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the Description - Experience gap∗
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Abstract

According to the Description-Experience gap (DE gap), people act as if overweighting
rare events when information about those events is derived from descriptions but as
if underweighting rare events when they experience them through a sampling process.
While the is now clear evidence that the DE gap exists, so far, its exact nature, the
causes of it and its implications for economics remain unclear. Due to the variety of
experimental designs and measures reported in previous literature, the nature, causes
and implications of the phenomenon for economic theory remain unclear. We present
a new experiment which examines in a unified design four distinct causal mechanisms
that might drive the DE gap, attributing it respectively to information differences
(sampling bias), to a feature of preferences (ambiguity sensitivity) or to aspects of
cognition (likelihood representation and memory). Our design permits model-free and
model-mediated tests for these mechanisms and for the DE gap itself. Using a model-
free approach, we elicit a DE gap similar in direction and size to the literature’s average
and find that, when each factor is considered in isolation, sampling bias stemming from
under-represented rare events, is the only significant driver. Yet, model-mediated anal-
ysis shows that rare events are overweighted even in experience. Moreover, this level of
analysis reveals the potential of a smaller DE gap, existing even without information
differences.
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1 Introduction

In this paper, we present an experimental investigation into the nature and causes of the so-

called Description-Experience gap (DE gap for short). The DE gap is a widely-documented

tendency for people to act as if they have systematically different preferences over risks,

depending on whether their information about those risks is derived from explicit descrip-

tions or, alternatively, acquired through sampling or other experience that permits learning

(Barron and Erev, 2003; Hertwig et al., 2004; Weber et al., 2004).

The distinction between description and experience is pertinent for a wide range of human

decisions because, in everyday life, people tend to acquire information about risks via both

description and experience. Practitioners, such as doctors, insurance brokers or investment

advisors, often provide clients with written numerical information about different types of

risk. Yet, people also continually learn about risks from a multitude of experiences: examples

include seeing your investments go up and down; observing people returning from skiing

trips with injured limbs; and living through one more day without being burgled or mugged.

Hence, if there is a significant DE gap, it may influence many economic decisions. With that

in mind, our primary motivation in this paper is to assess what sort of, and how serious,

a challenge the DE gap poses for theoretical and applied economics. We do this by using

experimental techniques that allow us to investigate the contributions of different possible

causes of the DE gap and to measure its footprint in choices and elicited risk-preference

functions.

While existing research provides widespread evidence of DE gaps in experimental studies,

the exact form of the phenomenon, and the implications it holds for economic analysis,

remain controversial. For example, estimates of the size and even the direction of the gap

vary across studies. Moreover, while there is ample evidence that misperceptions of objective

probabilities in decisions from experience (due to biases in information captured in sampling
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experiences) explain some component of the DE gap, it is less clear whether – and, if so,

how far - other contributory factors related to preferences and/or cognitive processes also

play a role. We discuss the relevant evidence in the next section, simply noting here that our

experimental design is motivated by two factors underlying diversity in the prior evidence:

that the DE gap may be influenced by multiple, importantly distinct, causal mechanisms

that have been triggered differentially by competing designs; and that different studies have

measured the gap in different ways. For example, some studies use measures of the gap

based on choice frequencies alone whereas other studies rely on parameter comparisons within

particular preference models. We refer to these approaches as model free and model mediated

respectively.

We contribute to the literature, firstly, by presenting a new experiment which tests for

the operation of four distinct causal mechanisms in a unified design; and, secondly - building

on a novel insight of Kopsacheilis (2018) – by exploiting both measuring approaches when

assessing the effects of the mechanisms and the DE Gap itself.

The mechanisms we examine are, respectively: sampling bias; ambiguity attitudes; the

form of representation of probability information; and the effects of memory. The first of

these mechanisms explains the DE gap in terms of differences in the information available

to decision makers at the point of choice, comparing description and experience; the second

attributes the DE gap to features of preferences ; the third and fourth effects explain the DE

gap as arising from features of human cognition.

These channels are not mutually exclusive, as we explain. Yet, identifying which ac-

tually operate, and to what degree, is important for economics because the implications

for economic theory vary markedly depending upon which of the information, preference

or cognition channels are most at play. If the DE gap is simply caused by differences in

information about objective risks that result from properties of small samples, that would

be a reason to consider information available to agents, but not a fundamental challenge
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to preference theory. If the DE gap arises from ambiguity sensitive preferences, it would

become an important, but so far under-appreciated, part of the rationale for the models of

such preferences that have emerged in the last 30 years. However, if the DE gap is caused by

cognitive processes and constraints, a full understanding of it may require models of decision

processes, rather than pure preference models.

Our main findings are as follows. Our model-free analysis replicates a significant DE gap,

similar in magnitude and direction to the literature’s average. Also, in line with existing

literature, we find that sampling bias contributes importantly to the DE gap. In fact, in

our experiment, sampling bias - in the form of under-representation of rare events - is the

only one of the four causal factors we consider that generates a statistically significant gap

by itself in our model-free analysis. Our model-mediated analysis uses the framework of

rank-dependent expected utility theory (RDEU; Quiggin, 1982, Wakker, 2010) to capture

effects of our causal factors on probability-weighting, while allowing for any such effects on

utility curvature. It supports two findings. First, in all treatments that control for sampling

bias, we find inverse-S probability weighting, consistent with overweighting of rare events for

both description and experience; by contrast, sampling bias tends to create the appearance

of more linear decision weights via the under-representation of rare events in experienced

samples. Second, we find some evidence of DE gaps caused by factors besides sampling bias:

this arises from treatment comparisons that implicate a mixture of cognitive factors and

ambiguity sensitive preference.

