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ABSTRACT 
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Pursuing a PhD and postdoctoral training are major human capital investments involving 

several years of effort and substantial foregone earnings. As with earlier human capital 

investments, the benefits of these postgraduate investments lie in subsequent career 

opportunities. One such opportunity is the prospect of obtaining a tenure-track faculty position—

a job that comes with considerable nonmonetary attributes in terms of prestige, autonomy, and 

flexibility, if not with greater pay.  

However, becoming a tenure-track faculty member, particularly in the natural sciences in 

the United States, has become incredibly difficult. In 2016, approximately 2,700 students 

graduated with a PhD degree in chemistry, yet there were only 152 advertised openings for 

chemistry faculty positions in U.S. research-intensive universities.1 Only around 10 percent or 

fewer of PhDs who become tenure-track faculty are in chemistry and the life and biological 

sciences (Gaulé and Piacentini 2018; Sauermann and Roach 2016).  Yet, despite the low 

likelihood of ever becoming faculty, along with low postdoc salaries, many graduate students 

pursue one or multiple postdoctoral positions, often with the hopes that it will increase their 

chances to obtain academic employment (Hayter and Parker 2019).  

The fact that the number of chemistry PhD graduates vastly exceeds the number of 

faculty openings in many STEM fields has not escaped the attention of the science policy 

community and has been the subject of recurring debates (e.g., Alberts et al. 2014; Cyranoski et 

al. 2011; Freeman et al. 2001; Romer 2000; Sauermann and Roach 2016; Schillebeeckx, 

Maricque, and Lewis 2013).  

 
1 There are more than 200 research-intensive universities in the United States. Besides being relatively easy 

to measure, placements in research-intensive universities are precisely those that junior scholars aspiring to an 
academic career with a focus on research would target. The number of 152 openings is based on the results of a 
community effort to help applicants by identifying all relevant positions (see http://chemjobber.blogspot.com/). 

http://chemjobber.blogspot.com/
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Why do young scientists keep choosing to pursue PhD and postdoctoral training despite 

the dwindling academic career prospects? One possibility is that postdoctoral training improves 

nonacademic career prospects enough to be worthwhile even in the absence of academic career 

options.2 However, evidence suggests that nonacademic careers vary substantially in the extent 

that they require doctoral training (Hayter and Parker 2019). Alternatively, the experience of 

training itself may be appealing to graduate students, as scientists are drawn to the puzzle-

solving nature of doing science (Dasgupta and David 1994; Merton 1973; Sauermann and Roach 

2012; Stern 2004;). Meanwhile, for foreigners, visa considerations may steer individuals not just 

toward graduate study, but also toward postdoctoral training, as universities are not to subject to 

the same H1-B restrictions as private sector firms, which would allow them to more easily 

remain in the U.S. (Amuedo-Dorantes and Furtado 2019; Ganguli and Gaulé 2020; Stephan and 

Ma 2005). 

In this paper, we consider another factor that may contribute to observed human capital 

investment decisions: perhaps graduate students are not well informed about the state of the 

academic job market, and these incorrect beliefs play a role in their career decisions, particularly 

decisions to pursue postdoctoral training.3 Prior studies suggest through qualitative and survey 

evidence that individuals already in postdoc positions were indeed overly optimistic about the 

likelihood of getting an academic job, and that junior scientists who had already advanced 

beyond the PhD reported lacking information about nonacademic career options (Hayter and 

Parker 2019; Sauermann and Roach 2016).  Yet, it is unclear whether providing information 

 
2 For example, having completed postdoctoral training may have signaling or certification value on the 

labor market. Further, the knowledge gained through training may be applicable—and indeed highly valued—for 
working in industry (Aghion, Dewatripont, and Stein 2008; Dasgupta and David 1994; Sauermann and Roach 2016; 
Sauermann and Stephan 2010). 

3 Entering science involves a series of choices—from choosing a major in college to deciding to embark on 
a PhD and post-PhD career choices. Ideally, we would like to know how beliefs and information on the scientific 
labor market shape decisions to pursue a scientific career at an early stage.  
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about the academic market and nonacademic careers to chemistry PhD students prior to this 

would have a causal impact on their beliefs and subsequent career choices and preferences.  

In very different contexts, the economics literature has established that biased beliefs can 

drive human capital investment decisions and that providing information can causally impact 

subsequent educational choices (e.g., Dinkelman and Martinez 2014; Jensen 2010; Oreopoulos 

and Dunn 2013; Wiswall and Zafar 2015). In these studies, individuals typically underestimate 

the returns to education and thus underinvest in education or make suboptimal education choices. 

We focus on postgraduate human capital decisions and ask whether beliefs are biased and 

whether providing information about the academic and nonacademic labor markets can have a 

causal impact on subsequent education investments and career aspirations, in particular, 

preferences to pursue a postdoc and an academic career.  We focus on a sample of chemistry 

doctoral students at the top 54 U.S. chemistry departments using an original survey combined 

with a field experiment.4 In the baseline survey, we first elicit beliefs about the academic market 

and publishing in top journals, as well as career preferences for different types of postgraduation 

jobs, such as postdocs, industry, government, or teaching positions.  

At the end of the survey, a random subsample of respondents received a message with a 

link to a custom-built website providing information on actual historical placement records by 

institution in a tabular format (historical information treatment). This treatment provides 

structured information about the academic labor market.  Another random subsample received a 

message with a link to a webpage from the American Chemical Society (ACS), the main 

professional society for chemists, listing profiles with photos and career information about 

 
4 We focus on chemistry because it is a discipline that we are able to observe academic placements on a 

systematic and accurate basis, thanks to the availability of a faculty directory (the ACS directory of graduate 
research). No comparable data exists for biology or physics. However, tight academic labor markets and long 
postdoctoral training are prevalent across the life and hard sciences.  
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professional scientists in academic, industry, and government positions (role model treatment). 

This treatment provides less-structured information about both the academic and nonacademic 

labor markets, particularly through role models who work in nonacademic sectors, with whom 

students would have little exposure to during their studies. Such role model interventions through 

various media types have been shown to impact behavior in a variety of settings, including 

among STEM students (e.g., La Ferrara 2016; Porter and Serra 2020). 

The last randomly drawn subsample, the control group, did not receive any message. One 

year after the baseline survey, we conducted a follow-up survey with the respondents of the 

baseline survey. In order to track how beliefs changed over time and whether the information 

interventions caused differential adjustments in beliefs, we asked respondents the same questions 

about their expectations about the academic job market.  

Our first result is that at baseline, doctoral students in our sample are excessively 

optimistic, both about the state of the academic market in their field and about publishing in top 

journals. When we ask respondents to declare their beliefs about the share of peers from their 

program eventually obtaining a tenure-track position in a U.S. research-intensive university, only 

a third of respondents have beliefs in the correct range, with the rest being either mildly or 

widely overoptimistic. Being overly optimistic in turn correlates with stated preferences for 

doing a postdoc and academic careers more generally.   

Interestingly, respondents were more optimistic about their peers’ chances of obtaining a 

tenure-track position in a research-intensive university than about their own chances. Similar to 

Sauermann and Roach (2016), who show that graduate students in older cohorts are less likely to 

plan on doing a postdoc and are less interested in academic careers, we find that students further 

along in their programs are less likely to hold overoptimistic beliefs about their chances in the 
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academic job market. Foreign students were more likely to hold overoptimistic beliefs. Female 

students were more optimistic than male students about the prospects of their peers, but not about 

their own chances of becoming faculty.  

Turning to the experiment, we estimate the causal impact of each information 

intervention on beliefs and preferences for different careers one year later. We find that both 

types of information (historical information treatment and role model treatment) led to a 

downward adjustment in beliefs about respondents’ own chances of becoming faculty, 

particularly among those who had more optimistic initial beliefs.  Yet, we observe no significant 

impact of either type of information on beliefs about the share of graduates from their program 

eventually becoming faculty.   

We also examine impacts of the interventions on satisfaction with pursuing a PhD. We do 

not observe an effect of the historical information treatment on satisfaction with pursuing a PhD, 

but the role model treatment did lead to small decline in satisfaction.  Interestingly, we do find 

that the historical information treatment led to an increase in the perceived attractiveness of an 

academic career. To the extent that the historical placement information made respondents 

realize that becoming a faculty member is more difficult than they expected, this may have 

reinforced the perceived attractiveness of academic careers.  The role model treatment, 

meanwhile, increased the perceived attractiveness of government research and development 

positions and reduced the preference for doing a postdoc, suggesting that exposure to 

nonacademic career options can impact career preferences.  

