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Abstract
The planning of health care capacities is in practice constrained by sectoral and regional boundaries and 
it remains difficult to ensure an adequate and even access to health care. Moreover, standard planning 
approaches lack the choice-theoretic grounding necessary for making reliable statements about the demand 
for health care. This paper presents a model based on the idea of gravity in supply and demand linkages 
and designed to overcome such shortcomings. Empirical estimation equations are derived for the size of 
catchment areas, the spatial access to health care and the demand for specialist treatment. The floating 
catchment area (FCA) method commonly used to measure access to care is shown to be a special, yet often 
misleading case. This is demonstrated by the example of Germany, where rural areas are shown to suffer 
from access deficits.
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1 Introduction 
All well-developed health systems use capacity planning to ensure adequate access to care 

and a balanced allocation of resources. Health care capacity planning in its true sense is a 

forecast of a population’s medical needs by geographical region. It aims to provide a basis for 

policy decisions that avoid overuse, underuse and misuse of medical resources (Ono et al., 

2013).  

The medical needs of the population are expressed in the demand from patients, which is in 

part exogenous but also depends on factors that are subjective and susceptible to social 

influence. Capacity planning uses appropriate indicators of population characteristics, such as 

age and gender distribution, to estimate capacity needs (Ono et al., 2013). Yet although in 

reality health care is characterised by a transfer of services between regions and sectors, 

especially between urban and rural areas and between the ambulatory and hospital care 

sectors, capacity planning is almost without exception area- and sector-specific (Ono et al., 

2013). In addition, most planning models take only rudimentary account of demand structures 

with cross-border effects both within and between sectors. Czihal et al. (2012) have shown 

that there are regions of Germany which, as net importers of health services, meet only 39% 

of their local demand. By contrast, net exporters deliver up to 473% of services used locally. 

All large European countries face similar challenges in their capacity planning. 

The present paper draws on models developed over the last fifty years to explain interregional 

and intersectoral trade in goods and services. These spatial-economic models, known as 

gravity models, can predict such trade very accurately (Anderson, 2011). Although they are 

already in use in health economics, for example for measuring access to health care and 

predicting patient flows, a truly convincing connection between capacity planning and gravity 

theory has yet to be made. Despite their undeniable advantages, gravity models are not used in 

capacity planning, while studies which use them to measure access to health resources often 

rely on empirically poorly validated parameter assumptions, such as the size of catchment 

areas and cross-sectoral effects (see following section).  

The objective of this paper is to make gravity models fit for use in capacity planning. With 

this in mind, the paper is divided into two sections. The first presents a full equilibrium model 

which is grounded in choice theory and features the idea of gravity in supply and demand 

linkages. The model combines the approach developed by Bikker and de Vos (1992) with the 

trade model developed by Anderson and van Wincoop (2003). In the second section, we take 

Germany as an example to show that our model is well-suited to practical capacity planning. 
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Importantly, we uncover imbalances in the access to health care, showing rural and deprived 

regions to be undersupplied with health care resources while oversupply is a characteristic of 

urban areas. 

 

2 Related literature 
Gravity models are derived from the law of gravity in classical physics, which states that two 

bodies attract each other and that the strength of the attraction depends on the masses of the 

bodies and their physical distance (Anderson, 2011). This basic idea is taken up by economic 

gravity models. The first theoretical modelling in the context of international trade was 

performed by Anderson (1979),1 who derived the gravity equation by assuming regionally 

distributed consumers and producers of commodities. The consumers maximize utility at 

constant elasticity of substitution (CES), the producers maximize profit, and interregional 

trade is costly. It follows from the model that, after controlling for size differences, trade 

between two regions depends on the ratio of bilateral trade costs to the average of all trade 

costs. Variants of the model in more recent publications supplement the assumption of CES 

preferences with an assumption of monopolistic competition in order to endogenize the 

specialization of producers. An early example of this is Bergstrand (1985). 

The health economics literature often refers to the first concept of gravity, which appears in 

Huff’s (1964) description of catchment areas. Lowe and Sen (1996) use a gravity equation to 

predict patient flows and catchment areas. The commonest approach to measuring access to 

health care tries to capture the idea of gravity in supply-demand relationships by building on 

the floating catchment area (FCA) method2 (Delamater, 2013). However, this approach 

suffers from a strong supply bias, with the demand side represented only by functional ad-hoc 

specifications. As a consequence, estimates of model parameters are often determined 

anecdotally. For example, catchment areas are simply set at 30 to 60 minutes or at 

corresponding distances (Delamater, 2013), or are replaced by proxy variables (Matthews et 

al., 2019). The present paper seeks progress by deriving a gravity equation that is choice-

theoretically grounded and shown to be well-suited to planning sector- and region-specific 

health care capacities. The model presented combines the approach to measuring access to 

                                                      
1 It should be noted, however, that Leamer and Stern (1970) had already provided the trade gravity equation by 
intuitive reasoning.  
2 Variants of the FCA method are the two-step (2S-), the extended two-step (E2S-), and the kernel density two-
step (KD2S-) FCA methods. They mainly differ from the base version in spatial weighting (Delamater, 2013). 
The integrated (i-) and the three-step (3S-) FCA methods will be discussed in Section 3.5. 
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health care taken by Bikker and de Vos (1992) with a trade model developed by Anderson 

and van Wincoop (2003), building on Bergstrand (1985). 

 

3 Modelling supply and demand for health care 
Health care capacities are assumed to differ by the place of service delivery, 𝑗𝑗 ∈ {1, . . . , #𝑗𝑗}, 

and the type of medical speciality, 𝑠𝑠 ∈ {1, . . . , #𝑠𝑠}. They are demanded and utilised by 

individuals as patients. An individual’s place of residence is not necessarily the place where 

health services are delivered. On the contrary, it is assumed that individuals live in various 

different places, 𝑖𝑖 ∈ {1, . . . , #𝑖𝑖}, and travel to various locations, 𝑗𝑗, for treatment. Let the spatial 

distance between the place of residence 𝑖𝑖 and the place of service delivery 𝑗𝑗 be denoted by 

𝑑𝑑𝑖𝑖𝑖𝑖. 

 

3.1 The demand for health care 

An individual with residence at 𝑖𝑖 expects to derive utility from health-neutral consumption 𝑐𝑐𝑖𝑖 

and a demanded bundle of health services. The sub-utility derived from the bundle is denoted 

by 𝑉𝑉. By assumption, the elasticity of substitution between health services and health-neutral 

consumption is one (Cobb-Douglas) and the partial elasticity of health-neutral consumption is 

1 − 𝜇𝜇𝑖𝑖. The parameter 𝜇𝜇𝑖𝑖 captures the time individuals with residence at 𝑖𝑖 spend on the 

consumption of health services and can be interpreted as the morbidity rate. The sub-utility 𝑉𝑉 

is a function of the quantities of contacts, 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖, that the patient has with the service providers 

of speciality 𝑠𝑠 at location 𝑗𝑗. The specification of utility is assumed to be the same for all 

individuals: 

 𝑈𝑈(𝑐𝑐𝑖𝑖,𝑛𝑛𝑖𝑖∙) ≡ 𝑐𝑐𝑖𝑖
1−𝜇𝜇𝑖𝑖 ∙ 𝑉𝑉𝜇𝜇𝑖𝑖   with 

 𝑉𝑉(𝑛𝑛𝑖𝑖∙) ≡ (∑ ∑ 𝜗𝜗𝑖𝑖 ∙ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖
(𝜎𝜎−1)/𝜎𝜎 𝑖𝑖𝑖𝑖 )𝜎𝜎/(𝜎𝜎−1) and 𝑛𝑛𝑖𝑖∙ = �𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖�𝑖𝑖𝑖𝑖 ≡ �𝑛𝑛𝑖𝑖11, . . ,𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖, . . � . (1) 

The sub-utility 𝑉𝑉 expresses an appreciation of diversity and thus an individual’s willingness to 

substitute between locations and specialities. The parameter 𝜎𝜎 measures the elasticity of 

substitution, which is assumed to be constant (CES function). A low value for 𝜎𝜎 indicates that 

health services are poorly substitutable in demand, whereas a high value indicates easy 

substitution. The preferential weight given to different specialities is captured by 𝜗𝜗𝑖𝑖. The 

higher this parameter is, the more weight is given to the corresponding speciality.  
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Individuals have a time budget which is used for labour supply, 𝑙𝑙𝑖𝑖, and doctor contacts, 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖. 

The gross time of treatment, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖, includes both the time the patient needs to visit the doctor’s 

location, 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 ≡ 𝑓𝑓𝑖𝑖(𝑑𝑑𝑖𝑖𝑖𝑖), and the time, 𝜏𝜏𝑖𝑖𝑖𝑖, needed at location 𝑗𝑗 for treatment in speciality 𝑠𝑠. 

For model-related reasons, the two time components are assumed to be multiplicatively 

connected, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 ≡ 𝜏𝜏𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖. Unlike the treatment times, the distances are assumed to be 

unalterable. Hence 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 is exogenous to the model whereas 𝜏𝜏𝑖𝑖𝑖𝑖 is an endogenous variable and 

the equilibrium result of supply and demand for treatment. The price of consumption is 

normalized to one and the real wage rate is 𝑤𝑤.  

 𝑐𝑐𝑖𝑖 = 𝑤𝑤 ∙ 𝑙𝑙𝑖𝑖    (consumption budget)    (2) 

∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝜏𝜏𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑦𝑦 − 𝑙𝑙𝑖𝑖  (time budget).     (3) 

The parameter 𝑦𝑦 can be read as “year”. By maximizing the utility function (1) subject to the 

constraints (2) and (3) we obtain the supply of labour, 𝑙𝑙𝑖𝑖, as a fraction of the year, the demand 

for doctor contacts, 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(𝜏𝜏. ), as a function of the treatment-time profile, 𝜏𝜏.≡ �𝜏𝜏𝑖𝑖𝑖𝑖�𝑖𝑖𝑖𝑖, 

and the demand for health-neutral consumption, 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑖𝑖(𝑤𝑤), as a function of the real wage 

rate, 𝑤𝑤:  

 𝑙𝑙𝑖𝑖 = (1 − 𝜇𝜇𝑖𝑖)𝑦𝑦 ,  𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(𝜏𝜏. ) = 𝜇𝜇𝑖𝑖𝑦𝑦 ∙ 𝜗𝜗𝑖𝑖𝜎𝜎 ∙
𝜏𝜏𝑗𝑗𝑗𝑗
−𝜎𝜎∙𝑓𝑓𝑖𝑖𝑗𝑗𝑗𝑗

−𝜎𝜎

𝑇𝑇𝑖𝑖(𝜏𝜏.)
 ,  𝑐𝑐𝑖𝑖(𝑤𝑤) = 𝑤𝑤(1 − 𝜇𝜇𝑖𝑖)𝑦𝑦 .  (4) 

According to eq. (3), 𝜇𝜇𝑖𝑖𝑦𝑦 = 𝑦𝑦 − 𝑙𝑙𝑖𝑖 is the time spent on health care. The denominator, 

 𝑇𝑇𝑖𝑖(𝜏𝜏. ) ≡ ∑ 𝜗𝜗𝑖𝑖𝜎𝜎 ∙ 𝜏𝜏𝑖𝑖𝑖𝑖1−𝜎𝜎 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖1−𝜎𝜎𝑖𝑖𝑖𝑖 ,       (5) 

can be interpreted as a (preference-weighted) index of gross treatment times. Its role is to 

ensure that the individual keeps to the time budget. This is so for the following reason. 