In the next section, we discuss existing literature. This provides the background for our

experimental design. Section 3 presents our experimental design and details on the methods

of analysis. In Section 4 we show results, with discussion and conclusions in Section 5.
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2 Background

Much of the evidence for the DE gap derives from lab experiments using variants of the

so called ‘sampling paradigm’ (Hertwig et al., 2004) in which participants make one-off

choices between safer and riskier options in one of two different treatments: description or

experience.1

In description, gamble properties are fully stated, leaving no uncertainty for the chooser

regarding possible payoffs or their associated probabilities. In contrast, in experience, par-

ticipants are not given stated information about consequences and/or their probabilities but

must garner it via some form of sampling. In a typical implementation of experience, the

two gambles might appear on screen in the form of two buttons. Participants then sample by

pressing the buttons in some sequence of their choice and, when a button is pressed, one of

the outcomes of the selected gamble appears on screen with outcome likelihoods controlled

by the gambles’ objective probabilities. Note that, in this framework, relative frequencies of

experienced outcomes may not always coincide with the objective probabilities (though in

some designs, as in some of our treatments, they may be controlled to do so).

In this framework, a standard test for the DE gap has been to compare choice propor-

tions across the two conditions. The ‘canonical finding’ is that subjects in the description

condition tend to prefer the riskier option when the rare event gives a desirable outcome,

and to prefer the safer option when the rare event gives an undesirable outcome; whereas

the opposite is observed in the experience condition. Taken together, this pattern has been

commonly interpreted as reflecting a tendency to overweight rare events in description but

to underweight them in experience (Hertwig et al., 2004).

There is now considerable amount of research investigating the DE gap, with a recent

1Notably, however, there are alternative paradigms that have studied the DE gap (e.g. the ‘partial-
feedback’ paradigm, Barron and Erev, 2003).
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meta-analysis (Wulff et al., 2018) adding authority to the claim that the DE gap exists.

However, this meta-analysis also demonstrates striking heterogeneity with respect to the

size of the gap, ranging from very small to very large. In fact, some papers even find a

reversed DE gap, with subjects in experience appearing to overweight rare events more than

in description (e.g. Glöckner et al., 2016). How can we make sense of these diverse findings?

We suggest that one contributor to the diversity of findings is the wide variation in

design features such as the structure of sampling, characteristics of gambles and the ways in

which they are evaluated (e.g. choice tasks versus valuation tasks). A second contributor is

the fact that different studies have employed different measurement approaches to quantify

their findings. We now expand on these points and show how our study contributes to the

understanding of the DE gap through its response to them.

The idea that variation in study design accounts for the variation in measured DE gaps

is all the more plausible given that existing literature has suggested several potential causes

of the DE gap. To the extent that there are multiple causes at work, different designs may

have triggered subsets of them to different degrees. We taxonomise causal factors that may

drive the DE gap into three categories: sampling bias; preferences; and cognition.

Sampling bias is perhaps the most obvious potential candidate explanation. This at-

tributes the DE gap to individuals acting on the basis of biased information in experience

treatments. As already noted, in experience treatments, the relative frequency with which

gamble outcomes are observed may not always match their objective probabilities. Moreover,

because people usually choose to collect only quite small samples in experience treatments

(e.g. the median subject of Hills and Hertwig, 2010 samples each option only 9 times),

rare events are systematically under-represented due to a property of the binomial distribu-

tion.2 In such circumstances, we should expect the impact of rare events on choices to be

2As a simple demonstration, consider for example drawing a single ball from an urn that contains 90
black and 10 red balls. On average, red balls will be under-represented in 90% of such single-observation
(small) samples.

5



attenuated, in line with the canonical finding.

There is considerable existing evidence that sampling bias contributes towards the DE

gap (Fox and Hadar, 2006; Rakow et al., 2008). Were sampling bias the full story, the signifi-

cance of the DE Gap would largely derive from the potential for sub-optimal search intensity

by economic agents and the dangers of environments that generate biased information. But

there is evidence that DE gaps can also arise in the absence of sampling bias, from studies

that control for sampling bias by engineering experience treatments to ensure that expe-

rienced and objective probabilities coincide (e.g. Hau et al., 2010; Ungemach et al., 2009;

Barron and Ursino, 2013; Aydogan and Gao, 2019). DE gaps observed in such setups require

an explanation that goes beyond biased information, prompting consideration of accounts

that attribute some component of the DE gap to features of either preferences or cognitive

processes or both.

The most obvious candidate for a preference-based account of the DE gap is some form

of attitude toward ambiguity (see Etner et al., 2012, for a review of the theoretical literature

on modelling ambiguity sensitive preferences). This is so because, in terms of the classic

Knightian distinction (Knight, 1921), decisions in a description treatment are choices among

‘risks’ whereas those in an experience treatment are more naturally interpreted as involving

other forms of uncertainty, in which probabilities are ambiguous or only imprecisely known.

If agents are (subjective, where necessary) expected utility maximisers, the distinction would

be irrelevant in situations where experienced and objective probabilities coincide. But, the

presence of ambiguous information about probabilities may affect behaviour if individuals

have non-expected utility attitudes towards ambiguity. For example, as in Ellsberg’s famous

urn experiments3 where people are often ambiguity averse in the sense of being more willing to

gamble on ‘known’ than ‘unknown’ urns, willingness to take risks may be lower in experience

(where distributions are unknown) than in description. There is some existing evidence that

3See Trautmann and Van De Kuilen (2015) for a recent review of the subsequent literature
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ambiguity attitudes play a role in the DE gap. Specifically, Abdellaoui et al. (2011b) find

that, in the absence of sampling bias, estimated decision weights for a prospect theory model

are systematically smaller (less optimistic) in experience compared with description. While

this result might be due to ambiguity aversion, so far, the evidence for such an effect being

an important driver of the DE gap is limited. If the finding were to generalise, the DE

gap might be an important exhibit of ambiguity sensitivity, ranking along side the Ellsberg

paradox in that capacity.