We also examine longer-run outcomes by collecting data on actual placements for the 

subsample of chemistry students who completed their PhDs after the baseline survey two years 
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later.  For this sample, we do not see any significant effects in their actual career choices, 

including doing a postdoc after the PhD.  

In sum, we find that the beliefs of chemistry PhD students are often biased, and providing 

historically accurate information leads to an adjustment in beliefs, especially among those who 

initially had higher beliefs. Moreover, providing less structured information about nonacademic 

careers impacts preferences for these careers. Yet, these changes in beliefs lead to limited 

changes in career aspirations in the longer run, and we do not detect impacts on actual career 

outcomes. Taken together, these results provide further questions about the role of information in 

postgraduate human capital investments.  

There are several possible reasons for the limited estimated effects on stated career 

aspirations and actual outcomes.  First, it could be that other preferences known to drive 

scientists’ behavior (e.g., puzzle-solving nature of doing science or prestige) are already quite 

strong at this point in training, so that there was minimal impact of the information on actual 

career preferences and choices. Second, given the sequential nature of educational choices, and 

that these are individuals who are already far along in their training trajectory with little option 

value, switching costs may be high (Stange 2012).  Third, the experience of going through 

postdoctoral training may be enjoyable in itself or may be desirable for visa or dual-career 

considerations.  Finally, postdoctoral training is still valued in many industry and government 

positions. 

While we cannot differentiate between these explanations in the current study, our 

findings nonetheless suggest that there is a strong rationale for departments to provide better 

career information, about both academic and nonacademic careers, to prospective and actual 

students, and there seems to be demand for such information (Sauermann and Roach 2016). 
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Providing better information would ensure that the choices are made with full knowledge of what 

they imply, and the costs of collecting and sharing information on placements are low.  

In addition to these implications for the postgraduate labor market, this paper contributes 

to the growing literature on biased beliefs and overconfidence. The prevalence and implications 

of biased beliefs and overconfidence has been documented across many domains (Malmendier 

and Taylor 2015), such as labor supply (Mueller, Spinnewijn, and Topa 2018), the housing 

market (Armona, Fuster, and Zafar 2019), risky behavior (Dupas 2011), and returns to schooling 

(Bleemer and Zafar 2018; Loyalka et al. 2013; Wiswall and Zafar 2015). Notably, ours is the 

first study that investigates the existence of biased beliefs in the educational choice to pursue 

postgraduate studies, postdoctoral studies in particular, and estimates how these beliefs are 

impacted by the provision of objective information about the labor market. 

The paper proceeds as follows. The following section explains the institutional context. 

The third section describes the data and experimental design. The fourth section presents the 

results, and we end with the discussion in the final section. 

INSTITUTIONAL CONTEXT 

In this section, we discuss entry into scientific careers with a specific focus on chemistry 

and academic careers in the United States. The entry into scientific careers is characterized by 

long periods of training. A PhD degree typically takes six years and is often followed by one or 

several postdocs.5 The chemical and pharmaceutical industries, as well as the government, are 

major employers of chemistry PhD graduates, and graduates can enter into industry positions 

 
5 In the extreme case, a small but significant proportion of postdocs end up as “permadocs,” doing several 

subsequent postdoctoral trainings without ever advancing to another level (Powell 2015). 
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before or after postdoctoral training. Despite these human capital investments into becoming a 

professional researcher, many doctoral degree holders employed in industry do not actually 

conduct research in their jobs (Lautz et al. 2018). 

A necessary condition for becoming a tenure-track professor in chemistry at a research-

intensive U.S. university is earning a doctoral degree. However, in chemistry and other natural 

sciences, postdoctoral training has become de facto an additional prerequisite, with direct 

transitions from obtaining a PhD degree to a tenure-track position essentially unheard of. In other 

words, postdoctoral training is crucial for being competitive for faculty positions.  As a postdoc, 

junior scientists build their publication portfolios, apply for grants, and gain additional scientific 

and professional skills. Yet, the vast majority of postdocs do not become tenure-track faculty 

members. Around a third of chemistry graduate students pursue postdocs, but less than 10 

percent of graduating students are in a tenure-track position in a research-intensive U.S. 

university five years after graduation (Gaulé and Piacentini 2018). Such low odds have been 

documented in other disciplines and countries (Stephan 2012b).  

Postdocs receive comparatively low levels of compensation during their postdoctoral 

training. For example, postdocs receive on average a 31 percent lower hourly wage than an 

average U.S. worker regardless of the education level (Stephan 2013). The opportunity cost of 

choosing a three-year postdoc instead of working in industry was estimated to be around $60,000 

in 2012 (Stephan 2012a). Kahn and Ginther (2017) find that in biomedicine, compared with 

peers who started working outside academia immediately after finishing their graduate studies, 

those who finish a postdoc earn less when they actually start to work. They also find that 

postdocs forgo about one-fifth of their earnings potential in the first 15 years after finishing their 

doctorates, which amounts to more than $200,000.  
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While information on career prospects for scientists is often available from professional 

associations and other sources, departments generally provide relatively little career information 

to prospective and current graduate students. Prior to the launch of this study, we visited the 

websites of 56 chemistry departments in our sampling frame (see Appendix B) looking for their 

graduate degree holders’ placement information. For 70 percent of departments, we could find 

no placement information at all. The remainder typically provided examples of institutions that 

have hired their graduates or aggregate data on placement by broad industry categories. One 

notable exception was the Princeton chemistry department, which provided lists of graduates and 

their placements at the conclusion of PhD. See Appendix C for more details on placement 

information available from departmental websites.  

DATA AND EXPERIMENTAL DESIGN 

We combine two surveys of chemistry graduate students with a field experiment, linked 

to the data on individual publications and career choices. The surveys provide rich descriptive 

data on respondents’ beliefs and aspirations and how they evolve over time. To overcome 

potential hypothetical bias, we combine the data on hypothetical job preferences with real job 

preferences from hand-collected placement data of the survey respondents who finished their 

PhDs after the baseline survey. We also leverage data from faculty directories, PhD theses, and 

publications from an ongoing project on the production of knowledge in chemistry (see Catalini, 

Fons-Rosen, and Gaulé, forthcoming; Gaulé  2014; Gaulé  and Piacentini 2018). Our research 

design and data collection approach is summarized in Figure 1.  

Our analysis and intervention is based primarily on a survey we conducted in fall 2017 

(hereafter baseline survey) and a follow-up survey one-year later. To construct the sampling 
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frame, we first identified the set of 54 research-intensive U.S. universities that rank highest in the 

Academic Ranking of World Universities (Shanghai Ranking) in its chemistry subject ranking. 

These schools have large PhD programs, and their students are presumably comparatively better 

placed for the academic job market. We gathered the names and emails of all individuals 

(n=9,141) that were listed as graduate students in the chemistry departments of these universities, 

either on graduate student directory websites or on individual laboratory websites. We then sent 

them email invites to complete a survey using the Qualtrics online survey platform.6  

We received a total of 1,330 responses corresponding to a response rate of 15 percent.7  

The baseline survey included a set of basic demographic questions, as well as questions on 

undergraduate education, year of enrollment in the PhD program, progress in the PhD program, 

and field of specialization. We asked about career preferences using both standard Likert-scale 

measures and counterfactual choice questions. Regarding beliefs, we asked respondents to rate 

their chances of publishing in Nature, Science, or Cell—the most prestigious science journals—

to rate their chances of becoming a tenure-track faculty in a research-intensive university, and 

the share of students in their program they believe eventually become tenure-track faculty in a 

research-intensive university (see Appendix D for the exact survey questions). Finally, we asked 

respondents whether they would agree to be contacted in a follow up survey and if so to provide 

us with a permanent email address that we could use for future contact. Table A.1 in Appendix A 

shows means and standard deviations for several key variables from the baseline survey. 

 
6 To increase the response rate, we sent two reminder emails and offered a lottery with possibility of 

winning one of 10 Amazon gift certificates worth $100 each. The choice of using this type of lottery was informed 
by Sauermann and Roach (2013). 

7 One issue we encountered was that some of the individuals we contacted reported having already 
graduated, presumably reflecting the fact that some online directories and websites were not entirely up to date. We 
excluded such responses from our analysis sample. Adjusted for the presence of students who already graduated 
among the people we contacted, our response rate was around 18 percent.  
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We combined the baseline survey with an information provision experiment. After 

completing the baseline survey, respondents were randomly selected into either two treatment 

groups or one control group. Treatment groups received one of the two versions of a thank-you 

message via email with information related to the labor market, while the control group received 

no message at all.  

