillovers
occur only within grid cells and not across them. Knowledge spillovers
are a prominent example for creating spatial autocorrelations in empir-
ical investigation. They are however usually assumed to take place in
rather small spatial resolutions. Furthermore, without a sound eco-
nomic description of spatial interdependence, we would need to derive
the spatial weighting matrix by data-analytic approaches or by guess-
work. However, differently specified weighting matrixes would pro-
duce very different estimates of spatial spillovers in our data, resulting
in very weak identification (Harris et al., 2011 and Gibbson and
Overmann, 2012, respectively). Even worse, a relatively arbitrary
weighting matrix may incorrectly identify the existence of a spillover
mechanism (Corrado and Fingleton, 2012), blurring the causal
7 We tested alternative specifications describing the influence of precipitation by
higher-order polynomial functions or in a linear-quadratic specification based on the log
of precipitation. The former resulted in odd results during optimization (to the presence
ofmore extrema), the latter in an even higher optimal precipitation level than the one ob-
tained here.

8 The degree of curvature, i.e. jκ xð Þj ¼ f 00 xð Þ= 1þ f 0 xð Þ2
� �3

2 , is 0.0168045 and 5.82*10−7

respectively for temperature and precipitation at their optimum. A value of 0 implies a
straight line.
economic processes at work by indicating “pointless” spatial economet-
ric relationships (Gibbson and Overmann, 2012). Accordingly, given
that our aim is to calibrate our model against an inverted U-shaped re-
lationship between climate (measured by temperature and precipita-
tion) and economic output, we expect no advantages from including a
data-driven derived spatial weighting matrix.

However, restricting the calibration of the influence of temperature
and precipitation on grid-cell GVA by a cross-sectional relationship
has several intrinsic limitations. In particular, the relationship may cap-
ture historical processes thatwould not be effective in future conditions
of climate change (or at least not in those timescales) (Dell et al., 2014).
However, the grid-cell-based approach is essential to take into account
the regionally imperfect compensation of greenhouse-gas-induced
changes in temperature and precipitation induced by SRM deployment
(Moreno-Cruz et al., 2012; Ricke et al., 2013).

To take into account the changing gap between, and relative
weighting of, country-specific and output-maximizing climate levels
over time resulting from climate change and economic growth respec-
tively, we draw upon the SSPs' baseline projections for the middle of
the century (year 2050). The baseline scenarios project future develop-
ments stemming from the current (climate) policy framework, while
leaving new climate policies (like net-zero emission targets) out of the
equation. To take account of economic growth,we obtained two growth
projections for each SSP from the baseline scenario, thus representing
two different growth models. For the SSPs, the IIASA database includes
three different baseline growthmodels of which two—the one provided
by the OECD (Dellink et al., 2017) and the IIASA (Cuaresma, 2017)—
have country projectionsmaking it possible to extrapolate the economic
output of countries included in the GEcon database. While the IIASA
growthmodel places greater weight on growth induced by human cap-
ital increase, the OECD growth model places larger relative weight on
the long-term growth rate of total factor productivity. In multiplying
the country GCPs with the country growth rates, we assume that GVA
in each grid cell of a country grows at the same rate.

The OECD and IIASA growth model specifications reflect different
degrees of growth convergence for the different SSPs. Growth conver-
gence implies that poorer countries are catching up with richer coun-
tries, which means per capita incomes across countries are getting
closer to each other (for a recent review and empirical analysis on this
topic, see Johnson and Papageorgiou, 2020). All ten baseline growth
SSPs scenarios have a significant negative correlation (at the 1% level)
between per capita GDP (in 2005 USD atmarket exchange) and growth
(until 2050), both implying that poor countries are projected to have a
stronger growth than rich countries (correlation ranging between
−0.48 and− 0.23 for OECD SSP3 and IIASA SSP4, respectively). Accord-
ingly, σ (measured by the standard deviation of log per capita GDP in
USD 2005 at market exchange rates) drops from 1.67 and 1.73 for the
OECD and IIASA baseline in 2005, respectively, to between 1.54 and
1.04 (OECD; SSP4 and SSP5) and to between 1.66 and 1.27 (IIASA:
SSP3 and SSP5).9 At the same time, per capita GDP (in 2005) has a sig-
nificant negative correlation (−0.49) with country long-term mean
temperature (obtained as the simple mean of grid-cell temperature
assigned to a country). These figures are important in the light of our
formula for optimal SRM deployment, eq. (4): they suggest that on av-
erage the relative weight assigned to the temperature gap of currently
poorer but warmer countries increases and that the temperature gap it-
self of these countries also increases, while the temperature gap of
colder countries decreases due to climate change. To take climate
change into account, we obtained the SSP-specific projections for the in-
crease in Kyoto Gases and Aerosol Forcing (as derived in each SSPs
baseline-marker scenario).

Estimates for themarginal operational cost of global SRM, c(R), were
obtained from a recent study by Moriyama et al. (2017). They review
9 Note that IIASA and OECD scenarios differ in their baseline value for sigma conver-
gence because of slightly different country coverage in the projections.



Fig. 1. Efficient SRM deployment and temperature. The figure shows the GVA-weighted
temperature increase without SRM deployment (x-axis) resulting from the different
growth projections across the SSPs scenarios, the corresponding efficient levels of SRM
deployment (right y-axis), and the resulting weighted and unweighted temperature
increases under these SRM deployment levels (left y-axis). The climate-background
conditions for all scenarios are given by the SSP5 baseline scenario, resulting for our
calibration in an unweighted temperature increase of 2.1 °C.

Fig. 2. GVA-weighted temperature in different economic growth scenarios. The figure
displays global mean GVA-weighted temperature using the growth projections from the
OECD (O) and the IIASA (I) for the 5 SSP baseline projections until (2050). Neither
climate change (increasing temperature) nor climate impacts (decreasing the weights of
affected countries) are included in the calculated mean temperatures.
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and estimate the cost for stratospheric aerosol injection (SAI), which is
probably the most likely technology to be considered in the case of
global SRM deployment. Furthermore, the most likely injection method
is expected to be achieved by aircraft, and Moriyama et al. (2017) esti-
mate the cost to be USD 45 bn (USD/yr)/(W/m2) or USD 5 bn (USD/
yr)/(W/m2), using either existing aircraft (F-15) or newly designed air-
craft respectively. If not indicated otherwise, the efficient level of SRM
deployment is derived for the operational cost estimate of USD 45 bil-
lion/year/W/m2.

3. Results

3.1. Globally efficient SRM deployment

We calculate the efficient level of SRM deployment across all possi-
ble combinations of economic background and climate conditions,
resulting in 50 scenarios. Across all scenarios, the average level of SRM
deployment is 3.72 [1.78] W/m2 in 2050.10 Our calculation shows that
the variation in the efficient level of SRM is considerably larger across
the 10 different economic-growth scenarios than the variation across
the 5 different climate-change scenarios (average standard deviation
is 1.7 W/m2 versus 0.5 W/m2, respectively; see Table C.T1 and C.T2 in
Appendix C). In all but SSP3, the OECD growth projections result in a
higher level of SRM deployment than the IIASA growth projections de-
spite the same climate background conditions, indicating that the effect
of economic growth and convergence is more pronounced in the OECD
growth projections. Within growth projections, the largest difference is
observed between SSP5 and SSP4 for theOECD growthprojections (7.27
versus 2.12 W/m2, respectively) and between SSP3 and SSP4 for the
IIASA growth projections (4.03 versus 0.57 W/m2).11 The difference in
the efficient level of SRM is larger than the difference in climate
10 Using instead the alternative specification with ln(GVA/area) as dependent variable
implies an average optimal SRM level of 3.91[1.77]. Dropping the influence of high lati-
tudes in the specification which resulted in an optimal temperature increase of 1.59 com-
pared to 1.49 implies that the average optimal SRM level reduces to 3.27 W/m2.
11 Without accounting for high latitudes by a dummy variable results for ln(gva) as de-
pendent variable in 3 out 50 scenarios and for ln(gva/area) as dependent variable in 2 out
50 scenarios in zero optimal SRM (i.e. a constraint solution). For both this applies for the
case of IIASA growth projections under SSP4 for climate background conditions as given
by SSP1, SSP2, and SSP3 and climate background conditions SSP1 and SSP2, respectively.
See Tables C.T4 to C.T6 in Appendix C.
background conditions, the total forcing in SSP3, SSP4, and SSP5 is
4.29 W/m2, 4.29 W/m2, and 4.837 W/m2 respectively.