A third class of explanation attributes the DE gap to factors that have their roots in

human cognition (as opposed to preference). We consider two such candidates: likelihood

representation and memory. Recall that gamble information is represented in different ways

across description and experience. In description, probabilities are communicated through

written information often in the form of percentages (e.g. ‘£16 with 10% chance’) but in

experience, gamble information is obtained through sequential sampling experiences which

must be interpreted by the receiver and may result in perceptions (e.g. ‘this option gave me a

good prize one out of 10 times’). While there is considerable evidence that representation of

chance can affect decisions in different contexts (Gigerenzer and Hoffrage, 1995; Slovic et al.,

2000), it is not yet clear how important differences in likelihood representations are as drivers

of DE gaps, when the information represented is held constant. A related consideration arises

from noticing that, when likelihoods are discovered through sequential sampling, claims

about what information subjects have in mind are contingent on assumptions about their

recall. As such, imperfect memory of sampling is a further possible driver of the DE gap.

While the possible role of imperfect memory in the DE gap has been noted in previous

literature, its actual role is hard to assess based on existing evidence (see Wulff et al., 2018,

for a discussion).

With respect to differences in the way that DE gaps have been measured, while most

studies in this literature have used direct choice comparisons to assess the DE gap (e.g.
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comparing choice proportions as described above), studies in a slightly different genre have

estimated behavioural models (usually based on cumulative prospect theory; Tversky and

Kahneman, 1992) to examine the impact of description versus experience on parameters of

estimated preference functions (especially the parameters that control the shape of decision

weighting functions). It seems possible that different measurement approaches may support

different conclusions. Notwithstanding this possibility, there remains considerable variation

across the results of studies even within each of these genres. For example, while DE gap

studies that estimate prospect theory weighting functions have generally reported inverse

S-shaped probability weighting curves in description, there is considerable variability in the

shapes of curves elicited in experience conditions: Abdellaoui et al. (2011b) report inverse-

S shaped weighting; (Ungemach et al., 2009) report S-shaped weighting; while Hau et al.

(2008) find linear weighting. More recently, Kopsacheilis (2018) put forward the ‘Relative

Underweighting Hypothesis’, according to which, people overweight rare events in experience

but less so than in description. This hypothesis is accommodated by an inverse S-shaped

weighting function in experience that is closer to the diagonal for probabilities closer to 0 or

1, when compared to description.

Our experiment is designed to facilitate direct tests for the influence of each of the four

explanatory factors just discussed (sampling bias, ambiguity attitude, likelihood represen-

tation and memory). These factors are tested by pairwise comparisons of treatments in a

unified design which, by varying a single factor in each comparison, allows assessment of their

isolated influences. Our setup is also designed to facilitate evaluation via model-free tests

of effects and via comparisons of the impact of factors on estimated probability weighting

functions. By using four different Experience-treatments, our design also permits tests of

four distinct forms of DE gap.
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3 Design & Methods

3.1 Treatments

In our experiment, subjects evaluate a series of binary gambles via a process described below.

Payoffs are (non-negative) money amounts which are always known to the decision maker at

the point of evaluation. Gambles are represented by virtual decks of cards, each containing

two types of card, demarcated by colour.4 Within a gamble, each outcome is associated

with one of the two colours in the deck and outcome probabilities are equal to the relative

frequencies of the corresponding colours.

The design involves five treatments: one Description (Desc) treatment plus four variants

of experience which we label Unambiguous (E-Unamb), No Records, (E-NR) Ambiguous (E-

Amb), and Restricted (E-Res). As we summarise in the top part of Figure 1, the treatments

differ in how subjects obtain information about the contents of the deck. We summarize

these differences in the top part of Figure 1.

4Each lottery’s outcomes are demarcated by a different pair of colours – Figure 2 displays one such pair.
The correspendence between colours and outcomes for each lottery was randomized for each subject. This
was done to avoid systematic influence of connotations associated with particular colours such as ‘danger’
with red or ‘environmental risk’ with green. Moreover, the order of cards within each sample from each deck
was randomised by subject.
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Figure 1: Summary of treatments and treatment - comparisons

Desc Subjects see numerical (percentage) statements of likelihood
E-Unamb Subjects knowingly sample the entire deck with a history table

E-NR Same as E-Unamb but without the history table
E-Amb Same as E-Unamb but subjects are unaware that they sample all cards
E-Res Same as E-Amb but sampling amount is restricted introducing sampling bias

Note. Each link represents an effect, isolated by a pairwise treatment-comparison.

In the description treatment (Desc), gamble probabilities are communicated in explicit,

numerical form (as percentages) during evaluation (e.g. ‘90% of those cards are grey and

10% of those cards are yellow ’). By comparison, in the experience treatments, subjects are

not told the relative frequencies of the colours in each deck but have opportunities to discover

this information by sampling deck contents. The sampling environment varies by treatment

as we now explain.