One of the messages contained more structured information (historical information 

treatment), which linked to a custom-built website providing information on historical actual 

academic placement rates by graduate institution in a tabular format.8 These placement rates 

were well below 10 percent for all institutions, so the information communicated was mainly an 

update on the difficulty of becoming a tenure-track faculty in a research department.  

The second message included less-structured information about nonacademic careers 

(role model treatment), which linked to a real webpage from the ACS called “Chemists in the 

Real World.”  This website features pictures with job titles and profiles of professional scientists 

in academic and (mostly) nonacademic positions (see Appendix F for the illustration of both 

websites used in this study).9 The role model treatment was intended to provide students with 

information about both the academic and nonacademic careers through role models. Such role 

model interventions through various modes, such as in person, websites, and television, have 

been shown to impact behavior in a variety of settings (e.g., Porter and Serra 2020; see La 

 
8 The historical placement records were based on previously collected data from Proquest Dissertations and 

Abstracts and the ACS directory of graduate research (Gaulé and Piacentini 2018). Specifically, we collected data 
on students graduating from U.S. chemistry graduate programs between 2008 and 2010 and matched their names to 
a 2015 list of chemistry faculty in research-intensive universities. We then computed the share of graduating 
students who had become faculty by 2015, by graduating department. For more details, see Appendix E. We 
published this data, together with a detailed explanation how the data was constructed on the custom-built website 
https://chemistryplacementdata.com/. The website was not advertised in any way. Web analytics confirm that the 
overwhelming majority of visits to the website originated from the survey emails. 

9 Available at https://www.acs.org/content/acs/en/careers/college-to-career/chemists.html (accessed August 
12, 2020). 

https://chemistryplacementdata.com/
https://www.acs.org/content/acs/en/careers/college-to-career/chemists.html
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Ferrara [2016]) by providing exposure to individuals with whom students otherwise would have 

little interaction in their studies.    

Not all respondents clicked on the links embedded in either message. While we did not 

track individual usage, we estimated that roughly 35 percent of survey respondents who received 

the link visited the custom-built website, versus around 1 percent of respondents in the control 

group (we could not track clicks to the ACS website; see Appendix G for details).  

The randomization procedure combined block randomization (stratified based on a 

department’s Shanghai Ranking) with individual-level randomization in a subset of universities 

(see Figure 1).10 In order to measure the impact of the intervention on respondents’ beliefs and 

plans, we contacted our respondents again roughly one year after the baseline survey and asked 

them to complete a follow-up survey.11 In the follow-up survey we repeated several questions 

from the baseline survey. We again incentivized responses by sending two reminder emails and 

offering a lottery to win a $100 Amazon gift certificate upon completing the survey. We obtained 

500 complete responses, roughly 38 percent of the initial survey respondents. Table A.2 in 

Appendix A reports means and standard deviations for several variables from the follow-up 

survey. We complemented the follow-up survey with hand-collected information on the current 

position of baseline survey respondents, such as whether they were doing a postdoc or working 

in industry (for descriptive statistics, see Table A.3 in Appendix A). This information was 

 
10 We created triads of departments of similar ranks, and within each triad assigned one department to the 

information treatment, one to the control, and one to individual randomization. Thus, one university of three in the 
block was randomly chosen as Treatment 1, so that all respondents to the baseline survey at this university received 
the first message with historical placement rate information. For the second university, respondents were in the 
control group. In the final university, survey respondents were individually randomized into one of the three groups 
(historical information, role model, or control). An advantage of this design is that for the historical information 
treatment, we have both individuals whose peers were also treated, and individuals whose peers were not treated. 
This randomization design was intended to enable us to measure potential spillovers from the treatment, if the 
treated individuals share information with their peers. However, sample size limitations prevent us from fully 
leveraging this aspect of the randomization. 

11 We excluded those who indicated in the first survey not to be contacted again.  
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collected in the summer of 2019, roughly two years after the baseline survey. We collected this 

information irrespective of whether individuals answered the second survey but only for students 

who were expecting to graduate in 2017, 2018, or 2019 at the time when they were filling in the 

baseline survey.  

Table A.4 shows differences in the characteristics of respondents to our follow-up survey 

to those who completed the baseline survey only. We see some differences in observable 

characteristics, as students from higher-ranked programs, foreign students, and students further 

along in the program were less likely to respond to the follow-up compared to those earlier in the 

program. We estimate all regressions including these controls. Importantly, we do not see 

differential attrition in the treatment group receiving the historical placement information 

treatment. We do see a small decline in the group receiving the role model treatment. However, 

for the actual outcomes collected, we have information for all baseline survey respondents, and 

therefore attrition is not a concern for those outcomes. 

RESULTS 

Prevalence of Biased Beliefs 

Do graduate students know how difficult it is to publish in the most prestigious scientific 

journals, and to become a tenure-track faculty member in a research-intensive university?  Are 

individuals overconfident about their own ability; in particular, do they overestimate their 

position in the ability distribution?  

One way we measure biased beliefs is by eliciting respondents’ beliefs about their 

chances of publishing as a first author in Nature, Science, or Cell before the end of their PhDs. 

When testing the survey, we had been warned that this is a very rare event. Indeed, only 1 in 200 
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chemistry PhD students reaches this milestone.12 A group of 1,301 students thus would be 

expected to collectively generate six or seven first-authored Nature, Science, or Cell 

publications. Yet, by aggregating the beliefs of the respondents, we find that they expect to 

collectively produce 310 first-authored Nature, Science, or Cell publications. Figure 2 plots the 

distribution of the respondents’ beliefs about their chances of publishing in Nature, Science, or 

Cell by the end of their PhD studies.  

We also asked respondents to rate their own chances of becoming a tenure-track faculty 

member in a research-intensive U.S. university. The distribution of those beliefs is displayed in 

Figure 3. In recent years, the share of chemistry PhD students becoming faculty members was 

around 5 percent. For instance, in 2016, a listing of chemistry faculty openings listed 152 tenure-

track positions in research-intensive U.S. universities, while 2,700 students graduated in this 

same year. Our own calculations, which are based on matching names from comprehensive lists 

of PhD graduates and faculty members in chemistry departments, suggest a similar rate. Again, 

the respondents collectively display optimistic beliefs although to a lesser degree than for 

Nature/Science/Cell publications. Specifically, if all the beliefs of the respondents were correct, 

320 students in our sample would become tenure-track faculty members in a research-intensive 

university, while only 66 of them would actually become faculty in chemistry departments based 

on historical averages. 

We also asked respondents about their peer beliefs—their beliefs about what share of 

PhD students in their programs would eventually become tenure-track faculty members. By 

asking about others in their program, we focus on information regarding the state of market. By 

 
12 Authors’ calculations based on chemistry PhD graduates listed in Proquest and Nature/Science/Cell 

bibliometric data. 
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contrast, the beliefs about their own chances to become faculty also incorporates beliefs about 

one’s own ability as well as preferences for the academic career.  

The distribution of beliefs about the share of peers becoming faculty in research-intensive 

universities is displayed in Figure 4. Interestingly, the mean beliefs about the share of students 

becoming faculty (24.5 percent) are actually slightly higher than the mean beliefs about their 

own chances to become faculty (24 percent).13 So, what looked like an above-average effect 

might be incorrect beliefs about the market as a whole. While there was some variation across 

programs, no program had a share higher than 10 percent in the historic placement data. Slightly 

less than 30 percent of the respondents answered between 0 and 10 percent, and thus essentially 

had correct beliefs about the state of the market. A further 25 percent of respondents were mildly 

optimistic, answering that between 11 percent and 20 percent of peers will become faculty. The 

remainder—45 percent of respondents—were wildly optimistic, with answers far above the 

observed average.  

In summary, these descriptive statistics suggest that overoptimistic beliefs about 

publishing and placement are widespread among graduate students. However, we also observe 

heterogeneity in beliefs, with some individuals having correct beliefs, and others being biased to 

various extents.  

Who holds optimistic beliefs? 
We now explore descriptively whether the heterogeneity in beliefs can be related to 

observable characteristics. For this, we regress each of the three types of beliefs on student 

 
13 As discussed earlier, both aggregate evidence and historical placement data suggest that this share is 

around 5 percent. 
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gender, foreign status, time since enrollment in the program, and a dummy variable for top-10 

program (based on the Shanghai Ranking). 