Suppose that treatment times and distances are small. This will have an increasing effect on 

the demand for doctor contacts. A large value of 𝑇𝑇𝑖𝑖 is then required to bring the demand for 

care into line with the time budget. It is worth noting that 𝑇𝑇𝑖𝑖 is independent of 𝜏𝜏. and constant 

in 𝑖𝑖 if 𝜎𝜎 = 1 (Cobb-Douglas). As spatial distances are unalterable by assumption, we suppress 

the dependence of 𝑇𝑇𝑖𝑖 and 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 on 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖. 

 

3.2 The supply of medical treatment and general equilibrium conditions 

In many countries, the remuneration of health care services is strictly regulated. In such 

circumstances, doctors’ scope of action is limited to the amount of labour they choose to 
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supply. In its simplest form, the amount 𝐿𝐿𝑖𝑖𝑖𝑖 chosen by a doctor practicing in speciality 𝑠𝑠 at 

location 𝑗𝑗 is merely a function of the doctor’s real fee, ℎ𝑖𝑖𝑖𝑖. Total labour supply, 𝑆𝑆𝑖𝑖𝑖𝑖, amounts 

to individual labour supply, 𝐿𝐿𝑖𝑖𝑖𝑖(ℎ𝑖𝑖𝑖𝑖), multiplied by the number of doctors, 𝐴𝐴𝑖𝑖𝑖𝑖. 

Patients demand doctor contacts which consume time. Let 𝐼𝐼𝑖𝑖 be the number of individuals 

with residence 𝑖𝑖 and 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖(𝜏𝜏. ) ≡ 𝐼𝐼𝑖𝑖 ∙ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(𝜏𝜏. ) ∙ 𝜏𝜏𝑖𝑖𝑖𝑖 the time demanded by those 

individuals for treatment in speciality 𝑠𝑠 at location 𝑗𝑗. In equilibrium, the demand is met by 

supply,  

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝐼𝐼𝑖𝑖 ∙ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 ∙𝑖𝑖 𝜏𝜏𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖 ∙ 𝐿𝐿𝑖𝑖𝑖𝑖 ≡ 𝑆𝑆𝑖𝑖𝑖𝑖 for all 𝑗𝑗𝑠𝑠.    (6) 

Consumer goods must be produced and we assume a form of production in which consumer 

goods are produced with labour alone at constant returns to scale. In equilibrium, the supply 

price is determined by the cost of labour. Health services are financed by a payroll tax at rate 

𝑏𝑏. Thus 1 − 𝑏𝑏 = 𝑤𝑤 must apply. The balancing of revenues and expenditures in the health 

budget requires 

 𝑏𝑏 ∙ ∑ 𝐼𝐼𝑖𝑖 ∙ 𝑙𝑙𝑖𝑖𝑖𝑖 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖 ∙ ℎ𝑖𝑖𝑖𝑖 ∙ 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  .       (7) 

The right-hand side of eq. (7) represents doctors’ demand for consumption goods. By Walras’ 

Law this demand is equal to ∑ 𝐼𝐼𝑖𝑖 ∙ (𝑙𝑙𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑖𝑖), which can be interpreted as the individuals’ 

excess supply of consumption goods. The payroll tax rate, 𝑏𝑏, balances the budget. 

 

3.3 A gravity-theoretic representation of the demand for medical treatment 

The spatial distribution of the demand for medical treatment is given by 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖. In order to 

investigate this distribution more closely, we introduce two auxiliary terms 𝛼𝛼𝑖𝑖𝑖𝑖 and 𝛽𝛽𝑖𝑖𝑖𝑖. As a 

first step, we set  

 𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑖𝑖𝑖𝑖(𝜏𝜏. ) ≡ ∑ 𝜏𝜏𝑖𝑖𝑖𝑖1−𝜎𝜎 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎𝑖𝑖  .       (8) 

𝛽𝛽𝑖𝑖𝑖𝑖 can be interpreted as an index of access to care (Delamater, 2013). To see this, it needs to 

be noted that treatment times,  𝜏𝜏𝑖𝑖𝑖𝑖, are constant in 𝑖𝑖. If they are also constant in 𝑗𝑗𝑠𝑠, 𝛽𝛽𝑖𝑖𝑖𝑖 can 

only assume a large value, because some values of 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎 are large. This means that some 

distances 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 to doctors must be small, thus indicating easy access to care. If treatment times 

are not constant, the distances enter the definition of access in weighted form. This weighting, 

however, depends on the substitutability of health services. If substitutability is low, 𝜎𝜎 < 1, 

and the treatment time long, a short distance is highly weighted. In the alternative case 
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characterized by high substitutability, a short distance is highly weighted only if the treatment 

time is short. A notable case is where 𝜎𝜎 = 1. In this case of Cobb-Douglas preferences, 𝛽𝛽𝑖𝑖𝑖𝑖 is 

independent of treatment times even if they are not constant. 

The spatially aggregated demand of individuals for treatment in specialization 𝑠𝑠 at location 𝑖𝑖 

can be written as  

 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑖𝑖(𝜏𝜏. ) ≡ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜗𝜗𝑖𝑖𝜎𝜎 ∙ 𝐼𝐼𝑖𝑖 ∙ 𝛽𝛽𝑖𝑖𝑖𝑖   with   𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑖𝑖(𝜏𝜏∙) ≡  𝜇𝜇𝑖𝑖𝑦𝑦
𝑇𝑇𝑖𝑖(𝜏𝜏.)

𝐼𝐼𝑖𝑖 .  (9) 

Demand at location 𝑖𝑖 thus increases proportionally with the product of 𝐼𝐼𝑖𝑖 and the index of 

access to care, 𝛽𝛽𝑖𝑖𝑖𝑖. The structure of the equation is as in Bikker and de Vos (1992) except for 

the factor 𝜇𝜇𝑖𝑖𝑦𝑦/𝑇𝑇𝑖𝑖, which can be interpreted as a population adjustment with no direct analogue 

in their approach. The adjustment is made with regard to the morbidity rate, 𝜇𝜇𝑖𝑖, and the index 

of gross treatment times, 𝑇𝑇𝑖𝑖. Let us call 𝐼𝐼𝑖𝑖 the number of individuals at location 𝑖𝑖 adjusted for 

morbidity and distance. In the literature on FCA, 𝐷𝐷𝑖𝑖𝑖𝑖/𝛽𝛽𝑖𝑖𝑖𝑖 = 𝜗𝜗𝑖𝑖𝜎𝜎 ∙ 𝐼𝐼𝑖𝑖 is interpreted as (access-

independent) demand potential (Delamater, 2013). Combining equations (4), (8), and (9), we 

obtain 

 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖(τ. ) ≡ 𝑥𝑥𝑖𝑖𝑗𝑗𝑗𝑗
𝐷𝐷𝑖𝑖𝑗𝑗

=
𝜏𝜏𝑗𝑗𝑗𝑗
1−𝜎𝜎∙𝑓𝑓𝑖𝑖𝑗𝑗𝑗𝑗

−𝜎𝜎

𝛽𝛽𝑖𝑖𝑗𝑗
 .       (10) 

In the literature, 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖 is interpreted as a cross-border supply ratio (Czihal et al., 2012). It 

measures the proportion of 𝑖𝑖’s aggregate demand for treatment in 𝑠𝑠 met by supply from 𝑗𝑗. 

In a second step, we set  

 𝛼𝛼𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑖𝑖(𝜏𝜏. ) ≡ 𝜗𝜗𝑖𝑖𝜎𝜎 ∙ ∑ 𝐼𝐼𝑖𝑖(𝜏𝜏∙) ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎𝑖𝑖        (11) 

so that the supply of treatment time in speciality 𝑠𝑠 at location 𝑗𝑗 can be written as 

 𝑆𝑆𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜗𝜗𝑖𝑖𝜎𝜎 ∙ 𝜏𝜏𝑖𝑖𝑖𝑖1−𝜎𝜎 ∙ ∑ 𝐼𝐼𝑖𝑖 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎𝑖𝑖 = 𝜏𝜏𝑖𝑖𝑖𝑖1−𝜎𝜎 ∙ 𝛼𝛼𝑖𝑖𝑖𝑖 .     (12) 

From this equation it can be seen that 𝛼𝛼𝑖𝑖𝑖𝑖 measures the number of treatments carried out in 

speciality 𝑠𝑠 at location 𝑗𝑗. In the literature on FCA, 𝛼𝛼𝑖𝑖𝑖𝑖 is interpreted as the population’s care 

potential and 𝑆𝑆𝑖𝑖𝑖𝑖/𝛼𝛼𝑖𝑖𝑖𝑖 as the supply ratio (Delamater, 2013). 

From equations (10) and (12) we obtain 

 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑗𝑗
𝛽𝛽𝑖𝑖𝑗𝑗
∙ 𝜏𝜏𝑖𝑖𝑖𝑖1−𝜎𝜎 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎 = �𝐷𝐷𝑖𝑖𝑗𝑗

𝛽𝛽𝑖𝑖𝑗𝑗
� ∙ �𝑆𝑆𝑗𝑗𝑗𝑗

𝛼𝛼𝑗𝑗𝑗𝑗
� ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎.       (13) 
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The demand of individuals with residence 𝑖𝑖 for treatment in speciality 𝑠𝑠 at location 𝑗𝑗, 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖, is 

thus proportional to the "masses" given by the demand potential and the supply ratio. 

Furthermore, it is proportional to an indicator of distance. Eq. (13) thus features a relationship 

which can be given a gravity-theoretic interpretation. 