Fig. 1 summarizes the main results for the 10 different economic-
growth scenarios under a climate-change scenario given by SSP5. It
first displays the efficient SRM level dependent on GVA-weighted tem-
perature increase without SRM deployment (dashes), and second, the
resulting weighted and unweighted temperature increase under SRM
deployment (circles and triangles respectively; see also Table C.T3 in
Appendix C). The climate background conditions are as projected in
the SSP5 baseline-marker scenario in 2050, resulting in an unweighted
temperature increase of 2.1 °C against the average over the period 1975
to 2005. Because of different assumptions on economic growth across
the SSPs and the growth models, the weighted temperature increase
without SRMvaries between 1.99 °C and 2.86 °C for IIASA-based growth
projections in SSP4 and OECD-based growth projections in SSP1
respectively.

We observe the following patterns: Connecting the dashes, we find
an upward-sloping line. The globally efficient level of SRM is monoton-
ically increasing with the GVA-weighted global mean temperature, im-
plying that this is a meaningful indicator for the given purpose. It
highlights the first-order reason-driver behind SRM: “cool if the globe
warms up.” Connecting the circles indicates a flat relationship, showing
the optimal GVA-weighted mean temperature. Connecting the trian-
gles, we find a descending line. As the countries in warm regions with
a preference for cooler temperatures gain economic importance (so
the GVA-weighted global mean temperature goes up), the efficient
level of SRM increases and hence the meteorological mean global tem-
perature decreases. Fig. 1 shows that in 6 out of 10 scenarios (SSP1
and SSP3 with IIASA growth assumptions and all SSPs except SSP4
with IIASA growth assumptions) efficient SRM deployment implies
overcooling in the sense that the unweighted mean temperature is re-
duced below its baseline value (average over the period from 1975 to
2005).12

This is partly explained by the underlying assumption of growth
convergence in the SSPs: under most SSPs, relatively poor and already
warm countries are catching up with developed countries in terms of
economic growth. Accordingly, these countries gain relatively more
weight in the determination of the efficient level of SRM deployment,
implying that a stronger decrease in unweighted temperature is re-
quired to achieve the same decrease in weighted temperature. Fig. 2
12 Irrespective of the specification (i.e. either ln(GVA) or ln(GVA/area) as dependent var-
iable, with and without controlling for high latitude, 6 out of 10 scenarios under climate
background conditions as given in SSP5 result in an overcooling.



Table 1
Gains from SRM deployment in percent of GVA.

Operational cost Growth assumption SSP1 SSP2 SSP3 SSP4 SSP5

45bn USD
W=m2

OECD 2.10 1.06 0.88 0.41 3.01
IIASA 0.74 0.54 1.17 0.07 1.16

5bn USD
W=m2

OECD 2.30 1.22 1.07 0.49 3.20
IIASA 0.86 0.64 1.39 0.10 1.28
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shows GVA-weighted mean temperature under the 10 different eco-
nomic growth scenarios (without climate change and without SRM de-
ployment). The figure shows that on average growth convergence
explains a significant fraction of the increase in GVA-weighted mean
temperature, but also that growth convergence is not a necessary pre-
condition for increases in GVA-weighted temperature resulting from
changing relative weights as can be seen from the efficient level of
SRM under the growth projections of IIASA SSP3.

We find that for our model framework the appropriate indicator
capturing the different effects is GVA-weighted mean global tempera-
ture increase. In this indicator, climate change affects regional tempera-
tures, while climate impact and economic growth affect the GVA
weights.

Fig. 3 shows the decomposition of the GVA-weighted temperature
increase for climate and economic background conditions as given by
SSP5 under the IIASA growth assumptions in 2050 (without SRM).
The weighted temperature increase is effected by i) the actual temper-
ature increase due to climate change (lower left corner), ii) the changes
in weights due to economic growth (top corner), and iii) the changes in
weights due to the impact of temperature on economic output (lower
right corner). The corner values show the temperature increase for the
effects in isolation, the values on the legs show the temperature increase
of two effects combined, and the value in the middle shows the overall
weighted temperature increase. The figure indicates that even without
climate change (i.e. using the baseline temperature values) the
weighted temperature rises by 1.7 °C alone due to increasing relative
weights of warmer (developing) countries over and against cold (devel-
oped) countries. Combined with climate change, this would result in an
increase by 3.71 °C (left leg). However, climate change has an impact on
economic output, affecting warmer regions more than proportionally
and implying decreasing relative weights for warmer (developing)
countries compared to cold (developed) countries. However, the reduc-
tion in weights due to climate-change impacts is dominated in both di-
mensions, implying that the increase in temperature is larger than the
reduction in weights (lower leg) and that the increase in weights due
to economic growth is larger than the reduction in weights due to cli-
mate change (right leg).

With SRM deployment, the GVA-weighted temperature increase re-
duces to on average 1.82 °C compared to an average weighted temper-
ature increase of 2.53 °C without SRM (under the climate-background
conditions given by SSP5 in 2050, see Fig. 1). This is still larger than
the suggested optimal temperature following from the quadratic linear
temperature specification (1.49 °C). Furthermore, the weighted tem-
perature increase with SRM deployment varies between 1.62 °C and
1.92 °C across the scenarios. Note that we optimize GVA not against
Fig. 3.Decomposition of weighted temperature increase. The figure shows the increase in
GVA-weighted temperature broken down into isolated effects: climate change (change in
weighted temperature due to forcing at fixed GVAweights), economic growth (change in
weighted temperature due to change in GVA weights arising from growth only), and
climate impacts (change in weighted temperature due to change in GVA weights arising
from effect of temperature on GVA only), displayed in the lower left, top, and lower
right corners respectively. The GVA-weighted temperature increase for two effects
combined is displayed on the legs and the overall GVA-weighted temperature increase
in the center.
temperature but against SRM deployment, thus also taking into account
the influence of SRM on precipitation and the regionally uneven com-
pensation of SRM for greenhouse gas-induced temperature and precip-
itation changes. If we assumed that SRM only affected temperature but
not precipitation, average SRM deployment across all scenarios (i.e. all
combinations of economic and climate background conditions in 2050
given by the SSPs) would increase by 2.04W/m2. For climate conditions
as given by SSP5, the efficient SRM level would then reduce the
weighted temperature increase to on average of 1.53 °C (max 1.61 °C
and min 1.43 °C). If we assumed in addition that SRM induced no oper-
ational cost, the average SRM deployment across all scenarios (i.e. all
combinations of economic and climate-background conditions) would
increase by a further 0.44 W/m2. For climate conditions as given by
SSP5, the efficient SRM level without impact on precipitation and with-
out operational cost would then reduce the weighted temperature in-
crease to an average of 1.48 °C (max 1.54 °C and min 1.37 °C).

Despite the fairly strong impacts on weighted and in particular on
unweighted temperature increase, the gains in global GVA from SRM
deployment are modest. Table 1 shows the percentage gain in GVA
from SRM deployment relative to the situation without SRM deploy-
ment for the two different cost assumptions. The figures show that at
the margin the operational cost has a small but noticeable influence
on the efficient SRM level. The rather modest impacts overall indicate
the gains accruing to climate-change losers (and SRM winners) net of
the losses incurred by climate-change winners (and SRM losers). Ac-
cordingly, we now adopt the country-specific perspective.
3.2. Individual country incentives for SRM deployment

The heterogeneous economic interests involved in SRMdeployment
under future climate conditions are more nuanced than the mere dis-
tinction between climate-change losers and winners. Fig. 4 shows the
country-specific incentives to undertake SRM for climate and economic
background conditions as projected in SSP5 under IIASA growth projec-
tions in 2050. The axes show the marginal change in GVA as a function
of SRM: the x-axis at the point of no SRM deployment and the y-axes at
the point of globally efficient SRM deployment (as derived in Table C.2 in
Appendix C). Accordingly, the x-axes address the question whether
country i has an economic interest in embarking on SRM deployment
at all, and the y-axes address the questionwhether country i has an eco-
nomic interest in stepping up SRM deployment beyond the globally ef-
ficient level. The size of the bubble shows the absolute change in GVA
between the situation of no SRM and globally efficient SRM deployment,
the color code indicates whether GVA increases (orange) or decreases
(purple). In addition, Fig. 4 shows on both axes the marginal cost for
SRM deployment corresponding to injecting aerosols into the strato-
sphere using existing airplanes (USD 45 billion/year/W/m2). As we are
talking about a deployment of SRM in the year 2050, one might expect
newly designed aircraft to be used for the spreading of aerosols, thus re-
ducing marginal cost. However, the cost estimates presented in
Moriyama et al. (2017) and similar assessments usually assume global
coordinated deployment, which implies relatively low marginal costs,
for example for the best-located airports to be used. Turning to the
question of individual countries' incentives for potentially unilateral
SRM deployment, the assumptions underlying the cost estimates with