The E-Unamb treatment is intended to provide a version of experience which is informa-

tionally equivalent to Desc. This involves two key ingredients. The first is that, in E-Unamb,

subjects sample the entire deck, without replacement, and are told that they see the full deck

with each card appearing once and only once. Hence, in principle, subjects in this treatment

have access to full information about the chances of the two outcomes which is logically

identical to that available to subjects in Desc. However, subjects having seen the full set

of cards exactly once is no guarantee that subjects have accurate perceptions of the colour

composition of the deck at the point of gamble evaluation: they may not have paid full

attention to the sampling experience and they might have forgotten aspects of it, prior to

the evaluation phase. To control for the influence of such cognitive constraints in E-Unamb,
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we introduce, as the second key ingredient, a history table that remains on screen during

the evaluation phase.5 This records the colours of cards that were sampled in the order they

were sampled. This record is shown on the screen where subjects evaluate gambles and, for

this treatment, a message on top of the history table reads: “This is the entire deck with its

cards displayed in the order you sampled them”.6

Figure 2: Instances of E-Unamb’s interface

Figure 2 illustrates how the sampling process was displayed to subjects, depicting three

instances of the experimental procedure for E-Unamb. Panels a. and b. capture before

and after instances of a single sample event, while panel c. demonstrates an example of the

evaluation phase. Notice that the history table encodes mathematically identical probability

information to that provided, in a different format, in the Desc treatment. Hence, comparing

behaviour in the Desc and E-Unamb treatments provides a test of whether behaviour depends

on the way in which likelihood information is represented.

5The technology of this memory aid was introduced by Kopsacheilis (2018). However, unlike that paper,
sampling amount is fixed (not an endogenous decision) in our study. A similar device was used in the past
also by Hau et al. (2010) but with a markedly different technology.

6See Appendix 6.1 for details of instructions.
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As illustrated at the bottom of Figure 1, treatments branch along two different routes

as a consequence of variations relative to E-Unamb. The E-NR treatment is identical to

E-Unamb, except that no history table is presented. Hence, while the information contained

in the sampled deck remains equivalent to Desc and E-Unamb, memory or other cognitive

limitations (including lack of attention) might lead individuals to be acting on assessments

of gambles based on misperceptions of objective probabilities. As a convenient shorthand we

refer to any such influences of cognition, as ‘memory’ effects. The comparison of E-Unamb

with E-NR isolates such effects.

E-Amb branches in a different way from E-Unamb. E-Amb retains the history table and

all other features of E-Unamb except that, in E-Amb, subjects are not told that the 40 cards

they sampled comprise the entire deck. In this treatment, the line of text immediately above

the history table just says: “These are the colours you sampled in the order you sampled

them”. Hence, while these subjects do in fact see the full deck and the record of it, they do

not know that they see the full deck. So, from their perspective, the situation has a degree

of ambiguity because they are not informed that the relative frequencies they experience are

accurate. Hence, the comparison between E-Unamb and E-Amb isolates the effect of the

presence of ambiguity, keeping constant the actual samples experienced and the presence

of the history table record of them. This is our cleanest test for the impact of ambiguity.

However, if subjects are ambiguity sensitive and also (aware that they) suffer from imperfect

recall, they might experience ambiguity in E-NR too. Our shorthand ‘memory’ should be

interpreted as including this additional effect of withdrawing the history table, if it is present.

Our final treatment, E-Res, is identical to E-Amb except that the number of cards sam-

pled was restricted. Specifically, unlike E-Unamb, E-NR and E-Amb that featured 40-card

decks, the decks in E-Restr were restricted to 18 cards. In consequence, a unique feature of

this treatment is that the experienced relative frequency of colours sampled cannot match
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the objective one.7 Therefore, the E-Res treatment necessarily introduces sampling bias and

the comparison of it to E-Amb isolates the effect of that factor. Notice that sampling bias

can arise in two directions: a particular event can be either over- or under-represented in

a given sample, relative to its objective probability. Since we should expect the effects of

under and over-representation to be different, in the analysis we split observations in E-Res

into two subsets: E-Over and E-Under. Since rare events are the loci of our interest, we

taxonomize observations in Over and Under according to whether the event with the smallest

probability to occur was over or under-represented.8

We are now in a position to summarise the full logic of the set of treatments introduced

in Figure 1. In essence, pairwise comparisons of treatments which are adjacent in the bottom

panel of Figure 1 provide a series of tests designed to isolate effects due to each of the factors:

likelihood representation, memory, ambiguity and sampling bias. We refer to these as tests

for ‘effects’. Since we have multiple variants of experience implemented in our design, and

since it is possible that the factors we seek to isolate might also work in combination, we

also conduct a set of tests for DE gaps by comparing behaviour in our description treatment

with that in each of our different experience conditions. Lastly, in order to get an estimate

of the average DE gap we elicit, we compare Desc with E-All, a compilation of observations

across all 4 variations of Experience.

Our design for these 4 variations of experience bears some noticeable differences with

that of the Sampling paradigm. For example, during the sampling phase, subjects explore

only one source of uncertainty at a time instead of two. The second option is always a money

amount offered with certainty. Moreover, subjects make repeated choices for each lottery in

our decision set - instead of a one-off choice - so that we can infer an indifference between

the risky-option and a certain amount. The advantage of these adaptions is that they allow

7As will become clearer in the following subsection, the set of objective probabilities that we chose for
this study cannot be accurately represented in samples of 18 observations.

8For the one 50-50 gamble, we classify the observation according to observed relative frequency of the
event corresponding to the better outcome.
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us to elicit a more precise account of subjects’ risk-preferences (see Abdellaoui et al., 2011b

for further discussion).

Another source of variation is that the decision to stop sampling is not endogenous.

Instead, subjects draw a fixed number of cards (40 or 18) without replacement. Crucially, this

gives us complete control over the information they obtain by sampling. It is interesting to

relate this feature of our sampling technology to the one employed by papers such as Aydogan

and Gao (2019) and Barron and Ursino (2013), which use urns (or boxes) containing balls

instead of decks of cards to resolve uncertainty. For example, in the Description treatment of

Aydogan & Gao, subjects were fully informed of the contents of the urn. In their sampling

treatment, subjects sampled every ball from the urn in sequence. They were not provided

with a record of the sampling, but were allowed to take their own notes (and in fact subjects

varied in how far they did so). A subject who did keep a complete record would be in a

position akin to our E-Unamb treatment; whereas one who kept no records would be in a

position akin to our E-NR treatment; yet the position of one who kept an incomplete record

is harder to characterise in our terms. In this sense, their Sampling treatment is a hybrid

of our Experience conditions. Our design gives us more control of the information subjects

have in each of these treatments and, by using four different Experience treatments, enables

us to isolate separate effects more clearly, in the way we have explained.