Table 1 displays the results. Foreign students are considerably more optimistic about 

publishing and placement (Table 1, columns 1 and 2). Foreign students may be higher ability on 

average due to a tougher selection to get into U.S. PhD programs (Gaulé and Piacentini 2013). 

However, they also seem to be less informed about the tightness of the U.S. academic market 

(Table 1, column 3). Perhaps surprisingly, studying at a top-10 school is not associated with 

more optimistic beliefs. 

While the literature has documented gender differences in overconfidence (e.g., 

Murciano-Goroff 2019; Niederle and Vesterlund 2007), we notably find few gender differences 

in beliefs in our sample.  We find that female and male students are equally likely to hold 

optimistic beliefs about their chances to publish in Nature, Science, or Cell.  Female students are 

slightly more optimistic about the aggregate state of the academic market—that is, their peers’ 

chances of getting a tenure-track job (see Figures 5 and A.1)—but we observe no gender 

differences in beliefs about one’s own chances. 

Time since enrollment in the PhD program is a strong predictor of holding optimistic 

beliefs: students in their first or second year of study are the most optimistic, though there is no 

statistical difference between students in their third and subsequent years. The results are 

consistent with Stephan and Ma (2005); Sauermann and Roach (2012, 2016); Sauermann and 

Roach; and Gibbs, McGready, and Griffin (2015). 

We also investigate whether holding optimistic beliefs about the share of students 

becoming faculty is associated with preferences for academic careers (see Table 2). We measure 

these preferences by asking how likely respondents are to do a postdoc or to choose a prestigious 
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postdoc vs. an industry research job or a teaching position in a hypothetical choice question.14 

We find that respondents’ beliefs about the share of students becoming faculty is strongly 

correlated with preferences for continuing an academic path. This holds despite the fact that we 

are controlling for key observable correlates of holding optimistic beliefs, such as being a foreign 

student or being in the first or second year of study.  

As discussed earlier, in this discipline, moving straight from doctoral studies to tenure-

track positions is virtually impossible. However, by choosing postdoctoral training, a scientist 

keeps open the possibility of subsequently landing a tenure-track faculty position, a job that she 

often perceives to be highly desirable. The option to access this career path, while uncertain and 

risky, is part of the returns to doing a postdoc. Students who underestimate how difficult it is to 

obtain a tenure-track faculty position should thus be expected to find the postdoctoral option 

more attractive, which is exactly what we find.  

However, as in previous studies that have documented overoptimism among scientists 

(e.g., Sauermann and Roach 2016), these results are descriptive in nature. We cannot rule out 

that students who have optimistic or biased beliefs may also have other characteristics that drive 

preferences for doing a postdoc. It is thus unclear whether exogenously inducing updates in the 

beliefs could lead to changes in career preferences. The next section describes the results of the 

intervention where we provided information to a random sample of the baseline survey 

respondents, and then followed up with them one year later. 

 
14 See Appendix D for wording of question. 



 18 

Effects of the Intervention 

Our experimental design combined block randomization at the university level with 

individual-level randomization for a subset of universities. Accordingly, survey respondents 

were assigned to one of the following five groups:15  

1) Treatment 1 (historical information treatment)—block randomization: Students 

received the email linking to the historical information on graduates’ placement, along with all 

other survey respondents from the same university receiving the same link. 

2) Control—block randomization: Students did not receive any email along with other 

survey respondents from the same university not receiving any email. 

3) Treatment 1 (historical information treatment)—individual randomization: Students 

received the email linking to the historical information on graduates’ placement along with only 

some of respondents from the same university receiving the same link. 

4) Treatment 2 (role model treatment)—individual randomization: Students received the 

email linking to the ACS profiles website along with only some respondents from the same 

university receiving the same link.  

5) Control (some peers treated)—individual randomization: Students did not receive an 

email but some other survey respondents from the same university received the other types of 

emails (Treatment 1 and 2). 

We use the second group—those who did not receive any email with other survey 

respondents from the same university not receiving any email—as the control group and the 

 
15 Alternatively, we could pool treatment 1, block randomization, and treatment 1, individual 

randomization, into a single variable. Results from the alternative specification are presented in Table A.5. The 
results are qualitatively similar with this alternative specification except for the changes of the beliefs of own 
chances to become faculty, where the effect of the historical placement intervention is just outside the significance 
region (p-value-0.11 instead of 0.02 in the preferred specification) but the effect of the ACS profiles intervention is 
significant.  
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omitted category in all specifications.16 Our variables of interest are indicator variables for each 

of the other categories, or treatments, and we present specifications both with and without 

controls. 

We first consider the effect of the intervention on beliefs using the sample of students 

who answered both the initial and final survey one year later. As in the descriptive analysis, we 

observe two types of beliefs: the beliefs about peers (which share of students in their program 

become faculty) and the self-beliefs (own chances of becoming faculty). Since we asked the 

exact same questions on beliefs in the initial and final surveys, we can track the evolution of 

beliefs over time and whether they were impacted by the treatment.  

Tables 3 and 4 show the effect of the intervention on the changes in beliefs between the 

two surveys (final minus initial beliefs). Note that the mean change in either type of beliefs is 

negative, suggesting that students become more pessimistic over time. The point estimates for 

the effect of all treatments on beliefs about the share of peers becoming faculty are small and 

statistically insignificant. However, both the block-randomized historical placement information 

treatment and the role model treatment had a statistically significant effect on the changes in 

beliefs of own chances of becoming faculty, where receiving the information lowered beliefs 

about one’s own changes of getting a tenure-track faculty position (see Table 4). The magnitude 

of the effect is similar in magnitude to the mean of the dependent variable, suggesting that 

individuals who received the information became less optimistic about their chances to become 

faculty members at a faster rate than those who did not. The coefficients on both the individually 

randomized historical information treatment and the “Some peers treated” group are smaller in 

magnitude than for the block-randomized historical information treatment. This is consistent 

 
16 We also estimate the treatment effects of the historical placement information when pooling the block-

randomized and individually randomized groups. See Table A.5. 



 20 

with the effects of the historical placement information being amplified when all peers received 

the information, rather than only a small subset of individuals, likely by creating more 

opportunities for discussions that made the information more salient. 

It is puzzling that we find an effect of both types of information interventions on self-

beliefs but not on beliefs about peers. Prior to the intervention, we had expected that the 

intervention might impact both types of beliefs and that, if anything, the effect might be weaker 

for the beliefs of one’s own chances.  

We next examine whether there was differential response to the treatments in who 

updated their beliefs. Figure 6 shows that those with higher initial self-beliefs (those who are 

most optimistic regarding their own chances of becoming faculty) were more likely to update 

their beliefs in response to the historical information treatment. Table A.6 shows that for both 

information treatments, the higher the baseline beliefs, the greater the decline in subsequent 

beliefs. In Table A.7, we estimate heterogeneity in response to the treatment by our main 

covariates: gender, foreign status, and a dummy variable for a top-20 program.  Here we see that 

there are not many significant differences, apart from a larger negative effect of both treatments 

on the beliefs about peers among foreign students.   

Now that we have established that the information treatment did impact beliefs about 

one’s own chances of becoming faculty, we proceed to investigate whether the information 

interventions impacted career preferences and actual career choices. For the latter, we can also 

include baseline survey respondents who did not complete the final survey, as we code career 

choices using publicly available information. Given that the historical placement information 

intervention led to a downward adjustment in the beliefs of their own chances of becoming 

faculty, we would expect postdocs to become less desirable in the treatment group (relative to the 
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controls), and fewer people actually choosing postdocs. However, as Tables 5 and 6 show, we 

find no effect of the historical placement information intervention on preferences for doing a 

postdoc or actually taking up a postdoc position after graduation.17  

As for the role model intervention, we see a negative effect on the propensity to choose 

the postdoc option in the counterfactual choice option, consistent with the role model 

intervention making nonacademic careers more salient and attractive. However, we do not find 

an effect on actual career outcomes. 

Finally, we consider the effect of the interventions on additional outcomes: satisfaction 

with the PhD as a career choice and perceived attractiveness of a faculty position and a 

government research and development position. Surprisingly, we do not see an effect of either 

intervention on satisfaction with pursuing a PhD as a career choice (Table 6). However, the 

historical placement information did significantly increase the perceived attractiveness of an 

academic faculty position (Table 7A). To the extent that the historical placement information 

made respondents realize that becoming a faculty member is more difficult than they expected, 

this may have counterintuitively reinforced the perceived attractiveness of academic careers. The 

role model treatment meanwhile increased the perceived attractiveness of a government research 

and development position (Table 7B). The ACS profiles page lists individuals in government 

research positions, so this suggests that exposure to these profiles provided information that 

students previously were not exposed to about government careers, which made them more 

attractive as potential careers.  