Following Bikker and de Vos (1992) we use eq. (13) to express the index of access to care, 

𝛽𝛽𝑖𝑖𝑖𝑖, as a function of 𝐷𝐷𝑖𝑖𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎. In doing so we take advantage of the fact that the indices 

are only uniquely determined up to a joint scalar. Note that we are able to replace 𝛽𝛽𝑖𝑖𝑖𝑖 and 𝛼𝛼𝑖𝑖𝑖𝑖 

in eq. (13) with 𝑘𝑘𝑖𝑖 ∙ 𝛽𝛽𝑖𝑖𝑖𝑖 and 𝛼𝛼𝑖𝑖𝑖𝑖/𝑘𝑘𝑖𝑖, respectively, without changing anything else. Hence, we 

can set 𝑘𝑘𝑖𝑖 at a value satisfying the constraint of �∏ 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖
#𝑖𝑖 = 1. By calculating a geometric 

mean of eq. (13) with respect to 𝑖𝑖 we obtain the equation 𝑆𝑆𝑗𝑗𝑗𝑗
𝛼𝛼𝑗𝑗𝑗𝑗

= �∏
𝑥𝑥𝑖𝑖𝑗𝑗𝑗𝑗∙𝑓𝑓𝑖𝑖𝑗𝑗𝑗𝑗

𝜎𝜎

𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖
#𝑖𝑖

. By inserting this 

equation into eq. (13) and calculating a further geometric mean with respect to 𝑗𝑗 we obtain a 

formulaic representation of 𝛽𝛽𝑖𝑖𝑖𝑖: 

 𝛽𝛽𝑖𝑖𝑖𝑖 = �∏
�∏ 𝑥𝑥𝑖𝑖′𝑗𝑗𝑗𝑗∙𝑓𝑓𝑖𝑖′𝑗𝑗𝑗𝑗

𝜎𝜎
𝑖𝑖′  #𝑖𝑖

𝑥𝑥𝑖𝑖𝑗𝑗𝑗𝑗∙𝑓𝑓𝑖𝑖𝑗𝑗𝑗𝑗
𝜎𝜎  �∏ 𝐷𝐷𝑖𝑖′𝑗𝑗𝑖𝑖′  #𝑖𝑖𝑖𝑖  

#𝑗𝑗

∙ 𝐷𝐷𝑖𝑖𝑖𝑖.       (14) 

This formula will later be used for empirical measurement. Setting 𝑘𝑘 ≡ [∏ (∏ 𝑥𝑥𝑖𝑖′𝑖𝑖𝑖𝑖 ∙𝑖𝑖′𝑖𝑖

𝑓𝑓𝑖𝑖′𝑖𝑖𝑖𝑖
𝜎𝜎 /𝐷𝐷𝑖𝑖′𝑖𝑖)

1
#𝑖𝑖]

1
#𝑗𝑗 the index can be rewritten as 

 𝛽𝛽𝑖𝑖𝑖𝑖 = 𝑘𝑘 ∙ 𝐷𝐷𝑖𝑖𝑗𝑗

�∏ 𝑥𝑥𝑖𝑖𝑗𝑗𝑗𝑗∙𝑓𝑓𝑖𝑖𝑗𝑗𝑗𝑗
𝜎𝜎

𝑗𝑗
#𝑗𝑗 = 𝑘𝑘 ∙ [(∏ 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 )

1
#𝑗𝑗 ∙ (∏ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 )

𝜎𝜎
#𝑗𝑗]−1.    (15) 

According to this formula, 𝛽𝛽𝑖𝑖𝑖𝑖 is inversely proportional to the product of the geometric means 

of cross-border supply ratios and distances. This means that the access to care is negatively 

affected by high cross-border supply ratios and long distances to service providers. 

Furthermore, each geometric mean can be substituted by the other at constant elasticity. 

 

3.4 Planning even access to care 

Health equity is of paramount importance in any conception of social justice (Sen, 2002).3 

This is recognized in most countries and is the reason why health authorities pay the greatest 

                                                      
3 For a nuanced discussion of equity in health care, see Fleurbaey and Schokkaert (2009). These authors 
distinguish between ethically legitimate and illegitimate inequities, the latter being characterized by the fact that 
they are beyond individual control. Often, the causes work to the disadvantage of the socially deprived segments 
of the population (Vogt, 2016). 
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attention to health care capacity planning and resource allocation (Ono et al., 2013). Taking 

equitable or evenly distributed access to care as a norm, a mandate can be derived to plan 

health care capacities in such a way that the targeted indices of access, �̅�𝛽𝑖𝑖𝑖𝑖, are independent of 

place of residence and thus assume equal values, 

 �̅�𝛽𝑖𝑖 = �̅�𝛽𝑖𝑖𝑖𝑖 = ∑ 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎𝑖𝑖   for all 𝑖𝑖𝑠𝑠.     (16) 

The model suggests that this equality can be achieved by adjusting treatment times, 𝜏𝜏�̅�𝑖𝑖𝑖, and/or 

travelling times, 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖. In principle, one might consider shortening physical distances, 𝑑𝑑𝑖𝑖𝑖𝑖, for 

example by means of patient transport services or improved public transport connections. 

Even psychological distances, which are rooted in a lack of information, can be reduced by 

appropriate measures. In the short term, however, physical distances remain immutable and 

the only way of varying �̅�𝛽𝑖𝑖𝑖𝑖 is by assuming 𝜎𝜎 ≠ 1 and varying 𝜏𝜏�̅�𝑖𝑖𝑖. This entails the exclusion 

of Cobb-Douglas preferences in what follows. We next prove that an even access to care 

requires an allocation of resources such that the aggregate supply of treatment time is 

allocated to the places of residence in proportion to a distance-adjusted number of individuals 

(Proposition 1). Stating and proving this in precise terms requires some preparatory 

considerations. 

Eq. (16) defines a system of equations which under conditions of regularity can be used to 

determine the matrix 𝜏𝜏∙̅1−𝜎𝜎 ≡ (𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎)𝑖𝑖𝑖𝑖 = (𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎(�̅�𝛽𝑖𝑖))𝑖𝑖𝑖𝑖 as a function of �̅�𝛽𝑖𝑖.4 By the system’s 

linear structure, 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎��̅�𝛽𝑖𝑖� = �̅�𝛽𝑖𝑖 ∙ 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎(1) must hold. Note that the legal obligation to provide 

even access to health care leaves the question about the level of access open. We assume that 

the answer – the choice of �̅�𝛽𝑖𝑖 – is a political one. Associated with �̅�𝛽∙ = (�̅�𝛽𝑖𝑖)𝑖𝑖, there is the 

index of gross treatment times, 

 𝑇𝑇�𝑖𝑖��̅�𝛽∙� ≡ 𝑇𝑇𝑖𝑖 �𝜏𝜏̅. ��̅�𝛽∙�� = ∑ 𝜗𝜗𝑖𝑖𝜎𝜎 ∙ 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎��̅�𝛽𝑖𝑖� ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎𝑖𝑖𝑖𝑖 = ∑ 𝜗𝜗𝑖𝑖𝜎𝜎 ∙ �̅�𝛽𝑖𝑖 ∙ 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎(1) ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖1−𝜎𝜎𝑖𝑖𝑖𝑖 .  (17) 

Let 𝐼𝐼�̅�𝑖 ≡ 𝐼𝐼𝑖𝑖��̅�𝛽∙� = 𝜇𝜇𝑖𝑖𝑦𝑦
𝑇𝑇�𝑖𝑖�𝛽𝛽�∙�

𝐼𝐼𝑖𝑖 denote the morbidity- and distance-adjusted number of individuals 

associated with �̅�𝛽∙. 

Any planned adjustment of net treatment times requires balancing supply and demand. Of the 

two sides, only the supply, 𝑆𝑆�̅�𝑖, can be the direct object of planning. By contrast, demand at 

location 𝑖𝑖, 𝐷𝐷�𝑖𝑖𝑖𝑖, will react endogenously to the changes in treatment times. The variables that 

                                                      
4 Solvability requires invertible matrices (𝑓𝑓𝑖𝑖𝑗𝑗𝑠𝑠

−𝜎𝜎)𝑖𝑖𝑖𝑖 for all 𝑠𝑠 and a fortiori equality of #𝑗𝑗 and #𝑖𝑖 (Gentle, 2007, p. 
211). 
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allow planners to control supply are the number and location of service providers, �̅�𝐴𝑖𝑖𝑖𝑖 , and 

doctors’ real fees, ℎ�𝑖𝑖𝑖𝑖. Adjustment of the latter will change the supply of doctors’ labour. The 

choice of �̅�𝐴𝑖𝑖𝑖𝑖 and ℎ�𝑖𝑖𝑖𝑖 must be such that the demand for treatment and its supply are balanced, 

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖(𝜏𝜏̅. )𝑖𝑖 = 𝑆𝑆�̅�𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖(𝜏𝜏̅. (�̅�𝛽∙)) = �̅�𝐴𝑖𝑖𝑖𝑖 ∙ 𝐿𝐿𝑖𝑖𝑖𝑖�ℎ�𝑖𝑖𝑖𝑖� for all  𝑗𝑗𝑠𝑠.   (18) 

Changes in the number of service providers and their fees have an effect on expenditures. 

Budget balancing requires a corresponding adjustment of revenues (see eq. (7)). The variable 

with which revenues can be adjusted is the payroll tax rate, 𝑏𝑏�.  

 

Proposition 1: An even access to health care, �̅�𝛽𝑖𝑖𝑖𝑖 = �̅�𝛽𝑖𝑖, requires an allocation of resources 

such that the aggregate supply of treatment time, 𝑆𝑆�̅�𝑖, is allocated to the places 

of residence in proportion to the morbidity- and distance-adjusted number of 

individuals,  

  𝐷𝐷�𝑖𝑖𝑖𝑖 = 𝐼𝐼�̅�𝑖
∑ 𝐼𝐼̅𝑖𝑖′)𝑖𝑖′

∙ 𝑆𝑆�̅�𝑖.       (19) 

 

The proof is straightforward. From the equations (12) and (16) we obtain 

 𝑆𝑆�̅�𝑖 = ∑ 𝑆𝑆�̅�𝑖𝑖𝑖𝑖𝑖 =  𝜗𝜗𝑖𝑖𝜎𝜎 ∙ ∑ 𝐼𝐼�̅�𝑖 ∙ ∑ 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎𝑖𝑖𝑖𝑖 =  𝜗𝜗𝑖𝑖𝜎𝜎 ∙ ∑ 𝐼𝐼�̅�𝑖′𝑖𝑖′ ∙ �̅�𝛽𝑖𝑖     (20) 

and from equations (9) and (16)  

 𝐷𝐷�𝑖𝑖𝑖𝑖 =  𝜗𝜗𝑖𝑖𝜎𝜎 ∙ 𝐼𝐼�̅�𝑖 ∙ �̅�𝛽𝑖𝑖 .         (21) 

