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We present a common value mechanism design model for an in-
formed principal where only the principal has private information, but
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according to any probability measure. For this model we characterize
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1 Introduction

The theory of standard mechanism design for an uninformed principal has
been well developed already over 20 years ago, and it has been applied to
various economic problems like, for example, the problem of optimal auc-
tion design ([15] Myerson (1981)) or the problem of optimal regulation of a
monopolist ([1] Baron and Myerson (1982)). However, the assumption that
the principal does not have any relevant private information in these mod-
els is often rather artificial and seems to be driven by the desire to evade
the difficulties associated with informed principal mechanism design. An
auctioneer, for example, typically possesses some private information about
the item to be sold, and a regulator might have some private information
about, for example, the extent to which she cares about consumers’ surplus
and firms’s profits. Similarly, an employer typically has private information
about the job which is on offer when designing job contracts, and a big
insurance customer has private information about her accident proneness
when designing insurance contracts for an insurance company1.
The number of papers in the literature dealing with such informed principal
models is still fairly restricted, and, in fact, most papers analyzing models
with an informed principal are not really considering general mechanism
design models. Instead, the set of feasible contracts is often restricted ex-
ogenously such that the execution of contracts does not depend on some
action taken by the principal and, thus, the mechanism design model actu-
ally reduces to a signaling model (see, for example, [3] Beaudry (1994) or
[17] Ottaviani and Prat (2001)). This negligence of general informed prin-
cipal mechanism design models may partly be due to the fact that so far
solution concepts have been presented only for mechanism design models
where the type of the principal is drawn from a finite set; see [16] Myerson
(1983) for an analysis of a finite-type model with adverse selection and moral
hazard, [12] Maskin and Tirole (1990) for a private value model with adverse
selection only, and [13] Maskin and Tirole (1992) for a common value model
with adverse selection.
The aim of this paper is to extend the analysis of [13] Maskin and Tirole
(1992) by analyzing a common value mechanism design model for an in-
formed principal where types are drawn in accordance with some general

1For more examples of situations where a privately informed principal designs mecha-

nisms see [13] Maskin and Tirole (1992).
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probability measure (so in particular we allow for types being distributed
continuously). Maskin and Tirole have shown for their finite-type model
(among other results) that each perfect Bayesian equilibrium (PBE) is given
by an incentive-compatible allocation that is ex-ante individual rational for
the agent and that weakly Pareto dominates the Rothschild-Stiglitz-Wilson
allocation associated with the status quo. We replicate this result for the
model with our more general information structure2: The main theorem of
this paper demonstrates that a revelation and inscrutability theorem holds
in our mechanism design model if the players’ strategies are restricted in
a suitable manner. The revelation part of the theorem then yields the
incentive-compatibility as a necessary requirement, and the individual ratio-
nality result is easily derived from the inscrutability part3. Finally, it is easy
to show that any equilibrium has to Pareto dominate the Rothschild-Stiglitz-
Wilson allocation weakly because this allocation is almost by definition a
feasible option for the principal.
Given that we can focus on direct incentive-compatible mechanisms, the
great advantage of continuous-type over finite-type models in mechanism
design is the fact that in continuous-type direct revelation mechanisms
we can integrate over the incentive-compatibility restrictions of informed
parties, which may help to characterize the set of such mechanisms, and
hence simplify the description of equilibria (whereas in discrete-type mod-
els incentive-compatibility restrictions tend to make the characterization of
solutions rather more than less difficult, and this complication may increase
with the cardinality of the type space). [21] Tan (1996), for example, sim-
plified the computation of equilibria for his model of optimal procurement
design by an informed buyer by integrating over incentive-compatibility re-
strictions. Similarly, [19] Stoughton and Talmor (1994), [20] Stoughton and
Talmor (1999), and [23] Yilankaya (1999) consider mechanism design mod-

2In addition to allowing for a more general information structure, our model is also

more general than the model of [13] Maskin and Tirole (1992) with respect to the set of

feasible allocations (D in our model) as well as the number of agents in the model.
3[16] Myerson (1983) has pointed out that the Revelation Principle, which is well-

established for mechanism design models with an uninformed principal, extends to his

informed principal model. Though we do not prove the Revelation Principle separately,

our revelation and inscrutability theorem like the Revelation Principle establishes that we

can restrict ourselves to direct revelation mechanisms. Moreover, Myerson argues that in

his finite type model a Principle of Inscrutability holds. The revelation and inscrutability

theorem extends this principle to our mechanism design model.
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els for an informed principal where the type of the principal is assumed
to be continuously distributed, and they use differential representations of
incentive-compatibility constraints. Note that all these papers employ solu-
tion concepts based on [16] Myerson (1983) or [13] Maskin and Tirole (1992),
even though strictly speaking these solution concepts for finite-type models
do not apply to the papers mentioned above. The analysis of our mechanism
design model can be viewed as a first step in fixing this irregularity and in
smoothing the way for the analysis of further informed principal mechanism
design models (with continuously distributed private information).
The paper is organized as follows: In Section 2 we present the mecha-
nism proposal, evaluation and execution game to be analyzed. Section 3
characterizes the set of allocation rules (or social choice functions) for this
contract proposal game which can be implemented through pure-strategy
perfect Bayesian equilibria (satisfying some regularity condition). The set
of such equilibrium allocation rules may be relatively large, as PBE may
involve unreasonable beliefs off the equilibrium path. To eliminate some of
the unreasonable PBE, we present in Section 4 various equilibrium refine-
ments based on the concept of equilibrium domination. Finally, in Section
5, we demonstrate that the extension to our model of the strong solution
of [16] Myerson (1983) is supported as a PBE passing all the refinement
criteria discussed – in case a strong solution exists. We conclude with a
short summary of the paper. The proofs of the paper are presented in the
appendix.

2 The Contract Proposal Game, Strategies, and

Perfect Bayesian Equilibria

In this section we shall describe the contract proposal game to be analyzed,
strategies and beliefs for this game, and the conditions for a pure-strategy
perfect Bayesian equilibrium.

2.1 The Contract Proposal Game

In our model there are n+1 players – one principal, indexed by i = 0, and n
agents, indexed by i = 1, . . . , n. We assume that the agents do not possess
any private information, but the principal has some private information
represented by some t ∈ T , where T is some Borel set on the real line (e.g. T
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some interval or some countable set in R). Let B := {B ⊆ T | B a Borel set},
and let t be distributed according to some probability measure P : B → [0, 1],
i.e. for all B ∈ B the probability that t ∈ B is given by P (B). So in
particular we allow for types being distributed discretely as well as for types
being distributed continuously.
The principal is to select a game form (or mechanism) m from some set of
feasible game forms M which, if played by the n+ 1 players, determines an
element d from a pre-specified set D of possible allocations (each d ∈ D may
specify some transfer payment and some output level, for example). Player
i’s von Neumann-Morgenstern utility derived from some d ∈ D is given by
ui(d, t) ∈ R (∀ t ∈ T ). So i’s utility depends on the allocation d ∈ D and on
the principal’s type (Common Values). We assume that for all d ∈ D, i =
1, . . . , n, the function t 7→ ui(d, t) is measurable4. Furthermore, let there be
some Umax ∈ R such that |ui(d, t)| ≤ Umax ∀ i ∈ {1, . . . , n}, d ∈ D, t ∈ T .
The status quo is given by some d0 ∈ D, and U0

i :=
∫
T ui(d0, t)dP (t) is the

ex-ante expected utility agent i derives from d0.
A feasible game form m ∈ M is a deterministic function from some set
Sm := S0

m × S1
m × . . .× Snm to the set D, where the set Sim has to be chosen

from some pre-specified set Si 6= ∅ (i = 0, . . . , n)5. So M ⊆ {m : S0
m×S1

m×
. . .×Snm → D | Sim ∈ Si ∀ i = 0, . . . , n}. Hence a game form m represents a
simultaneous-move game for the n+ 1 players, where player i has to choose
an action si ∈ Sim (i = 0, . . . , n), and payoffs are given by ui(m(s), t) for
all s = (s0, s1, . . . , sn) ∈ Sm (i = 0, . . . , n). By m we shall denote both the
game form and the function m : S0

m × S1
m × . . . × Snm → D itself. If, for

example, S0 = {T} and Si = {{1}} (i = 1, . . . , n), then M represents (some
subset of) all direct mechanisms m : T × {1} × . . .× {1} → D (so basically
all functions mapping claims about the principal’s type to allocations in D).
Finally, for later use we let M be endowed with some σ-algebra (also called
σ-field) M (on M).
Now consider the following mechanism proposal, evaluation, and execution
game, the contract proposal game6:

4So we assume that the function f : (T,B) → R, t 7→ ui(d, t), is measurable, where R
is endowed with the Borel σ-algebra {B ⊆ R | B a Borel set}.

5Instead of requiring that m is a deterministic function, we could allow for functions

m mapping into probability distributions over the set D and then take expected values.
6The structure of the game is the same as the contract proposal game analyzed by

[13] Maskin and Tirole (1992).
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1. Nature draws the principal’s type t ∈ T ; t is revealed to the principal,
but all agents only know the probability measure according to which
t is distributed.

2. The principal chooses a mechanism m ∈M .

3. The n agents update their prior believe about the principal’s type
based on any information revealed by the selection of m.

4. The n agents simultaneously decide to accept or to reject the mech-
anism chosen by the principal, i.e. agent i either accepts (ai = 1) or
rejects (ai = 0) the game form to be played.

5. If all agents have accepted the mechanism, the game proposed by the
principal is played, i.e. the principal and the agents simultaneously
choose an action si ∈ Sim (i = 0, . . . , n).

6. The payoffs to all players are given by

Ui(m,a, s, t) =

{
ui(m(s), t) : ai = 1 ∀ i = 1, . . . , n
ui(d0, t) : ai = 0 for some i > 0

∀ m ∈M, a ∈ A := {0, 1}n, s ∈ Sm, t ∈ T .

So after the principal has observed her type, she announces some game
(mechanism) to be played to determine an allocation d ∈ D (the mechanism
proposal stage). The agents, however, can reject the principal’s mechanism
(in the mechanism evaluation stage of the contract proposal game) – they
have the possibility to choose action ai = 0 and thereby secure themselves
the status quo utility. It has to be pointed out that all agents have to accept
the game to be played; a single veto will leave the status quo unchanged7.
If a mechanism has been accepted, the game is played to determine the
allocation to be implemented (the mechanism execution stage). We assume

7So we exclude the possibility that the principal could announce another game to be

played, once a mechanism has been rejected. But such a situation would be interesting

only if the agents had private information, too.

Moreover, it has to be pointed out here that allowing for more than one agent causes some

conceptual problems: Rejecting a game form may be optimal just because other agents

reject it as well, even though all agents would actually prefer playing the game as opposed

to settling with the status quo. For some of our results we have to assume that this does

not happen (or, alternatively, that n = 1).
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that all agents commit themselves to accepting this allocation, even if it
turns out ex-post that some agent would have preferred the status quo. The
game to be played in the execution stage of the contract proposal game
is a game of incomplete information, where we assume that the probability
assessment for the principal’s type is given by the updated belief that results
from step three of the contract proposal game.

2.2 Pure Strategies and Updated Beliefs

Next we shall describe feasible pure strategies and admissible updated be-
liefs for the contract proposal game.
A pure strategy for the principal consists of a function σ1

0 : T →M mapping
types into mechanisms, and a function σ2

0 : T ×M × A→
⋃
S0∈S0 S0 (with

σ2
0(t,m, 1

n) ∈ S0
m ∀ m ∈ M, t ∈ T , where 1n = (1, . . . , 1)) specifying an

action for the principal for the mechanism execution stage of the contract
proposal game for all possible types. We require σ2

0 to be such that each
agent can calculate his expected utility from equilibrium play in the mech-
anism execution stage for all mechanisms m ∈M8.
For each agent i = 1, . . . , n, a pure strategy is a function σ1

i : M → {0, 1}
specifying if agent i accepts (σ1

i (m) = 1) or rejects (σ1
i (m) = 0) mechanism

m ∈M , and a function σ2
i : M×A→

⋃
Si∈Si S

i (with σ2
i (m, 1

n) ∈ Sim ∀m ∈
M).
Finally, agent i’s updated belief concerning the principal’s type after observ-
ing the announcement of a mechanism is given by a function βi : M → P(T )
(i = 1, . . . , n) mapping mechanisms into probability measures over the set
T .

2.3 Pure-Strategy Perfect Bayesian Equilibria

A perfect Bayesian equilibrium (PBE) for the contract proposal game con-
sists of a set of strategies and beliefs which are sequentially rational for all
players and Bayesian consistent. So for a PBE we require that the principal’s
strategy for the mechanism proposal stage is optimal given the strategies of
the agents, the agents’ decisions concerning acceptance or rejection in the
mechanism evaluation stage are optimal given their beliefs and the strate-
gies of the other players, the beliefs of the agents formed after a mechanism

8Due to our restriction on the functions ui it is always possible to find such strategies

σ2
0 , e.g. all constant functions σ2

0(·,m, 1n) satisfy this restriction.
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is proposed are Bayesian consistent, and the strategies of all players for the
mechanism execution stage form a Bayesian Nash equilibrium, where the
beliefs of the agents are the same as those used for the mechanism evalu-
ation stage. Thus, a pure-strategy perfect Bayesian equilibrium is a set of
strategies and beliefs (σ1, σ2, β) which satisfy the following conditions:

1. Measurability
σ2 is such that the function

t 7→ ui(m[σ2
0(t,m, 1

n), σ2
1(m, 1

n), . . . , σ2
n(m, 1

n)], t)

is measurable for all i ∈ {1, . . . , n}, m ∈ M . Due to our bounded-
ness assumption on the agents’ utilities, this measurability assumption
guarantees that t 7→ ui(m[σ2

0(t,m, 1
n), σ2

1(m, 1
n), . . . , σ2

n(m, 1
n)], t) is

integrable with respect to any updated belief βi(m) for any mecha-
nism m ∈ M , and hence that all agents can calculate their expected
utilities from equilibrium play in the mechanism execution stage for
all m ∈M .