 
17 This finding echoes Sauermann and Roach (2016), who find in a descriptive analysis no systematic 

evidence of a relationship between perceived demand for jobs in academia and the choice of postdoctoral training. 
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DISCUSSION 

This paper studies the beliefs of science PhD students regarding the academic job market 

and how these beliefs impact their preferences for different types of careers and their decisions 

upon graduating. It uses a novel survey of chemistry graduate students combined with the 

randomized information interventions.  

We find considerable evidence that graduate students are excessively optimistic regarding 

the state of academic job market, their chances to become faculty, and their chances to publish in 

the very best scientific journals. Students early in the program, as well as foreign students, are 

more likely to hold excessively optimistic beliefs. Holding such beliefs is in turn associated with 

intentions to engage in postdoctoral training after the PhD.   

Providing information on historical placement rates and nonacademic career options 

through role models appears to influence beliefs one year later, with treated individuals adjusting 

their perceived chances of becoming faculty members. We find evidence that the historical 

information treatment led to an increase in the perceived attractiveness of faculty positions, while 

the role model treatment increased the perceived attractiveness of government R&D positions 

and reduced the preference for doing a postdoc. However, we do not observe effects on 

satisfaction with choosing the PhD as a career choice, nor do we see an effect of the 

interventions on actual career choices two years after the PhD (for a subsample of respondents 

who had graduated). 

Taken together, these results provide further questions about the role of information in 

postgraduate human capital investments. On the one hand, the beliefs of graduate students are 

often biased, and providing historically accurate information leads to an adjustment in beliefs, 

especially among those who initially had higher beliefs. On the other hand, the change in beliefs 
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we induced experimentally lead to limited changes in career preferences and aspirations, and we 

do not detect impacts on actual career outcomes.  

There are several possible reasons for the limited effects on stated career aspirations and 

actual outcomes.  First, for various reasons, preferences for postdoctoral training may be quite 

strong among this group.  For example, it could be that other preferences known to drive 

scientists’ behavior (e.g., prestige or the puzzle-solving nature of practicing science) are already 

quite strong at this point in training, so there was minimal impact of the information on actual 

career preferences and choices. Moreover, given the sequential nature of educational choices, 

and that these are individuals who are already far along in their training trajectory, switching 

costs may be high. Additionally, the experience of going through postdoctoral training may be 

enjoyable in itself or may be desirable for visa or dual-career considerations. Finally, 

postdoctoral training is still valued in many industry and government positions. 

Another reason may be due to the types of information we provided. Perhaps a stronger 

intervention impacting beliefs more soundly would lead to observable changes in actions. Only a 

minority of individuals who received the link to the historical information treatment actually 

acquired the information. Given the effects of the role model treatment, information provided 

directly by the ACS or the students’ own department would give the information more 

credibility. Additionally, our sample size was relatively limited, and having more statistical 

power would have allowed us to test for further heterogeneity in which types of students 

responded more or less to the information. 

While we cannot differentiate between these explanations in the current study, our 

findings nonetheless suggest that there is a strong rationale for departments to provide better 
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career information, about both academic and nonacademic careers, to prospective and actual 

students. 
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Figure 1  Experimental Design 
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Figure 2  Respondents’ Beliefs about Their Own Chances to Publish in Nature, Science, or 
Cell 
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Figure 3  Respondents’ Beliefs about Their Own Chances of Becoming Faculty 
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Figure 4  Respondents’ Beliefs about the Share of PhD Graduates from Their Program 
Becoming Faculty 
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Figure 5  Beliefs of Own Chances and Peers’ Chances, by Gender 

 
 
Figure 6  Initial vs. Posttreatment Beliefs 
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Table 1  Who Holds Overoptimistic Beliefs? 
 (1) (2) (3) 
 D.V.= Respondents’ beliefs 
 Own chances to publish in 

Nature/Science/Cell 
Own chances to become 

faculty 
Percentage of students 

becoming faculty 
Female 0.359 −1.155 2.396** 
 (1.616) (1.380) (0.971) 
    
Foreign student 9.400*** 8.343*** 3.798*** 
 (1.914) (1.587) (1.120) 
    
Top-10 school −1.897 −2.625 −1.349 
 (1.969) (1.679) (1.181) 
    
First-year student 17.753*** 9.789*** 7.355*** 
 (2.233) (1.890) (1.331) 
    
Second-year student 9.512*** 6.713*** 4.558*** 
 (2.152) (1.829) (1.287) 
    
Third-year student 0.767 1.522 1.414 
 (2.200) (1.874) (1.319) 
    
Obs. 1,301 1,333 1,330 
Mean of D.V. 24.907 23.953 24.472 
R2 0.073 0.048 0.039 
NOTE: * p < 0.1, ** p < 0.05, *** p < 0.01. The dependent variables are the respondents’ beliefs regarding (1) their chances to publish 
in Nature, Science, or Cell as a first author by the end of their PhD, (2) their chances to become tenure-track faculty in a research-
intensive U.S. university, and (3) the percentage of students becoming become tenure-track faculty in a research-intensive U.S. 
university. All the beliefs are expressed on a scale from 0 to 100. The omitted category for time in the program is fourth year and 
above. Robust standard errors in parentheses.  
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Table 2  Optimistic Beliefs and Preferences for Academia 
 (1) (2) 
 D.V.= Likelihood of doing a 

postdoc 
D.V.= Choosing postdoc among 

three options 
Respondents’ beliefs—share of students 

becoming faculty 
0.205*** 

(0.050) 
0.086** 

(0.038) 
   
Female −2.102 −2.559* 
 (1.743) (1.350) 
   
Foreign student 12.085*** 10.575*** 
 (2.012) (1.586) 
   
Top-10 school −1.219 1.747 
 (2.139) (1.640) 
   
First-year student 6.000** 5.779*** 
 (2.401) (1.878) 
   
Second-year student 3.566 3.599** 
 (2.298) (1.801) 
   
Third-year student 1.897 −1.419 
 (2.383) (1.832) 
Obs. 1,271 1,312 
Mean of D.V. 54.155 25.524 
R2 0.055 0.056 
NOTE: * p < 0.1, ** p < 0.05, *** p < 0.01. The dependent variables are (1) the likelihood of doing a postdoc as reported in the 
baseline survey (percentage out of one hundred), and (2) the likelihood (out of 100) of choosing the postdoc when offered a 
counterfactual choice between a postdoc, research position in industry, or a teaching position (see Appendix D). The variable of 
interest is the respondents’ beliefs of the share of students becoming faculty (also out of 100). The omitted category for time in the 
program is fourth year and above. Robust standard errors in parentheses.  
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Table 3  Effect of the Interventions on Beliefs Regarding the Share of Students Becoming 
Faculty 

 (1) (2) (3) 
 D.V.= Change in beliefs of the 

share of students becoming faculty 
Historical placement info treatment 

(block) 
0.008 

(1.664) 
0.612 

(1.619) 
−0.416 
(1.394) 

    
Role model treatment 0.938 0.373 0.263 
 (2.182) (2.583) (2.052) 
    
Historical placement info treatment 

(individual) 
1.184 1.000 0.154 

(2.346) (2.469) (2.343) 
    
Some peers treated  1.004 0.239 −0.630 
 (2.249) (2.416) (1.867) 
Obs. 500 500 500 
Controls None Demographics, field Demographics,  

field + Initial beliefs 
Mean of D.V. −3.520 −3.520 −3.520 
R2 0.001 0.081 0.374 
NOTE: * p < 0.1, ** p < 0.05, *** p < 0.01. These regressions are run on the sample of survey respondents who answered both, the 
initial and follow-up survey. The dependent variable is the change in beliefs of the percentage of students who will become faculty 
(belief in the final survey minus belief in the initial survey). The coefficients reported correspond to four different indicators for 
each treatment status (see main text for description). The omitted group is the group of survey respondents who did not receive a 
thank-you message in universities where other respondents also did not receive a thank-you message. The specification (1) does 
not include any controls. Specification (2) includes controls for gender, foreign status, field of study, time in the program, and 
university rank. In specification (3) we additionally control for the initial level of beliefs. Clustered standard errors in parentheses. 
The cluster is a group of three universities of similar rank which was used to stratify the block randomization.  
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Table 4  Effect of the Interventions on Beliefs Regarding Own Chances to Become Faculty 
 (1) (2) (3) 
 D.V.= Changes in beliefs of own chances to become faculty 
Historical placement info treatment 