Eq. (19) follows by dividing eq. (21) by eq. (20).□ 

If the preference weights, 𝜗𝜗𝑖𝑖, are known, equations (19) - (21) can be used for guiding 

resource planning. Just note that eq. (20) implies 

 �̅�𝑆𝑗𝑗
�̅�𝑆1

= 𝜗𝜗𝑗𝑗𝜎𝜎

𝜗𝜗1
𝜎𝜎
𝛽𝛽�𝑗𝑗
𝛽𝛽�1

  for  𝑠𝑠 ≠ 1,         (22) 

i.e. planned relative supplies, 𝑆𝑆�̅�𝑖/𝑆𝑆1̅, need to equate the product of planned relative accesses to 

care, �̅�𝛽𝑖𝑖/�̅�𝛽1, and of the relative weight, 𝜗𝜗𝑖𝑖𝜎𝜎/𝜗𝜗1𝜎𝜎, given by individuals to specialities. After 

substituting 𝜗𝜗𝑖𝑖𝜎𝜎�̅�𝛽𝑖𝑖 by 𝑆𝑆�̅�𝑖 ∙ 𝜗𝜗1𝜎𝜎�̅�𝛽1/𝑆𝑆1̅ in equations (20) and (17) and reducing, we obtain the 

equation 

 1 =  ∑ 𝜇𝜇𝑖𝑖𝑦𝑦∙𝐼𝐼𝑖𝑖
∑ �̅�𝑆𝑗𝑗∙𝜏𝜏�𝑗𝑗𝑗𝑗

1−𝜎𝜎(1)∙𝑓𝑓𝑖𝑖𝑗𝑗𝑗𝑗
1−𝜎𝜎

𝑗𝑗𝑗𝑗
𝑖𝑖  .         (23) 
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This tells us that the vector of planned supplies, (𝑆𝑆1̅, . . 𝑆𝑆�̅�𝑖, . . ), must satisfy a constraint 

determined by the regional distributions of population, mortality, and distance, 𝐼𝐼𝑖𝑖 , 𝜇𝜇𝑖𝑖, 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖, 

respectively. This applies in both the static and dynamic senses. If, for example, population 

and mortality change as a result of demographic change, planned supplies must be adapted 

accordingly.  

 

3.5 A comparison of the gravity model with competing approaches 

As mentioned above, the idea of measuring access by deriving the gravity equation (13) from 

a supply- demand relationship goes back to Bikker and de Vos (1992). The difference 

between their approach and that of the present authors lies in the derivation of supply and 

demand for health care. Bikker and de Vos postulate the existence of such functions. They 

focus on a particular medical speciality and supply and demand are analysed in partial 

equilibrium. The present approach has a choice-theoretic grounding. Individuals must divide 

their time budget between different specialities, and demand and supply are analysed in full 

equilibrium. The difference can be seen in the index of gross treatment times, 𝑇𝑇𝑖𝑖, which has 

no analogue in the approach taken by Bikker and de Vos. This is of no great relevance when 

simply measuring access to care, as in the next section, but takes on greater significance when 

planning the allocation of resources. If it is necessary to determine how resources are best 

allocated to competing specialities, the restrictions on individuals’ time and their willingness 

to substitute between specialities must be modelled consistently. 

The dominant approach to measuring access to care in the literature builds on the FCA 

method. In its base version, the index of access, 𝛽𝛽𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹, is defined in a two–step procedure. In 

the first step, the population is aggregated to a demand potential using a geographical 

weighting scheme, 𝑔𝑔(𝑑𝑑𝑖𝑖𝑖𝑖). In the second, the ratio of supply (often approximated by the 

number of service providers) to the demand potential is calculated using the geographical 

weighting scheme to create the index (Delamater, 2013). If we suppress 𝑠𝑠 and equate 𝑔𝑔(𝑑𝑑𝑖𝑖𝑖𝑖) 

with 𝑓𝑓𝑖𝑖𝑖𝑖−𝜎𝜎 the index can be written as:  

𝛽𝛽𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹 = ∑  𝑆𝑆𝑗𝑗∙𝑔𝑔(𝑑𝑑𝑖𝑖𝑗𝑗)
∑ 𝐼𝐼𝑖𝑖′∙𝑔𝑔(𝑑𝑑𝑖𝑖′𝑗𝑗)𝑖𝑖′

𝑖𝑖 = ∑
𝑆𝑆𝑗𝑗∙𝑓𝑓𝑖𝑖𝑗𝑗

−𝜎𝜎

∑ 𝐼𝐼𝑖𝑖′ ∙𝑓𝑓𝑖𝑖′𝑗𝑗
−𝜎𝜎

𝑖𝑖′
𝑖𝑖  .       (24) 

A structurally similar formula can be derived from the gravity model by relying on equations 

(8), (11), and (12): 
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𝛽𝛽𝑖𝑖,𝐺𝐺𝐺𝐺 = ∑ 𝜏𝜏𝑖𝑖1−𝜎𝜎 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖−𝜎𝜎𝑖𝑖 = ∑ 𝑆𝑆𝑗𝑗
𝛼𝛼𝑗𝑗
∙ 𝑓𝑓𝑖𝑖𝑖𝑖−𝜎𝜎𝑖𝑖 = 𝜗𝜗−𝜎𝜎 ∙ ∑

𝑆𝑆𝑗𝑗∙𝑓𝑓𝑖𝑖𝑗𝑗
−𝜎𝜎

∑ 𝐼𝐼𝑖𝑖′ ∙𝑓𝑓𝑖𝑖′𝑗𝑗
−𝜎𝜎

𝑖𝑖′
𝑖𝑖      (25) 

The primary difference between the definitions is that 𝛽𝛽𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹 is defined as a function of 𝐼𝐼𝑖𝑖 

whereas 𝛽𝛽𝑖𝑖,𝐺𝐺𝐺𝐺 is defined as a function of 𝐼𝐼𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑦𝑦
𝑇𝑇𝑖𝑖
𝐼𝐼𝑖𝑖. This difference does not matter if the 

adjustment factor, 𝜇𝜇𝑖𝑖𝑦𝑦/𝑇𝑇𝑖𝑖, is constant in 𝑖𝑖. This is clearly the case if both 𝜇𝜇𝑖𝑖 and 𝑇𝑇𝑖𝑖 are 

constant in 𝑖𝑖. Constancy of 𝑇𝑇𝑖𝑖 is ensured if individuals’ preferences are of the Cobb-Douglas 

type. However, assuming 𝜎𝜎 = 1 and 𝜇𝜇𝑖𝑖 = constant, the equations (12) and (11) imply 

𝑆𝑆𝑖𝑖 = 𝛼𝛼𝑖𝑖 = 𝑘𝑘 ∙ ∑ 𝐼𝐼𝑖𝑖  𝑓𝑓𝑖𝑖𝑖𝑖−1𝑖𝑖 . The indices, 𝛽𝛽𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹 and 𝛽𝛽𝑖𝑖,𝐺𝐺𝐺𝐺, are then equal up to a certain constant, 

as can easily be understood by comparing the equations (24) and (25). The FCA method and 

the gravity model should therefore produce identical geographic maps of access to care.  

 

Proposition 2: The FCA method can be derived from the gravity model if the need to adjust 

the population for morbidity and distance is ignored. In this case, the demand 

potential is proportional to the population size, 𝐷𝐷𝑖𝑖/𝛽𝛽𝑖𝑖 = 𝑘𝑘 ∙ 𝐼𝐼𝑖𝑖. 

 

In fact, the geographic maps shown for 𝛽𝛽𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹 and 𝛽𝛽𝑖𝑖,𝐺𝐺𝐺𝐺 in the next section differ 

considerably. From a planning perspective, therefore, a choice between the competing 

approaches to measuring access to care cannot be avoided. The difference between the 

approaches can be described as follows. The FCA method is primarily supply oriented, with 

the demand potential being only rudimentarily captured by the size and regional distribution 

of the population. Access is improved if nearby service capacities are increased. The 

orientation of the gravity model is better balanced between supply and demand. In particular, 

the effect of morbidity on demand for care is explicitly modelled. Access to care is improved 

if cross-border supply ratios are reduced, for example, by meeting a larger share of local 

demand from nearby supply. 

Below, both methods of measuring access to care are empirically illustrated. It must be 

pointed out, however, that in the literature the FCA method is no longer regarded as state-of-

the-art. Wan et al. (2012), for example, find it likely that it overestimates the demand for 

health care. Criticism of this kind has led to efforts to develop more refined but still supply-

oriented indices of access to care. Examples that deserve special mention are the three steps 
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(3S-) and the integrated (i-) FCA methods proposed by Wan et al. (2012) and Luo (2014), 

respectively: 

 𝛽𝛽𝑖𝑖,3𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹 = ∑  𝑆𝑆𝑗𝑗∙𝑔𝑔(𝑑𝑑𝑖𝑖𝑗𝑗)∙𝐺𝐺3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑𝑖𝑖𝑗𝑗)
∑ 𝐼𝐼𝑖𝑖′∙𝑔𝑔(𝑑𝑑𝑖𝑖′𝑗𝑗)∙𝐺𝐺3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑𝑖𝑖′𝑗𝑗)𝑖𝑖′

𝑖𝑖   with 𝐺𝐺3𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹�𝑑𝑑𝑖𝑖𝑖𝑖� = 𝑔𝑔(𝑑𝑑𝑖𝑖𝑗𝑗)
∑   𝑔𝑔(𝑑𝑑𝑖𝑖𝑗𝑗′)𝑗𝑗′: 𝑑𝑑𝑖𝑖𝑗𝑗′ < 𝑑𝑑�

  (26) 

 𝛽𝛽𝑖𝑖,𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹 = ∑  𝑆𝑆𝑗𝑗∙𝑔𝑔(𝑑𝑑𝑖𝑖𝑗𝑗)
∑ 𝐼𝐼𝑖𝑖′∙𝑔𝑔(𝑑𝑑𝑖𝑖′𝑗𝑗)∙𝐺𝐺𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑗𝑗,𝑑𝑑𝑖𝑖′𝑗𝑗)𝑖𝑖′

𝑖𝑖   with 𝐺𝐺𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹�𝑆𝑆𝑖𝑖 ,𝑑𝑑𝑖𝑖𝑖𝑖� = 𝑆𝑆𝑗𝑗∙𝑔𝑔(𝑑𝑑𝑖𝑖𝑗𝑗)
∑   𝑆𝑆𝑗𝑗′∙𝑔𝑔(𝑑𝑑𝑖𝑖𝑗𝑗′)𝑗𝑗′: 𝑑𝑑𝑖𝑖𝑗𝑗′  < 𝑑𝑑�

 (27) 

where  �̅�𝑑 denotes a critical distance. The obvious difference to the FCA method comes from 

the factor 𝐺𝐺∗𝐹𝐹𝐹𝐹𝐹𝐹, which is added to capture “the availability of opportunities as moderated by 

distance” (Delamater, 2013). More precisely, the 3SFCA method incorporates the assumption 

that the demand for medical treatment is proportional to weighted distances. By contrast, the 

iFCA method aims at improving the standard FCA method by incorporating the model 

developed by Huff (1964), which allows for population selections of healthcare services 

within a catchment area (Luo, 2014). The Huff model assumes high demand if nearby supply 

is strong. After running simulations, Paez et al. (2019) conclude that access to care is best 

measured by the iFCA method. However, all attempts to measure access to care based on the 

FCA method are open to the same criticism, namely that they are supply-biased. The demand 

side is only taken into account through functional refinements largely justified by ad-hoc 

considerations. In contrast to this paper’s gravity model, they suffer from the lack of a firm 

choice-theoretic grounding.  