2. Sequential Rationality for the Principal
Sequential rationality for the principal reduces to the following two
conditions:

(a) u0(σ1
0(t)[σ

2
0(t, σ

1
0(t), 1

n), σ2
1(σ

1
0(t), 1

n), . . . , σ2
n(σ

1
0(t), 1

n)], t) ≥
u0(m[σ2

0(t,m, 1
n), σ2

1(m, 1
n), . . . , σ2

n(m, 1
n)], t)

∀ t ∈ T, m ∈M with σ1
i (m) = 1 ∀ i = 1, . . . , n;

the principal’s equilibrium utility has to be at least as large as
the utility she could achieve by proposing some other mechanism
in M which would be accepted by all agents. Moreover, the
principal’s utility has to be at least u0(d0, t), since she can always
secure herself her status quo utility (at least if the status quo is
a feasible option to be announced by the principal or if there
exists a mechanism which is guaranteed to be rejected by at least
one agent). But this condition is implied by the requirement
above, unless the game form which implements the status quo
irrespective of the players’ actions is not accepted by all agents
(in which case we have to require explicitly that the principal
does not end up with less than her status quo utility).

8



(b) u0(m[σ2
0(t,m, 1

n), σ2
1(m, 1

n), . . . , σ2
n(m, 1

n)], t) ≥
u0(m[s0, σ2

1(m, 1
n), . . . , σ2

n(m, 1
n)], t)

∀ t ∈ T, m ∈M, s0 ∈ S0
m;

this condition guarantees the optimality of the principal’s action
in the mechanism execution stage.

Note that – like in finite games – to check for optimality it is sufficient
to compare the principal’s equilibrium strategy to all other available
pure strategies. This comparison has to be carried out at all informa-
tion sets of the game tree where the player might be called on to take
an action9.

3. Sequential Rationality for Agent i
Sequential rationality for agent i ∈ {1, . . . , n} puts the following three
restrictions on (σ1, σ2, β):

(a)
∫
T ui(m[σ2

0(t,m, 1
n), σ2

1(m, 1
n), . . . , σ2

n(m, 1
n)], t)dβi(m)(t) ≥∫

T ui(d0, t)dβi(m)(t)
∀ m ∈M satisfying σ1

j (m) = 1 for all j = 1, . . . , n;
this condition ensures that accepting mechanism m is indeed op-
timal for agent i (given that all other agents accept m).

(b)
∫
T ui(m[σ2

0(t,m, 1
n), σ2

1(m, 1
n), . . . , σ2

n(m, 1
n)], t)dβi(m)(t) ≤∫

T ui(d0, t)dβi(m)(t)
for all m ∈M satisfying σ1

j (m) = 1 ∀ j 6= i, σ1
i (m) = 0;

this condition ensures that rejecting mechanism m is optimal for
agent i (given that all other agents accept m)10.

(c)
∫
T ui(m[σ2

0(t,m, 1
n), σ2

1(m, 1
n), . . . , σ2

n(m, 1
n)], t)dβi(m)(t) ≥∫

T ui(m[σ2
0(t,m, 1

n), σ2
1(m, 1

n), . . . , σ2
i−1(m, 1

n), si,
σ2
i+1(m, 1

n), . . . , σ2
n(m, 1

n)], t)dβi(m)(t)

9[11] Manelli (1996) has pointed out that for sequential rationality one might as well

require that this condition holds only at almost all information sets. In finite Bayesian

games, however, sequential rationality has to hold at all information sets (even at infor-

mation sets off the equilibrium path) and hence for (potentially) infinite Bayesian games

it seems more natural to require sequential rationality at all information sets – as is done

by most authors (including Manelli).
10For some of our results we have to require that σ1

i (m) = 1 if
∫
T
ui(m[σ2

0(t,m, 1n),

σ2
1(m, 1n), . . . , σ2

n(m, 1n)], t)dβi(m)(t) >
∫
T
ui(d0, t)dβi(m)(t). This requirement implies

condition (b), but for n > 1 it is more stringent than what is induced by sequential

rationality.
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for all m ∈M and for all si ∈ Sim which lead to
t 7→ ui(m[σ2

0(t,m, 1
n), σ2

1(m, 1
n), . . . , σ2

i−1(m, 1
n), si,

σ2
i+1(m, 1

n), . . . , σ2
n(m, 1

n)], t)
being measurable.
This condition guarantees the optimality of agent i’s action in
the mechanism execution stage. The measurability-restriction is
required to make sure that agent i can calculate his expected
utility from playing si (i.e. to make sure that the integral on the
right hand side of the inequality is well-defined)11.

4. Bayesian Consistency
Bayesian consistency says that interim beliefs are derived from the
prior belief, P , and from the principal’s strategy, σ1

0, using Bayes’
Rule (whenever possible).

The last requirement for a PBE of the contract proposal game (Bayesian
Consistency) has deliberately been stated in a rather vague manner. We
shall be more precise about this after having introduced regular strategies
and beliefs in the next section.

3 Pure-Strategy Equilibrium Allocation Rules

In this section we shall analyze the mechanism design problem in terms of
allocation rules. To do so we shall restrict ourselves to regular strategies and
beliefs as defined below.

3.1 Regular Strategies and Beliefs

From now on we shall restrict the analysis of the contract proposal game
to equilibria satisfying two regularity conditions. First, we shall focus on
pure-strategy PBE where all agents accept the mechanism proposed by the
principal, i.e. equilibria (σ, β) satisfying σ1

i (σ
1
0(t)) = 1 ∀ i = 1, . . . , n, ∀ t ∈

T . It is a trivial task for the principal to design a mechanism which yields
11As [6] Ellsberg (1961) and experimental studies carried out thereafter have shown,

people seem to avoid ambiguous gambles if alternative equivalent uncertain, though unam-

biguous gambles exist. The measurability-restriction could now be motivated by arguing

that agent i would never choose an action si which does not fulfill this restriction, since

such a choice leads to ambiguity (about the resulting expected utility).
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her the status quo12, hence PBE with acceptance clearly form the interesting
set of PBE.
Furthermore, to proceed with our analysis in the next subsections we have
to use more measurability assumptions or to restrict the principal’s available
strategies in a suitable manner. So far we required only one measurability
condition for characterizing pure-strategy equilibria of the contract proposal
game; in particular, we were able to do our analysis without resorting to the
σ-algebra M. The next definition, however, specifies some measurability
assumptions involving M or, alternatively, restricts the mechanism proposal
strategy for the principal to elementary functions.

Definition 1 (Regular Strategies and Beliefs)
A set of strategies and beliefs (σ1, σ2, β) for the contract proposal game is
regular, if σ1

i (σ
1
0(t)) = 1 for all i = 1, . . . , n, for all t ∈ T (acceptance), and

if (σ1, σ2, β) satisfies at least one of the two following conditions:

1. Measurability
σ1

0 : (T,B) → (M,M) and βi(·)(TB) : (M,M) → [0, 1] (for all i =
1, . . . , n, ∀ TB ∈ B) are measurable. Furthermore,

gi : (T ×M,B ⊗M) → [−Umax, Umax]

(t,m) 7→ ui(m[σ2
0(t,m, 1

n), σ2
1(m, 1

n), . . . , σ2
n(m, 1

n)], t)

is measurable for all i = 1, . . . , n. Here B ⊗M denotes the σ-algebra
generated by {TB ×MM | TB ∈ B, MM ∈MM}.

2. Elementary Mechanism Proposal Strategy
σ1

0 : T → M is elementary, i.e. there exists a countable index set N ,
and for each k ∈ N some Borel set Tk and a game form mk ∈M , such
that {Tk}k∈N forms a partition of T , mk 6= ml for all k 6= l, and such
that for all k ∈ N, t ∈ Tk: σ1

0(t) = mk
13.

The additional measurability assumptions specified in Definition 1 seem to
be fairly innocuous at first sight, and it is tempting to just make them part

12The principal could propose a game form which implements the status quo irrespective

of the players’ actions (and she could do this in such a way that in equilibrium exactly

the same information is conveyed by the selection of the game form) – provided the set

M does not restrict the principal’s choice of mechanism too much.
13This definition of elementary functions as functions which assume a countable number

of values and assume each value on a measurable set follows [14] Munroe (1971).
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of the equilibrium requirements stated in the previous section. These as-
sumptions, however, do depend on M and, hence, may turn out to be both
rather incomprehensible and restrictive (if M has a complicated structure).
In case the assumptions are considered too restrictive, we provide a second
condition to make (σ1, σ2, β) regular, the restriction to elementary mecha-
nism proposal strategies. The substantive part embodied in this restriction
is the countability of the index set N14. Though this condition is rather re-
strictive too, it allows for the case that T or M is countable. Furthermore,
looking at elementary mechanism proposal strategies provides some kind of
lower bound on what the principal can achieve in the mechanism game, and
since the partition {Tk}k∈N used in Definition 1 can be chosen arbitrarily
fine, one might argue that this lower bound serves as a good approxima-
tion to what the principal can achieve with arbitrary mechanism proposal
strategies (at least if M is restricted appropriately). Such reasoning, how-
ever, requires the contract proposal game to be continuous in an appropriate
sense15.
For regular strategies and beliefs we can now be more specific as far as
Bayesian Consistency is concerned. First, assume that (σ1, σ2, β) satisfies
condition (1) of Definition 1. Then Bayesian Consistency is expressed by
the following condition (for i = 1, . . . , n):

∀ TB ∈ B, MM ∈M : (σ1
0 • P )(TB,MM) =

∫
MM

βi(m)(TB)dρ(m) (1)

14Instead of assuming that N is countable, it would be sufficient to assume that N has

a countable subset Ñ such that
∑
k∈Ñ P (Tk) = 1, i.e. that N is essentially countable.

Furthermore, it would be easy to accommodate any situation where the choice of a mech-

anism by the principal reveals the principal’s type (fully separating equilibria).
15If, for example, M is restricted to a separable metric space, M is the σ-algebra induced

by the metric of M , and σ1
0 : (T,B) → (M,M) is measurable, then there exists a sequence

{σk}k∈N of elementary functions σk : T → M such that σk → σ1
0 uniformly on T , as

can be shown by a modification of Lemma 1.1 in [5] Da Prato and Zabczyk (1992). So

we can approximate σ1
0 arbitrarily closely by elementary mechanism proposal strategies.

Still, whether or not the lower bound given by elementary mechanism proposal strategies

is a good approximation of what could be achieved with arbitrary measurable mechanism

proposal strategies depends on the continuity-properties of the contract proposal game.

The functions ui(·, t) (i = 1, . . . , n) being continuous in D (D a metric space), for example,

may help in this respect, but this is by no means sufficient to establish continuity (in the

required sense).
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where for all TB ∈ B, MM ∈M

(σ1
0 • P )(TB,MM) :=

∫
TB

δσ1
0(t)(MM)dP (t)

=
∫
TB

1σ−1
0 (MM)(t)dP (t)

= P (TB ∩ σ−1
0 (MM))

(with σ−1
0 := (σ1

0)
−1, δ denoting a Dirac measure, and 1 denoting a charac-

teristic function), and the probability measure ρ on M is given by

ρ(MM) := (σ1
0 • P )(T,MM) = P (σ−1

0 (MM)) = (P ◦ σ−1
0 )(MM).

Due to the measurability assumptions on σ1
0 and βi, (1) is equivalent to

P (TB∩σ−1
0 (MM)) =

∫
σ−1
0 (MM)

βi(σ1
0(t))(TB)dP (t) ∀ TB ∈ B,MM ∈M (2)

(c.f. [2] Billingsley (1995), Theorem 16.13). Equation (2) imposes for all
TB ∈ B, MM ∈ M, a restriction on the probability of having a principal’s
type in the set TB and a mechanism proposed in the set MM in terms of the
updated beliefs, βi, and the principal’s strategy for selecting mechanisms,
σ1

0. So for general Bayesian games (i.e. Bayesian games which are not nec-
essarily finite) Bayesian consistency ”puts restrictions on the behavior of
beliefs at collections of information sets rather than at individual informa-
tion sets” (as is done in finite Bayesian games), as [18] Perea y Monsuwe et
al. (1997) have pointed out.
Note that Bayesian consistency does not put any requirements on beliefs off
the equilibrium path (apart from that any updated belief has to put measure
one on the set T ), as can be seen from the fact that βi(m) does not enter
equation (2) unless m = σ1

0(t) for some t ∈ T .
If (σ1, σ2, β) does not satisfy the first two measurability conditions of Defi-
nition 1, then equation (1) may not be well-defined. But if σ1

0 is elementary,
then Bayesian updating clearly requires that

βi(ml)(TB)P (Tl) = P (TB ∩ Tl) for all TB ∈ B, l ∈ N (3)

where {Tk}k∈N is the partition of T mentioned in Definition 1. Equation (3)
states that if P (Tl) > 0, then βi(ml)(TB) has to be the conditional probabil-
ity of TB given the set Tl (for all TB ∈ B), i.e. βi(ml) = P (·∩Tl)

P (Tl)
. Otherwise,

βi(ml) may be any probability measure on the set T .
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If (σ1, σ2, β) satisfies both conditions of Definition 1, then equation (2) and
equation (3) are equivalent, provided for each l ∈ N there exists some
Ml ∈M such that σ−1

0 (Ml) = Tl (this is the case if, for example, {ml} ∈ M
for all l ∈ N). To see this, note that since {Tk}k∈N is a partition of T,
{Tk ∩ σ−1

0 (MM)}k∈N is a partition of σ−1
0 (MM) (for any MM ∈ M) sat-

isfying σ1
0(t) = mk for all k ∈ N, t ∈ Tk ∩ σ−1

0 (MM). Hence, using the
countability of N (and some convergence result like, for example, the mono-
tone convergence theorem of Beppo-Levi, or Theorem 16.2 in [2] Billingsley
(1995)) we can rewrite

∫
σ−1
0 (MM) βi(σ

1
0(t))(TB)dP (t) as∫

⋃
k∈N (Tk∩σ−1

0 (MM))
βi(σ1

0(t))(TB)dP (t)

=
∑
k∈N

∫
Tk∩σ−1

0 (MM)
βi(mk)(TB)dP (t)

=
∑
k∈N

β(mk)(TB)P (Tk ∩ σ−1
0 (MM)).

Therefore, equation (2) requires ∀ TB ∈ B, MM ∈M

P (TB ∩ σ−1
0 (MM)) =

∑
k∈N

βi(mk)(TB)P (Tk ∩ σ−1
0 (MM)).