Fig. 4. Individual country interests in SRM deployment in 2050 for SSP5. The figure shows the marginal change in Gross Value Added (GVA) with no SRM (SMR= 0, x-axes) and with
globally efficient SRM deployment (SRM = SRM*, y-axes) for climate and economic-background conditions as given in SSP5 under the IIASA growth projections for the year 2050. The
size of the bubble shows the absolute change in GVA and the color code shows whether a country gains (orange) or loses (purple) from SRM deployment.
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respect to processing, infrastructure, or monitoring are likely to be on
the optimistic side, therefore we feel that the marginal cost displayed
is probably rather a low estimate for the operational cost incurred in
the case of unilateral deployment.

Climate-change losers are expected to gain from SRM deployment
and are situated in the positive domain of the x-axes. However, not all
of them could afford SRM deployment unilaterally and not all of them
would gain from SRM deployment at the globally efficient level. For
that reason, we distinguish theoretically between six groups of coun-
tries in the positive domain of the x-axes, 4 groups in the positive do-
main of the y-axes (A1, A2, A3, and A4), and two groups in the
negative domain of the y-axes (B1 and B2).

There is only a small group of A1 countries (7 countries in the SSP5
scenario with IIASA growth projections) where the marginal gain in
GVA exceeds themarginal cost of SRM at both points (no SRM and glob-
ally efficient SRM). These countries would have an incentive to deploy
SRM unilaterally because they would gain by increasing SRM applica-
tion beyond the globally efficient level. The majority of climate-change
loser countries (and countries in general) would rather free-ride (A4
with 118 countries in the SSP5 scenario). These countries also gain at
both points of SRM deployment, but their marginal gains fall short of
the marginal costs of SRM deployment. According to these results, the
“Tuvalu Syndrome” cannot be considered a credible threat. This syn-
dromemeans that for small (and in particular island) states the best re-
sponse would be to commit themselves to unilateral SRM deployment
to such that the best response of other countries is to collectively reduce
emissions (Millard-Ball, 2012; Moreno-Cruz, 2015).
There are twomore groups of countries with positivemarginal gains
at both levels of SRM deployment. For the countries in area A2 (two
countries), the gains exceed the marginal cost of SRM deployment
only at the globally efficient SRM level. The explanation of this is the
non-concavity of our functional form for the grid-cell influence of tem-
perature and precipitation on GVA (in levels). The interpretation is that
these countries would benefit sufficiently from the implementation of
the efficient level so that their marginal SRM benefit would even exceed
the marginal cost of SRM deployment. Countries in area A3 would have
an incentive for unilateral SRM deployment in the casewhere no SRM is
realized. However, if globally efficient SRM is already in place, their in-
centives to further increase SRM deployment is not sufficient due to
the marginal cost. There are no countries in A3 for any SSP scenario
under the IIASA growth projections, but one country (Japan) for SSP4
and SSP5 under the OECD growth projections.

The countries in the B area can still be considered climate-change
losers as they would gain from SRM deployment. But from their per-
spective, deploying SRM at the globally efficient level is already overdo-
ing it. The countries in the B1 area (two countries) still gain from SRM
deployment in absolute terms. This is not true of countries in the B2
area (six countries). Even though these countries are (moderate)
climate-change losers and would benefit from reducing global temper-
atures, the globally efficient SRM level implies that in absolute terms they
would lose from SRM deployment. The remaining countries in area C
are the climate-change winners (44 countries) from SRM deployment
to whatever degree (if we allowed for counter climate engineering, i.e.
R < 0, we would also need to distinguish between different groups



Fig. 5. Participation gains in SSP5 under IIASA growth assumptions. The grey dots in the
figure indicate the country-specific absolute change in GVA between globally efficient
SRM (full participation) and no SRM (x-axes) and between globally efficient SRM (full
participation) and efficient SRM excluding country i (y-axes). The changes are derived
under the climate- and economic-background conditions in SSP5 under the IIASA
growth projections for the year 2050. In addition, the figure shows the cost for the
remaining N-1 countries if country i is included, which is equal to the Vickrey-Clarke-
Groves (VCG) tax. The orange dots indicate the net change in GVA caused by payment
of the VCG tax.
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among the C countries). Information about the distribution of countries
for all SSPs under the two growth projections across the different incen-
tive areas can be found in Table D.1 in Appendix D.
3.3. Participation gains in a global SRM agreement

Even climate-change winners have strong incentives to join a global
agreement preventing exaggerated deployment of SRM. Fig. 5 shows
the country-specific gains from participating in a global agreement on
SRM for climate and economic background conditions as projected in
SSP5 under IIASA growth assumptions for the year 2050. The x-axis
shows the absolute change in GVA between globally efficient SRM de-
ployment and no SRM deployment. The information is the same as
with the bubble sizes in Fig. 4. The y-axis shows the absolute change
in GVA between globally efficient SRM deployment and efficient SRM de-
ployment for the remaining N − 1 countries if the effect of SRM on
country i’s GVA is ignored. If country i’s interests are not considered,
the resulting efficient level of SRM deployment is even further away
from what country i considers optimal. In general, the effect scales
with the strength of the country-specific interests. For example, if
Canada stays outside the global agreement, the remaining countries
would decide on a higher level of SRM than when Canada is included.
Although Canada already loses if the globally efficient SRM level is de-
ployed, it would lose even more if the effect of SRM on its GVA were ig-
nored. If India stayed outside the global agreement, the remaining
countries would decide on a lower level of SRM compared to full partic-
ipation, implying that India would gain less compared to the situation
where their desire for cooling the planetwere taken into account. Coun-
tries located close to the origin in Fig. 4 have only small participation
gains as their marginal gain or loss from SRM deployment is too small
to change the optimal global level significantly. Accordingly, they have
low (but strictly positive) values on the y-axis in Fig. 5.

Including country i and implementing the efficient level of
SRM under full participation, R ∗, instead of the efficient level of
SRM for the N−1 countries, R∗

∖i, comes at a cost:
∑k≠iGDPk R∗

∖ið Þ−∑k≠iGDPk R∗ð Þ þ C R∗ð Þ−C R∗
∖i

� �
≥0, which is strictly

positive if R∗≠R∗
∖i. The vertical grey bars in Fig. 5 display the costs
resulting from including country i’s preferences in the decision about
the global level of SRM deployment for the remaining N− 1 countries.
The costs correspond to the payments under a Vickrey-Clarke-Groves
(VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves and Loeb,
1975). Here our calculation of the lump-sum charge component is
based on theVickrey specification,which, in contrast to the Clarke spec-
ification, includes the full change in theoperational cost (which increases
or reduces the charge in the case of R∗ > R∗

∖i and R∗<R∗
∖i, respectively)

(Loeb, 1977). A VCG mechanism prompts truthful revelation of a
country's preferences in dominant strategies (Green and Laffont, 1977),
whichis importantwhentakingintoaccountuncertaintyabout the(pos-
sibly country-specific)optimalclimate, implyingthat theoptimal levelof
SRMcanbeconsideredprivate informationoftherespectivecountry.The
orange dots at the lower endof each bar indicate thenet gains of country
i,whichare realizedbyparticipating in theglobal agreement if theyhave
topay thecost they induce for theN−1countries. Country i’s grossgains
exceed the costs (induced for the N− 1 countries) if R∗≠R∗

∖i, implying
that the incentives for joining the global agreement still exist (if
R∗ ¼ R∗

i, the gains and costs would be zero). If countries decide on the
global level of SRM deployment under a VCG mechanism, climate-
change winners (countries in the negative domain of the x-axes)
would actually have an incentive to collude, submitting demands such
that R∗ ¼ R∗

i ¼ R∗
j ¼ 0 (e.g., country i and j collude and neither of them

are pivotal). Note that collusionwouldbeharder to coordinate if counter
climate engineering (i.e., R< 0)were possible.