 

4 Measuring access to health care empirically 

4.1 Sector-specific capacity planning in Germany 

Germany lends itself to a study of health care capacity planning because the concept of "equal 

living standards" across the whole country has constitutional status (Article 72 of the Basic 

Law of Germany). Access to health care must therefore be made available to all citizens 

equally and evenly (Sundmacher et al., 2018). This right is expressed in a free choice of 

doctors and in the almost complete assumption of costs for all services offered by the 

statutory health insurance (SHI) system. It has to be noted, however, that there is a strict 

separation between ambulatory and hospital care in Germany. Ambulatory capacity planning 

is carried out nationally, but at a small-scale level, on the basis of the so-called Capacity 

Planning Guideline (Bedarfsplanungs-Richtlinie) drawn up by the Federal Joint Committee 

(Gemeinsamer Bundesausschuss), comprised of representatives of both the statutory health 
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insurers and service providers. The planning structure is supply-oriented. The reference values 

against which current doctor-density ratios are measured are the ratios of doctors to 

population in 23 different medical specialities determined on a certain date in the past. They 

constitute the policy target for the number of ambulatory physicians in a full-time position to 

be financed by the SHI system. 

In contrast, hospital capacities are planned at the level of Germany’s sixteen federal states. 

The need for hospital beds is estimated on the basis of the Hill-Burton formula, with the target 

number of beds being updated from actual figures. This method is known to have the effect 

that the greatest capacity need is assessed where the existing capacity is already high. 

The strict separation between ambulatory and hospital care is a characteristic feature of the 

German health care system and means that specialist capacities are available in both sectors. 

In practice, there is much overlap that is only partially taken into account in planning and 

ultimately leads to efficiency losses (Kopetsch, 2007b). The separation of ambulatory and 

hospital capacity planning causes particular problems for rural areas, as hospital planning 

aims at exploiting economies of scale and thus gives priority to urban areas.  

 

4.2 German health care data 

For our empirical analysis we use data for the ambulatory sector provided by the National 

Association of Statutory Health Insurance Physicians (Kassenärztliche Bundesvereinigung, 

KBV). We use two primary data sources. The first is the Federal Register of Physicians, a 

directory of all doctors accredited to the SHI. Secondly, we use the KBV’s billing data, which 

includes information on the patient treated, the diagnosis, the services provided, and the 

doctor’s specialization. The geographical information for both doctors and patients is given by 

postal codes. For hospital care we use the hospitals’ quality reports, which contain the number 

of cases per hospital with a postal code reference. The values used in hospital billing are 

known as diagnosis-related groups (DRGs) and from an analysis of invoiced DRGs specially 

prepared by the Federal Statistical Office (Destatis) we also have access to hospital cases per 

patient at the county level. We determine the minimum travel times between patients' homes 

and physicians' locations by using OpenStreetMap road data.  
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The quantity of medical services provided is measured by the number of treated cases5 billed 

by general practitioners, self-employed specialists and hospitals (see Table 1). The time 

required per case is 9.9 minutes in ambulatory care and 7.2 days in hospital care. The variable 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 is determined by the time required per case and the number of cases performed at location 

𝑗𝑗 by a supplier of type 𝑠𝑠 for patients residing in 𝑖𝑖. Aggregate supply is 𝑆𝑆𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , and 

aggregate demand is 𝐷𝐷𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . 

Table 1: Billed ambulatory and hospital cases, number of office-based doctors and of hospital 
beds 

Specialization Doctors / Beds 2014 Doctors / Beds 2015 Cases 2014 Cases 2015  
General Practitioners 51,808    51,628    205,601,758   207,063,055    
Ophthalmologists 5,277      5,279      28,325,853      27,990,509     
Surgeons 3,890      3,880      10,693,797      10,255,080     
Gynaecologists 9,757      9,748      43,653,927      43,013,618     
ENT-specialists 3,886      3,910      18,458,521      18,627,133     
Dermatologists   3,220      3,209      20,754,040      20,486,739     
Paediatricians   5,627      5,613      23,067,755      23,266,578     
Neurologists   4,899      4,827      10,516,440      10,329,799     
Orthopaedic specialists   5,317      5,370      21,292,427      20,988,025     
Psychotherapists 22,804    23,264         4,671,210         4,908,858     
Urologists   2,650      2,644      12,283,758      12,346,443     
Hospital beds 638,064    636,407     17,877,555      18,304,621     
Note: The number of doctors is given in full-time equivalents  
 

4.3 Estimating distances to care 

Our measurement of access to care relies on eq. (14). This requires an estimation of the 

distances to doctors’ locations, 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 ≡ 𝑓𝑓𝑖𝑖�𝑑𝑑𝑖𝑖𝑖𝑖�. We use a parameterization based on a Gaussian 

variogram model (Chilès and Delfiner, 1999): 

(𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖�𝑑𝑑𝑖𝑖𝑖𝑖�)−𝜎𝜎 =  (𝑒𝑒𝑥𝑥𝑒𝑒 �
𝑑𝑑𝑖𝑖𝑗𝑗
2

𝜇𝜇𝜙𝜙𝑗𝑗2
�)−𝜎𝜎 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜃𝜃𝑖𝑖 ∙ 𝑑𝑑𝑖𝑖𝑖𝑖2 � .     (28) 

The parameter 𝜃𝜃𝑖𝑖 ≡ − 𝜎𝜎
𝜇𝜇𝜙𝜙𝑗𝑗2

 can be determined empirically by estimating equation (13). The 

determination takes advantage of the fact that each factor on the right-hand side of eq. (13) - 

with the exception of 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 - varies either with 𝑖𝑖 or 𝑗𝑗, but never with both simultaneously. This 

                                                      
5 In primary and gynaecological care, the reported number of contacts includes those with patients on holiday, 
working abroad or in similar circumstances (Czihal et al. , 2012). Since the patient's place of residence would be 
misleading in such cases, the 5% of the contacts with GPs and gynaecologists at the most extreme distances 
(about 100 km and more) were removed from the data. 
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allows us to estimate eq. (13) by using dummy variables for the locations 𝑖𝑖 and 𝑗𝑗 (𝜃𝜃-fixed 

effects) and by running a Poisson regression, 

 ln (𝐸𝐸[𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖]) = 𝜃𝜃𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑖𝑖 ∙ 𝑑𝑑𝑖𝑖𝑖𝑖2 . .      (29) 

The calibrated value 𝜙𝜙�𝑖𝑖 is computed from the estimated value 𝜃𝜃�𝑖𝑖 after setting 1
𝜇𝜇

= 1/3. The 

resulting 𝜙𝜙�𝑖𝑖 can be interpreted as the upper bound of service providers’ catchment areas. Less 

than 5% of billed cases come from outside this range (Chilès and Delfiner, 1999).  

 

4.4 Measuring access to care  

 Figures 1 to 3 below graphically contrast the FCA method with the gravity model in their 

measurement of access to care in Germany. They visualize the access to GPs, to 

psychotherapists (as an example of ambulatory specialists), and to hospitals, respectively. 

Finally, Figure 4 is the attempt to visualize an aggregation over all access indices. For the 

purpose of aggregation, the specialities have been weighted by their share in billed cases. 

 

.  

Figure 1: Access to GPs6 (left: FCA method; right: gravity model) 

                                                      
6 Country codes: A: Austria, B: Belgium, CH: Switzerland, CZ: Czech Republic, DK: Denmark, F: France, L: 
Luxembourg, NL: Netherlands, PL: Poland; federal state codes: BB: Brandenburg, BE: Berlin, BW: Baden-
Württemberg, BY: Bavaria, HB: Bremen, HE: Hesse, HH: Hamburg, MV: Mecklenburg-Western Pomerania, 
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The first striking impression created by these maps is the great difference in colouring. The 

regional identification of under- and oversupply seems to be almost contrary. According to 

the gravity model (right-hand side), larger cities enjoy better access to general practitioners 

(GPs) than rural communities, just as one would expect. Metropolises such as Hamburg, 

Munich, Stuttgart and the agglomerations of the Rhine-Main7 and Rhine-Ruhr8 areas are 

shown to enjoy particularly high levels of access. The FCA measurement suggests the 

opposite. The Rhine-Ruhr area and the large cities of Berlin, Munich and Hamburg are 

identified as regions of more or less severe undersupply. This is implausible and can only be 

explained by the FCA method’s failure to capture spatial direction in the exchange of services 

(Bauer et al., 2018). The cities and regions referred to above are known for their high 

capacities and for serving as centres of medical care for surrounding areas (Czihal et al., 

2012). The FCA's symmetrical distancing function does not do sufficient justice to the 

different roles played by cities and their environs. To illustrate this deficiency, let us look at a 

stylized model of two geographical entities. One of these, denoted by 𝐴𝐴, has all the features of 

a large city, i.e. a high supply of services and a population which can satisfy its demand 

locally. The second, denoted by 𝐵𝐵, has a small population, a low supply of services and many 

people demanding medical treatment in 𝐴𝐴. Because of the spatial symmetry, the FCA method 

would indicate an equal level of access to care at both places. By contrast, the gravity model 

would suggest that 𝐴𝐴 is better served than 𝐵𝐵, as a higher proportion of local demand is 

satisfied locally. This theoretical conclusion is confirmed by the real examples of the Rhine-

Main and Rhine-Ruhr agglomerations, which do indeed have high inflows and low outflows 

of demanders for health care (Sundmacher et al., 2018). Another insight conveyed by the 

gravity model map is that the access to GPs is lower in eastern than in western Germany. This 

difference mainly results from the spatial distributions of morbidity and deprivation, which 

both impact strongly on the demand for GPs (Table 2) and are considerably higher in eastern 

Germany and along the Czech border. 

                                                                                                                                                                      
NI: Lower Saxony, NW: North Rhine-Westphalia, RP: Rhineland Palatinate, SH: Schleswig Holstein, SN: 
Saxony, SL: Saarland, ST: Saxony-Anhalt, TH: Thuringia. 
7 The metropolitan area around the city of Frankfurt, including Mainz, Wiesbaden, Worms, Darmstadt, 
Aschaffenburg. 
8 The Ruhr area plus the cities of Cologne, Düsseldorf and Bonn. In figures 2 and 3 the Ruhr is marked by 
hatching. 
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Figure 2: Access to psychotherapists5 (left: FCA method, right: gravity model) 

Interpreting the differences and similarities between the competing measurements is more 

difficult in the case of psychotherapy. Explanations based solely on the urban-rural contrast 

are unconvincing. There are cities such as Hamburg and Munich and the Rhine-Main 

agglomeration where both measurement methods indicate high levels of access. At the same 

time, the results for regions like Berlin and the Rhine-Ruhr agglomeration are strongly 

divergent. In such cases, it is necessary to decide to which measurement to attribute the higher 

plausibility. An argument which speaks in favour of the gravity model relies on the 

observation that the demand for psychotherapists increases with income. Since income per 

capita is below the German average in Berlin and the Ruhr area, it can be assumed that the 

demand for psychotherapists is relatively low in these areas, allowing access to be high 

despite only moderate supply. This interpretation is in line with current German capacity 

planning, which postulates a sufficient level of access to psychotherapists in the Rhine-Ruhr 

area. 