Now, for all l ∈ N , consider Ml ∈ M with σ−1
0 (Ml) = Tl. Since P (Tk ∩

σ−1
0 (Ml)) = P (Tl) if and only if k = l (otherwise P (Tk ∩ σ−1

0 (Ml)) = 0),
equation (3) follows. On the other hand, equation (3) implies equation
(2), as can easily be verified recalling that for all MM ∈ M, σ−1

0 (MM) =⋃
k∈Ñ Tk for a suitable subset Ñ of N .

3.2 Allocation Rules

Any pure-strategy PBE for the contract proposal game implements as equi-
librium outcome a certain distribution of allocations, i.e. a certain allocation
d ∈ D for any type t ∈ T . Such a social choice function ϕ : T → D shall
be called an allocation rule. When analyzing the contract proposal game,
our main interest actually concerns such allocation rules which can be imple-
mented through perfect Bayesian equilibria, i.e. equilibrium allocation rules,
rather than, for example, certain equilibrium strategies for the mechanism
execution stage of the game.

14



The following definitions concerning allocation rules will turn out especially
helpful when characterizing the set of equilibrium allocation rules for the
contract proposal game.

Definition 2 (Incentive-Compatible Allocation Rules)
An allocation rule ϕ : T → D is incentive-compatible (IC), if u0(ϕ(t), t) ≥
u0(ϕ(t̃), t) ∀ t, t̃ ∈ T .

Definition 3 (Individual Rationality for the Principal)
An allocation rule ϕ : T → D is individual rational for the principal (IRP),
if u0(ϕ(t), t) ≥ u0(d0, t) ∀ t ∈ T .

Definition 4 (Individual Rationality for Agent i)
An allocation rule ϕ : T → D is (ex-ante) individual rational for agent i
(IRi) (for i ∈ {1, . . . , n}), if

∫
T ui(ϕ(t), t)dP (t) ≥ U0

i (in particular, ϕ is
such that the function t 7→ ui(ϕ(t), t) is measurable).

If an allocation rule is both (IRP) and (IRi) for all agents i, then it shall
simply be called individual rational. Finally, we define strict domination of
an allocation rule.

Definition 5 (Strictly Dominated Allocation Rules)
An allocation rule ϕ : T → D is strictly dominated at τ ∈ T by ψ : T → D,
if ψ satisfies

1. ψ is (IC),

2. t 7→ ui(ψ(t), t) is measurable for all i,

3. ui(ψ(t), t) > ui(d0, t) ∀ t ∈ T, i = 1, . . . , n, and

4. u0(ψ(τ), τ) > u0(ϕ(τ), τ).

We shall see later that allocation rules which are strictly dominated as de-
fined above cannot be equilibrium allocation rules16.

16Being strictly dominated is closely related to not weakly Pareto dominating the

Rothschild-Stiglitz-Wilson allocation (associated with the status quo) of [13] Maskin and

Tirole (1992), as will be shown in Subsection 3.3.
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3.3 PBE Allocation Rules

We shall turn now to the characterization of equilibrium allocation rules
for the contract proposal game. To do so, we make the convention that
for an allocation rule ϕ, we shall write ϕ ∈ M if and only if there exists
some m ∈ M such that S0

m = T and |Sim| = 1 (i.e. each agent i has only
one feasible action in the mechanism execution stage) and m(t, s1, . . . , sn) =
ϕ(t) ∀ (t, s1, . . . , sn) ∈ T × S1

m × . . . × Snm. Moreover, we shall say that an
allocation rule ϕ is a PBE of the contract proposal game, if there exists
some PBE (σ, β) such that σ1

0(t) = ϕ for all t ∈ T , and ϕ is accepted by all
agents. Note the difference to ϕ being implemented by some PBE (σ, β) –
in the former case, ϕ is the game form proposed by all types of principals,
whereas in the later case we do not know what kind of game forms are
proposed by the principal, we only know that the allocation implemented
for any t ∈ T is given by the allocation rule ϕ (ϕ being a PBE implies, of
course, that ϕ is also the equilibrium allocation rule).
Our first theorem gives necessary conditions for an allocation rule to be
implementable by a pure-strategy PBE satisfying the regularity condition
of Definition 1. The proof of Theorem 1 is provided in the appendix.

Theorem 1
Suppose the status quo allocation rule (t 7→ d0) is contained in the set M .
Then every pure-strategy PBE of the contract proposal game which satisfies
the regularity condition implements an allocation rule ϕ which is incentive-
compatible, individual rational for the principal, ex-ante individual rational
for each agent i, and which is not strictly dominated at any t ∈ T by any
ψ ∈M17. Furthermore, if ϕ ∈M , then ϕ is a PBE.

The second part of Theorem 1 says that any allocation rule ϕ which can be
implemented through a regular pure-strategy PBE is itself a PBE (provided
the allocation rule is contained in the set M). Thus, instead of proposing
some (complicated) game to be played, the principal might just as well an-
nounce the incentive-compatible allocation rule ϕ. Therefore, in our search
for equilibria of the contract proposal game we can restrict ourselves to di-

17For the last necessary condition mentioned we have to assume that an agent accepts

an allocation rule if his expected utility from the allocation rule is strictly greater than

his expected utility from the status quo, or, alternatively, that n = 1.
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rect revelation mechanisms18. Furthermore, if all types of principal propose
ϕ, the principal does not reveal any of her private information at the mecha-
nism proposal stage of the contract proposal game (any revelation of private
information may be postponed to the execution stage of the contract pro-
posal game). This is what Myerson calls the Principle of Inscrutability. So
the second part of Theorem 1 establishes some revelation and inscrutabil-
ity principle (the revelation part refers to the mechanism execution stage,
the inscrutability part to the mechanism proposal stage). Given that this
revelation and inscrutability principle holds, it is also easy to derive the nec-
essary conditions stated in the first part of Theorem 1: Consider some direct
revelation mechanism ϕ which in equilibrium is announced by all types of
principal. Since ϕ is a direct revelation mechanism, it has to be an incentive-
compatible allocation rule. Moreover, since the choice of ϕ by the principal
in the mechanism selection stage of the contract proposal game does not
reveal any information (Principle of Inscrutability), for ϕ to be accepted by
an agent it has to be ex-ante individual rational for that agent (as defined
in Subsection 3.2). The individual rationality constraint for the principal
has to hold since, otherwise, at least one type of principal would have an
incentive to implement the status quo (an option which is open to all types
of principal). Similarly, strictly dominated allocation rules cannot be equi-
librium allocation rules, if the dominating allocation rule is contained in the
set M and hence could be implemented, as such an allocation rule would be
preferred by at least one type of principal.
For their finite-type mechanism design model, [13] Maskin and Tirole (1992)
have shown (in Proposition 6) that each PBE is given by an incentive-
compatible allocation rule that is individual rational for the agent and that
weakly Pareto dominates the Rothschild-Stiglitz-Wilson (RSW) allocation
rule (or allocation, as Maskin and Tirole call it) associated with the status
quo. Theorem 1 provides some generalization of this result to mechanism

18At first sight it may seem that we have extended the Revelation Principle, which

is well-established for uninformed principal mechanism design, to our informed principal

mechanism design model. But we do not prove that instead of announcing some mecha-

nism, the principal can always announce the associated direct revelation mechanism. We

only show that the principal can announce some direct revelation mechanism which will

yield her the same utility. Such mechanisms are not really realistic, as [13] Maskin and

Tirole (1992) have already pointed out. But they are constructs that may turn out to be

very useful for theoretical analyses.
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design models with more general type sets and distributions of information
(given our constraint on pure-strategy PBE with ”acceptance”). To see this,
note that in a finite type model weakly Pareto dominating the RSW allo-
cation rule is equivalent to being not strictly dominated (at any t ∈ T ), if
the third condition of Definition 5 required ui(ψ(t), t) to be greater than
or equal to ui(d0, t) for all t ∈ T . Moreover, with this modification any
allocation rule ϕ which is not strictly dominated at any t ∈ T also satisfies
(IRP)19. The modification of Definition 5 would be feasible (i.e. could be
made without changing any of the results in this paper), if each allocation
specified a transfer payment plus some other decision variable, as is the case
in the model of [13] Maskin and Tirole (1992). Hence, for this finite type
model our necessary conditions for a PBE reduce to the same conditions as
the ones derived by Maskin and Tirole.
Theorem 1 allows us to abstract from specific game forms and to just con-
centrate on incentive-compatible, individual rational allocation rules which
are not strictly dominated. Unfortunately, it is not straight forward to prove
that any allocation rule which is (IC), (IRP), (IRi) for all i, and which is not
strictly dominated, is a PBE. It is easy to do so if for all m ∈M there exists
some Bayesian Nash equilibrium of m which is independent of the beliefs of
the agents. This is the case if, for example, M is restricted exogenously to
allocation rules. For the case that M is not restricted in such a manner, it
can be shown at least that any incentive-compatible and individual rational
allocation rule can be implemented through a Bayesian equilibrium:

Theorem 2
Every allocation rule contained in the set M which is incentive-compatible,
individual rational for the principal, and ex-ante individual rational for all
agents can be implemented through a Bayesian equilibrium of the contract
proposal game. Moreover, suppose
M ⊆ {m : T → D | ∀t∈T ∃τmt ∈T ∀s∈T u0(m(τmt ), t) ≥ u0(m(s), t) and

t 7→ ui(m(τmt ), t) is measurable ∀ i > 0}20.
Then any allocation rule in M which is (IC), (IRP), (IRi) for all i, and
which is not strictly dominated at any t ∈ T by any ψ : T → D, is a PBE.

19Otherwise, the allocation rule t 7→ d0 strictly dominated ϕ at some t ∈ T .
20The restrictions onM are required to ensure that optimal strategies off the equilibrium

path exist for the mechanism evaluation and execution stages. All incentive-compatible

allocation rules ψ with t 7→ ui(ψ(t), t) being measurable for all i satisfy these requirements.
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4 Equilibrium Refinements

The set of all potential perfect Bayesian equilibrium allocation rules for the
contract proposal game identified in Theorem 1, i.e. the set of all alloca-
tion rules which are (IC), (IRP), (IRi) for all i, and which are not strictly
dominated, may be fairly large, due to the fact that beliefs in PBE are ar-
bitrary off the equilibrium path – as pointed out earlier. Therefore, in this
section we shall present various equilibrium refinements to reduce the set of
possible equilibrium allocation rules. In order to facilitate the development
of appropriate refinement criteria, in the first subsection we shall look at a
game which is closely related to the contract proposal game, the mechanism
signaling game.

4.1 The Mechanism Signaling Game

One class of economic models for which equilibrium refinements have been
studied extensively is the class of signaling games. Our original contract
proposal game is more complex than a signaling game (due to the mecha-
nism execution stage of the game), but due to Theorem 1 we could require
the principal to propose some incentive-compatible allocation rule ϕ21, and
then we could eliminate the mechanism execution stage. The payoff for each
player is then given by ui(ϕ(t), t), if ϕ is accepted. Thus, the contract pro-
posal game reduces to a signaling game with one sender and n receivers.
Moreover, again by invoking Theorem 1, we can restrict ourselves to alloca-
tion rules ϕ such that t 7→ ui(ϕ(t), t) is measurable for all i.
So define

M∗ := {m : T → D | m (IC), t 7→ ui(m(t), t) is measurable ∀ i = 1, . . . , n},

and let us consider the following mechanism signaling game:
21Focusing on pure and regular strategies (and beliefs), we know that each PBE imple-

ments some incentive-compatible allocation rule ϕ, which itself is a PBE (provided ϕ ∈M).

Hence, if the principal would want to announce some other game form in M , the agents

might approach the principal and require her to announce some incentive-compatible al-

location rule. Thus the restriction to incentive-compatible mechanisms does not seem

to be severe. However, this restriction is not completely innocuous: Though restricting

the principal’s mechanism to incentive-compatible allocation rules does not change much

on the equilibrium path, it restricts the principal from sending certain messages off the

equilibrium path.
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1. Nature chooses the principal’s type t ∈ T .

2. The principal (the sender) observes her type and then announces an
allocation rule m ∈M∗ (the signal or message).

3. The n agents (receivers) observe the signal m (but not the sender’s
type), update their prior belief about the sender’s type, and decide
whether to accept or to reject m.

4. If all agents have accepted m, player i receives the payoff ui(m(t), t),
otherwise player i receives ui(d0, t) (i = 0, . . . , n).

Lemma 1 characterizes the set of pure-strategy perfect Bayesian pooling
equilibria for this mechanism signaling game. The only minor difficulty in
the proof of Lemma 1, which is given in the appendix, concerns the behavior
off the equilibrium path (this is where the property of not being strictly
dominated comes into play).

Lemma 1
Assume that an agent accepts an allocation rule if his expected utility from
the allocation rule is greater than his expected utility from the status quo.
Then the set of pure-strategy perfect Bayesian pooling equilibria for the
mechanism signaling game involving play of ’accept’ by all agents is given
by

E := {m : T → D | m (IC), (IRP ), (IRi) ∀ i = 1, . . . , n; m is not

strictly dominated at any t ∈ T by any m̃ ∈M∗}.