(block) 
−5.995*** 

(1.625) 
−5.002** 

(1.807) 
−3.071** 

(1.428) 
    
Role model treatment −5.083* −6.888** −5.982** 
 (2.624) (2.655) (2.213) 
    
Historical placement info treatment 

(individual) 
−2.882 −3.194 −2.015 
(2.402) (2.559) (2.959) 

    
Some peers treated −2.144 −3.540 −2.689 
 (2.743) (2.957) (2.787) 
Obs. 500 500 500 
Mean of D.V. −3.736 −3.736 −3.736 
R2 0.015 0.092 0.273 
NOTE: * p < 0.1, ** p < 0.05, *** p < 0.01. These regressions are run on the sample of survey respondents who answered both the 
initial and follow-up survey. The dependent variable is the change in beliefs of the respondents’ own chances to become faculty 
(belief in the final survey minus belief in the initial survey). The coefficients reported correspond to 4 different indicators for each 
treatment status (see main text for description). The omitted group is the survey respondents who did not receive a thank-you 
message in universities where other respondents also did not receive a thank-you message. Specification (1) does not include any 
controls. Specification (2) includes controls for gender, foreign status, field of study, time in the program and university rank. In 
specification (3) we additionally control for the initial level of beliefs. Clustered standard errors in parentheses. The cluster is a 
group of three universities of similar rank which was used to stratify the block randomization. 
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Table 5  Effect of the Interventions on Post-PhD Career Choice 
 (1) (2) (3) 
 D.V.= Started a postdoc after PhD 
Historical placement info 

treatment (block) 
0.008 

(0.030) 
0.018 

(0.032) 
0.029 

(0.028) 
    
Role model treatment −0.066 −0.032 −0.026 
 (0.045) (0.042) (0.041) 
    
Historical placement info 

treatment (individual) 
−0.054 
(0.047) 

−0.003 
(0.043) 

−0.007 
(0.050) 

    
Some peers treated −0.043 −0.007 0.008 
 (0.048) (0.053) (0.057) 
Obs. 574 574 574 
Mean of D.V. 0.181 0.181 0.181 
R2 0.006 0.118 0.231 
NOTE: * p < 0.1, ** p < 0.05, *** p < 0.01. These regressions are run on the sample of survey respondents who as of September 
2017 were expecting to graduate in 2017, 2018 and 2019, irrespective of whether they answered the final survey afterwards. The 
dependent variable is whether the person actually started a postdoc as determined by manual searches. The coefficients reported 
correspond to 4 different indicators for each treatment status (see main text for description). The omitted group is the survey 
respondents who did not receive a thank-you message in universities where other respondents also did not receive a thank-you 
message. The specification (1) does not include any controls. The specification (2) includes controls for gender, foreign status, field 
of study, time in the program, and university rank. In specification (3) we additionally control for the initial level of beliefs. 
Clustered standard errors in parentheses. The cluster is a group of three universities of similar rank which was used to stratify the 
block randomization.  
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Table 6  Effect of the Interventions on Satisfaction with the PhD as a Career Choice 
 (1) (2) (3) 
 D.V.= Changes in satisfaction with the PhD as a career choice 
Historical placement info 

treatment (block) 
0.281 

(0.311) 
0.024 

(0.358) 
0.031 

(0.348) 
    
Role model treatment −0.648 −0.774 −0.814* 
 (0.374) (0.455) (0.442) 
    
Historical placement info 

treatment (individual)  
0.006 

(0.535) 
−0.075 
(0.583) 

−0.068 
(0.535) 

    
Some peers treated 0.714** 0.410 0.351 
 (0.333) (0.326) (0.288) 
N 496 496 496 
Mean of D.V. 2.613 2.613 2.613 
R2 0.016 0.084 0.106 
NOTE: * p < 0.1, ** p < 0.05, *** p < 0.01. These regressions are run on the sample of survey respondents who answered both the 
initial and follow-up survey. The dependent variable is the change in respondents’ satisfaction with choosing a PhD as career track. 
The coefficients reported correspond to four different indicators for each treatment status (see main text for description). The 
omitted group is the survey respondents who did not receive a thank-you message in universities where other respondents also did 
not receive a thank-you message. The specification (1) does not include any controls. The specification (2) includes controls for 
gender, foreign status, field of study, time in the program, and university rank. In specification (3) we additionally control for the 
initial level of beliefs. Clustered standard errors in parentheses. The cluster is a group of three universities of similar rank which 
was used to stratify the block randomization.  
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Table 7A  Effect of the Interventions on Perceived Attractiveness of Faculty Position 
 (1) (2) (3) 
 D.V.= Changes in the attractiveness of faculty positions 
Historical placement info treatment 

(block) 
0.237*** 

(0.077) 
0.298*** 

(0.094) 
0.298*** 

(0.088) 
    
Role model treatment 0.102 0.129 0.132 
 (0.166) (0.181) (0.188) 
    
Historical placement info treatment 

(individual) 
0.196* 

(0.111) 
0.216* 

(0.110) 
0.214* 

(0.111) 
    
Some peers treated 0.081 0.151 0.154 
 (0.190) (0.204) (0.210) 
N 500 500 500 
Mean of D.V. −0.288 −0.288 −0.288 
R2 0.009 0.089 0.096 
 
 
Table 7B  Effect of the interventions on perceived attractiveness of gov’t R&D position 
 (1) (2) (3) 
 D.V.= Changes in the attractiveness of gov’t R&D positions 
Historical placement info treatment 

(block) 
0.025 

(0.092) 
0.003 

(0.118) 
0.029 

(0.119) 
    
Role model treatment 0.184 0.259* 0.272** 
 (0.119) (0.128) (0.128) 
    
Historical placement info treatment 

(individual) 
0.136 

(0.164) 
0.177 

(0.174) 
0.173 

(0.171) 
    
Some peers treated 0.168 0.170 0.191 
 (0.136) (0.153) (0.159) 
N 500 500 500 
Mean of D.V. −0.084 −0.084 −0.084 
R2 0.006 0.056 0.076 
NOTE: * p < 0.1, ** p < 0.05, *** p < 0.01. These regressions are run on the sample of survey respondents who answered both the 
initial and follow-up survey. The dependent variable is the change in perceived attractiveness of faculty positions for Panel A and 
of government R&D positions for Panel B (reported attractiveness in the final survey minus reported attractiveness in the initial 
survey). Attractiveness is measured on a 1–5 scale. The coefficients reported correspond to four different indicators for each 
treatment status (see main text for description). The omitted group is the survey respondents who did not receive a thank-you 
message in universities where other respondents also did not receive a thank-you message. The specification (1) does not include 
any controls. The specification (2) includes controls for gender, foreign status, field of study, time in the program, and university 
rank. In specification (3) we additionally control for the initial level of beliefs. Clustered standard errors in parentheses. The cluster 
is a group of three universities of similar rank which was used to stratify the block randomization.  
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Appendix A: Descriptive Statistics and Covariate Balance 
 
Table A1  Descriptive Statistics on Baseline Survey Respondents (n=1,330) 
   
 Mean S.D. 
Chances of publishing in Nature/Science/Cell 24.91 29.90 
Chances of becoming TT faculty in a U.S. research- intensive university 24.47 17.76 
Share of students becoming faculty in U.S. research-intensive university 23.95 25.38 
Likelihood of doing a postdoc 54.13 31.32 
Likelihood of choosing postdoc among three options 25.52 24.75 
Female 0.42 0.49 
Foreign 0.28 0.45 
Top-10 school 0.20 0.40 
Year in doctoral program   
   First year 0.19 0.39 
   Second year 0.21 0.40 
   Third year 0.19 0.40 
Field of study   
   Analytical chemistry 0.11 0.32 
   Biological/biochemistry 0.18 0.38 
   Inorganic chemistry 0.16 0.37 
   Medical/clinical/pharmaceutical chemistry 0.01 0.12 
   Organic chemistry 0.18 0.38 
   Physical chemistry 0.16 0.36 
   Polymer chemistry 0.04 0.20 
   Theoretical/computational chemistry 0.07 0.25 
   Other 0.09 0.28 
Obs. 1,330  
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Table A2  Descriptive Statistics on final survey respondents (n=500) 
   