Green and Laffont (1977) show that a Grovesmechanismwith dom-
inant strategies cannot achieve budget balance, implying that even
though themechanism ensures the provision of an efficient level of the
public good (i.e. SRM), it is not pareto-optimal. To deal with the
budget-balance problem one can apply the Bailey (1997) redistribution
rule, which distributes a share of the hypothetical Vickrey or Clarke tax
surplus that would be obtained if country iwere to abstain. Accordingly,
the truth-telling incentives for country i are not affected. However, the
redistribution rule merely mitigates the budget-balance problem and
onlyachievesbudgetbalancebychance(TidemanandPlassmann,2017).

It shouldbenotedthat thechanges inGVAdisplayedinFig.4andFig.5
can be quite large for some countries. These results, however, are easy to
reconcile as countries will have experienced substantial growth in GVA
(in nominal terms) by the year 2050. Still, India for example is estimated
to gain about 25% inGVA in the year 2050 if the globally efficient level of
SRMis implementedasopposed tonoSRMdeployment. Clearly, these in-
stantaneous changes inGVA levels appear unlikely and canbe explained
by the limitations of the cross-section approach,which potentially over-
estimates the magnitude of climate impact on economic output. Also,
they indicate the limitations of the static decision framework, again as-
suming the immediate implementation of the globally efficient level of
SRM. The associated rapid change in temperature and precipitation
would cause (economic) cost, suggesting that a globally efficient SRM
level would in fact be best approached by a smooth and gradually in-
creasing deployment scenario (Keith andMacMartin, 2015).
3.4. Implications for coalition formation

Outside an international agreement, the group of countries A and in
particular A1 (see Fig. 4) have a strong incentive to exaggerate the use of
SRM. However, their gains would not be sufficient to compensate the
remaining countries. Fig. 6 shows the GVA gains and losses of country
groups with increasing coalition sizes for climate and economic-
background conditions as projected in SSP5 under IIASA growth as-
sumptions in the year 2050. We have not modeled the coalition-
formation process, but simply assume that the formof the SRMcoalition
corresponds to the country groups identified in Fig. 4 (ranging from A1
to C), in the order of their economic interest in cooling the planet. Con-
sequently, thefirst coalitionwe consider contains only A1 countries, the
second coalition also contains A2 countries (A1-A2), the third coalition



Fig. 6. Coalition gains and losses in 2050 and 2060. The figure displays, for coalitions of
increasing size, the GVA gains and losses for the different country groups if the coalition
determines the global level of SRM deployment by taking only the preferences of
coalition members into account. The black line indicates the aggregated change in GVA
of all countries. The changes are derived under climate and economic-background
conditions as given in SSP5 under the IIASA growth projections for the year2050.
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also A3 countries (A1-A3) and so on until we end up with the grand co-
alition (A1-C). In each case, the level of SRM deployment is assumed to
maximize the aggregate GVA of the coalition members.

Fig. 6 emphasizes the incentives of A1 countries to free-drive. Their
gains from exclusivity are large because they can choose a much higher
level of SRM deployment on their own. However, while the rest of the A
countries (in particular the A4 countries) benefit from free-riding on
SRM deployment, from the perspective of the rest of the world SRM is
exaggerated. In aggregated terms, the second effect dominates (SRM is
exaggerated) and global change in GVA is negative. This situation re-
mains similar for coalitions of increasing size up to the grand coalition
in 2050. Even though participation of the B1 and B2 countries results
in a significant reduction of the SRM level chosen by the coalition, the
weight of the B1 and B2 countries in the coalition is not sufficient to
bring SRM deployment to a level where they would profit. Accordingly,
the B countries benefit from inviting C countries to join, thus preventing
them from losing under SRM deployment. On the other hand, assuming
that the A4 countries were not part of the coalition (i.e. only A1, B1, B2,
and C countries), the weighting of economic interests in and against
SRM deployment would change in such a way that the coalition
would decide to forgo SRM deployment. Consequently, in line with
the results from Fig. 5, there would be no incentive for the A4 countries
to free-ride (even though we classified them as free-riders in
Section 3.2). The A1 countries would have an incentive to keep the A4
countries in the coalition to answer the question how much SRM to
do more in their favor. Accordingly, these considerations suggest that
the grand coalitionwould appear to be a plausible solution for a cooper-
ative SRM coalition game with externalities.
4. Discussion and conclusion

The combination of three effects determines climate engineering in-
centives for countrieswithdifferent preferences regarding climate condi-
tions: First, global climate engineering bymeans of (stratospheric) solar
radiation management (SRM) affects regional (grid-cell) temperature
and precipitation in a regionally uneven way. Second, temperature and
precipitation affect Gross Value Added (GVA) at the grid-cell level, and
theeffect isdescribedforbothbyan invertedU-shaperelationship, imply-
ing that an optimal level of temperature and precipitationwith respect to
output does exist. Third, different assumptions about economic growth
and its distribution over regions, as projected by the Shared Socioeco-
nomic Pathways (SSPs), affect—through changing country shares in
global GVA—the efficient level of SRM deployment.Whereas all three ef-
fects are features of the data, their quantitative extent is uncertain. In ad-
dition, other effects like changing patterns of international trade,
intangible costs arising fromecosystemdegradationor speciesextinction,
are important aswell, but not included in our analysis which is restricted
to considerations of economic efficiency. Our results should thus be
interpretedasaqualitative illustration, ratherthandefinitequantification,
of the driving factors involved in country-specific incentives for SRM.

We find that for the globally efficient level of SRM the decisive influ-
ence stems from the region-specific economic growth projections em-
bodied in the SSPs rather than from the regional patterns and impacts
of climate change. The efficient level of SRM is proportional to the
GVA-weighted mean temperature increase, which varies considerably
according to the different growth projections (for equal climate-
background conditions). However, SRM deployment to achieve the
GVA-maximizing temperature is limited by the influence of SRMonpre-
cipitation. At somepoint, the benefits ofmovingGVA-weighted temper-
ature closer to the temperature optimum are dominated by the losses
from moving GVA-weighted precipitation further away from the pre-
cipitation optimum. Without any influence of SRM on precipitation,
we observe a stronger reduction in global mean temperatures by SRM
to maximize GVA. In reality, countries can be expected to take further
climate variables into account—implying that their preferences for
SRMdeployment are probablymore nuanced than in our simplemodel.

Yet, ourmodel is rich enough to demonstrate that the heterogeneous
economic interests concerning SRM deployment under future climate
conditions are more nuanced than the mere distinction between
climate-change losers and winners. For example, we identify countries
with current climate conditions that are quite close to the economically
optimal climate which might experience negative economic impacts
from climate change, but would still face a situationwhere SRM deploy-
ment isoverdone(fromtheirperspective)under aglobal efficient regime.

We further find that countries have a strong incentive to be part of a
global agreement on SRM in order to have their interests reflected in the
decision about the globally efficient level of SRMdeployment. Countries
with a strong economic interest in cooling (high level of SRM deploy-
ment, e.g. India) and countries with a preference for no cooling (no
SRM deployment, e.g. Canada) gain most from being part of such an
agreement, even if they would have to pay the full cost of the inclusion
of their preferences in the derivation of the efficient level in the frame-
work of a Vickrey-Clark-Groves (VCG) mechanism. The impact of re-
gional climate on economic output is probably not restricted to the
influence of mean temperature and precipitation levels. In cases
where (country-specific) optimal levels of the different climate vari-
ables are not only uncertain, but also (partly) private information, the
VCG mechanism would be an instrument for achieving a truthful reve-
lation of countries' preferences.

Thoughwehavenotmodeled the coalition formation process explic-
itly, our results suggest that the grand coalition is a likely outcome. Yi
(1997) examines coalition formation under the possibility of a negative
and positive externality on outside coalitions, showing that under a neg-
ative externality the grand coalition is an equilibrium outcome (under
openmembership and other reasonable assumptions regarding the par-
tition function), whereas under a positive externality the grand coali-
tion is not a stable outcome due to free-riding. For several countries,
SRM deployment above a certain level, which may be zero SRM, is a
bad, and they have an incentive to join the coalition to prevent too
much SRM from being applied. On the other hand, free-riding provides
only small gains in comparison with having own preferences included
in the decision about the global thermostat.