The set E is precisely the set of allocation rules which we have identified as
potential equilibrium allocation rules for the contract proposal game (given
our restriction on pure and regular strategies). This link between equilibria
of the contract proposal game and pooling equilibria of the mechanism sig-
naling game once again gives some justification why we may focus on the
mechanism signaling game – when analyzing the contract proposal game we
can actually focus on the mechanism signaling game due to the revelation
part of Theorem 1, and due to the Principle of Inscrutability we can focus on
pooling equilibria of this game. Hence, we proceed by analyzing the mech-
anism signaling game and by deriving appropriate refinements for pooling
equilibria of this game.
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4.2 Intuitive Criterion

Refinements of the perfect Bayesian equilibrium concept try to put reason-
able restrictions on beliefs off the equilibrium path (as said earlier, the main
problem with the concept of PBE is that in a PBE no restrictions are made
on such beliefs). The commonly used concept of sequential equilibria of
[9] Kreps and Wilson (1982) is, unfortunately, not of much help here, since
for a signaling game the set of sequential equilibria and the set of perfect
Bayesian equilibria (usually) coincide22.
[4] Cho and Kreps (1987) give an overview over some equilibrium refinements
for finite signaling games and develop some new refinement criteria. Possi-
bly the weakest equilibrium refinement is based on the idea that equilibrium
beliefs should not assign positive probability to types t after observing out
of equilibrium signals which constitute a dominated action for such a type
t (i.e. which are certain to be inferior to some other signal for type t). Cho
and Kreps extend this idea to postulating that we should not expect that
some type of sender sends a signal which is certain to result in an inferior
outcome for this sender compared to what this sender receives in equilib-
rium.
From this idea of equilibrium domination, Cho and Kreps develop a refine-
ment called the intuitive criterion. To eliminate an unreasonable PBE it
requires that there exists some type t̃ of sender who would like to deviate
from the equilibrium signal m to some other signal m̃, provided that all
receivers will deduce from the choice of signal m̃ that the sender does not
belong to those types for which m̃ constitutes a signal which is equilibrium
dominated (and that the receivers update their prior beliefs and choose a
response to m̃ accordingly). So the intuitive criterion puts some restrictions
on reasonable beliefs off the equilibrium path – reasonable beliefs must not
put positive weight on types of sender for which the signal is equilibrium
dominated, and it requires the sender to take this into account when choos-
ing optimal actions23.

22[7] Fudenberg and Tirole (1991) have demonstrated that the set of PBE and the set of

sequential equilibria coincide for two-period games of incomplete information with finite

type sets. [18] Perea y Monsuwe et al. (1997) have provided some extension of this result

to infinite signaling games.
23If one accepts the idea that defections from the equilibrium path represent attempts

of players to do better than on the equilibrium path, then the intuitive criterion is an

obvious refinement concept. Though it has proven very helpful for the analysis of signaling
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Let us apply the intuitive criterion to the mechanism signaling game. So sup-
pose that ϕ is some incentive-compatible, individual rational allocation rule,
which is expected to be played in some pooling equilibrium of the mechanism
signaling game. Now consider some other message ψ ∈M∗ (i.e. some signal
off the equilibrium path), and define the set T (ψ) := {t ∈ T | u0(ψ(t), t) >
u0(ϕ(t), t)}. This is the set of all types of principal which strictly prefer ψ
over the equilibrium allocation rule ϕ. Hence we can deduce by equilibrium
domination that t ∈ T (ψ) if an incentive-compatible allocation rule ψ 6= ϕ

has been proposed by the principal (provided T (ψ) 6= ∅)24. For ϕ to be an
equilibrium of the mechanism signaling game, the intuitive criterion then
requires that there does not exist any incentive-compatible allocation rule
ψ : T → D (satisfying that t 7→ ui(ψ(t), t) is measurable for all agents i)
such that T (ψ) 6= ∅ and such that accepting ψ is the only best response of
the agents given that t ∈ T (ψ). This leads to the following solution concept
for the mechanism signaling game:

Definition 6 (Intuitive Solution)
An allocation rule ϕ : T → D is an intuitive solution, if it satisfies the
following conditions:

1. ϕ is (IC), (IRP), (IRi) ∀ i = 1, . . . , n.

2. Suppose ψ : T → D is (IC), ψ ∈ M , t 7→ ui(ϕ(t), t) is measurable for
all i, and S = {t ∈ T | u0(ψ(t), t) > u0(ϕ(t), t)} 6= ∅. Then there exists
some j ∈ {1, . . . , n} and some t ∈ S25 such that uj(ψ(t), t) ≤ uj(d0, t).

games, the intuitive criterion, like forward induction in general, is not met with unanimous

approval. It has been criticized by, among others, [10] Mailath et al. (1993) by pointing

out that the refinement is based on agents inferring some information from other players’

deviations from the equilibrium path, but nothing is inferred from players not deviating

from equilibrium play (this leads to the question of whether the equilibrium outcome can

really be viewed as the benchmark against which deviations have to be evaluated).
24Here we deviate slightly from the standard argument of equilibrium domination, as we

assume that the principal deviates from equilibrium play only if she strictly benefits from

such a deviation. This variation of standard equilibrium domination, which is not essential

for the analysis to follow, can be justified by observing that deviating from equilibrium

play may be more risky in some sense (and why should the principal take such risks if she

does not expect to strictly benefit from taking the risk).
25If we had applied the intuitive criterion in the original sense of [4] Cho and Kreps

(1987), then we would have had to find some t ∈ {t ∈ T | u0(ψ(t), t) ≥ u0(ϕ(t), t)} to

establish ϕ as an intuitive solution – c.f. footnote No. 24.
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Note that any intuitive solution is not strictly dominated at any t ∈ T by
any ψ ∈M (otherwise condition (2) would be violated). Thus, any intuitive
solution is contained in the set E specified in Lemma 1.
If we assume that agents accept an allocation rule whenever it yields them
an expected utility greater than their expected utility from the status quo,
then with the help of (the proof of) Lemma 1 it can easily be shown that any
pure-strategy pooling PBE of the mechanism signaling game involving play
of ’accept’ by all agents and satisfying the intuitive criterion implements an
intuitive solution (and vice versa, see footnote No. 33).

4.3 Perfect Solution

Though the intuitive criterion is indeed fairly intuitive, this equilibrium re-
finement may turn out to be relatively weak. This is so because after it has
been deduced that certain signals cannot have been sent by certain senders
(as long as these senders are rational and they understand that the receivers
are rational as well), the intuitive criterion does put some restriction on the
support of reasonable updated beliefs, but it does not put any restriction on
the shape of the updated distribution function. Therefore, let us look at the
following procedure for forming reasonable beliefs off the equilibrium path:
Suppose that the receivers have deduced from equilibrium domination that
the sender’s type has to be in the set T̃ ⊆ T after observing some signal m̃
off the equilibrium path, and assume that no type t ∈ T̃ can be excluded
from having sent m̃ (more precisely, assume that all types t ∈ T̃ are ex-
pected to send the signal m̃ given that m̃ has been sent). Then the receivers
should derive their updated beliefs by evaluating conditional probabilities
given the set T̃ (Bayesian updating conditional on T̃ ). Thus, in our model,
if T̃ ∈ B and P (T̃ ) > 0, then the updated belief βi(m̃) should be given by
βi(m̃)(TB) = P (TB ∩ T̃ )/P (T̃ ) for all TB ∈ B. Hence, like with Bayesian
updating on the equilibrium path, beliefs off the equilibrium path are now
(essentially) completely determined. With this updating procedure we have
eliminated any freedom in the assignment of beliefs off the equilibrium
path (which may have served to support unreasonable equilibria). We shall
call such beliefs perfect because these beliefs are basically the beliefs which
[8] Grossman and Perry (1986) proposed for their perfect sequential equilib-
rium.
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Using perfect beliefs off the equilibrium path is, of course, not as compelling
as Bayesian updating on the equilibrium path. Bayesian updating can be
justified by noting that such updates are the only updates which are actu-
ally confirmed in the long run (i.e. by repeated equilibrium play). For the
procedure of using perfect beliefs off the equilibrium path this is clearly not
the case. But if one accepts this idea of updating beliefs off the equilibrium
path, then this leads to a much stronger equilibrium refinement as compared
to the intuitive criterion.
Let us look at the implications of using perfect beliefs for the mechanism
signaling game. So, again, suppose that ϕ is some incentive-compatible,
individual rational allocation rule, which is expected to be played in some
pooling equilibrium of the mechanism signaling game, and consider some
other message ψ ∈ M∗. As said in the previous subsection, we can now
deduce by equilibrium domination that t ∈ T (ψ) = {s ∈ T | u0(ψ(s), s) >
u0(ϕ(s), s)} (provided T (ψ) 6= ∅). Moreover, suppose that given that the
allocation rule ψ has been chosen, all agents assume that all types of prin-
cipal in the set T (ψ) would have chosen ψ26. Thus, ϕ fails to pass the
equilibrium refinement test if P (T (ψ)) > 0 and

∫
T (ψ) ui(ψ(t), t)dβi(ψ)(t) >∫

T (ψ) ui(d0, t)dβi(ψ)(t) ∀ i = 1, . . . , n, where βi(ψ) denotes the prior prob-
abilities conditional on the set T (ψ). If such an allocation rule ψ exists,
then all types of principal in the set T (ψ) could propose ψ rather than ϕ,
anticipating that ψ will be accepted by all agents (as agents take the signal
ψ as evidence that t ∈ T (ψ), and hence their expected utility from ψ is
greater than their expected utility from the status quo (using perfect beliefs
to evaluate expected utilities)), because ψ gives all types t ∈ T (ψ) a strictly
greater utility than what they receive in equilibrium. Therefore, ϕ cannot
be an equilibrium.
It remains to specify precisely perfect beliefs off the equilibrium path. As
said earlier, if T (ψ) ∈ B and P (T (ψ)) > 0 for some ψ off the equilib-
rium path, then the updated belief βi(ψ) is given by βi(ψ)(TB) = P (TB ∩
T (ψ))/P (T (ψ) for all TB ∈ B. Though T (ψ) ∈ B and P (T (ψ)) > 0 for

26This is, of course, a fairly restrictive assumption about the way agents interpret signals

off the equilibrium path (c.f. [10] Mailath et al. (1993), pp. 246–248). The assumption

would be appropriate if agents do not figure out or are not able to figure out which of the

types in the set T (ψ) are more likely, and which are less likely to send the signal ψ.
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ψ ∈M∗ is satisfied for some mechanism design problems27, let us now spec-
ify how to proceed if these conditions do not hold.
To do so, set S := T (ψ). In general, S is not necessarily a Borel set28, so
choose some Ŝ ∈ argmax{P (S̃) | S ⊇ S̃ ∈ B} (clearly, the set {P (S̃) | S ⊇
S̃ ∈ B} assumes its supremum, and the set Ŝ is unique up to a Borel set of
measure zero). If S ∈ B, then we can choose Ŝ = S, of course. If P (Ŝ) > 0,
then we proceed by standard updating (as spelled out above). If, however,
P (Ŝ) = 0, then we shall just require that the support of the updated belief
is a subset of S (so in this case we adopt the intuitive criterion) – unless
S = ∅, where we only require that the updated belief has full support on
T 29.
Having specified how reasonable beliefs off the equilibrium path may look
like, we are now in a position to present the following equilibrium refinement
for the mechanism signaling game.

Definition 7 (Perfect Solution)
An allocation rule ϕ : T → D is a perfect solution30, if it satisfies the
following conditions:

1. ϕ is (IC), (IRP), and (IRi) ∀ i = 1, . . . , n.

2. Suppose ψ : T → D is (IC), ψ ∈ M , t 7→ ui(ϕ(t), t) is measurable for
all i, and S = {t ∈ T | u0(ψ(t), t) > u0(ϕ(t), t)} 6= ∅.
Let Ŝ ∈ argmax{P (S̃) | S ⊇ S̃ ∈ B}.

27The conditions are satisfied if T is discrete. Moreover, they are satisfied if, for example,

T = [t, t] and u0 is given by u0(φ(t), t) = φ1(t) + ũ0(φ2(t))t (φ = (φ1, φ2); φ1 typically

denotes some transfer payment), where ũ0 is bounded on φ2(T ). Then we know from

standard mechanism design theory that t 7→ u0(φ(t), t) is continuous (even Lipschitz

continuous) for any incentive-compatible φ. The continuity of these functions ensures

that T (ψ) is an open set and hence P (T (ψ)) > 0 for any strictly positive probability

measure P on T (i.e. any P which puts positive weight on every non-empty, open subset

of T ).
28S is a Borel set if t 7→ u0(ϕ(t), t) and t 7→ u0(ψ(t), t) are measurable. Thus, we can

evade the ad-hoc assumptions which are to follow now by requiring that the allocation

rule ϕ to be proposed by the principal leads to t 7→ ui(ϕ(t), t) being measurable for all

i = 0, 1, . . . , n.
29If T (ψ) = ∅ then ψ is an allocation rule which is not preferred to the equilibrium by

any type of principal.
30In how far the solution can really be considered perfect depends on the willingness to

accept the assumptions made on the agents’ responses to actions off the equilibrium path

– c.f. footnote No. 26.
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If P (Ŝ) > 0, then there exists some j ∈ {1, . . . , n} such that∫
Ŝ
uj(ψ(t), t)dP (t) ≤

∫
Ŝ
uj(d0, t)dP (t)31.

If P (Ŝ) = 0, then there exists some j ∈ {1, . . . , n} and some t ∈ S

such that uj(ψ(t), t) ≤ uj(d0, t).

Intuitively it should be clear that any pooling equilibrium of the mecha-
nism signaling game has to be a perfect solution as defined above if agents
use perfect beliefs off the equilibrium path: Any pooling equilibrium has to
fulfill (IRP) and (IRi) for all i = 1, . . . , n, otherwise the equilibrium alloca-
tion rule would be rejected by at least one agent or not announced by at
least one type of principal. Moreover, if the second condition of Definition
7 is not satisfied, then the potential equilibrium cannot be ”in equilibrium”,
because then some type of principal would do better by announcing some
other incentive-compatible allocation rule which would be accepted by all
agents (as long as their beliefs off the equilibrium path are perfect).
On the other hand, any perfect solution is a perfect Bayesian equilibrium of
the mechanism signaling game with perfect beliefs off the equilibrium path:
If an allocation rule ϕ satisfying conditions (1) and (2) of Definition 7 is an-
nounced by the principal, all agents will accept ϕ due to (IRi). Furthermore,
if the principal announced any other incentive-compatible allocation rule ψ
with which she could do potentially better (i.e. S 6= ∅ in (2) of Definition
7), then this allocation rule could be rejected by at least one agent if all
agents take the announcement of ψ as evidence that t ∈ S and update their
beliefs accordingly (c.f. (2) of Definition 7). The next theorem provides the
verification of the intuition above.

Theorem 3
Every perfect solution is a PBE of the mechanism signaling game with per-
fect beliefs off the equilibrium path.
Moreover, assume that an agent accepts an allocation rule if his expected
utility from the allocation rule is greater than his expected utility from the
status quo. Then, conversely, every pure-strategy perfect Bayesian pooling
equilibrium of the mechanism signaling game with perfect beliefs off the equi-
librium path and with ”acceptance” implements a perfect solution.