The maps for the other nine ambulatory specialities are not shown here, as the deviations 

between the competing measurements are smaller. However, the geographical patterns are 

strikingly similar for all ambulatory specialities, with indices highly correlated at values of 

0.75 to 0.96. This means that the access situation at any particular location is either good or 

bad across all medical specialities. 
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Figure 3: Access to hospitals5 (left: FCA method, right: gravity model) 

The maps for hospital care (Figure 3) are similar to those for psychotherapy (Figure 2), with 

similar differences between the measurement methods. On the one hand, there are areas, 

mainly in the south and the north-east, for which both measurements indicate good access to 

care. On the other hand, there are areas like the Rhine-Ruhr agglomeration for which the 

measurements strongly diverge. Here again, more speaks for the gravity model than for the 

FCA method. The Ruhr area is known to have one of the highest bed densities in Germany, a 

clear oversupply confirmed by a recent study of German hospital capacities by Loos et al. 

(2019) . The overall picture shown by the gravity-based measurement is that rural areas tend 

to be undersupplied and urban areas oversupplied, a conclusion also drawn by other studies 

(Sundmacher et al., 2018). Exceptions to this rule are mainly found in the north. The city of 

Hamburg seems to suffer from undersupply whereas the opposite holds for parts of 

Mecklenburg-Western Pomerania and Brandenburg. The oversupply in hospital care in the 

north-east is best explained by the low population density in this area. 

The correlation between the ambulatory and hospital sectors is positive and ranges from 0.34 

(hospitals to GPs) to 0.48 (hospitals to urologists). Thus, poor hospital access often goes hand 

in hand with poor ambulatory access.  
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Figure 4: Overall access to care5 (left: FCA method, right: gravity model) 

The differences in the two competing measurements of access to care become particularly 

clear when aggregating over the various access indices (Figure 4). Obviously, the 

measurements produce maps which have little in common. There are few areas for which the 

two measurements do not indicate opposing situations of care. The general view is in 

Germany that rural regions tend to be undersupplied and cities oversupplied. The gravity 

model is more in line with this view. However, the basis of this statement is a qualitative 

comparison. Therefore, a quantitative comparison is added in the Supplement. 

Of course, as has already been pointed out, the original FCA method no longer reflects the 

state of the art, and using the iFCA method Bauer and co-authors have published maps of 

Germany that are quite close to those shown here for the gravity model. This applies to GPs 

(Bauer et al., 2018), gynaecologists (Bauer et al., 2017a), and orthopaedists (Bauer et al., 

2017b). However, though the similarity of the maps is remarkable, there remain notable 

differences in detail. One striking example is the Allgäu Alps in the south of Bavaria. Another 

is the area around the cities of Greifswald and Stralsund in the far north-east. Here the picture 

of access to GPs drawn by the gravity model and even by the FCA method is much more 

positive than the one found in Bauer et al. (2018). 

For reasons explained in Section 3.5, no notable differences are to be expected between the 

gravity-based measurement of access and measurements based on the approach of Bikker and 
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de Vos (1992). To the best of our knowledge, Bikker and de Vos’s method has not been 

applied to Germany before. 

 

5. Projecting health capacities 

5.1 Estimating the demand for health care services 

A planning model is by nature forward-looking and needs to be backed up with appropriate 

forecasts, such as demographic projections (Ono et al., 2013). Past take-up of services is not 

an undistorted indicator of future demand. For example, account must be taken of such factors 

as supply-induced demand, barriers to ready access for certain groups of patients and the 

effects of technical progress, to name but a few. Normative decisions need to be taken as to 

what part of past take-up can be regarded as relevant for planning and consideration given to 

how this proportion may change over the course of time (Fleurbaey & Schokkaert, 2009). 

Similar objections have been raised to the devising of funding allocation models, e.g. risk 

adjustment models. In practice, these objections are met by using regression models working 

only with factors relevant for equalization (Ellis et al., 2018). Following this example, we 

assume that the planning authority has decided that compensation should be made for 

differences in demand per capita, 𝐷𝐷𝑖𝑖𝑖𝑖/𝐼𝐼𝑖𝑖, that are caused by differences in morbidity and 

socio-economic status. 

We follow the standard procedure and use generalized linear modelling to predict the demand 

for health care services (Sundmacher et al., 2018). The independent variables suggested by eq. 

(8) are the access to care, 𝛽𝛽𝑖𝑖𝑖𝑖, and the population adjustment factor, 𝜇𝜇𝑖𝑖𝑦𝑦/𝑇𝑇𝑖𝑖. The latter is 

proxied by (a) a morbidity risk score (𝑀𝑀𝑀𝑀𝑆𝑆𝑖𝑖), (b) urbanity (𝑢𝑢𝑢𝑢𝑏𝑏𝑖𝑖) measured by the density of 

population, and (c) a socio-economic (deprivation) risk score (𝐼𝐼𝑀𝑀𝐷𝐷𝑖𝑖). Population size, 𝐼𝐼𝑖𝑖, 

serves as the offset variable. 

Using 𝛽𝛽𝑖𝑖𝑖𝑖 as an independent variable raises the problem of potentially biased estimation. 

Equations (13) and (14) make abundantly clear that this variable is not exogenous. Since 

endogeneity would not be a problem if the FCA method were applied, it makes sense to use 

the FCA method to first estimate counterparts of 𝛽𝛽𝑖𝑖𝑖𝑖 and then use the predicted values as 

instruments in a generalized moments (GMM) estimation of the following equation: 

 𝐷𝐷𝑖𝑖𝑗𝑗
𝐼𝐼𝑖𝑖

= exp (𝛾𝛾𝐷𝐷,𝑖𝑖 + 𝛾𝛾𝐺𝐺𝑀𝑀𝑆𝑆,𝑖𝑖 ∙ 𝑙𝑙𝑛𝑛(𝑀𝑀𝑀𝑀𝑆𝑆𝑖𝑖) + 𝛾𝛾𝑢𝑢𝑢𝑢,𝑖𝑖 ∙ 𝑙𝑙𝑛𝑛(𝑢𝑢𝑢𝑢𝑏𝑏𝑖𝑖) + 𝛾𝛾𝐼𝐼𝐺𝐺𝐷𝐷,𝑖𝑖 ∙ 𝑙𝑙𝑛𝑛(𝐼𝐼𝑀𝑀𝐷𝐷𝑖𝑖)  

      + 𝛾𝛾𝛽𝛽,𝑖𝑖 ∙ 𝑙𝑙𝑛𝑛(𝛽𝛽𝑖𝑖𝑖𝑖)) ∙ 𝑢𝑢𝑖𝑖𝑖𝑖       (30) 
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where 𝑢𝑢𝑖𝑖𝑖𝑖 is the error term with the expected value of one. The coefficients, 𝛾𝛾.,., are the 

parameters to be estimated. A priori the parameter 𝛾𝛾�𝛽𝛽,𝑖𝑖 can be expected to be non-negative. A 

large value would indicate a strong impact of access to care on demand. Vice versa, a 

statistically insignificant value would indicate the lack of such an impact, which can be 

interpreted as indicating the achievement of equality in access. 

 

5.2 Regression results for catchment areas and medical demand 

Table 2 shows the regression results for catchment areas and the demand for medical 

treatment based on equations (29) and (30), respectively. Due to the large number of 

observations, the standard errors are so small that they are only shown in the supplementary 

material. 

Table 2: Regression results for catchment areas and the demand for medical treatment 

  (32)  Demand for treatment (34) 
 Catchment 

area  Constant Morbidity Deprivation Urbanity Access 
index, �̂�𝛽𝑖𝑖𝑖𝑖 

  𝜙𝜙�𝑖𝑖  𝛾𝛾�𝐷𝐷,𝑖𝑖 𝛾𝛾�𝐺𝐺𝑀𝑀𝑆𝑆,𝑖𝑖 𝛾𝛾�𝐼𝐼𝐺𝐺𝐷𝐷,𝑖𝑖 𝛾𝛾�𝑢𝑢𝑢𝑢𝑢𝑢,𝑖𝑖 𝛾𝛾�𝛽𝛽,𝑖𝑖 
General 
Practitioners  23.64  0.95*** 0.31*** -0.01     0.01     -0.01**  

Ophthalmologists  36.89  -1.48*** 0.62*** -0.12*** 0.04*** 0.14*** 
Surgeons  39.91  -3.62*** 0.18*** 0.52*** 0.11*** 0.04*** 
Gynaecologists  30.12  -0.89*** 0.02       -0.04*** 0.03*** 0.11*** 
ENT-specialists  37.28  -2.21*** 0.29*** -0.16*** 0.07*** 0.21*** 
Dermatologists  47.45  -1.93*** 0.22*** -0.09*** 0.06*** 0.34*** 
Paediatricians  35.99  -1.82*** -0.20*** -0.38*** -0.02*** 0.25*** 
Neurologists  43.77  -3.14*** 0.55*** -0.03*** 0.08*** 0.31*** 
Orthopaedic 
specialists  38.11  -1.93*** 0.68*** -0.50*** 0.08*** 0.22*** 

Psychotherapists  56.46  -3.67*** -0.90*** -0.25*    0.11*** 0.43*** 
Urologists  49.09  -2.66*** 1.08*** -0.19*** 0.07*** 0.11*** 
Hospitals  60.00   -1.74*** 0.60*** 0.44*** 0.03*** 0.00       
Note: Catchment areas in minutes; population as offset; standard deviations in supplementary material; 
*** p(z) < 0.01; ** p(z) < 0.025; * p(z) < 0.05; The size of the catchment area of hospitals is set at 60 
minutes. An estimation is not possible as data is only available at the district level. 

 

At roughly 24 minutes, the measured catchment area is smallest for GPs, followed by 

gynaecologists with 30 minutes, paediatricians with 36, and ophthalmologists with 37 

minutes. At 56 minutes the measured catchment area is largest for psychotherapists, followed 

by urologists (49 minutes). As explained in Section 4.3 this implies that a GPs practice at a 

distance of 20 minutes is only visited in 20% of cases. By contrast, similarly distant 

paediatricians and psychotherapists are visited in 40% and 70% of cases, respectively. With a 
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95% bound applied to distance weighting, the measured size of catchment areas largely 

confirms the values in Fülöp et al. (2011). Significant differences only exist for urologists - 49 

here vs. 31 minutes in Fülöp et al., (2011) - and psychotherapists (56 vs. 62 minutes)9. 