 Mean S.D. 
Change in beliefs of the share of students becoming faculty −3.52 15.70 
Changes in beliefs of own chances to become faculty −3.74 20.28 
Historical placement info treatment (block) 0.31 0.46 
Role model treatment 0.12 0.33 
Historical placement info treatment (individual) 0.12 0.33 
Some peers treated 0.12 0.33 
Female 0.47 0.50 
Foreign 0.17 0.38 
Top-10 school 0.25 0.43 
Year in doctoral program   
   First year 0.21 0.40 
   Second year 0.28 0.45 
   Third year 0.22 0.41 
Field of study   
   Analytical chemistry 0.11 0.32 
   Biological/biochemistry 0.17 0.38 
   Inorganic chemistry 0.17 0.37 
   Medical/clinical/pharmaceutical chemistry 0.01 0.12 
   Organic chemistry 0.17 0.38 
   Physical chemistry 0.17 0.38 
   Polymer chemistry 0.04 0.20 
   Theoretical/computational chemistry 0.07 0.26 
   Other 0.07 0.26 
      
Obs. 500  
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Table A3  Descriptive Statistics on Sample with Actual Placement Data (n=574) 
   
 Mean S.D. 
Started a postdoc 0.18 0.39 
Change in beliefs of the share of students becoming faculty 0.29 0.45 
Changes in beliefs of own chances to become faculty 0.16 0.36 
Historical placement info treatment (block) 0.12 0.32 
Role model treatment 0.13 0.34 
Female 0.44 0.50 
Foreign 0.26 0.44 
Top-10 school 0.20 0.40 
Year in doctoral program   
   First year 0.01 0.10 
   Second year 0.04 0.20 
   Third year 0.38 0.49 
Field of study   
   Analytical chemistry 0.11 0.32 
   Biological/biochemistry 0.17 0.38 
   Inorganic chemistry 0.18 0.38 
   Medical/clinical/pharmaceutical chemistry 0.02 0.12 
   Organic chemistry 0.17 0.38 
   Physical chemistry 0.14 0.35 
   Polymer chemistry 0.06 0.23 
   Theoretical/computational chemistry 0.07 0.25 
   Other 0.08 0.27 
Obs. 574  
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Table A4  Is There Differential Selection into the Follow-up Survey? 
 (1)  
 Responded follow-up survey 
Historical placement info treatment (block) −0.044 (0.034) 
Role model treatment −0.094** (0.042) 
Historical placement info treatment (individual) −0.044 (0.045) 
Some peers treated −0.058 (0.044) 
Foreign student −0.147*** (0.031) 
Female 0.022 (0.027) 
Top-10 school  0.091*** (0.033) 
First-year student 0.127*** (0.036) 
Second-year student 0.194*** (0.035) 
Third-year student 0.128*** (0.036) 
Field study   
   Analytical chemistry 0.020 (0.050) 
   Biological/biochemistry 0.006 (0.044) 
   Inorganic chemistry 0.007 (0.044) 
   Medical/clinical/pharmaceutical chemistry 0.022 (0.113) 
   Physical chemistry 0.044 (0.045) 
   Polymer chemistry −0.012 (0.070) 
   Theoretical/computational chemistry 0.043 (0.058) 
   Other −0.042 (0.054) 
Constant 0.322*** (0.043) 
Obs. 1,330  
Mean of D.V. 0.375  
NOTE: * p < 0.1, ** p < 0.05, *** p < 0.01. 
Organic chemistry excluded.  
Standard errors in parentheses. 
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Table A5  Effects of the Interventions Pooling the Historical Placement Info Treatment into 
One Variable 

 (1) (2) (3) (4) (5) 

 

Change in beliefs 
of the share of 

students 
becoming faculty 

Changes in 
beliefs of own 

chances to 
become faculty 

Started a postdoc 
after PhD 

Changes in 
satisfaction with 

the PhD as a 
career choice 

Changes in the 
attractiveness of 
faculty positions 

Historical placement info 
treatment (block + 
individual) 

−0.245 
(1.453) 

−2.761 
(1.663) 

0.018 
(0.028) 

−0.081 
(0.347) 

0.261*** 

(0.056) 

      
Role model 0.254 −6.012** −0.025 −0.710 0.133 
treatment (2.045) (2.194) (0.041) (0.410) (0.184) 
      
Some peers treated  −0.640 −2.712 0.009 0.333 0.145 
 (1.862) (2.750) 0.056 (0.248) (0.189) 
Obs. 500 500 574 496 500 
Controls Demographics, 

field + Initial 
beliefs 

Demographics, 
field + Initial 

beliefs 

Demographics, 
field + Initial 

beliefs 

Demographics, 
field + Initial 

beliefs 

Demographics, 
field + Initial 

beliefs 
Mean of D.V. −3.520 −3.736 0.181 2.613 −0.288 
R2 0.374 0.273 0.230 0.171 0.129 
NOTE: * p < 0.1, ** p < 0.05, *** p < 0.01. These regressions correspond to the column of tables 3–7 except that historical placement 
info treatment (block) and historical placement info treatment (individual) are pooled instead of being entered separately. The 
omitted group is the group of survey respondents who did not receive a thank-you message in universities where other respondents 
also did not receive a thank-you message. All specification control for gender, foreign status, time in the program, university rank, 
and the initial level of beliefs. Clustered standard errors in parentheses. The cluster is a group of three universities of similar rank, 
which was used to stratify the block randomization.  
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Table A6  Heterogeneity: Effects of the Interventions on Peer and Own Beliefs by Baseline 
Beliefs 

 (1) (2) 
 Change in beliefs of the share of 

students becoming faculty 
Changes in beliefs of own chances 

to become faculty 
Historical placement info treatment (block) 3.498 −0.049 

(3.075) (2.092) 
   
Role model treatment −2.419 −0.781 
 (2.805) (2.650) 
   
Historical placement info treatment 

(individual) 
5.823 −3.320 

(4.352) (3.164) 
   
Some peers treated 6.758** −3.037 
 (2.823) (2.838) 
   
Historical placement info treatment (block) × 

Baseline beliefs 
−0.161 −0.153* 
(0.157) (0.081) 

   
Role model treatment × Baseline beliefs 0.117 −0.233** 

(0.118) (0.089) 
   
Historical placement info treatment 

(individual) × Baseline beliefs 
−0.205 0.028 
(0.170) (0.072) 

   
Some peers treated × Baseline beliefs −0.272* 0.023 

(0.146) (0.114) 
   
N 500 500 
Mean of D.V. −3.520 −3.736 
R2 0.351 0.263 
NOTE: * p < 0.1, ** p < 0.05, *** p < 0.01. All specification control for gender, foreign status, time in the program, university rank 
and the initial level of beliefs. Clustered standard errors in parentheses. The cluster is a group of three universities of similar rank 
which was used to stratify the block randomization.  
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Table A7  Heterogeneity: Effects of the Interventions on Peer and Own Beliefs 
 (1) (2) (3) (4) (5) (6) 
 Change in beliefs of the share of students becoming 

faculty 
Changes in beliefs of own chances to become faculty 

Covariate  Female Foreign Top Univ. Female Foreign Top Univ. 
Historical placement info treatment (block) 0.951 2.127 1.796 −7.061*** −4.784** −1.857 

(1.967) (1.409) (3.872) (1.438) (1.698) (2.928) 
       
Role model treatment 1.891 1.297 1.886 −2.481 −6.478** −5.600 
 (2.520) (2.805) (5.928) (2.981) (2.672) (4.711) 
       
Historical placement info treatment 

(individual) 
−2.088 1.498 −2.837 −2.272 −2.273 5.261 
(3.429) (2.756) (4.154) (5.055) (2.481) (3.582) 

       
Some peers treated 0.119 3.870* 1.166 −1.200 −2.286 −0.792 
 (2.861) (2.118) (3.159) (2.810) (4.038) (2.549) 
       
Historical placement info treatment (block) × 

Covariate 
−0.416 −7.759* −1.444 4.495 −1.516 −3.991 
(3.858) (3.948) (4.176) (3.522) (7.078) (3.995) 

       
Role model treatment × Covariate −4.322 −7.278** −2.823 −9.201 −0.387 −2.144 

(3.752) (3.006) (6.441) (5.585) (5.730) (5.593) 
       
Historical placement info treatment 

(individual) × Covariate 
6.212 −0.155 4.921 −1.655 −7.616 −11.503** 

(5.117) (16.610) (5.047) (7.842) (9.300) (4.304) 
       