31Since Ŝ is unique up to a Borel set of measure zero, the two integrals do not depend

on the choice of Ŝ ∈ argmax{P (S̃) | S ⊇ S̃ ∈ B}.
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Furthermore, Theorem 4 shows that any regular pure-strategy PBE of the
contract proposal game with perfect beliefs off the equilibrium path imple-
ments as equilibrium allocation rule a perfect solution. Unfortunately, as
with Theorem 1, the converse statement is not easy to prove, since the equi-
librium implemented in the mechanism execution stage by some mechanism
off the equilibrium path in general32 does depend on the beliefs off the equi-
librium path. Thus manipulating these beliefs in such a way as to guarantee
that no type of principal would like to deviate from equilibrium play, we
might alter the equilibrium played in the mechanism execution stage. The
proofs of Theorem 3 and Theorem 4 are to be found in the appendix33.

Theorem 4
Suppose the status quo allocation rule (t 7→ d0) is contained in the set M ,
and assume that an agent accepts an allocation rule if his expected utility
from the allocation rule is greater than his expected utility from the status
quo.
Then every regular pure-strategy perfect Bayesian equilibrium of the contract
proposal game with perfect beliefs off the equilibrium path implements as
equilibrium allocation rule a perfect solution.

The last two theorems characterize the set of allocation rules we may expect
as outcomes for the mechanism signaling game and the contract proposal
game. This set does indeed constitute a further equilibrium refinement, as
any perfect solution is clearly also an intuitive solution.
A natural question to ask at this point concerns the existence of perfect
solutions. Unfortunately, as [22] Tisljar (2002) has shown, such solutions
need not exist, even if all utility functions in the model are well behaved34.

4.4 Undominated Perfect Solution

We shall now present a further refinement criterion inspired by [16] Myerson
(1983). As will be pointed out later, the validity of this criterion (like the

32If M = M∗, then this is not the case, hence in Theorem 3 we were able to prove the

converse statement.
33Results analogous to Theorem 3 and Theorem 4 hold for the intuitive solution. The

proofs of these results are very similar to the proofs of Theorem 3 and Theorem 4 (and

actually slightly easier), hence these corresponding results are not proven separately.
34[8] Grossman and Perry (1986) demonstrate that perfect sequential equilibria may not

exist. But they propose that if a perfect sequential equilibrium exists, then it should be

used as refined equilibrium concept.
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validity of the refinement criterion presented in the previous subsection) is
debatable; nevertheless, it shall be presented here, as it is required for com-
parisons in the following section. Myerson’s ideas suggest that we should
not expect any allocation rule ψ to evolve as outcome of the contract pro-
posal game, if there exists a perfect solution ϕ which weakly dominates ψ,
i.e. u0(ϕ(t), t) ≥ u0(ψ(t), t) ∀ t ∈ T and ∃t∈T u0(ϕ(t), t) > u0(ψ(t), t)35.
Since ψ is a perfect solution, ϕ may be rejected by at least one agent if the
announcement of ϕ is to be taken by the agents as evidence that the prin-
cipal’s type is in the set {t ∈ T | u0(ϕ(t), t) > u0(ψ(t), t)}. If the principal,
however, can convince the agents not to make such an inference pointing out
that all of her types weakly prefer ϕ over ψ, then ϕ remains implementable,
and it may be reasonable to assume that the principal does not announce ψ.
If we accept this argument, we can limit the set of outcomes of the contract
proposal game to undominated perfect solutions as defined below.

Definition 8 (Undominated Perfect Solution)
An allocation rule ϕ is an undominated perfect solution if it is a perfect
solution and if it is not dominated by any other perfect solution, i.e. if there
does not exist any perfect solution ψ such that u0(ψ(t), t) ≥ u0(ϕ(t), t) for
all t ∈ T and u0(ψ(t), t) > u0(ϕ(t), t) for some t ∈ T .

It shall be pointed out here once more that the argument propagating the
undominated (rather than any other) perfect solution relies on the principal
being able to convince the agents not to infer anything from exchanging
a dominated by some undominated perfect solution. When discussing the
concept of (strict) equilibrium domination, we argued that some type of prin-
cipal might bother deviating from some equilibrium play only if she strictly
benefited from doing so. Thus the argument for the undominated perfect
solution may break down36, so that one might expect dominated perfect
solutions to be as likely to evolve as equilibrium play as any other perfect
solution. Nevertheless, the concept of undominated perfect solutions does
have some appeal once one starts to think about efficiency in the equilibrium
selection process (efficiency from the point of view of the principal).

35A similar argument could be used to eliminate any PBE which is dominated by some

other PBE.
36Myerson actually gives the argument only to justify that any solution ϕ with

u0(ϕ(t), t) < u0(ψ(t), t) for all t ∈ T is unreasonable in his model, but then he goes

on discarding any solution which is weakly dominated in the sense spelled out above.
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5 Strong Solutions

In the previous section we have presented the perfect solution as solution
concept for the contract proposal game, and we have argued that the set of
solutions to be expected as outcome of this game may be restricted further
to undominated perfect solutions. For the case that even the undominated
perfect solution is not unique, we shall now present an equilibrium concept
proposed by [16] Myerson (1983) which identifies a solution which is essen-
tially unique – in case it exists. Myerson’s insights do not directly apply to
our model (as he considers a finite type model with adverse selection and
moral hazard), but the following ideas can be used for our model as well.
Myerson suggests to look at strong solutions, which are defined in our model
as follows:

Definition 9 (Feasible Allocation Rules)
An allocation rule ϕ : T → D is feasible, if it is (IC) and (IRi) for all
i = 1, . . . , n. The set of all feasible allocation rules is denoted by F .

Definition 10 (Undominated Allocation Rules)
An allocation rule ϕ ∈ F is dominated, if there exists some other allocation
rule ψ ∈ F such that u0(ϕ(t), t) ≤ u0(ψ(t), t) for all t ∈ T and u0(ϕ(t), t) <
u0(ψ(t), t) for some t ∈ T .
An allocation rule ϕ is undominated, if ϕ ∈ F and if there does not exist
any ψ ∈ F which dominates ϕ.

Definition 11 (Safe Allocation Rules)
An incentive-compatible allocation rule ϕ is safe, if ui(ϕ(t), t) ≥ ui(d0, t)
for all i ∈ {0, . . . , n}, t ∈ T .

Definition 12 (Strong Solution)
An allocation rule ϕ : T → D is a strong solution, if ϕ is undominated and
safe.

From Theorem 1 we know that in our search for pure-strategy equilibria
of the contract proposal game (satisfying the regularity restriction) we can
restrict ourselves without loss of generality to incentive-compatible alloca-
tion rules. Furthermore, for such rules to be accepted by all agents we need
as additional minimum requirement that

∫
T ui(ϕ(t), t)dP (t) ≥ U0

i ∀ i ∈
{1, . . . , n}. Hence we can focus our attention on feasible allocation rules.
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Moreover, like in the previous section, it may be argued that among all
feasible allocation rules we can restrict ourselves to undominated allocation
rules37.
A safe allocation rule is guaranteed to be implementable by the principal
irrespective of what the agents’ beliefs about the principal’s type look like,
in particular irrespective of how the prior belief, given by the probability
measure P , is updated. Safe allocation rules may be dominated, and strong
solutions may fail to exist. But the next theorem shows (under some regu-
larity condition) that if a strong solution exists, then it is an undominated
perfect solution and it is essentially unique (that is unique from the point of
view of the principal’s utilities). The proof of Theorem 5 is again provided
in the appendix.

Theorem 5
Let the contract proposal game be such that

{ϕ : T → D | ϕ IC and t 7→ ui(ϕ(t), t) is measurable for all i > 0}
= {ϕ : T → D | ϕ IC and t 7→ u0(ϕ(t), t) is measurable}.

Suppose ϕ is a strong solution. Then ϕ is an undominated perfect solution
of the contract proposal game. Moreover, if ϕ̃ is some other strong solution,
then u0(ϕ(t), t) = u0(ϕ̃(t), t) ∀ t ∈ T .

So the strong solution as equilibrium concept has the advantage that under
the condition stated38 strong solutions are essentially unique and that they
are undominated perfect solutions (and therefore PBE of the mechanism
signaling game with perfect beliefs off the equilibrium path). But besides the
fact that strong solutions may not exist, it is not so clear why the outcome of
the contract proposal game should necessarily be the strong solution rather
than any other (undominated) perfect solution.

37Though we have provided some motivation for this selection criterion, we have also

pointed out the caveat of this approach, which equally applies to the current section.
38The measurability of the function t 7→ u0(ϕ(t), t) is often sufficient to ensure the

measurability of the functions t 7→ ui(ϕ(t), t) (and vice versa), especially if there is just

one agent (this is the case if, for example, the principal’s and the agent’s utilities sum

up to a measurable function). Moreover, if T = [t, t] and u0 is given by u0(ϕ(t), t) =

ϕ1(t) + ũ0(ϕ2(t))t (ϕ = (ϕ1, ϕ2)), where ũ0 is bounded on ϕ2(T ), then t 7→ u0(ϕ(t), t)

is continuous (c.f. footnote No. 27), and t 7→ ũ0(ϕ2(t)) is increasing. If ũ0 is strictly

increasing, then ϕ2 is an increasing and ϕ1 a decreasing function (provided t ≥ 0), which

in turn may be sufficient to ensure that for all i the function t 7→ ui(ϕ(t), t) is measurable

(under suitable conditions for ui).
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6 Conclusion

We have extended the analysis of the finite type informed principal mecha-
nism design model of [13] Maskin and Tirole (1992) to a model where the
(one-dimensional) private information of the principal may be distributed
according to any general probability measure. Regular pure-strategy per-
fect Bayesian equilibria of such a model implement allocation rules which are
incentive-compatible, individual rational for the principal, ex-ante individ-
ual rational for all agents, and not strictly dominated. We have applied to
our model the intuitive criterion as an equilibrium refinement. Since the in-
tuitive criterion is a relatively weak refinement criterion, we have provided
an equilibrium refinement related to the perfect sequential equilibrium of
[8] Grossman and Perry (1986). This refinement is based on fairly restric-
tive assumptions about how agents update their beliefs off the equilibrium
path, but it allows for a relatively strong equilibrium refinement criterion.
The theory presented in the paper may serve to solve common-value mech-
anism design problems for an informed principal. It provides a framework
for the analysis of continuous-type mechanism design models, and assuming
that types are continuously distributed, we can employ the differential rep-
resentation of incentive-compatibility constraints for the principal (which is,
of course, not the case for discrete type models), which in turn may help
to characterize the set of direct revelation mechanisms. This enhancement
is bought, however, by the restriction to pure-strategy equilibria satisfying
some regularity condition (though the restriction to regular equilibria is re-
dundant if the set of feasible mechanisms is countable). Further research
might look at extensions of the model to mechanism design problems for
informed principals with bilateral incomplete information or to informed
principal problems with moral hazard.

Appendix – Proofs

Proof of Theorem 1
Suppose (σ, β) is a regular pure-strategy PBE. Hence (σ, β) is given by some
functions σ1

0 : T → M , σ2
0 : T ×M × A →

⋃
S0∈S0 S0, σ1

i : M → {0, 1},
σ2
i : M × A →

⋃
Si∈Si S

i, and βi : M → P(T ) (i = 1, . . . , n). Since σ1
0(t) is

accepted by all agents for all t ∈ T (due to the first part of the regularity
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condition), (σ, β) implements the allocation rule ϕ given by

ϕ : T → D

t 7→ σ1
0(t)[σ

2
0(t, σ

1
0(t), 1

n), σ2
1(σ

1
0(t), 1

n), . . . , σ2
n(σ

1
0(t), 1

n)].

We shall prove now that ϕ is (IC), (IRP), (IRi) for all i, and not strictly
dominated at any t ∈ T by any ψ ∈M .

ϕ is (IC)
m := σ1

0(t̃) ∈M is accepted by all agents for all t̃ ∈ T . Thus, since (σ, β) is
sequential rational for the principal, we know that for all t ∈ T

u0(ϕ(t), t) = u0(σ1
0(t)[σ

2
0(t, σ

1
0(t), 1

n), σ2
1(σ

1
0(t), 1

n), . . . , σ2
n(σ

1
0(t), 1

n)], t)

≥ u0(m[σ2
0(t,m, 1

n), σ2
1(m, 1

n), . . . , σ2
n(m, 1

n)], t)

≥ u0(m[σ2
0(t̃, m, 1

n), σ2
1(m, 1

n), . . . , σ2
n(m, 1

n)], t)

= u0(ϕ(t̃), t),

where the first inequality is due to part (a), and the second inequality is
due part (b) of the requirement for (σ, β) being sequential rational for the
principal (note σ2

0(t̃, m, 1
n) ∈ S0

σ1
0(t̃)

). Hence, ϕ is (IC).

ϕ is (IRP)
Since (t 7→ d0) ∈ M , the sequential rationality of (σ, β) for the principal
yields

u0(ϕ(t), t) = u0(σ1
0(t)[σ

2
0(t, σ

1
0(t), 1

n), σ2
1(σ

1
0(t), 1

n), . . . , σ2
n(σ

1
0(t), 1

n)], t)

≥ u0(d0, t)

for all t ∈ T (no matter whether or not t 7→ d0 is accepted by all agents),
i.e. ϕ is (IRP).

ϕ is (IRi) for all agents i
First suppose (σ, β) satisfies the first condition of the regularity defini-
tion, i.e. σ1

0 : (T,B) → (M,M), βi(·)(TB) : (M,M) → [0, 1] (for all
i = 1, . . . , n, ∀ TB ∈ B) and

gi : (T ×M,B ⊗M) → [−Umax, Umax]

(t,m) 7→ ui(m[σ2
0(t,m, 1

n), σ2
1(m, 1

n), . . . , σ2
n(m, 1

n)], t)

are measurable. Fix some i ∈ {1, . . . , n}. The idea of the following proof
showing that ϕ satisfies (IRi) is to use iterated expectations:
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Since P is a probability measure on (T,B), δσ1
0(t) is a probability measure

on (M,M) for all t ∈ T , and δσ1
0(·)(MM) : (T,B) → [0, 1] is measur-

able for all MM ∈ M (since σ1
0 is measurable), it follows by Ex. 18.20 in

[2] Billingsley (1995) for all measurable f : (T ×M,B ⊗M) → [0,∞] that∫
M f(·,m)dδσ1

0(·)(m) : (T,B) → [0,∞] is measurable and∫
T×M

f(t,m)dπ(t,m) =
∫
T

∫
M
f(t,m)dδσ1

0(t)(m)dP (t),

with the probability measure π being given by

π(H) =
∫
T
δσ1

0(t)({m ∈M | (t,m) ∈ H})dP (t) ∀ H ∈ B ⊗M.