Overall, it should be noted that for climate background conditions
projected for 2050 by global climatemodels and formost economic sce-
narios, the efficient SRM deployment levels imply an ‘overcooling’,
which means SRM is deployed to an extent that the global mean
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temperature is reduced below its average over the period between 1975
and 2005. This is partly driven by the economic convergence inherent in
the SSPs, implying that currently rather poor but warm countries will
gain relativelymoreweight in the decision on the globally efficient ther-
mostat in future. However, it should be noted that we derive efficient
SRM levels under the assumptions (a) that the optimal climate (in our
analysis, the mean temperature and precipitation) is constant, and
(b)thateconomicgrowthisnotaffectedbyclimatechange.Webrieflydis-
cuss the implications of relaxing these assumptions in turn. (a)Once rela-
tively poor andwarm countries start developing, wemay expect a shift
from agriculture tomanufacturing and the service sectors and hence re-
duced vulnerability toweather and climate change. At the same time, de-
velopment increasesadaptivecapacity(YoheandTol,2002;Adger,2006).
One could argue that by these effects (already implicitly captured by the
growth convergence assumption in the SSPs) not only theweighted tem-
peraturebutalsotheoptimal temperaturewill rise, implyingthat thetem-
perature gap (the difference between actual and optimal temperature)
will increase at a lower rate thanunder the assumptionof a constant opti-
mal temperature. In turn, efficient SRM levels would decrease. (b) If we
allowedclimatechangetoaffecteconomicgrowth,saythroughproductiv-
ity, investment,andtechnologicalprogress,wecouldprobablynotruleout
a scenario inwhich hot countries grow at a slower rate (e.g., Moyer et al.,
2014; Dietz and Stern, 2015; Moore andDiaz, 2015) andmight even be
trapped inpoverty (Tol, 2018).Under theassumptionthatclimatechange
negatively (positively) affects growth rates in warm (cold) countries,
globalwarming has less of an upward effect onGVA-weighted tempera-
ture than onmean temperature– the former could even fall. Accordingly,
in a static decision framework, the efficient level of SRM could drop be-
cause the relative contributionofwarmcountries to global economic out-
put decreases, while in a dynamic framework anticipating the reduced
growth effects, the efficient level of SRMmight rise. These considerations
point to limitations of a static framework. Future research should extend
the present analysis to a dynamic analysis including also emission abate-
ment as a further control variable. Furthermore, distributional concerns
are critical for assessing the consequences of climate change and climate
policies.Thecommonapproachistomaximizeaglobalsocialwelfarefunc-
tion that embodies inequity aversionwith respect to consumption possi-
bilities of different countries. When determining the welfare-optimal
climate regime, poor countries thus get a higher relatively weight than
their share in global GVA (Tol, 2010). As the poor countries tend to face
warmer climate conditions, for the scenarios with low growth conver-
gencewewould expect that the welfare-optimal temperature increase
would be lower than the globally efficient temperature increase. Overall,
wewould thus expect a smaller spread in the welfare-optimal levels of
SRMdeployment across scenarios. However, we restricted our analysis
toconsiderationsofeconomicefficiency.Weseethisasafirststeptowards
characterizing a globalwelfare-optimum,which should complement the
measures to achievea global efficient climatebypolicies that (re-)distrib-
uteconsumptionpossibilitiesacross (andperhapswithin)countries, such
as theUSD100 billion goal of climatefinance included in the Paris agree-
ment. Such considerations of international politics go beyond the present
paper.
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Appendix A. Estimating Tj(R,S) and Pj(R,S)
To estimate the influence of S and R by using the HadCM3L general circulationmodel, we relied on a standard emissions scenario (SRES A1B) to rep-
resent future trajectories for GHG concentrations and tropospheric aerosol emissions, and consideredmultiple trajectories for stratospheric SRM. The
changes were computed against a 2005 observational baseline (to be in line with the temperature and precipitation data in Nordhaus, 2006). The
analysis uses then six decades of output from three SRM scenarios. Each scenario is represented by the decadal mean values from three initial con-
dition ensemblemembers. Simulation outputwas regridded to a 1 degree resolution to correspondwith the G-Econ dataset.We fitted a linearmodel
to predict changes in temperature and precipitation as a function of greenhouse gas forcing (inW/m2), tropospheric aerosol forcing (inW/m2), and
solar radiation management (in units of stratospheric aerosol optical depth*1000) at each grid cell.

Appendix B. Estimating GCP(Tj,Pj)
We estimated changes in GCP as function of grid cell temperature and precipitation with a cross-section estimation, using average grid-cell temper-
ature and precipitation (over the period 1975until 2005) as explanatory variables. The data, including also other geographic control variables like the
distance to the coast or elevation, are obtained from theG-Econ database (Nordhaus, 2006). The 1-degree latitude by1-degree longitude grid cells are
assigned to countries proportionally to the area of the country in the grid-cell, yielding a total number of 16,082 GCP observations. Accordingly, fol-
lowing Nordhaus (2006) we estimated

ln GCPij
� � ¼ ao þ a1T j þ a2T j

2 þ a3P j þ a4P j
2 þ ci þ

X7
k¼5

akGkij þ
X13
k¼8

akDkj þ ϵij ðB:1Þ

where GCPij is gross cell product in 2005 USD (at market exchange rates), ci captures country fixed effects, Gk are two geographic variables (account-
ing for elevation and area of the grid cell in country i),Dk are six dummyvariables (accounting for being in the high latitudes, for different distances to
the coast (three dummy variables), and accounting for extreme rich cells (two dummy variables), and ϵij is the error term.We estimated eq. (B.1) by
weighted least squares using the inverse standard deviation of gross cell product as weights. We relied on Newey-West-based determination for the
coefficient covariance matrix. The regression results are listed below. The regression results of the alternative specifications can be found in the SI in
the file “Alternative_Specifications.xlsx”.
Dependent Variable: LN_GVA_MIO
Method: Least Squares
Date: 05/07/20 Time: 01:14
Sample: 118842 IF D_ZEROGRID = 0
Included observations: 16082
Weighting series: LN_GVA_MIO
Weight type: Inverse standard deviation (EViews default scaling)
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 13.0000)
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Variable
C
T
T
P
P
L_
D
D
D
D
E
D
D
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Coefficient
 Std. error
 t-Statistic
 Prob.
−1.841717
 0.390600
 −4.715100
 0.0000