The estimated partial elasticity of demand, 𝛾𝛾�𝐺𝐺𝑀𝑀𝑆𝑆,𝑖𝑖, varies between -0.90 and 1.08. This means 

that in most specialities increases in the morbidity risk score are estimated to induce sub-

proportional increases in the demand for treatment. The demand for urologists is the only one 

to increase over-proportionally. The effects for paediatricians and psychotherapists are 

actually negative, while the effect on gynaecologists is insignificant. 

The partial elasticity of deprivation, 𝛾𝛾�𝐼𝐼𝐺𝐺𝐷𝐷,𝑖𝑖, varies between -0.50 and 0.52. Individuals living 

in regions with deprivation one percent above the national average visit surgeons (0.52%) and 

hospitals (0.44%) more often (ceteris paribus), consult GPs equally frequently and seek out 

all other specialists less frequently. These results confirm the findings of Kopetsch (2007a) 

and Ozegowski and Sundmacher (2014).  

With the exception of GPs and paediatricians, the demand for medical treatment increases 

with urbanity. The stronger demand of urban residents is in line with Ozegowski and 

Sundmacher (2014). 

The key result in Table 2 is the effect of access to health care on the demand for treatment. 

With the exception of GPs and hospitals, the access elasticity of demand, 𝛾𝛾�𝛽𝛽,𝑖𝑖, is significantly 

positive throughout, ranging between 0.04 and 0.43. An increase of one percent in 

accessibility, caused for instance by shortened travel time or increased local supply, increases 

the use of specialist care by an average of 0.19%. By contrast, the utilization of GPs declines 

by 0.01% and the effect on hospitals is insignificant. Such results are in line with Salm and 

Wübker (2020) who suggest interpreting them as evidence for the claim that regional 

variation in the utilization of GPs must be explained by factors of demand such as 

demographics and other patient characteristics. By contrast, supply factors primarily explain 

variation in the utilization of specialist care.The positive effect for specialists suggests that 

better access creates higher demand, just as one would expect10. The non-positive effects for 

GPs and hospitals, on the other hand, need some explanation. Here it is important to bear in 

                                                      
9 The differences can be explained by the more comprehensive and more recent data in the present study and by 
counting multiple visits to the same doctor as separately. Fülöp et al. (2011) base their analysis on selected 
German states and on data from 2010 counting multiple visits as one. As to psychotherapists, the difference 
could also result from an increase in their number. 
10 For a theoretical discussion see Andersen (1995), and for empirical results see Augurzky et al. (2013); 
Kopetsch and Schmitz (2014) and Büyükdurmus et al. (2017). 
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mind that the access indices of GPs and hospitals are positively correlated with those of 

specialist care. In other words, high specialist coverage tends to go hand in hand with a high 

level of primary and hospital care capacities. Taking this positive correlation into account, the 

negative effect which the access to GPs has on the demand for treatment indicates that such 

consultations often serve as a substitute for specialist treatment. Overall better access to health 

care triggers stronger demand for ambulatory specialists, which in turn absorbs the demand 

for GPs (see also Büyükdurmus et al., 2017). That demand for hospital beds remains steady 

regardless of accessibility is plausible, since German hospital care is highly specialized and 

usually involves surgery. 

 

5.3 Predicting the future demand for health care 

Future demand is theoretically determined by assuming equal access, �̅�𝛽𝑖𝑖 = �̅�𝛽𝑖𝑖𝑖𝑖, and inserting 

predictions of future population, morbidity, and socio-economic status into the estimated eq. 

(30), giving 𝐷𝐷�𝑖𝑖𝑖𝑖 = �̂�𝑑𝑖𝑖𝑖𝑖 ∙ �̅�𝛽𝑖𝑖
𝛾𝛾�𝛽𝛽,𝑗𝑗. In this paper, however, the focus is not on a quantification of 

future demand but on methodological issues, the aim being to illustrate capacity planning 

based on the gravity model. For this reason, for morbidity, characteristics of population, the 

working hours of ambulatory physicians,11 and the occupancy rates of hospitals12 we take the 

values in the base year 2015. The only difference between the “predicted” and the measured 

demand then comes from replacing the estimated access indices with their target values, �̅�𝛽𝑖𝑖. In 

Section 3.4 we argued that the choice of �̅�𝛽𝑖𝑖 is a political one. In what follows, we simply set 

�̅�𝛽𝑖𝑖 = 1 (for all 𝑠𝑠). The differences between the measured and predicted demand obtained this 

way are small and not worth reporting in detail. The maximum is 8.6% for psychotherapists 

and the total difference is -0.6%. 

 

5.4 Moving from predicted demand to projected capacity imbalances 

The predicted demand, 𝐷𝐷�𝑖𝑖𝑖𝑖 = �̂�𝑑𝑖𝑖𝑖𝑖 ∙ �̅�𝛽𝑖𝑖
𝛾𝛾�𝛽𝛽,𝑗𝑗 = �̂�𝑑𝑖𝑖𝑖𝑖, is set equal to its theoretical specification in 

eq. (9), thus yielding 

 𝜗𝜗𝑖𝑖𝜎𝜎 ∙ 𝐼𝐼�̅�𝑖 = �̂�𝑑𝑖𝑖𝑖𝑖 ∙ �̅�𝛽𝑖𝑖
𝛾𝛾�𝛽𝛽,𝑗𝑗−1 = �̂�𝑑𝑖𝑖𝑖𝑖.        (31) 

                                                      
11 The data were collected at a time when doctors were required to allot a minimum of 20 hours per week to consultations for 
SHI patients. Since then the minimum has been increased to 25 hours (§ 17 Abs. 1a Bundesmantelvertrag-Ärzte).  
12 The occupancy rate of hospital beds is the object of capacity planning at the state level. Over the last ten years, it has 
remained fairly constant at 77.2%. 
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By inserting eq. (31) into eq. (11), relying on equations (6) and (12) for planned variables, and 

assuming 𝐿𝐿�𝑖𝑖𝑖𝑖 to be exogenously fixed, we obtain the number of doctors needed to meet the 

predicted demand as a function of the planned access which we have assumed to be one: 

 �̅�𝐴𝑖𝑖𝑖𝑖 ∙ 𝐿𝐿�𝑖𝑖𝑖𝑖 = �̅�𝛽𝑖𝑖
𝛾𝛾�𝛽𝛽,𝑗𝑗 ∙ 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎(1) ∙ ∑ �̂�𝑑𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎𝑖𝑖 = 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎(1) ∙ ∑ �̂�𝑑𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎𝑖𝑖   for all 𝑗𝑗𝑠𝑠  (32) 

For details of the derivation see the Appendix. 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎(1) is the solution of the system of 

equations, ∑ 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎 = 1𝑖𝑖  for all 𝑖𝑖𝑠𝑠.  

Table 3 compares required and available treatment capacities. The main result is that there are 

overcapacities in all specialities. The deficits occurring in rural areas and minor towns are 

more than compensated for by overhangs in urban areas. The greatest imbalance of 39% is to 

be found among psychotherapists,13 although major spatial imbalances also apply to 

dermatologists (29%), ENT-specialists (28%) and neurologists (26%). The numbers of 

surgeons and orthopaedic specialists are those most in need of reduction, whilst GP and 

hospital bed numbers require the least adjustment. 

                                                      
13 The figure of 39% is computed as the sum of absolute deviations divided by the number of available doctors, 
(5,178+1,526+2,375)/23,170.  
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Table 3: Predicted demand and projected capacity imbalances 

Speciality Capacities in urban areas Capacities in minor towns Capacities in rural areas Overall capacities 
 Required Available ∆ Required Available ∆ Required Available ∆ Required Available ∆ 

General 
Practitioners 19,722    24,520    -4,798     17,089     15,817     1,272     13,140     11,291     1,849     49,951     51,628  -1,677    

Ophthalmologists  1,970    2,695    -725     1,709     1,534     175     1,344     1,050     294     5,023     5,279    -256    
Surgeons  1,359    1,872    -513     1,232     1,196     36     992     813     179     3,583     3,880    -297    
Gynaecologists  3,702    5,142    -1,440     3,151     2,804     347     2,402     1,803     599     9,254     9,748    -494    
ENT-specialists  1,459    2,115    -656     1,224     1,068     156     952     725     227     3,634     3,910    -276    
Dermatologists  1,164    1,727    -563     1,048     933     115     805     549     256     3.016     3,209    -193    
Paediatricians  2,090    2,845    -755     1,795     1,693     102     1,368     1,075     293     5,254     5,613    -359    
Neurologists  1,769    2,576    -807     1,524     1,374     150     1,195     879     316     4,488     4,829    -341    
Orthopaedic 
specialists  1,961    2,812    -851     1,687     1,553     134     1,310     1,007     303     4,957     5,370    -413    

Psychotherapists  8,521    13,720    -5,199     7,735     6,203     1,532     5,728     3,342     2,386     21,983     23,264    -1,281    
Urologists  999    1,337    -338     881     793     88     709     517     192     2,589     2,644    -55    

Hospitals  235,557    307,828    -72,271    224,718     192,688     32,030     175,800     135,891     
39,909     636,075     636,407    -332    

Note: For the measurement of demand see Table 1. Capacities are measured by the number of doctors in full-time equivalents with the exception of 
hospitals, which are measured by the number of beds. ∆ ≡  required – available. 
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The gravity-based analysis in Table 3 suggests that health equity could be dramatically 

improved by reallocating capacities from urban to other areas. Indeed, it calls current German 

practice in capacity planning into question by highlighting its apparent failure to identify the 

true imbalances in health care access. There are three possible explanations for this failure. 

Firstly, with the exception of psychotherapists (data from 1999), current capacity planning is 

largely based on outdated doctor-population ratios dating from 1990. Moreover, the target 

ratios are not derived from the needs of the population, however these are measured, but 

primarily serve the purpose of limiting the growth in the number of doctors. Secondly, 

doctors’ labour productivity has increased less than the number of medical interventions. As a 

result, the average doctor bills 6% fewer cases per year than ten years ago (KBV, 2020). The 

third reason is that the present system of capacity planning aims less at satisfying medical 

demand than at covering geographic space.14 

No statutory target figures exist for hospital planning but our gravity-based analysis suggests 

the need for a substantial reallocation of capacities. There are two possible counterarguments 

to this conclusion. Firstly, hospitals are not easily set up or closed, investments are largely 

irreversible, and due account must be taken of the proximity of other facilities and institutions 

such as universities. Secondly, the advantage of easy access needs to be traded off against the 

economies to be achieved by centralisation. Indeed, many specialized treatments can only be 

safely performed if they are conducted frequently enough for the staff involved to acquire and 

maintain sufficient experience.15 Nevertheless, gravity-based planning should help to identify 

imbalances in the spatial allocation of hospital capacities. 