3.2 Incentives and other procedures

We now explain how gambles were evaluated by subjects. An example of the evaluation

phase is depicted in Figure 2. This illustrates the evaluation of a gamble (denoted option

A in this figure) which gives a 10% chance of winning £16 (otherwise zero). Note that

while the presentation of probability information on this screen would have differed between

treatments (the case shown is for the E-Unamb treatment), once probability information
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was acquired, the protocol for evaluation of gambles was then essentially the same for all

five treatments. Gambles were evaluated by a series of comparisons against various certain

sums of money (such as Option B in the figure). We achieve this by implementing a version

of the bisection method of Abdellaoui et al. (2011b) in which sums of money are updated

according to the subject’s previous choice. At the first iteration of each evaluation, the

certain amount is set equal to the expected value of Option A. In the second iteration, this

amount is revised upwards (downwards) to the mid-point of the gamble’s highest (lowest)

outcome and the certain amount just rejected (accepted). Via this process, for each gamble

a subject evaluates, we impute to them a certainty equivalent which is the midpoint of the

certain amount of Option B after 5 such iterations and the certain amount that would have

been displayed under Option B if a 6th iteration were to take place.9

The set of lotteries evaluated is summarized in Table 1. We selected these lotteries

in order to comply with the semi-parametric estimation protocol of Cumulative Prospect

Theory that was implemented by Abdellaoui et al. (2011b) (see 3.3.2 for more details). One

noticeable adaption from the set of lotteries suggested by Abdellaoui et al. (2011b) is that

we increase the number of lotteries involving rare events - a feature that allows us to zoom

in further in this region of probability weighting.

The order of these lotteries was randomized within two clusters for each subject. Lotteries

in the first cluster (1.1− 1.7) had varying outcomes but with a winning probability fixed at

p = 0.25. To make this common structure clear to subjects in the experience treatments, this

first cluster of lotteries was associated with only one deck and one sampling process. Seven

evaluations were then based on that one sampling process. Lotteries in the second cluster

(2.1 − 2.9) had a pair of fixed outcomes and varying probabilities. A subset of this second

cluster (2.4 − 2.9) feature ‘rare’ events which will be important in our analysis. Following

the convention in this literature we consider an event rare if its corresponding probability

9See Appendix 6.2 for a demonstration of the bisection method.
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is less than p < 0.20 (Hertwig et al., 2004, see). Notice that all of the lotteries with rare

events have just one non-zero payoff and sometimes the rare event is associated with the

desirable prize [lotteries 2.4, 2.5, 2.6] and sometimes the rare event is undesirable [lotteries

2.7, 2.8, 2.9]. The role of lotteries without rare events will emerge in the next sub-section.

Table 1: Decision problems and characterisation

Decision Problem Risky Safe (1st iteration)

1.1 (4, 0.25; 0) 1.0
1.2 (8, 0.25; 0) 2.0
1.3 (12, 0.25; 0) 3.0
1.4 (16, 0.25; 0) 4.0
1.5 (16, 0.25; 4) 8.0
1.6 (16, 0.25; 8) 10.0
1.7 (16, 0.25; 12) 13.0
2.1 (16, 0.25; 0) 4.0
2.2 (16, 0.5; 0) 8.0
2.3 (16, 0.75; 0) 12.0
2.4 (16, 0.025; 0) 0.4
2.5 (16, 0.05; 0 0.8
2.6 (16, 0.1; 0) 1.6
2.7 (16, 0.90; 0) 14.4
2.8 (16, 0.95; 0) 15.2
2.9 (16, 0.975; 0) 15.6

Note. We follow the (x, p; y) lottery notation. This represents lotteries that offer £x with probability p or
£y otherwise. Decision problems in grey cells contain a rare event.

In total, 198 participants were recruited through ORSEE (Greiner, 2015)) and randomly

assigned to one of the five treatments summarized in Table 1. The experiment was pro-

grammed in Z-tree (Fischbacher, 2007) and sessions were conducted in the CeDEx labora-

tory (University of Nottingham) and lasted for approximately one hour. Subjects’ payments

depended on their choices and on gamble resolutions. At the end of the experiment, one

choice was selected at random for payment.10 If participants had chosen the Safe option,

then they would receive the corresponding certain amount. Otherwise, if they had chosen

the Risky option, they would play out the lottery. In this case, an integer number - between

1 and 100 - would be randomly generated and displayed on screen. If the number was smaller

10This is a standard procedure see Cubitt et al., 1998; Bardsley et al., 2010, ch 6.5; for a relevant discussion.
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than or equal to the specified chance of winning the high amount in this lottery, participants

would receive the high amount, otherwise they only received the low amount. On average,

subjects were paid £11.50 including a flat £2 participation fee.

3.3 Methods of analysis

3.3.1 Model-free methods

In the model-free analysis, we make cross-treatment comparisons using tests that do not

rely on any particular behavioural or preference model, but instead let the raw choice data

speak. For this analysis we use only the data from the first iteration of each bisection in

the evaluation phase. Recall that these are choices between the gamble (risky choice) and

the certain amount (safe choice) equal to the gamble’s expected value. This choice structure

is similar to that of the early studies in the sampling paradigm. As these early studies

focused only on situations involving rare events, for comparability, this part of our analysis

will focus only on the subset of decision problems involving lotteries containing a rare event

(those highlighted grey in Table 1).