Some peers treated × Covariate 2.337 −12.565 0.163 −5.043 −5.137 −4.173 
 (4.722) (7.954) (4.256) (6.729) (9.168) (5.328) 
N 500 500 500 500 500 500 
Mean of D.V. −3.520 −3.520 −3.520 −3.736 −3.736 −3.736 
R2 0.067 0.071 0.064 0.098 0.088 0.096 
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Figure A1  Gender Differences in Beliefs about the Share of PhD from Their Program 
Becoming Faculty 
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Appendix B  Universities Included in the Sampling Frame 
 
Arizona State University University of California, Irvine 

California Institute of Technology University of California, Los Angeles 
Carnegie Mellon University University of California, Riverside 

Colorado State University University of California, San Diego 
Columbia University University of California, Santa Barbara 
Cornell University University of Chicago 

Duke University University of Colorado 
Emory University University of Delaware 

Georgia Institute of Technology University of Florida 
Harvard University University of Houston 

Indiana University University of Illinois at Urbana-Champaign 
Iowa State University University of Maryland, College Park 
Johns Hopkins University University of Massachusetts Amherst 

Massachusetts Institute of Technology University of Michigan 
North Carolina State University University of Minnesota 

Northwestern University University of North Carolina at Chapel Hill 
Princeton University University of Pennsylvania 
Purdue University University of Pittsburgh 

Rice University University of South Florida 
Stanford University University of Southern California 

State University of New York at Buffalo University of Utah 
Texas A&M University University of Virginia 

The Ohio State University University of Washington 
The Pennsylvania State University University of Wisconsin-Madison 
The University of Texas at Austin Washington State University 

University of California, Berkeley Washington University in St. Louis 
University of California, Davis Yale University 
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Appendix C  Information on Graduates’ Placements from University Webpages 

 

 
 
 
 

 
chem.duke.edu/ 
graduate/placements 

 
www.chem.purdue.edu/ 
Analytical/placement.php 

 
https://secure.rackham.umich.edu/ 
graduate-student-success/alumni-
profiles/ 

chemistry.princeton.edu/ 
graduate/after-princeton 

 
NOTE: We visited websites of 56 U.S. chemistry research-intensive universities in search for the information they publish on their graduates’ placements. We looked through their 
graduate studies’ main pages, graduate student handbooks, career pages, alumni profiles, and news section. 

http://chem.duke.edu/graduate/placements
http://chem.duke.edu/graduate/placements
http://www.chem.purdue.edu/Analytical/placement.php
http://www.chem.purdue.edu/Analytical/placement.php
https://secure.rackham.umich.edu/%20graduate-student-success/alumni-profiles/
https://secure.rackham.umich.edu/%20graduate-student-success/alumni-profiles/
https://secure.rackham.umich.edu/%20graduate-student-success/alumni-profiles/
https://chemistry.princeton.edu/graduate/after-princeton
https://chemistry.princeton.edu/graduate/after-princeton
https://chemistry.princeton.edu/graduate/after-princeton
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Appendix D: Selected Survey Questions 

 

Measuring beliefs about the academic job market 

 
Q. What do you think is the percent chance (or chances out of 100) that you will eventually 

have a tenure-track position in a U.S. research-intensive university? 
 

 Not likely Somewhat 
likely 

Very likely 

 
 0 10 20 30 40 50 60 70 80 90 100 

 
How likely you will have a tenure-track 

position in the US? ()  
 
 
Q. Approximately what share of PhD graduates from your PhD program do you think 

eventually obtain a tenure-track position in a US research-intensive university? (0 means 
“None” and 100 means “All”). 
 

 0 10 20 30 40 50 60 70 80 90 100 
 

Share of students with a tenure-track position 
in the US ()  

 
 

Measuring beliefs about postdoctoral training 

 

Q. What do you think is the percent chance (or chances out of 100) that you will do a 
postdoc after your PhD? 

 
 Not likely Somewhat 

likely 
Very likely 

 
 0 10 20 30 40 50 60 70 80 90 100 

 
How likely are you to do a postdoc? () 
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Measuring career preferences – counterfactual choice question 

 

Q. Now we want to ask you to do some simple evaluations of potential job offers. Imagine 
that you have just completed your dissertation and are looking for a full-time 
position.           

 
First, suppose you have the following job offers and you need to choose between them. 
Please rate how likely you are to accept one of them rather than the other.  For each job 
offer, choose the percent chance (out of 100) of choosing each one.  The total chances 
given to each offer should add up to 100.                      
 
_______ Job Offer #1: Research Scientist/Engineer at Private Sector Firm (e.g. DuPont, 
Novartis) Annual Salary: $90,000 (1) 
 
_______ Job Offer #2: Postdoctoral Research Fellow at Top U.S. university (e.g. 
Berkeley, MIT)  Annual Salary:  $50,000 (2) 
 
_______ Job Offer #3: Assistant Professor at top liberal arts college (e.g. Swarthmore 
College) Annual Salary: $70,000 (3) 
 
 

 
Q. Putting job availability aside, how attractive do you personally find each of the following 

careers? 
 

 

Not at all 
attractive 

(1) 

Mostly not 
attractive  

(2) 
Neutral  

(3) 
Mostly 

attractive (4) 
Very attractive 

(5) 
Academic faculty with an 

emphasis on research (1)  o  o  o  o  o  
Academic faculty with an 

emphasis on teaching (2)  o  o  o  o  o  
Government research and 

development position (3)  o  o  o  o  o  
Government (other) (6)  o  o  o  o  o  
Industry position with an 

emphasis on research and 
development (4)  o  o  o  o  o  

Industry (other) (5)  o  o  o  o  o  
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Appendix E: Measuring Historical Placement Rates 
 
Overview 
 
The objective of this data collection effort was to understand what share of PhD graduates from 
U.S. chemistry departments become faculty members themselves (in research-intensive 
universities), and differences across schools. To reach this objective, we collected data on students 
graduating from U.S. chemistry graduate programs between 2008 and 2010 and matched their 
names to a 2015 list of chemistry faculty in research-intensive universities. We then computed the 
share of graduating students who had become faculty by 2015, by graduating department.  
 
Data sources 
 
The database “Proquest Dissertations and Abstracts” was used to obtain the list of chemistry 
dissertations completed between 2008 and 2010. Proquest Dissertations and Abstracts includes the 
names of students, the year and university of graduation as well as a subject classification for the 
thesis, among other information. While the database itself is generally thought to be quite 
comprehensive, it does not clearly indicate from which department the student graduated. This 
implies that one must deduce whether it was a chemistry dissertation from the subject classification. 
 
For lists of chemistry faculty, we relied on the ACS Directory of Graduate Research, available 
online at dgr.rints.com. This resource, meant to help prospective graduate students choose a 
graduate program, has an extensive listing of faculty members in U.S. PhD-granting chemistry, 
chemical engineering, and biochemistry programs. The ACS Directory of Graduate Research was 
used to create a list of faculty members in U.S. research-intensive universities, where research 
intensive is defined as “R1” or “R2” in the Carnegie classification. 
 
An important limitation is that it does not list faculty members outside the United States as well as 
in nonchemistry departments, where PhD chemistry graduates may find employment as university 
faculty with a focus on research. 
 
Matching 
 
The list of graduate students was matched to the list of faculty using last names, initials, first names, 
year of graduation, and university of graduation. The matching algorithm is robust enough to 
handle cases of variations in spelling of first names, inconsistent reporting of middle names, or 
individuals changing last names. 
 
Limitations of the placement data 
 
The placement data presented here have a few important limitations. 
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First, some truncation bias arises from the fact that faculty placements are observed as of 2015, 
while the list of students include students who graduated relatively recently (say, 2010) and may 
have obtained a faculty position in 2016 or 2017, or may obtain a faculty position in the future. 
 
Second, the placement data fail to capture placement in nonchemistry departments that may employ 
chemistry PhD students, as well as placements outside the United States. 
 
Third, students outside chemistry departments may be mistakenly assigned to the chemistry 
department if the subject classification of their thesis is close to chemistry, which could impact the 
placement measures. 
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Appendix F: Websites Linked in the Thank-You Emails  

Custom-built website with historical placement information 
 

 
 
 
American Chemical Society “Chemists in the Real World” website listing profiles of professional 
scientists in both academic and industry occupations 
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Appendix G: Web Analytics on Visits to the Website with Historical Placement Information 
 

Figure G1  Share of  Visitors Accessing the Website: www.chemistryplacementdata.com by 
Source Assessed 

 

 
 

Figure G2  Share of Respondents Who Visited Website According to Treatment Status 
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