Moreover, ρ = P ◦ σ−1
0 is a probability measure on (M,M), βi(m) is a

probability measure on (T,B) for allm ∈M , and βi(·)(TB) : (M,M) → [0, 1]
is measurable for all TB ∈ B. Thus, again by Ex. 18.20 in [2] Billingsley
(1995), it follows for all measurable f : (T × M,B ⊗ M) → [0,∞] that∫
T f(t, ·)dβi(·)(t) : (M,M) → [0,∞] is measurable and∫

T×M
f(t,m)dτ(t,m) =

∫
M

∫
T
f(t,m)dβi(m)(t)dρ(m),

with the probability measure τ being given by

τ(H) =
∫
M
βi(m)({t ∈ T | (t,m) ∈ H})dρ(t) ∀ H ∈ B ⊗M.

Since for all TB ∈ B, MM ∈M

π(TB ×MM) =
∫
T
δσ1

0(t)({m ∈M | (t,m) ∈ TB ×MM})dP (t)

=
∫
T

1TB(t)δσ1
0(t)({m ∈M | m ∈MM})dP (t)

=
∫
TB

δσ1
0(t)(MM)dP (t)

= (σ1
0 • P )(TB,MM) (by definition)

=
∫
MM

βi(m)(TB)dρ(m) (by Bayesian Consistency)

=
∫
M

1MM(m)βi(m)({t ∈ T | t ∈ TB})dρ(m)

=
∫
M
βi(m)({t ∈ T | (t,m) ∈ TB ×MM})dρ(m)

= τ(TB ×MM),
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π and τ coincide on the set {TB×MM | TB ∈ B, MM ∈M} generating the
σ-algebra B ⊗M. Hence, by [2] Billingsley (1995), Theorem 3.3, π = τ39.
Thus, we have shown for all measurable f : (T ×M,B ⊗M) → [0,∞] that∫
M f(·,m)dδσ1

0(·)(m) : (T,B) → [0,∞] and
∫
T f(t, ·)dβi(·)(t) : (M,M) →

[0,∞] are measurable, and∫
T
f(t, σ1

0(t))dP (t) =
∫
T

∫
M
f(t,m)dδσ1

0(t)(m)dP (t)

=
∫
M

∫
T
f(s,m)dβi(m)(s)dρ(m)

=
∫
T

∫
T
f(s, σ1

0(t))dβi(σ
1
0(t))(s)dP (t),

where the last equality is due to [2] Billingsley (1995), Theorem 16.13. If
f : (T ×M,B ⊗M) → [−Umax, Umax] is measurable, then clearly also f̃ :
(T ×M,B⊗M) → [0,∞], (t,m) 7→ f̃(t,m) = f(t,m)+Umax is measurable,
and applying the result above to f̃ yields the following claim:

Claim 1 If f : (T ×M,B ⊗M) → [−Umax, Umax] is measurable, then∫
T
f(t, σ1

0(t))dP (t) =
∫
T
ψ(σ1

0(t))dP (t),

where ψ(m) =
∫
T f(s,m)dβi(m)(s) ∀ m ∈M .

With Claim 1 it is now relatively easy to prove that ϕ satisfies (IRi).
Since t 7→ ui(d0, t) is measurable, so is f1 : (T×M,B⊗M) → [−Umax, Umax],
(t,m) 7→ ui(d0, t). Applying Claim 1 to f1 then yields∫

T
ui(d0, t)dP (t) =

∫
T
ψ1(σ1

0(t))dP (t), (4)

where ψ1(m) =
∫
T ui(d0, s)dβi(m)(s) ∀ m ∈ M . Next let us apply Claim 1

to gi. This yields∫
T
ui(ϕ(t), t)dP (t) =

∫
T
gi(t, σ1

0(t))dP (t) =
∫
T
ψ2(σ1

0(t))dP (t), (5)

where ψ2 is given by

ψ2(m) =
∫
T
gi(s,m)dβi(m)(s)

=
∫
T
ui(m[σ2

0(s,m, 1
n), σ2

1(m, 1
n), . . . , σ2

n(m, 1
n)], s)dβi(m)(s)

39Note {TB ×MM | TB ∈ B, MM ∈ M} is a π-system, i.e. the set is closed under the

formation of finite intersections.
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for all m ∈M . Finally, since

ψ2(σ1
0(t)) =∫

T
ui(σ1

0(t)[σ
2
0(s, σ

1
0(t), 1

n), σ2
1(σ

1
0(t), 1

n), . . . , σ2
n(σ

1
0(t), 1

n)], s)dβi(σ1
0(t))(s)

≥
∫
T
ui(d0, s)dβi(σ1

0(t))(s) = ψ1(σ1
0(t))

for all t ∈ T (this is imposed by the sequential rationality of (σ, β) for agent
i and the assumption that σ1

0(t) is accepted by all agents for all t ∈ T ), from
equation (4) and equation (5) it follows that∫

T
ui(ϕ(t), t)dP (t) =

∫
T
ψ2(σ1

0(t))dP (t)

≥
∫
T
ψ1(σ1

0(t))dP (t) =
∫
T
ui(d0, t)dP (t).

Now suppose σ1
0 is an elementary mechanism proposal strategy, i.e. there

exists a countable index set N , and for each k ∈ N some Borel set Tk and a
game form mk ∈M , such that {Tk}k∈N is a partition of T , mk 6= ml ∀ k 6= l,
and such that for all k ∈ N , t ∈ Tk: σ1

0(t) = mk. Since ml is accepted by all
agents for all l ∈ N , we know from the sequential rationality for the agents
that for all agents i and for all l ∈ N with P (Tl) > 0

1
P (Tl)

∫
Tl

ui(d0, t)dP (t)

=
∫
Tl

ui(d0, t)dβi(ml)(t) +
∫
T\Tl

ui(d0, t)dβi(ml)(t)

=
∫
T
ui(d0, t)dβi(ml)(t)

≤
∫
T
ui(ml[σ2

0(t,ml, 1n), σ2
1(ml, 1n), . . . , σ2

n(ml, 1n)], t)dβi(ml)(t)

=
∫
Tl

ui(ml[σ2
0(t,ml, 1n), σ2

1(ml, 1n), . . . , σ2
n(ml, 1n)], t)dβi(ml)(t)

+
∫
T\Tl

ui(ml[σ2
0(t,ml, 1n), σ2

1(ml, 1n), . . . , σ2
n(ml, 1n)], t)dβi(ml)(t)

=
1

P (Tl)

∫
Tl

ui(ml[σ2
0(t,ml, 1n), σ2

1(ml, 1n), . . . , σ2
n(ml, 1n)], t)dP (t),

where the first and the last equality are due to the fact that βi(ml) = P (·)
P (Tl)

on the set Tl, and βi(ml) is identical to zero on the set T \Tl, as can be seen
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from equation (3).
Thus, we can deduce for all l ∈ N∫

Tl

ui(d0, t)dP (t) ≤∫
Tl

ui(ml[σ2
0(t,ml, 1n), σ2

1(ml, 1n), . . . , σ2
n(ml, 1n)], t)dP (t)

(obviously, this is also true if P (Tl) = 0, because then both sides of the
inequality equal zero). Therefore, it follows for all i = 1, . . . , n:∫

T
ui(ϕ(t), t)dP (t)

=
∫
T

∑
k∈N

1Tk(t)ui(mk[σ2
0(t,mk, 1n), σ2

1(mk, 1n), . . . , σ2
n(mk, 1n)], t)dP (t)

=
∑
k∈N

∫
T

1Tk(t)ui(mk[σ2
0(t,mk, 1n), σ2

1(mk, 1n), . . . , σ2
n(mk, 1n)], t)dP (t)

=
∑
k∈N

∫
Tk

ui(mk[σ2
0(t,mk, 1n), σ2

1(mk, 1n), . . . , σ2
n(mk, 1n)], t)dP (t)︸ ︷︷ ︸

≥
∫
Tk
ui(d0,t)dP (t)

≥
∑
k∈N

∫
T

1Tk(t)ui(d0, t)dP (t)

=
∫
T

∑
k∈N

1Tk(t)ui(d0, t)dP (t) =
∫
T
ui(d0, t)dP (t) = U0

i .

So ϕ is (IRi) for all agents i.
The second and the third last equality above clearly require some justifi-
cation. First, since (σ, β) satisfies the measurability restriction for a pure-
strategy PBE, we know that

t 7→ ui(mk[σ2
0(t,mk, 1n), σ2

1(mk, 1n), . . . , σ2
n(mk, 1n)], t)

is measurable for all i = 1, . . . , n, k ∈ N . Hence also

t 7→ 1Tk(t)ui(mk[σ2
0(t,mk, 1n), σ2

1(mk, 1n), . . . , σ2
n(mk, 1n)], t)

is measurable for all i = 1, . . . , n, k ∈ N40, and therefore

t 7→
∑
k∈Ñ

1Tk(t)ui(mk[σ2
0(t,mk, 1n), σ2

1(mk, 1n), . . . , σ2
n(mk, 1n)], t)

40Suppose f : T → [−Umax, Umax] is measurable, and S ∈ B. Then, for any Borel set

B ⊆ R, (1S(t)f(t))−1(B) = {t ∈ T | 1S(t)f(t) ∈ B} = {t ∈ S | f(t) ∈ B}∪{t ∈ T \S | 0 ∈
B}. Thus, if 0 ∈ B, (1S(t)f(t))−1(B) = [f−1(B) ∪ (T \ S)] ∈ B. On the other hand, if

0 /∈ B, then (1S(t)f(t))−1(B) = f−1(B) ∈ B. Hence, 1S(·)f(·) is measurable.
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is measurable for all i = 1, . . . , n, and all finite subsets Ñ of N . Finally, from
Lebesgue’s theorem of dominated convergence (c.f. [2] Billingsley (1995),
Theorem 16.4) we can deduce that

t 7→
∑
k∈N

1Tk(t)ui(mk[σ2
0(t,mk, 1n), σ2

1(mk, 1n), . . . , σ2
n(mk, 1n)], t)

is measurable for all i = 1, . . . , n (note, |
∑

k∈Ñ 1Tk(t)ui(mk[σ2
0(t,mk, 1n),

σ2
1(mk, 1n), . . . , σ2

n(mk, 1n)], t)| ≤ Umax ∀ t ∈ T for all finite subsets Ñ of N ,
and t 7→ Umax is clearly integrable with respect to P ), and that the second
equality above holds. Analogously, it can be shown that∑

k∈N

∫
T

1Tk(t)ui(d0, t)dP (t) =
∫
T

∑
k∈N

1Tk(t)ui(d0, t)dP (t).

ϕ is not strictly dominated at any t ∈ T
Suppose there exists some allocation rule ψ : T → D, ψ ∈ M , and some
τ ∈ T such that ϕ is strictly dominated by ψ at τ , i.e. ψ is (IC), t 7→
ui(ψ(t), t) is measurable for all i, ui(ψ(t), t) > ui(d0, t) ∀ t ∈ T, ∀ i, and
u0(ψ(τ), τ) > u0(ϕ(τ), τ). Since ui(ψ(t), t) > ui(d0, t) ∀ t ∈ T , it follows
that

∫
T ui(ψ(t), t)dβi(ψ)(t) >

∫
T ui(d0, t)dβi(ψ)(t), irrespective of how agent

i has updated his prior belief to βi(ψ) (i = 1, . . . , n)41. Thus, by sequential
rationality for agent i, we have σ1

i (ψ) = 1 for all agents i42. So if the princi-
pal proposes ψ, then this allocation rule is accepted by all agents. Therefore,
by the sequential rationality of (σ, β) for the principal we can deduce

41Though this result is absolutely intuitive, it is not so straight forward to prove this

in a direct way. I would like to thank Jens Wannenwetsch for pointing out to me the

following result, with which an indirect proof is easily constructed: If f : (T,B) → R is

measurable, f ≥ 0, and
∫
T
fdµ = 0 (for some measure µ), then f = 0 almost everywhere

(see [14] Munroe (1971), Theorem 25.7). Now suppose
∫
T
[ui(ψ(t), t)−ui(d0, t)]dβi(ψ)(t) =

0 (
∫
T
[ui(ψ(t), t) − ui(d0, t)]dβi(ψ)(t) < 0 is clearly not possible), then it follows that

ui(ψ(t), t)− ui(d0, t) is zero almost everywhere, i.e. βi(ψ)(T ) = 0 – a contradiction.
42This argument is certainly true if n = 1. If, however, n > 1, then – as already

indicated at the introduction of the model – the argument is flawed, since σ1
i (ψ) = 0

might be optimal despite the fact that
∫
T
ui(ψ(t), t)dβi(ψ)(t) >

∫
T
ui(d0, t)dβi(ψ)(t), just

because some other agent rejects ψ (even though that agent, as well, would actually prefer

ψ compared to the status quo). So mutual rejection of ψ may turn out to be optimal

due to a coordination failure. The assumption made in footnote No. 17 rules out such

coordination failures.
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u0(ψ(τ), τ) ≤ u0(σ1
0(τ)[σ

2
0(τ, σ

1
0(τ), 1

n), σ2
1(σ

1
0(τ), 1

n), . . . , σ2
n(σ

1
0(τ), 1

n)], τ)
= u0(ϕ(τ), τ) < u0(ψ(τ), τ),

a contradiction.
This proves that ϕ is not strictly dominated for any t ∈ T .