EMP
 0.239883
 0.010856
 22.09618
 0.0000

EMP_2
 −0.008402
 0.000437
 −19.21480
 0.0000

REC
 0.001045
 0.000157
 6.659554
 0.0000

REC_2
 −2.91E-07
 4.92E-08
 −5.915697
 0.0000

AREA
 0.828587
 0.035449
 23.37383
 0.0000

_SHORT
 0.416191
 0.066168
 6.289946
 0.0000

_MED
 0.368799
 0.081012
 4.552375
 0.0000

_LONG
 0.390979
 0.060201
 6.494508
 0.0000

_LAT
 −0.281030
 0.137875
 −2.038293
 0.0415

LEV_SRTM_PRED
 −0.000356
 4.97E-05
 −7.162032
 0.0000

_RICH_1
 2.318679
 0.239533
 9.680000
 0.0000

_RICH_2
 1.051876
 0.304123
 3.458723
 0.0005

D_ALBANIA
 −1.633659
 0.375165
 −4.354506
 0.0000

D_ALGERIA
 −1.585341
 0.496443
 −3.193401
 0.0014

D_ANGOLA
 −2.972047
 0.474531
 −6.263120
 0.0000

D_ARGENTINA
 −1.892056
 0.354914
 −5.331023
 0.0000

D_ARMENIA
 −0.081149
 0.378279
 −0.214523
 0.8301

D_AUSTRALIA
 −2.084722
 0.509631
 −4.090648
 0.0000

D_AUSTRIA
 −0.696083
 0.383690
 −1.814180
 0.0697

D_AZERBAIJAN
 −0.349761
 0.280336
 −1.247650
 0.2122

D_BAHAMAS
 −0.229478
 0.690727
 −0.332227
 0.7397

D_BANGLADESH
 0.647664
 0.320075
 2.023479
 0.0430

D_BELARUS
 −0.758523
 0.341590
 −2.220564
 0.0264

D_BELGIUM
 −1.127613
 0.287567
 −3.921213
 0.0001

D_BELIZE
 −2.255010
 0.283910
 −7.942691
 0.0000

D_BENIN
 −1.676492
 0.383326
 −4.373541
 0.0000

D_BHUTAN
 −1.436489
 0.297820
 −4.823346
 0.0000

D_BOLIVIA
 −2.325931
 0.611592
 −3.803074
 0.0001

D_BOSNIA_HERZEG
 −1.340540
 0.309590
 −4.330046
 0.0000

D_BOTSWANA
 −2.027444
 0.834717
 −2.428899
 0.0152

D_BRAZIL
 −1.470200
 0.380735
 −3.861478
 0.0001

D_BULGARIA
 −3.964291
 0.375307
 −10.56280
 0.0000

D_BURKINA_FASO
 −1.534246
 0.431049
 −3.559328
 0.0004

D_BURUNDI
 −1.665437
 0.299215
 −5.566018
 0.0000

D_CAMBODIA
 −1.530296
 0.572971
 −2.670808
 0.0076

D_CAMEROON
 −1.850556
 0.493491
 −3.749926
 0.0002

D_CAPEVERDE
 −1.068623
 0.325609
 −3.281922
 0.0010

D_CENTRALAFR.
 −4.119243
 0.504076
 −8.171864
 0.0000

D_CHAD
 −2.351014
 0.535274
 −4.392170
 0.0000

D_CHILE
 −1.474337
 0.510939
 −2.885543
 0.0039

D_CHINA
 −0.203954
 0.283520
 −0.719361
 0.4719

D_COLOMBIA
 −0.423549
 0.516416
 −0.820169
 0.4121

D_CONGO
 −2.712376
 0.721505
 −3.759329
 0.0002

D_COSTARICA
 0.584440
 0.440306
 1.327348
 0.1844

D_COTE_IVOIRE
 −1.599718
 0.363496
 −4.400925
 0.0000

D_CROATIA
 −3.305464
 0.417803
 −7.911542
 0.0000

D_CYPRUS
 −4.118362
 0.448783
 −9.176725
 0.0000

D_CZECHREPUBLIC
 −1.611206
 0.370417
 −4.349714
 0.0000

D_DEM_REP_CONGO
 −4.068576
 0.440922
 −9.227431
 0.0000

D_DENMARK
 −1.563671
 0.371893
 −4.204630
 0.0000

D_DOMREPUBLIC
 0.168531
 0.342454
 0.492128
 0.6226

D_ECUADOR
 −1.171373
 0.425199
 −2.754883
 0.0059

D_EGYPT
 −0.422010
 0.853523
 −0.494433
 0.6210

D_EL_SALVADOR
 0.186310
 0.288474
 0.645846
 0.5184

D_EQUATORIALG.
 −0.758002
 0.278584
 −2.720906
 0.0065

D_ERITREA
 −3.130401
 0.358786
 −8.724987
 0.0000

D_ESTONIA
 −3.993162
 0.433346
 −9.214719
 0.0000

D_ETHIOPIA
 −2.471181
 0.402152
 −6.144901
 0.0000

D_FIJI
 −1.539201
 0.334433
 −4.602415
 0.0000

D_FINLAND
 −2.158315
 0.389933
 −5.535094
 0.0000

D_FRANCE
 −1.582738
 0.309368
 −5.116043
 0.0000

D_GABON
 −2.664807
 0.466485
 −5.712524
 0.0000

D_GEORGIA
 −1.460554
 0.319798
 −4.567117
 0.0000

D_GERMANY
 −0.538877
 0.312337
 −1.725306
 0.0845

D_GHANA
 −1.770236
 0.363843
 −4.865379
 0.0000

D_GREECE
 −3.076933
 0.405364
 −7.590538
 0.0000

D_GREENLAND
 0.139522
 0.409147
 0.341007
 0.7331

D_GUATEMALA
 −0.506322
 0.558765
 −0.906145
 0.3649

D_GUINEA
 −2.256891
 0.331807
 −6.801829
 0.0000

D_GUINEA_BISSAU
 −3.882421
 0.309286
 −12.55287
 0.0000

D_GUYANA
 −3.660075
 0.516852
 −7.081470
 0.0000

D_HAITI
 −1.343567
 0.322889
 −4.161084
 0.0000

D_HONDURAS
 −1.257864
 0.396700
 −3.170818
 0.0015

D_HUNGARY
 −2.244890
 0.356289
 −6.300759
 0.0000

D_ICELAND
 −1.173625
 0.687454
 −1.707204
 0.0878
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Variable
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Coefficient
 Std. error
 t-Statistic
 Prob.
D_INDIA
 0.458104
 0.306463
 1.494808
 0.1350