Following comparable approaches in the literature, we summarise each individual’s be-

haviour through an overweighting score. The score is constructed, for each individual, based

on their evaluations of the six gambles which feature rare events. Consider a binary index:

Ci ∈ {0, 1}, with i indexing one of the 6 problems in Table 2 that contain a rare event.

Ci = 1 (0) when the subject’s choice in decision problem i is consistent with overweighting

(underweighting) of rare events. A choice is consistent with overweighting when the riskier

option is selected (over the safer one) when the rare event was desirable or when the safer

option was selected when the riskier alternative featured an undesirable rare event. We then

calculate the overweighting score as:
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%OVRW =
1

6
∗

6∑
i=1

Ci ∗ 100

We interpret the %OVRW score as a measure of the propensity to overweight, which

varies from 0 (no choice was consistent with overweighting) to 100 (all choices were consis-

tent with overweighting).11 While this index is in some ways simplistic12, it is intuitive, does

not require committing to any specific preference model, avoids issues associated with in-

ference from repeated observations and, allows us to benchmark against behaviour reported

in earlier literature, where the DE gap was established, using comparable measures. Using

this measure, we test for effects and for DE gaps by comparing the average %OVWR scores

across the individuals facing each relevant treatment.

3.3.2 Model-mediated methods: RDEU

To the extent that the DE gap reflects variation in the weighting of events across different en-

vironments, it is natural to consider modelling them using theories which, in the tradition of

prospect theory, embody a concept of decision weighting. We follow this approach exploiting

a simple and now rather standard RDEU framework. One important benefit of the model

mediated analysis is that it allows for more refined inferences, e.g. by separating effects

that come through utility curvature and ones that come through probability weighting. In

our design, a second advantage of this level of analysis is that it takes into account a richer

information set, incorporating all 5 iterations of the bisection method (instead of only the

first one) and more probability targets (instead of only the ones containing a rare outcome).

A third benefit is that this analysis facilitates comparison with more recent literature on the

DE gap which has exploited related approaches.

11Glöckner et al. (2016) refer to the same index as p(overweighting) and interpret it as the probability of
making a choice consistent with overweighting.

12We are not entitled to assume that choices consistent with overweighting are fully explained by over-
weighting as other factors may be at work.
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To formalise our approach, consider binary lotteries of the form xEpy which give one of

two monetary outcomes x, y where x > y > 0. Outcome x arises in event E which occurs

with probability p; otherwise the outcome is y. The rank dependent utility of any such

lottery is given by the expression:

W (Ep)u(x) + (1−W (Ep))u(y) (1)

where u(·) is a strictly increasing utility function and W (·) is a weighting function and W (Ep)

is the decision weight associated with event Ep. This model reduces to expected utility theory

in the special case where W (Ep) = p, for all events. For the class of lotteries considered in

this study, it also coincides with a range of common non-expected uility models (Tversky

and Kahneman, 1992; Ghirardato and Marinacci, 2001; Luce, 1991; Miyamoto, 1988).

To study the DE gap using the RDEU model, we follow the source method (Tversky and

Fox, 1995; Abdellaoui et al., 2011a) which was specifically adapted for this purpose by Abdel-

laoui et al. (2011b). A key feature of this approach is to allow probability weighting functions

to depend on the source of uncertainty. So, for example, different weighting functions might

apply to decisions under risk than apply under different forms of experienced uncertainty,

even if the underlying probability distributions over outcomes are otherwise identical. In

our setting, we apply this idea by interpreting our various treatments as potentially different

sources.

More formally, for an event Ep, such as drawing a yellow card from a deck in a specific

treatment, where (100× p)% of its cards are yellow, the decision weight is given by:

W (Ep) = wσ(π(Ep)) (2)
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In Equation 2, wσ is a source function which transforms probabilities into decision weights

according to the source of uncertainty, σ. In this expression, π(·) is the individual’s belief of

the likelihood of Ep. In line with standard practice, we assume that in description environ-

ments, π(Ep) = p.

In experience on the other hand, this belief depends on a variety of other factors, including

the relative frequency (fp) of each event Ep that is observed by the individual. Following

common practice, we assume that π(Ep) = fp for decisions from experience. Under this

assumption, Equation 2 can be re-written as:

W (Ep) = wσ(fp)) (3)

As, in three of our four variations of Experience, we control for sampling bias we can set

fp = p in these cases. This allows us to further simplify Equation 3 into:

W (Ep) = wσ(p)) (4)

In our treatment E-Res, fp 6= p, by construction. Although in principle, operating under

Equation 3 for E-Res could allow us to control out the role of sampling bias, this would defy

the purpose of this treatment, i.e., quantifying the effect of sampling bias. Therefore, we

choose to operate under Equation 4 for E-Res too, thereby incorporating a sampling bias of

magnitude: |p− fp|. This point becomes clearer in the Results section.

In our analysis, we estimate utility curvature and decision weights at the individual level.

We use the seven certainty equivalents elicited from evaluations of risky options in problems

1.1−1.7 to fit the utility curvature parameter of a power utility function: U(x) = xα. We do

so by minimizing the non-linear least squares:
∑7

j=1(zj− ẑj)2, where zj refers to the observed
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certainty equivalent of the risky option appearing in decision problem j, with j ranging from

1 to 7, and ẑj is the estimated certainty equivalent. From Equation 1, using u(x) = xα, we

obtain the following expression for ẑj which we can use to estimate α for every subject:

ẑj = [W (Ep∗)(x
α
j − yαj ) + yαj ]

1
α (5)

An important feature of this estimation protocol is that the event Ep∗ corresponding to

outcome xj is common for j = 1, . . . , 7 (and therefore associated with the same probability:

p∗). Therefore, we can treat the corresponding decision weight: W (Ep∗) as a free parameter

to be estimated together with the utility curvature parameter.