The first part of this proof has shown that any regular pure-strategy PBE
(σ, β) implements some allocation rule ϕ which is (IC), (IRP), (IRi) for all
i, and which is not strictly dominated at any t ∈ T by any ψ ∈ M . We
shall prove now that this allocation rule ϕ is a (pure-strategy) PBE of the
contract proposal game if ϕ ∈M . To do so, define
σ̃1

0 : T →M , t 7→ ϕ,
σ̃2

0 : T ×M ×A→
⋃
S0∈S0 S0, (t, ϕ, a) 7→ t, (t,m, a) 7→ σ2

0(t,m, a) ∀ m 6= ϕ,
σ̃1
i : M → {0, 1}, ϕ 7→ 1, m 7→ σ2

i (m) ∀ m 6= ϕ (i = 1, . . . , n),
σ̃2
i : M × A →

⋃
Si∈Si S

i, (ϕ, a) 7→ siϕ ∈ Siϕ, (m,a) 7→ σ2
i (m,a) ∀ m 6= ϕ

(i = 1, . . . , n), and
β̃i : M → P(T ), ϕ 7→ P , m 7→ βi(m) ∀ m 6= ϕ (i = 1, . . . , n).

Measurability
For all agents i, the function

t 7→ ui(m[σ̃2
0(t,m, 1

n), σ̃2
1(m, 1

n), . . . , σ̃2
n(m, 1

n)], t)

is measurable if m = ϕ (since ui(ϕ[σ̃2
0(t, ϕ, 1

n), σ̃2
1(ϕ, 1

n), . . . , σ̃2
n(ϕ, 1

n)], t) =
ui(ϕ(t), t), and ϕ is (IRi)). If m ∈ M, m 6= ϕ, then this function is given
by t 7→ ui(m[σ2

0(t,m, 1
n), σ2

1(m, 1
n), . . . , σ2

n(m, 1
n)], t), which is measurable

by the measurability-assumption on (σ, β).

Sequential Rationality for the Principal
For the sequential rationality of the principal we first have to verify that

u0(ϕ(t), t) ≥ u0(m[σ̃2
0(t,m, 1

n), σ̃2
1(m, 1

n), . . . , σ̃2
n(m, 1

n)], t)

∀ t ∈ T, m ∈M with σ̃1
i (m) = 1 ∀ i = 1, . . . , n.

If m = ϕ, then both sides of the inequality are the same.
So suppose m 6= ϕ. The left hand side of the inequality is equal to

u0(σ1
0(t)[σ

2
0(t, σ

1
0(t), 1

n), σ2
1(σ

1
0(t), 1

n), . . . , σ2
n(σ

1
0(t), 1

n)], t),

and for m 6= ϕ the right hand side reduces to

u0(m[σ2
0(t,m, 1

n), σ2
1(m, 1

n), . . . , σ2
n(m, 1

n)], t),
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hence, the inequality is implied by the sequential rationality of (σ, β).
Moreover, we have to check that u0(ϕ(t), t) ≥ u0(d0, t) ∀ t ∈ T . But this is
clearly satisfied by (IRP).
Finally, we have to ensure that

u0(m[σ̃2
0(t,m, 1

n), σ̃2
1(m, 1

n), . . . , σ̃2
n(m, 1

n)], t)

≥ u0(m[s0, σ̃2
1(m, 1

n), . . . , σ̃2
n(m, 1

n)], t) ∀ t ∈ T, m ∈M, s0 ∈ S0
m.

If m = ϕ, then the left hand side is equal to u0(ϕ(t), t), and the right hand
side is equal to u0(ϕ(s0), t) ∀ s0 ∈ S0

ϕ = T , so the inequality is implied by
the incentive-compatibility of ϕ. If m 6= ϕ, then the inequality is implied
again by the sequential rationality of (σ, β).

Sequential Rationality for Agent i
Like with proving that (σ̃, β̃) is sequential rational for the principal, most
of the sequential rationality of (σ̃, β̃) for the agents can be directly deduced
from the corresponding characteristics of (σ, β). Choose some i ∈ {1, . . . , n}
and let us go through the different conditions one at a time.

1.
∫
T ui(m[σ̃2

0(t,m, 1
n), σ̃2

1(m, 1
n), . . . , σ̃2

n(m, 1
n)], t)dβ̃i(m)(t) ≥∫

T ui(d0, t)dβ̃i(m)(t) ∀ m ∈M satisfying σ̃1
j (m) = 1 ∀ j = 1, . . . , n.

If m 6= ϕ, this condition follows from (σ, β) being sequential rational
for agent i. If m = ϕ, then it follows from ϕ being (IRi).

2.
∫
T ui(m[σ̃2

0(t,m, 1
n), σ̃2

1(m, 1
n), . . . , σ̃2

n(m, 1
n)], t)dβ̃i(m)(t) ≤∫

T ui(d0, t)dβ̃i(m)(t)
for all m ∈M satisfying σ̃1

j (m) = 1 ∀ j 6= i, σ̃1
i (m) = 0.

If m 6= ϕ, then again the condition follows from (σ, β) being sequential
rational for agent i. If m = ϕ, then σ̃1

i (m) = 1, and thus nothing is to
show here.

3.
∫
T ui(m[σ̃2

0(t,m, 1
n), σ̃2

1(m, 1
n), . . . , σ̃2

n(m, 1
n)], t)dβ̃i(m)(t) ≥∫

T ui(m[σ̃2
0(t,m, 1

n), σ̃2
1(m, 1

n), . . . , σ̃2
i−1(m, 1

n), si,
σ̃2
i+1(m, 1

n), . . . , σ̃2
n(m, 1

n)], t)dβ̃i(m)(t)
for all m ∈M and for all si ∈ Sim which lead to
t 7→ ui(m[σ̃2

0(t,m, 1
n), σ̃2

1(m, 1
n), . . . , σ̃2

i−1(m, 1
n), si,

σ̃2
i+1(m, 1

n), . . . , σ̃2
n(m, 1

n)], t)
being measurable.
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Once again, for m 6= ϕ this requirement is fulfilled, since (σ, β) is
sequential rational for agent i. If m = ϕ, then there is nothing to
show, as for m = ϕ, agent i does not have any choice of action in the
mechanism execution stage.

Bayesian Consistency
Clearly, (σ̃, β̃) is Bayesian consistent, and both equation (2) and equation
(3) hold: Equation (3) holds, as {T} is the appropriate partition of T to be
used for equation (3), and βi(ϕ) = P . To verify that

P (TB ∩ σ̃−1
0 (MM)) =

∫
σ̃−1
0 (MM)

β̃i(σ̃1
0(t))(TB)dP (t)

holds for all agents i and for all TB ∈ B, MM ∈M, note that the right hand
side of the equation above reduces to∫

σ̃−1
0 (MM)

P (TB)dP (t) = P (TB)P (σ̃−1
0 (MM)) =

{
P (TB) : ϕ ∈MM

0 : ϕ /∈MM
.

Thus Bayesian consistency of (σ̃, β̃) follows from the fact that TB∩σ̃−1
0 (MM)

= TB if ϕ ∈MM, and TB ∩ σ̃−1
0 (MM) = ∅, otherwise.

Hence, (σ̃, β̃) is a PBE. �

Proof of Theorem 2
Consider some allocation rule ϕ : T → D in M satisfying (IC), (IRP),
and (IRi) for all i ∈ {1, . . . , n}. We first show that ϕ can be implemented
through a Bayesian equilibrium of the contract proposal game, i.e. we show
that there exist some strategies σ and some updated beliefs β such that
(σ, β) is sequentially rational on the equilibrium path and Bayesian consis-
tent, and such that (σ, β) implements ϕ.
Define σ1

0 : T →M by σ1
0(t) = ϕ for all t ∈ T , and let σ2

0(t,m, a) be such that
σ2

0(t, ϕ, a) = t for all t ∈ T, a ∈ A. Furthermore, for i ∈ {1, . . . , n} define
σ1
i : M → {0, 1} by σ1

i (ϕ) = 1 and σ1
i (m) = 0 for all m ∈M , m 6= ϕ, and let

σ2
i be any admissible strategy for agent i for the mechanism execution stage

of the contract proposal game. Finally, let βi : M → P(T ) be any updated
belief for agent i with βi(ϕ) = P . Clearly, σ1

0 is optimal for the principal,
since σ1

0 yields her u0(ϕ(σ2
0(t, ϕ, 1

n)), t) = u0(ϕ(t), t) ≥ u0(d0, t) ∀ t ∈ T (by
(IRP)), whereas the announcement of any other m ∈M leads to a rejection
by the agents and thus would yield only u0(d0, t). Moreover, σ2

0 is optimal
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on the equilibrium path, since ϕ is incentive-compatible. σ1
i is optimal on

the equilibrium path for all agents i, since accepting ϕ yields agent i an ex-
pected utility of

∫
T ui(ϕ(σ2

0(t, ϕ, 1
n)), t)dβi(ϕ)(t) =

∫
T ui(ϕ(t), t)dP (t) ≥ U0

i

(by (IRi)), and σ2
i is optimal on the equilibrium path since the agents do not

have a choice to make in the mechanism execution stage if ϕ is announced
by the principal. Since β is obviously Bayesian consistent, it follows that
(σ, β) is a Bayesian equilibrium which implements ϕ.
Now suppose that
M ⊆ {m : T → D | ∀t∈T ∃τmt ∈T ∀s∈T u0(m(τmt ), t) ≥ u0(m(s), t) and

t 7→ ui(m(τmt ), t) is measurable ∀ i > 0}
and that ϕ ∈M is incentive-compatible, individual rational, and not strictly
dominated at any t ∈ T by any ψ : T → D. Consider the following strategies
and updated beliefs: σ1

0 : T →M, t 7→ ϕ; σ2
0 : T ×M×A→ T , (t, ϕ, a) 7→ t,

and (t,m, a) 7→ τmt ∀ m 6= ϕ, where for all m ∈M τm· : T → T is such that
u0(m(τmt ), t) ≥ u0(m(s), t) ∀ s ∈ T and t 7→ ui(m(τmt ), t) is measurable for
all i > 0 (such τm· exist for all m ∈M by the restriction made on M). Fur-
thermore, define L := {m ∈ M | u0(m(τmt ), t) ≤ u0(ϕ(t), t) ∀ t ∈ T}.
For all m ∈ M \ L there exists some im ∈ {1, . . . ,m}, tm ∈ T with
uim(m(τmtm), tm) ≤ uim(d0, tm), otherwise ϕ would be strictly dominated
by t 7→ m(τmt ) at some t ∈ T . For all i = 1, . . . , n, set βi(m) = P if
m ∈ L∪{ϕ}, βi(m) = δtm if m /∈ L, m 6= ϕ. Moreover, for all m ∈M and all
i set σ1

i (m) = 1 if
∫
T ui(m(σ2

0(t,m, 1
n)), t)dβi(m)(t) >

∫
T ui(d0, t)dβi(m)(t)

or m = ϕ, and set σ1
i (m) = 0 otherwise. As M is restricted to allocation

rules, the agents do not have any choice of action in the mechanism execu-
tion stage, so we do not have to specify σ2

i for any agent i.
We shall prove that (σ, β) as defined above satisfies the four conditions for
a PBE specified in Subsection 2.3. As σ1

0(t) = ϕ for all t ∈ T and σ1
i (ϕ) = 1

for all i ∈ {1, . . . , n}, this demonstrates that ϕ is a PBE of the contract
proposal game.
Measurability
σ2

0 is constructed such that t 7→ ui(m(σ2
0(t,m, 1

n)), t) = ui(m(τmt ), t) is mea-
surable for all i ∈ {1, . . . , n}, for allm ∈M ,m 6= ϕ. t 7→ ui(ϕ(σ2

0(t, ϕ, 1
n)), t)

= ui(ϕ(t), t) is measurable for all i due to (IRi).
Sequential Rationality for the Principal

u0(σ1
0(t)(σ

2
0(t, σ

1
0(t), 1

n)), t) = u0(ϕ(t), t)
≥ u0(m(τmt ), t) = u0(m(σ2

0(t,m, 1
n)), t)

41



for all m ∈ L. If m ∈ M \ L then
∫
T uim(m(σ2

0(t,m, 1
n)), t)dβim(m)(t) =∫

T uim(m(τmt ), t)dδtm(t) = uim(m(τmtm), tm) ≤ uim(d0, tm) =
∫
T uim(d0, t)

dδtm(t) =
∫
T uim(d0, t)dβim(m)(t), thus σ1

im
(m) = 0 (note, m 6= ϕ). Since ϕ

is (IRP), it follows that σ1
0 is sequentially rational. σ2

0 is sequentially ratio-
nal by the definition of τm· and by the incentive-compatibility of ϕ.
Sequential Rationality for Agent i
σ1
i (m) = 1 if and only if the expected utility agent i derives from m is greater

than the expected utility i derives from the status quo or if m = ϕ. Since ϕ
satisfies (IRi), this yields the sequential rationality of σ1

i .
Bayesian Consistency
(σ, β) is Bayesian consistent since the principal does not reveal any infor-
mation by announcing ϕ, and βi(ϕ) = P for all i. �

Proof of Lemma 1
Suppose (σ, β) is a pure-strategy perfect Bayesian pooling equilibria of the
mechanism signaling game involving play of ’accept’ by all agents. The
mechanism signaling game essentially corresponds to the contract proposal
game with M = M∗, and a pooling PBE of the mechanism signaling game
is clearly an equilibrium with an elementary mechanism proposal strategy.
Hence, by Theorem 1, we know that (σ, β) implements an allocation rule
which is (IC), (IRP), (IRi) for all i, and which is not strictly dominated
(a direct proof which does not rely on Theorem 1 is easily constructed, as
well).
Now suppose ϕ : T → D is (IC), (IRP), (IRi) for all i, and not strictly
dominated at any t ∈ T . From (IC) and (IRi) we know that ϕ ∈ M∗.
Define σ0 : T → M∗ by σ0(t) = ϕ ∀ t ∈ T . Furthermore, define the
set L := {ψ ∈ M∗ | u0(ψ(t), t) ≤ u0(ϕ(t), t) ∀ t ∈ T}. For any ψ ∈
M∗ \ L, there exists some iψ ∈ {1, . . . , n} and some tψ ∈ T such that
uiψ(ψ(tψ), tψ) ≤ uiψ(d0, tψ), otherwise ϕ would be strictly dominated by ψ
at some t ∈ T . Now define for all agents βi(ψ) = P if ψ ∈ L and βi(ψ) = δtψ
if ψ ∈ M∗ \ L. Finally, define agent i’s strategy as follows: σi(ψ) = 1 if∫
T ui(ψ(t), t)dβi(ψ)(t) >