 

6. Conclusions 
This paper presents a gravity model designed to improve health care capacity planning. The 

decisive advantage of the approach is methodological. Supply and demand for medical 

services are modelled by using a general equilibrium framework grounded in choice theory, 

and indices of access to health care are directly derived from this model. As eq. (15) shows, 

these indices are inversely proportional to the product of two geometric means. One is taken 
                                                      
14 Only recently efforts have been made to take greater account of medical needs in planning by setting targets 
for accessibility. Sundmacher et al. (2018) derive and propose specific targets for ambulatory care and their 
proposals have now been incorporated into the statutory capacity planning guideline (§35 (2) Fn. 2 
Bedarfsplanungs-Richtlinie). These targets are largely confirmed by the present study in terms of both direction 
and absolute extent. 
15 For this reason Germany’s statutory health insurers may refuse to reimburse certain costs of treatment if the 
billing hospital has not performed a minimum number of such interventions in a given period. See § 136b (2) 
SGB V. 
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of cross-border supply ratios and the other of distances. In a comparison, the access index 

derived from the floating catchment area (FCA) method proves to be a special case 

(Proposition 2) in the sense that it omits certain adjustments of the population for morbidity 

and distance suggested by the gravity model. The shortcomings of the FCA method have been 

a frequent topic in the literature and a number of attempts have been made to correct them by 

modifying the metric of the population’s care potential (e.g. Delamater, 2013). However, 

these attempts suffer from being largely ad hoc and supply-biased. 

The present model builds on Bikker and de Vos (1992), whose idea it was to explain supply 

and demand linkages for inpatient hospital care by a gravity equation. Again, the advantage of 

our approach lies in its choice-theoretic grounding. As explained in Section 3.5, capacity 

planning requires full equilibrium modelling to account for interregional and intersectoral 

supply and demand linkages.  

The merits of the present approach are illustrated by applying it to the German health system. 

Access to care is measured for GPs, hospitals, and ten ambulatory specialities and revealed to 

be particularly low in wide areas of Germany’s north-east across almost all medical 

specialities. 

Finally, in Section 5 we compare the actual capacities for health care with those needed if 

equality of access is to be achieved. Confirming findings in the literature, we show that there 

is a clear urban-rural divide. Rural areas and minor towns suffer from undersupply whereas 

urban areas enjoy considerable oversupply. Aggregating deficits and overhangs, 

overcapacities are shown to exist in all specialities. We also find that the population of 

socially deprived areas is more likely to take advantage of hospital care than of treatment 

provided by ambulatory specialists.  

No study of this kind would be complete without caveats. Our greatest reservation concerns 

the measurement of patient morbidity. The negative coefficients of the 𝑀𝑀𝑀𝑀𝑆𝑆 estimators 

suggest that they are measuring general chronicity rather than speciality-specific morbidity. 

This deficiency could be corrected by relying on a more sophisticated morbidity measurement 

better tailored to medical specialities, as in Sundmacher et al. (2018). A further point of 

potential criticism is our data, which exclude those who did not consult an SHI doctor in 

either of the years 2015 or 2016.16 This may bias the results, especially in regions with a high 

proportion of patients with private, rather than statutory, health insurance, since their 

                                                      
16 For further, more minor limitations resulting from the data the reader is referred to Sundmacher et al. (2018). 
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treatments are not captured by the KBV billing data. A final caveat concerns the size of 

catchment areas, which may well be underestimated. The reason is that journey times are 

computed by using the postal codes of billing addresses. The time of journeys within the same 

postal code is thus zero, a technical simplification which obviously underestimates some 

actual journey times. Despite all these limitations, however, we strongly believe that our 

choice-theoretic grounding of the gravity equation and the empirical analysis of the German 

situation based on this equation make a significant contribution towards bringing health care 

planning more in line with medical needs. 

 

7. Appendix 

Eq. (32) is derived as follows. Equating equations (6) and (12) for planned variables yields 

 �̅�𝐴𝑖𝑖𝑖𝑖 ∙ 𝐿𝐿�𝑖𝑖𝑖𝑖 = 𝑆𝑆�̅�𝑖𝑖𝑖 = 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎 ∙ 𝛼𝛼�𝑖𝑖𝑖𝑖.        (33) 

Inserting eq. (31) into eq. (11) yields  

 𝛼𝛼�𝑖𝑖𝑖𝑖 = ∑ �𝜗𝜗𝑖𝑖𝜎𝜎 ∙ 𝐼𝐼�̅�𝑖� ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎 = ∑ �̂�𝑑𝑖𝑖𝑖𝑖 ∙ �̅�𝛽𝑖𝑖
𝛾𝛾�𝛽𝛽,𝑗𝑗−1 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎𝑖𝑖𝑖𝑖 = �̅�𝛽𝑖𝑖

𝛾𝛾�𝛽𝛽,𝑗𝑗−1 ∙ ∑ �̂�𝑑𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎𝑖𝑖 .  (34) 

As shown in Section 3.4, 

 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎 = 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎��̅�𝛽𝑖𝑖� = �̅�𝛽𝑖𝑖 ∙ 𝜏𝜏�̅�𝑖𝑖𝑖1−𝜎𝜎(1).       (35) 

Using equations (34) and (35) and insertion into eq. (33) yield eq. (32). □ 

 

8. Supplement: A quantitative assessment of the gravity-based 
measurement of access to care 

In Section 4.4, we used the gravity model to illustrate access to health care using Germany as 

an example. It became clear that the gravity model paints a much more convincing picture 

than the FCA method. One might, however, object that the FCA method does not reflect the 

state of the art and that the ranking is only based on a qualitative comparison of maps. To 

meet the second objection, we shortly examine how well the gravity model is able to identify 

structural supply deficit. 

A standard indicator of structural supply deficit is the number of hospital cases with 

Ambulatory Care Sensitive Conditions (ACSC) (Ansari et al., 2006). Such cases could have 

been avoided by appropriate ambulatory treatment. Sundmacher and Kopetsch (2015) show 
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that poor access to ambulatory care has an increasing effect on the number of ACSC cases, 

just as particularly good access to hospital care is expected to elicit ACSC cases. Against this 

background, one might wonder which access measurement is better suited to estimate the 

number of ASCS cases. To investigate the relationship between ASCS cases and access 

indices, we estimate the following equation for both the gravity model and the FCA method:  

𝐸𝐸[𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑖𝑖|𝐼𝐼𝑀𝑀𝐷𝐷𝑖𝑖 , 𝑆𝑆𝐸𝐸𝑆𝑆𝑖𝑖,𝛽𝛽𝑖𝑖𝑖𝑖]
𝐼𝐼𝑖𝑖

= exp [𝛾𝛾𝐹𝐹𝑆𝑆𝐹𝐹𝑆𝑆 + 𝛾𝛾𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹,𝐺𝐺𝑀𝑀𝑆𝑆 ∙ 𝑙𝑙𝑛𝑛(𝑀𝑀𝑀𝑀𝑆𝑆𝑖𝑖) + 𝛾𝛾𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹,𝐼𝐼𝐺𝐺𝐷𝐷 ∙ 𝑙𝑙𝑛𝑛(𝐼𝐼𝑀𝑀𝐷𝐷𝑖𝑖) 

  +𝛾𝛾𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹,𝐺𝐺𝐺𝐺 ∙ 𝑙𝑙𝑛𝑛�𝛽𝛽𝑖𝑖,𝐺𝐺𝐺𝐺� + 𝛾𝛾𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹,𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 ∙ 𝑙𝑙𝑛𝑛�𝛽𝛽𝑖𝑖,𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠� 

  +𝛾𝛾𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹,𝐻𝐻𝐻𝐻𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑙𝑙𝑛𝑛�𝛽𝛽𝑖𝑖,𝐻𝐻𝐻𝐻𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠�]       

The variable 𝑀𝑀𝑀𝑀𝑆𝑆 denotes a morbidity risk score chosen to proxy morbidity, 𝜇𝜇𝑖𝑖, and 𝐼𝐼𝑀𝑀𝐷𝐷 

denotes a deprivation risk score chosen to proxy socio-economic status. 𝐼𝐼𝑀𝑀𝐷𝐷 stands for the 

index of multiple deprivations proposed by Kroll et al. (2017). It is obtained by aggregating 

German indices of education, income, and social disadvantage. By contrast, 𝑀𝑀𝑀𝑀𝑆𝑆 is estimated 

by running an OLS regression in which age-gender (5-years) and disease dummies (according 

to Elixhauser et al., 1998) are used as independent variables and in which the dependent 

variable is expressed in units of time and computed by relying on the Uniform Assessment 

Standard (Einheitlicher Bewertungsmaßstab, EBM, defined by § 87 sect. 2 SGB V). The 𝑀𝑀𝑀𝑀𝑆𝑆 

determined in this way is a valid instrument for modelling differences in morbidity (Göpffarth 

et al., 2016). As to the ASCS definition, we rely on the one suggested by Sundmacher et al. 

(2015) for Germany. The variables 𝛽𝛽𝑖𝑖,𝑖𝑖 represent the indices of access to (a) GPs, (b) 

ambulatory specialists when aggregated, and (c) hospitals, respectively.  

Table 4: Regression results (ACSC cases) 

  Gravity model  FCA 

  𝛾𝛾∙,∙ 
std. 

deviation p-value  𝛾𝛾 std. 
deviation p-value 

intercept  -4.78 0.16 0.00  -5.44 0.10 0.00 
morbidity  -0.00 0.03 0.91  -0.00 0.02 0.87 
deprivation  0.71 0.10 0.00  0.92 0.05 0.00 
GPs  0.05 0.15 0.75  0.27 0.14 0.02 
Specialists  -0.55 0.21 0.01  -0.13 0.07 0.01 
Hospitals  0.26 0.10 0.01  0.14 0.06 0.01 
R2  24.23%  22.72% 
AIC  8824.42  8840.32 
 

The explanatory power of the regression based on gravity indices is the higher one. The 

Akaike Information Criterion (AIC) is definitely lower and the coefficient of determination is 
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larger. The difference in R2 is significant. The estimated coefficients associated with the 

gravity model are absolutely larger than those associated with the FCA method ones for 

specialists and hospitals, as can be seen by comparing the regression coefficients in the above 

Table. The result confirms the expectation that ASCS cases are supply-induced (hospital) and 

that access to specialists exerts the main (negative) impact. The result is well in line with 

Sundmacher and Kopetsch (2015).17 Thus, we conclude that the gravity model seems to be 

better than the FCA method in identifying structural supply deficits such as high numbers of 

ASCS cases. 
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