Having obtained an estimate of each subject’s utility curvature, we proceed to calculate

decision weights (non-parametrically) for the risky options in 2.1 - 2.9. Notice that these

options have fixed outcomes: x∗ = 16 and y∗ = 0 and varying probability: pr, with r indexing

the risky option in decision problems 2.1 - 2.9. Using Equation 5, we can therefore calculate

decision weights for each probability level: pr, according to:

W (Epr) =

(
z
′
r

x∗

)α
(6)

where z
′
r is the elicited certainty equivalent for risky option r (r = 1, 2, . . . , 9). Taking

the median weight across individuals, we obtain an aggregated source function under each

treatment. By studying the shape of the elicited weighting curves and comparing them

across treatments, we examine the DE gap and its driving forces from the perspective of

a model that allows for probability weighting. This combination, derived from Abdellaoui

et al. (2011b) and explained above, allows us to control for utility curvature while letting

the data speak on the exact form of probability-weighting in different treatments.
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4 Results

4.1 Model-free analysis

We begin our analysis by examining choice proportions through the lens of the %OVRW

scores. Recall that these scores derive from choices made in the first iteration of each

bisection process and, in line with the discussion of Section 3.3.1, we interpret the average

%OVRW for each treatment as representing a treatment-level propensity to overweight rare

events. The results are presented via Figure 3.

We highlight three features of the data evident from the histogram. First, and in line with

the canonical finding, the propensity to overweight is higher in the Description treatment

than in any variant of Experience. Second, every extra feature of experience that our design

introduces, moving left from Description across the four Experience treatments, leads to a

lower %OVRW score, suggesting an expanding DE gap (we explore the statistical significance

of these changes shortly). Finally, a third salient feature of this plot is the comparatively

low score for E-Under: this is consistent with the intuition that rare-events carry less weight

in decisions from experience, when they are under-represented in the sample.13

The Table in the bottom half of Figure 3 details the size and statistical significance

of the various DE gaps and effects that our experiment was designed to measure. Its top

row reports the overall average DE gap in our experiment by comparing Desc vs E-All. This

measure of the gap is statistically significant (P = 0.041; MW) and its size at 9.35 percentage

points is very close to the literature’s average of 9.7 percentage points, based on a large meta-

analysis from 80 data sets (Wulff et al., 2018). We view this close correspondence to the

existing evidence as a reassuring indication that we are capturing a familiar DE gap in our

experimental setup. In line with the canonical finding, we find less overweighting of rare

13See Appendix 6.4 for more details on sampling bias and its interaction with %OVRW.
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Figure 3: Average %OVRW scores across treatments

Note. Top: Average %OVRW scores across treatments (Desc, E-Unamb, E-Amb, E-NR, E-Res) and
treatment-derivatives (Over, Under, E-All), with standard errors.

Bottom:+ Reported P-values from 2-tailed, Mann-Whitney (MW) U tests on %OVRW across treatments.
∗∗∗P < 0.01;∗∗ P < 0.05;∗ P < 0.1.

events in Experience than in Description. These observations lead to Result 1.
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Result 1 We replicate a DE gap. It has the same direction as the canonical finding and, in

terms of the %OVRW measure, a very similar size to the literature’s average.

The next six rows of Figure 1 test for a set of DE gaps via pairwise comparisons of the

%OVWR score for Description with each of the individual Experience treatments including

the two sampling bias derivatives (E-Over and E-Under). Across these comparisons, sta-

tistically significant differences are identified only in cases where sampling bias is present

(i.e., the cases involving E-Res and E-Under). Not surprisingly, the gap is widest when rare

events are under-represented rather than when they are over-represented. In comparisons

that do not involve sampling bias (i.e., those comparing Desc with each of E-Unamb, E-NR

or E-Amb), while the direction of each effect is in the typical direction of the DE gap, we

find no statistically significant differences, although the comparison between Desc and E-

NR is slightly bigger in magnitude than the literature average gap and approaching weak

significance (P = 0.121; MW).

The bottom section of the table in Figure 3 provides analogous tests, but focusing on

treatment comparisons that we interpret as capturing effects associated with specific mecha-

nisms as summarised in Figure 1. Based on this analysis, while each factor again moves the

%OVRW in the direction consistent with the canonical finding, the only significant effect is

that associated with sampling bias – in the form of underrepresentation - where the effect is

both large and highly significant. This leads to our second main result.

Result 2 The most important and only statistically significant single driver of the DE gap

in our data is sampling bias, in the form of under-representation of rare events.

Result 2 adds to existing evidence identifying sampling bias as an important factor ac-

counting for the DE gap. While the results we have presented so far are consistent with

claims made elsewhere (Fox and Hadar, 2006; Rakow et al., 2008, e.g.) to the effect that
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sampling bias is the only significant driver of the gap, we hold short of such a firm conclusion

at this point for two reasons. First, while no factor other than sampling bias was statistically

significant in isolation, the measured DE gap nevertheless consistently widens with each fac-

tor introduced in our design. That is, the difference in %OVRW is positive for each gap and

effect reported in the table of Figure 3, with the exception of over-representation where we

expect an opposing effect. Moreover, combinations of other factors sometimes come close

to producing a significant change in the gap (see the comparison between Desc and E-NR,

which captures the combination of likelihood representation and memory). This suggests

the DE gap might be partly driven by a range of other factors beyond sampling bias, even

if these are relatively weak when operating in isolation. Second, we have a further analysis

to present which involves a different and more detailed examination of the DE gap and its

underpinning causes. We turn to this analysis now.