D_INDONESIA
 −1.336379
 0.434680
 −3.074396
 0.0021

D_IRAN
 −0.760362
 0.404033
 −1.881931
 0.0599

D_IRAQ
 −1.022732
 0.468675
 −2.182179
 0.0291

D_IRELAND
 −2.811123
 0.449243
 −6.257467
 0.0000

D_ISLAND
 2.887529
 0.331744
 8.704081
 0.0000

D_ISRAEL
 2.259523
 0.418955
 5.393229
 0.0000

D_ITALY
 −1.466456
 0.340932
 −4.301311
 0.0000

D_JAPAN
 1.189948
 0.372918
 3.190910
 0.0014

D_JORDAN
 −0.592814
 0.689599
 −0.859650
 0.3900

D_KAZAKHSTAN
 −2.254434
 0.398415
 −5.658505
 0.0000

D_KENYA
 −1.729952
 0.747058
 −2.315686
 0.0206

D_KUWAIT
 2.433544
 0.387962
 6.272643
 0.0000

D_KYRGYZTAN
 −1.440819
 0.322482
 −4.467901
 0.0000

D_LAOS
 −2.771702
 0.481289
 −5.758908
 0.0000

D_LATVIA
 −3.981110
 0.394225
 −10.09858
 0.0000

D_LESOTHO
 −1.748061
 0.324927
 −5.379862
 0.0000

D_LIBERIA
 −3.798255
 0.361327
 −10.51197
 0.0000

D_LIBYA
 −2.030060
 0.625875
 −3.243553
 0.0012

D_LITHUANIA
 −3.251249
 0.371108
 −8.760918
 0.0000

D_MACEDONIA
 −0.741659
 0.314671
 −2.356936
 0.0184

D_MADAGASCAR
 −3.860689
 0.392921
 −9.825621
 0.0000

D_MALAWI
 −2.074198
 0.386253
 −5.370054
 0.0000

D_MALAYSIA
 0.131321
 0.512809
 0.256081
 0.7979

D_MALI
 −2.115542
 0.417609
 −5.065844
 0.0000

D_MAURITANIA
 −2.540520
 0.461219
 −5.508274
 0.0000

D_MEXICO
 −0.260763
 0.402929
 −0.647169
 0.5175

D_MOLDOVA
 −0.495433
 0.440451
 −1.124830
 0.2607

D_MONGOLIA
 −2.490068
 0.526764
 −4.727107
 0.0000

D_MOROCCO
 −1.382413
 0.495140
 −2.791965
 0.0052

D_MOZAMBIQUE
 −3.260425
 0.369804
 −8.816621
 0.0000

D_NAMIBIA
 −3.043398
 0.649026
 −4.689176
 0.0000

D_NEPAL
 −1.085140
 0.310456
 −3.495307
 0.0005

D_NETHERLANDS
 −0.817456
 0.262170
 −3.118041
 0.0018

D_NEWCALEDONIA
 −1.908516
 0.306133
 −6.234261
 0.0000

D_NEWZEALAND
 −1.739283
 0.630963
 −2.756555
 0.0058

D_NICARAGUA
 −1.625565
 0.539911
 −3.010801
 0.0026

D_NIGER
 −1.983234
 0.469473
 −4.224386
 0.0000

D_NIGERIA
 −0.804164
 0.418204
 −1.922901
 0.0545

D_NORWAY
 0.322062
 0.410422
 0.784709
 0.4326

D_OMAN
 −0.359098
 0.642501
 −0.558907
 0.5762

D_PAKISTAN
 0.163277
 0.470141
 0.347294
 0.7284

D_PANAMA
 −0.820247
 0.626093
 −1.310103
 0.1902

D_PAPUANEWGUINEA
 −3.221003
 0.425423
 −7.571297
 0.0000

D_PARAGUAY
 −2.159504
 0.628576
 −3.435548
 0.0006

D_PERU
 −1.307790
 0.501214
 −2.609244
 0.0091

D_PHILIPPINES
 −0.559175
 0.425971
 −1.312706
 0.1893

D_POLAND
 −2.159082
 0.423831
 −5.094204
 0.0000

D_PORTUGAL
 −2.693657
 0.434890
 −6.193879
 0.0000

D_QATAR
 1.548176
 0.553747
 2.795820
 0.0052

D_ROMANIA
 −3.133556
 0.317327
 −9.874845
 0.0000

D_RUSSIA
 −0.876181
 0.267507
 −3.275356
 0.0011

D_SAUDIARABIA
 0.278506
 0.384951
 0.723484
 0.4694

D_SENEGAL
 −1.513896
 0.447052
 −3.386400
 0.0007

D_SERBIA_MONT.
 −1.550141
 0.317573
 −4.881205
 0.0000

D_SIERRA_LEONE
 −2.272696
 0.395657
 −5.744100
 0.0000

D_SLOVAKIA
 −1.826383
 0.285599
 −6.394913
 0.0000

D_SLOVENIA
 −2.432441
 0.298321
 −8.153758
 0.0000

D_SOLOMON_ISLANDS
 −2.624654
 0.327619
 −8.011303
 0.0000

D_SOUTH_AFRICA
 −1.089800
 0.595662
 −1.829562
 0.0673

D_SOUTH_KOREA
 0.836555
 0.314541
 2.659609
 0.0078

D_SPAIN
 −2.146635
 0.329763
 −6.509619
 0.0000

D_SRI_LANKA
 0.237355
 0.397236
 0.597516
 0.5502

D_SUDAN
 −2.071293
 0.504219
 −4.107922
 0.0000

D_SURINAME
 −3.138901
 0.684893
 −4.583051
 0.0000

D_SWAZILAND
 −1.169951
 0.277760
 −4.212100
 0.0000

D_SWEDEN
 −2.323884
 0.348342
 −6.671273
 0.0000

D_SWITZERLAND
 3.228980
 0.299021
 10.79849
 0.0000

D_SYRIA
 −0.579216
 0.456381
 −1.269150
 0.2044

D_TAJIKISTAN
 −1.768619
 0.268345
 −6.590851
 0.0000

D_TANZANIA
 −2.395148
 0.333397
 −7.184065
 0.0000

D_THAILAND
 0.065956
 0.432845
 0.152378
 0.8789

D_TOGO
 −1.755227
 0.310842
 −5.646681
 0.0000

D_TUNISIA
 −0.945310
 0.409231
 −2.309969
 0.0209

D_TURKEY
 0.000344
 0.332621
 0.001034
 0.9992
(continued on next page)
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continued)
Variable
C
C
C
C
C
C
C
C
C
C
C
C
C

R
A
S
S
Lo
F-
P

R
A
S

able B.T1
ifferences in optimal temperature and precipitation in

Dependent variable Specification Optimal D tem

ln(GVA) w ln(area)
w D_Lat

1.49[0.47]

w ln(area)
w/o D_Lat

1.59[0.45]

ln(GVA/area) w D_Lat 1.49[1.00]
w/o D_Lat 1.70[0.98]

⁎ Average over the 50 scenarios.

able C.T1
fficient SRM levels in W/m2 in 2050 for operational co

Climate/economy SSP1

O-SSP1 6.04
O-SSP2 3.90
O-SSP3 3.21
O-SSP4 1.64
O-SSP5 5.87
I-SSP1 3.14
I-SSP2 2.46
I-SSP3 3.68
I-SSP4 0.09
I-SSP5 2.49
Mean[Std.] 3.25[1.71]
Coefficient
crease across the different specifications

p in °C Optimal D precip mm/m2/yea

979 [58.42]

975 [56.31]

1003 [127.4]
981[121.58]

st of USD 45 bn(USD/yr)/(W/m2) where

SSP2 SSP3

6.14 6.38
4.01 4.25
3.32 3.56
1.74 1.99
5.97 6.21
3.25 3.50
2.57 2.82
3.79 4.03
0.19 0.44
2.60 2.84
3.36[1.71] 3.60[
Std. error
.

r Opt SRM (average⁎) W/m2 D we
wo S

3.72[1.78] 2.53

3.27[1.80] 2.59

3.91[1.77] 2.54
3.40[1.78] 2.49

O and I indicate the OECD and IIASA g

SSP4

6.52
4.39
3.70
2.12
6.35
3.62
2.94
4.16
0.57
2.97

1.70] 3.73[1.70]
t-Statistic
ighted T in SSP5
RM in °C

Standard error of est

283.97

287.21

306.10
308.39

rowth projections, respectively.

SSP5 Mea

7.44 6.50
5.33 4.38
4.65 3.69
3.07 2.11
7.27 6.33
4.54 3.61
3.86 2.93
5.08 4.15
1.49 0.56
3.89 2.96
4.66[1.70] 3.72
Prob.
D_TURKMENISTAN
 −2.516775
 0.346579
 −7.261772
 0.0000

D_UGANDA
 −1.168960
 0.345682
 −3.381609
 0.0007

D_UKRAINE
 −1.383597
 0.367739
 −3.762442
 0.0002

D_UNITEDARAB.
 2.122035
 0.397342
 5.340575
 0.0000

D_UNITEDKINGDOM
 −1.832784
 0.487462
 −3.759850
 0.0002

D_UNITEDSTATES
 0.753746
 0.291669
 2.584256
 0.0098

D_URUGUAY
 −1.984060
 0.390994
 −5.074399
 0.0000

D_UZBEKISTAN
 −1.084730
 0.584741
 −1.855061
 0.0636

D_VANUATU
 −2.863603
 0.303836
 −9.424840
 0.0000

D_VENEZUELA
 −0.419236
 0.595568
 −0.703927
 0.4815

D_VIETNAM
 −1.194809
 0.473161
 −2.525163
 0.0116

D_YEMEN
 −1.327415
 0.685937
 −1.935187
 0.0530

D_ZAMBIA
 −3.328380
 0.475503
 −6.999699
 0.0000

D_ZIMBABWE
 −2.303941
 0.398012
 −5.788627
 0.0000
C
Weighted statistics
-squared
 0.507647
 Mean dependent var
 6.018723

djusted R-squared
 0.502574
 S.D. dependent var
 5.926850

.E. of regression
 1.522910
 Akaike info criterion
 3.689331

um squared resid
 36,915.60
 Schwarz criterion
 3.768183

g likelihood
 −29,500.91
 Hannan-Quinn criter.
 3.715404

statistic
 100.0696
 Durbin-Watson stat
 0.679751

rob(F-statistic)
 0.000000
 Weighted mean dep.
 6.277848

ald F-statistic
 94.45396
 Prob(Wald F-statistic)
 0.000000
W
Unweighted statistics
-squared
 0.476057
 Mean dependent var
 4.559587

djusted R-squared
 0.470659
 S.D. dependent var
 2.579433

.E. of regression
 1.876688
 Sum squared resid
 56,059.01

urbin-Watson stat
 0.566728
D
Table B.T1 below shows the differences across different specificationswith respect to the inclusion of cell area and the inclusion of a dummy variable
imation
for latitude.

Appendix C. Efficient level of SRM
Table C.T1 and C.T2 show the efficient level of SRM in 2050 for the different combinations of growth projections and climate projections across the
SSP in 2050 for an operational cost of SRM of USD 45 bn(USD/yr)/(W/m2) and 5 bn(USD/yr)/(W/m2), respectively.
n [Std.]

[0.50]
[0.51]
[0.51]
[0.51]
[0.50]
[0.49]
[0.50]
[0.49]
[0.50]
[0.50]
[1.78]



Table C.T2
Efficient SRM levels in W/m2 in 2050 for operational cost of USD 5 bn(USD/yr)/(W/m2) where O and I indicate the OECD and IIASA growth projections, respectively.

Climate/economy SSP1 SSP2 SSP3 SSP4 SSP5 Mean[Std.]