∫
T ui(d0, t)dβi(ψ)(t) or if ψ = ϕ, and σi(ψ) = 0

otherwise (ψ ∈M∗).
Clearly, σ represents a set of pure strategies for the mechanism signaling
game such that the allocation rule σ0(t) = ϕ is accepted by all agents for
any t ∈ T . We shall show now that (σ, β) is a PBE (hence it is a pool-
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ing PBE). (σ, β) is Bayesian consistent, since βi(ϕ) = P ∀ i = 1, . . . , n.
Moreover, (σ, β) is sequential rational for all agents, because any alloca-
tion rule proposed by the principal is accepted if and only if it yields the
agent an expected utility greater than the expected utility derived from
the status quo or if ϕ is proposed (which yields an expected utility greater
than or equal to the expected utility derived from the status quo, given
the updated belief βi(ϕ) = P , since ϕ is (IRi) for all i). To verify that
(σ, β) is sequential rational for the principal, consider some allocation rule
ψ 6= ϕ. If ψ ∈ L, then the principal does not have any reason to pro-
pose ψ rather than ϕ. If ψ /∈ L, then the expected utility agent iψ de-
rives from ψ is less than or equal to

∫
T uiψ(d0, t)dβiψ(ψ)(t) (since his belief

is given by βiψ(ψ) = δtψ , so
∫
T uiψ(ψ(t), t)dβiψ(ψ)(t) = uiψ(ψ(tψ), tψ) ≤

uiψ(d0, tψ) =
∫
T uiψ(d0, t)dβiψ(ψ)(t)), hence σiψ(ψ) = 0. Thus it is optimal

for the principal not to propose ψ instead of ϕ, since ϕ yields her some
utility u0(ϕ(t), t) ≥ u0(d0, t) (as ϕ is (IRP)). Hence (σ, β) is a PBE which
implements ϕ43. �

Proof of Theorem 3
Let us start assuming that ϕ is some allocation rule which is supported
by a pure-strategy perfect Bayesian pooling equilibrium of the mechanism
signaling game with perfect beliefs off the equilibrium path, and which in-
volves ’acceptance’ by all agents. Then, by Lemma 1, ϕ is (IC), (IRP), and
(IRi) for all i. So ϕ satisfies condition (1) for being a perfect solution. Fur-
thermore, consider some incentive-compatible allocation rule ψ satisfying
that t 7→ ui(ψ(t), t) is measurable for all i, with S := {t ∈ T | u0(ψ(t), t) >
u0(ϕ(t), t)} 6= ∅. If condition (2) of Definition 7 was not satisfied, then ψ

would be accepted by all agents if it was announced (since beliefs off the
equilibrium path are perfect)44; hence all principals with types in S would
strictly benefit from announcing ψ rather than ϕ, contradicting that ϕ is an
equilibrium allocation rule.
Now let ϕ be some perfect solution. From condition (1) of Definition 7,
ϕ ∈ M∗. Define σ0 : T → M∗ by σ0(t) = ϕ ∀ t ∈ T . Furthermore, define
for all agents βi(ϕ) = P , and for all allocation rules ψ off the equilibrium

43Note that t 7→ ui(m(t), t) is measurable for all i = 1, . . . , n, m ∈ M∗, so (σ, β) also

satisfies the measurability condition listed in Subsection 2.3.
44Here we require that an allocation rule ψ is accepted by agent i if∫
T
ui(ψ(t), t)dβi(ψ)(t) >

∫
T
ui(d0, t)dβi(ψ)(t).
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path, let βi(ψ) be perfect, i.e. define S := {t ∈ T | u0(ψ(t), t) > u0(ϕ(t), t)}
and choose some set Ŝ ∈ argmax{P (S̃) | S ⊇ S̃ ∈ B}; if P (Ŝ) > 0, then
set βi(ψ)(TB) = P (TB∩Ŝ)

P (Ŝ)
∀ TB ∈ B; otherwise, by condition (2) of Def-

inition 7, there exists some iψ ∈ {1, . . . , n} and some tψ ∈ S such that
uiψ(ψ(tψ), tψ) ≤ uiψ(d0, tψ); define βi(ψ) = δtψ (provided S 6= ∅). If S = ∅,
then define βi(ψ) = P . Finally, let agent i’s strategy be defined as follows:
σi(ψ) = 1 if

∫
T ui(ψ(t), t)dβi(ψ)(t) >

∫
T ui(d0, t)dβi(ψ)(t) or if ψ = ϕ, and

σi(ψ) = 0, otherwise (for ψ ∈M∗).
Clearly, (σ, β) represents a set of pure strategies for the mechanism signaling
game such that the allocation rule σ0(t) = ϕ is accepted by all agents for
any t ∈ T . We shall show that (σ, β) is a PBE of the mechanism signaling
game which, of course, implements the allocation rule ϕ (thus, (σ, β) is a
(pure-strategy) PBE with perfect beliefs off the equilibrium path).
(σ, β) is Bayesian consistent, since βi(ϕ) = P ∀ i = 1, . . . , n. Moreover, (σ, β)
is sequential rational for all agents, because any allocation rule proposed by
the principal is accepted if and only if it yields the agent an expected utility
greater than his expected utility from the status quo or if ψ = ϕ (note,
any perfect solution is (IRi) for all i, so ϕ yields the agents an expected
utility greater than or equal to their expected utilities from the status quo).
To verify that (σ, β) is sequential rational for the principal, consider some
allocation rule ψ 6= ϕ. If S = {t ∈ T | u0(ψ(t), t) > u0(ϕ(t), t)} = ∅,
then the principal does not have any incentive to deviate from ϕ to ψ

(irrespective of the principal’s type). So suppose S 6= ∅. If P (Ŝ) > 0,
then by condition (2) of Definition 7, there exists some i ∈ {1, . . . , n} with∫
T ui(ψ(t), t)dβi(ψ)(t) = 1

P (Ŝ)

∫
Ŝ
ui(ψ(t), t)dP (t) ≤ 1

P (Ŝ)

∫
Ŝ
ui(d0, t)dP (t) =∫

T ui(d0, t)dβi(ψ)(t). Hence, σi(ψ) = 0. If P (Ŝ) = 0, then the expected util-
ity agent iψ derives from ψ is less than or equal to

∫
T uiψ(d0, t)dβiψ(ψ)(t)

(since his belief is given by βiψ(ψ) = δtψ , so
∫
T uiψ(ψ(t), t)dβiψ(ψ)(t) =

uiψ(ψ(tψ), tψ) ≤ uiψ(d0, tψ) =
∫
T uiψ(ψ(t), t)dβiψ(ψ)(t)), hence, again,

σiψ(ψ) = 0. Thus, the principal does not benefit from proposing ψ rather
than ϕ (since ϕ yields her a utility of u0(ϕ(t), t) ≥ u0(d0, t) due to ϕ being
(IRP)). Hence, (σ, β) is a PBE which implements ϕ. �
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Proof of Theorem 4
Consider some regular pure-strategy PBE (σ, β) of the contract proposal
game with perfect beliefs off the equilibrium path. From Theorem 1 we
know that (σ, β) implements an allocation rule ϕ which is (IC), (IRP), and
(IRi) for all i. It remains to prove that ϕ satisfies condition (2) of Definition
7. Suppose, to the contrary, that there exists some incentive-compatible
allocation rule ψ : T → D, ψ ∈M , satisfying that t 7→ ui(ψ(t), t) is measur-
able for all agents i, such that S = {t ∈ T | u0(ψ(t), t) > u0(ϕ(t), t)} 6= ∅
and such that condition (2) is violated. Let Ŝ ∈ argmax{P (S̃) | S ⊇ S̃ ∈ B}.
If P (Ŝ) > 0, then ψ violating condition (2) says that for all agents i,∫
Ŝ
ui(ψ(t), t)dP (t) >

∫
Ŝ
ui(d0, t)dP (t). But since agents use perfect beliefs

off the equilibrium path, from P (Ŝ) > 0 it follows for all i = 1, . . . , n, that
βi(ψ) = P (·∩Ŝ)

P (Ŝ)
, and thus∫

T
ui(ψ(t), t)dβi(ψ)(t) =

1

P (Ŝ)

∫
Ŝ
ui(ψ(t), t)dP (t)

>
1

P (Ŝ)

∫
Ŝ
ui(d0, t)dP (t) =

∫
T
ui(d0, t)dβi(ψ)(t).

Therefore, ψ would be accepted by all agents45, implying that all types of
principals in the set S should deviate from equilibrium play to ψ, and thus
that (σ, β) is not a PBE.
Similarly, if P (Ŝ) = 0, then ψ violating condition (2) says that for all agents
i and all t ∈ S, ui(ψ(t), t) > ui(d0, t). Thus, all agents would accept ψ and,
hence, (σ, β) would not be sequential rational for the principal, so (σ, β)
would not be a PBE. �

45Here, again, we have to assume that agents accept an allocation rule if it yields them

an expected utility greater than their expected utility from the status quo – c.f. footnote

No. 42 and footnote No. 44.
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Proof of Theorem 5
The proof of Theorem 5 (as well as the theorem itself) is inspired by (the
proof of) Theorem 1 in [16] Myerson (1983).
Let ϕ be some strong solution. Then ϕ is (IC) and (IRi) for all i, since
it is feasible, and ϕ is (IRP) since it is safe. Now consider some incentive-
compatible allocation rule ψ such that t 7→ ui(ψ(t), t) is measurable for all i,
for which the set S = {t ∈ T | u0(ψ(t), t) > u0(ϕ(t), t)} is not empty. Note
S ∈ B, since t 7→ ui(ψ(t), t) and t 7→ ui(ϕ(t), t) are measurable for all i and
hence t 7→ u0(ψ(t), t) and t 7→ u0(ϕ(t), t) are measurable.
Define

ϕ∗(t) =

{
ψ(t) : t ∈ S
ϕ(t) : t ∈ T \ S

⇒ t 7→ u0(ϕ∗(t), t) is measurable as the maximum of two measurable func-
tions (since t 7→ u0(ϕ(t), t) and t 7→ u0(ψ(t), t) are measurable)
⇒ t 7→ ui(ϕ∗(t), t) is measurable for all i.
Furthermore, ϕ∗ is incentive-compatible, since

• ∀ t, t̃ ∈ T \ S :
u0(ϕ∗(t), t) = u0(ϕ(t), t) ≥ u0(ϕ(t̃), t) = u0(ϕ∗(t̃), t), since ϕ is (IC),

• ∀ t, t̃ ∈ S :
u0(ϕ∗(t), t) = u0(ψ(t), t) ≥ u0(ψ(t̃), t) = u0(ϕ∗(t̃), t), since ψ is (IC),

• ∀ t ∈ T \ S, t̃ ∈ S :
u0(ϕ∗(t), t) = u0(ϕ(t), t) ≥ u0(ψ(t), t) ≥ u0(ψ(t̃), t) = u0(ϕ∗(t̃), t),
since t /∈ S and ψ is (IC), and

• ∀ t ∈ S, t̃ ∈ T \ S :
u0(ϕ∗(t), t) = u0(ψ(t), t) > u0(ϕ(t), t) ≥ u0(ϕ(t̃), t) = u0(ϕ∗(t̃), t),
since t ∈ S and ϕ is (IC),

i.e. ∀ t, t̃ ∈ T : u0(ϕ∗(t), t) ≥ u0(ϕ∗(t̃), t).
Moreover, u0(ϕ∗(t), t) ≥ u0(ϕ(t), t) ∀ t ∈ T and u0(ϕ∗(t), t) > u0(ϕ(t), t)
∀ t ∈ S. Hence ϕ∗ /∈ F , because otherwise ϕ was dominated. But since ϕ∗

is (IC) and since t 7→ ui(ϕ∗(t), t) is measurable for all i, it follows that there
exists some j ∈ {1, . . . , n} such that∫

T
uj(ϕ∗(t), t)dP (t) < U0

j =
∫
T
uj(d0, t)dP (t).
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Since S ∈ B, it follows that∫
T
uj(d0, t)dP (t) >

∫
T
uj(ϕ∗(t), t)dP (t)

=
∫
S
uj(ψ(t), t)dP (t) +

∫
T\S

uj(ϕ(t), t)︸ ︷︷ ︸
≥ uj(d0,t)

dP (t),

where the greater-or-equal-inequality is due to the fact that ϕ is safe. Hence∫
S
uj(d0, t)dP (t) >

∫
S
uj(ψ(t), t)dP (t).

Note if P (S) = 0, then both integrals would be equal to zero – a contradic-
tion, so P (S) > 0. Now choose some arbitrary Ŝ ∈ argmax{P (S̃) | S ⊇ S̃ ∈
B}. Clearly, P (Ŝ) = P (S) > 0, and∫

Ŝ
uj(ψ(t), t)dP (t) =

∫
S
uj(ψ(t), t)dP (t)

<

∫
S
uj(d0, t)dP (t) =

∫
Ŝ
uj(d0, t)dP (t)

(since Ŝ and S differ only by some set of measure zero). Therefore, ϕ also
satisfies condition (2) of Definition 7 for being a perfect solution. As an
undominated allocation rule, ϕ is not dominated by any other feasible allo-
cation rule, in particular it is not dominated by any perfect solution (note,
perfect solutions are feasible). Thus, ϕ is an undominated perfect solution.
Next let ϕ̃ be some other strong solution and consider the set S above for
ψ = ϕ̃. Suppose S 6= ∅. As above, it follows that the combined allocation
rule ϕ∗ is (IC) and that t 7→ ui(ϕ∗(t), t) is measurable for all i, and there-
fore that there exists some j ∈ {1, . . . , n} satisfying

∫
T uj(ϕ

∗(t), t)dP (t) <∫
T uj(d0, t)dP (t). But this is a contradiction, because uj(ϕ∗(t), t) ≥ uj(d0, t)

no matter if t ∈ S or t ∈ T \ S, since both ϕ and ϕ̃ are safe. Hence S = ∅,
i.e. u0(ϕ̃(t), t) ≤ u0(ϕ(t), t) ∀ t ∈ T . Interchanging the roles of ϕ and ϕ̃

yields u0(ϕ(t), t) ≤ u0(ϕ̃(t), t) ∀ t ∈ T . �
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