O-SSP1 6.38 6.48 6.71 6.85 7.77 6.84[0.49]
O-SSP2 4.26 4.37 4.61 4.75 5.69 4.74[0.51]
O-SSP3 3.66 3.76 4.01 4.14 5.09 4.13[0.51]
O-SSP4 1.92 2.03 2.27 2.41 3.36 2.40[0.51]
O-SSP5 6.14 6.24 6.48 6.61 7.54 6.60[0.50]
I-SSP1 3.44 3.55 3.79 3.92 4.84 3.91[0.49]
I-SSP2 2.77 2.87 3.12 3.25 4.17 3.24[0.50]
I-SSP3 4.12 4.23 4.47 4.60 5.52 4.59[0.49]
I-SSP4 0.37 0.47 0.72 0.85 1.78 0.84[0.50]
I-SSP5 2.72 2.83 3.08 3.20 4.12 3.19[0.50]
Mean[Std.] 3.58[1.72] 3.68[1.72] 3.93[1.72] 4.06[1.72] 4.99[1.72] 4.05[1.79]
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Table C.T3 shows the efficient level of SRM for the different economic scenarios in 2050 from the SSPs (i.e. for both growth assumptions) for a climate
defined by the SSP5 baseline scenario. The latter implies that the unweighted temperature increase is equal across all scenarios. Table C.3 also dis-
plays the corresponding changes in mean temperature change and GVA weighted mean temperature change with and without SRM deployment.
Table C.T3
Weighted and unweighted temperature change without and with efficient SRM for the different economic scenarios in 2050 for climate background conditions as given by SSP5.

Economic scenario dwT SRM = 0 in °C dwT SRM* in °C dT SRM = 0 in °C dT SRM* in °C SRM* (W/m2)

IIASA-SSP4 1.99 1.67 2.10 1.26 1.49
OECD-SSP4 2.26 1.72 2.10 0.50 3.07
IIASA-SSP5 2.42 1.80 2.10 0.11 3.89
IIASA-SSP2 2.43 1.81 2.10 0.12 3.86
OECD-SSP3 2.48 1.78 2.10 −0.26 4.65
IIASA-SSP1 2.53 1.84 2.10 −0.20 4.54
OECD-SSP2 2.58 1.82 2.10 −0.58 5.33
IIASA-SSP3 2.68 1.92 2.10 −0.46 5.08
OECD-SSP5 2.80 1.89 2.10 −1.52 7.27
OECD-SSP1 2.86 1.90 2.10 −1.60 7.44

Table C.T4
Efficient SRM levels in W/m2 in 2050 for operational cost of USD 45 bn(USD/yr)/(W/m2) and ln(gva) as dependent variable without controlling for high latitudes.

Climate/economy SSP1 SSP2 SSP3 SSP4 SSP5 Mean[Std.]

O-SSP1 5.67 5.77 6.01 6.14 7.07 6.13[0.56]
O-SSP2 3.41 3.52 3.76 3.90 4.85 3.89[0.57]
O-SSP3 2.69 2.79 3.04 3.18 4.13 3.17[0.57]
O-SSP4 1.12 1.23 1.47 1.61 2.56 1.60[0.57]
O-SSP5 5.47 5.58 5.82 5.95 6.88 5.94[0.56]
I-SSP1 2.67 2.77 3.02 3.15 4.07 3.14[0.56]
I-SSP2 1.97 2.08 2.33 2.46 3.38 2.44[0.56]
I-SSP3 3.23 3.34 3.58 3.71 4.63 3.70[0.56]
I-SSP4 0 0 0 0.08 1.00 0.22[0.44]
I-SSP5 1.99 2.10 2.35 2.48 3.40 2.46[0.56]
Mean[Std.] 2.82[1.76 2.92[1.78] 3.14[1.82] 3.27[1.84] 4.20[1.83] 3.27[1.80]

Table C.T5
Efficient SRM levels in W/m2 in 2050 for operational cost of USD 45 bn(USD/yr)/(W/m2) and ln(gva/area) as dependent variable with controlling for high latitudes.

Climate/economy SSP1 SSP2 SSP3 SSP4 SSP5 Mean[Std.]

O-SSP1 6.18 6.28 6.51 6.65 7.56 6.63[0.55]
O-SSP2 4.12 4.23 4.47 4.61 5.54 4.59[0.56]
O-SSP3 3.46 3.57 3.81 3.95 4.90 3.94[0.57]
O-SSP4 1.86 1.97 2.21 2.35 3.29 2.34[0.57]
O-SSP5 5.99 6.10 6.33 6.47 7.38 6.45[0.55]
I-SSP1 3.37 3.48 3.72 3.85 4.76 3.84[0.55]
I-SSP2 2.65 2.75 3.00 3.12 4.04 3.11[0.55]
I-SSP3 3.83 3.93 4.18 4.31 5.22 4.29[0.55]
I-SSP4 0.29 0.39 0.64 0.77 1.69 0.76[0.56]
I-SSP5 2.73 2.83 3.08 3.21 4.12 3.19[0.55]
Mean[Std.] 3.45[1.77] 3.55[1.77] 3.79[1.76] 3.93[1.77] 4.85[1.76] 3.91[1.77]



Table C.T6
Efficient SRM levels in W/m2 in 2050 for operational cost of USD 45 bn(USD/yr)/(W/m2) and ln(gva/area) as dependent variable without controlling for high latitudes.

Climate/economy SSP1 SSP2 SSP3 SSP4 SSP5 Mean[Std.]

O-SSP1 5.72 5.82 6.06 6.19 7.12 6.18[0.56]
O-SSP2 3.58 3.68 3.93 4.06 5.01 4.05[0.57]
O-SSP3 2.90 3.01 3.25 3.39 4.34 3.38[0.57]
O-SSP4 1.35 1.46 1.70 1.84 2.79 1.83[0.57]
O-SSP5 5.54 5.64 5.87 6.01 6.94 6.00[0.56]
I-SSP1 2.77 2.87 3.12 3.25 4.17 3.24[0.55]
I-SSP2 2.11 2.21 2.46 2.59 3.51 2.58[0.56]
I-SSP3 3.37 3.47 3.72 3.84 4.76 3.83[0.55]
I-SSP4 0 0 0.13 0.26 1.19 0.32[0.50]
I-SSP5 2.12 2.23 2.48 2.60 3.52 2.59[0.56]
Mean[Std.] 2.94[1.75] 3.04[1.77] 3.27[1.79] 3.40[1.79] 4.33[1.79] 3.40[1.78]
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Table C.T4 to C.T6 show the efficient levels of SRM show the efficient level of SRM in 2050 for the different combinations of growth projections and
climate projections across the SSP in 2050 for an operational cost of SRM of USD 45 bn(USD/yr)/(W/m2) for ln(gva) as dependent variable without
controlling for latitude and for ln(gva/area) as dependent variable with and without controlling for latitude, respectively.

Appendix D. Distribution of marginal incentives
Table D.1 shows the number of countries in the different incentives areas and the share of global GVA of these countries when the efficient level of
SRM is deployed.
Table D.1
Number of countries and share of GVA across incentive-areas for all SSPs and both growth projections.

A1 A2 A3 A4 B1 B2 C

# % # % # % # % # % # % # %

IIASA growth projections
SSP1 5 12.0 2 0.7 0 0 120 12.0 2 13.5 2 0.5 48 61.3
SSP2 5 11.6 1 0.5 0 0 121 11.7 2 13.4 2 0.5 48 62.4
SSP3 4 12.1 1 0.5 0 0 121 11.2 3 12.4 2 0.8 48 63.0
SSP4 4 18.9 1 0.5 0 0 125 15.5 1 0.0 0 0 48 65.1
SSP5 7 11.3 2 0.6 0 0 118 10.5 2 13.4 6 35.5 44 28.8

OECD growth projections
SSP1 8 13.1 5 1.7 0 0 110 9.5 4 1.7 4 13.1 48 61.0
SSP2 8 11.8 2 0.7 0 0 115 10.8 4 13.8 2 0.3 48 62.6
SSP3 5 9.3 1 0.5 0 0 121 13.5 2 12.8 2 0.3 48 63.7
SSP4 5 9.0 1 0.3 1 12.5 122 13.2 0 0 2 0.3 48 64.8
SSP5 14 13.9 2 0.5 1 0.6 106 7.4 5 3.4 7 48.7 44 25.6
Appendix E. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2020.104852.
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