4.2 Model-mediated analysis

In this analysis, we use certainty equivalents derived from the bisection elicitation process

to estimate a best fitting RDEU model for each individual. We estimate –parametrically -

utility curvature first (as per Equation 5) and then calculate –non-parametrically- decision

weights (as per Equation 6).

Table 3 reports median values for the utility curvature parameter (α) across treatments.

In aggregate, our estimations suggest near linear utility over money which is a not-uncommon

finding.14 Median values are very similar across treatments and a Kruskal-Wallis test does

not reject the null hypothesis of equal utility curvature across treatments (P = 0.708). De-

spite this, the size of the interquartile ranges (IQR) suggests that there was considerable

heterogeneity of utility curvatures across individuals - a result that demonstrates the im-

14These estimates fall within the typical range of contemporary studies such as Abdellaoui (2000); Booij
et al. (2010); Etchart-Vincent (2004); Murad et al. (2016), all of which find α lies between 0.8 and 1.1.
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portance of our having controlled for this when assessing probability-weighting. We also

consistently fail to reject the null of no difference in utility curvature in pairwise compar-

isons of treatments.15 This suggests that potential treatment effects are more likely to occur

due to differences in probability weighting rather than due to differences in preferences over

money.

Table 2: Utility curvature estimates (α) across treatments (medians)

Desc E-Unamb E-Amb E-NR E-Res

Median 1.06 1.08 1.10 1.08 0.98
IQR 0.84-1.38 0.82-1.60 0.83-1.35 0.81-1.69 0.66-1.18

Note. Parametric estimations of utility curvature: α from xα. These estimates derive from a non-linear
least squares algorithm (Bates and Watts, 1988; Bates et al., 1992; Moré, 1978), commonly specified for all

198 subjects: we estimate α for every subject 20 times with a randomly chosen starting value and select
the iteration with thee best fit.

Next, we calculate decision weights W (Epr) for each subject at each probability level r,

following Equation 6. Median values for these decision weights are reported in Table 3.

In this table, we use upward sloping arrows to indicate cases where estimated decision

weights are statistically significantly above the diagonal line (i.e. the line consistent with

linear decision weights where W (Epr) = pr for all events), and we use downward arrows to

indicate cases where weights are significantly below the diagonal (in each case, the number

of arrows indicates the critical value). The shaded cells highlight cases where weights do

not deviate significantly from the diagonal. Although unconventional, this labelling makes it

easy to see that, if we confine attention to cases that control for sampling bias (i.e. the first

4 of the 8 data columns in Table 1), then probability weighting generally takes an inverse

S-shape: weights tend to be above the diagonal for small probabilities and below them for

high probabilities with a cross-over at, or in the vicinity of, p = 0.25.16 This inverse S-shaped

probability weighting is consistent with a general tendency to overweight rare events.17 This

15See Appendix 6.3 for more details on these tests and for a plot of all subjects’ utility curves.
16Note that only one of the 36 cells in these four columns of data – that associated with E-NR for p = 0.025

- is inconsistent with this inverse-s pattern.
17Recall that rare events lie in two regions: for p ∈ 0.025, 0.05, 0.10 and for p ∈ 0.90, 0.95, 0.975. As p is
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leads to Result 3.

Result 3 Controlling for sampling bias and utility curvature, probability weighting is gen-

erally inverse S-shaped, consistent with overweighting of rare events in both Description and

Experience treatments.

Things look different when we consider cases with potential for sampling bias. In partic-

ular, E-Under stands out by having a pattern of median weights consistent with an S-shaped

weighting function: for low probabilities, median weights are nominally below the diagonal,

rising above it for high probabilities. If we confine attention to the analysis of statistical

significance, however, almost none of the weights associated with rare events depart signif-

icantly from the diagonal. Hence, an interpretation of this analysis is that sampling bias is

counteracting an underlying behavioural tendency to overweight rare events. That is, the

overweighting is a property of the preferences which is disguised by the sampling bias.

the probability of the better outcomes, rare events in the first interval have desirable outcomes; rare events
in the second region have undesirable outcomes.
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We complement the analysis of Table 3 by providing a visualisation of the weighting

functions implied by the weights reported there by fitting a parametric weighting function

to the set of median decision weights for each treatment. We estimate parameters δ and γ

for each subject, using the linear-in-log-odds specification of the weighting curve (Goldstein

and Einhorn, 1987; Gonzalez and Wu, 1999). The functional form of this weighting curve is:

w(p) =
δpγ

δpγ + (1− p)γ

The parameter δ is largely responsible for the elevation of the curve and γ for its curvature

(Gonzalez and Wu, 1999). When γ < 1, the weighting function takes its characteristic

inverse S-shaped that suggests overweighting of rare events. As γ approaches the value 1,

the weighting curve becomes increasingly linear. Finally, values where γ > 1 suggest an

S-shaped curve that is consistent with underweighting of rare events.

The fitted functions are presented in Figure 4 where each of the seven panels provides

a comparison of a pair of functions, thereby giving a qualitative impression of the impact

of an individual factor manipulated in our design. We also include a comparison of Desc

versus E-all for completeness. The top three panels use data from treatments which control

for sampling bias and show the impacts of, respectively, likelihood representation; ambiguity

and memory. The top left panel reveals that the treatments Desc and E-Unamb generate

almost identical inverse-S functions; hence our treatment manipulation capturing the impact

of likelihood representation has no discernible impact on the fitted function. The middle

and rightmost panels of the top row both use E-Unamb as a benchmark: the introduction

of ambiguity (middle panel) slightly depresses the revealed weighting function throughout

much of its range. The impact of removing the memory aid (history table) in our design,

depresses weights more markedly (top right panel).
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Figure 4: Parametric decision weight functions

Note. Parametric decision-weighting curves fitted at the level of median decision weights (see Table 3) for
each treatment.

Top row: Comparisons without sampling bias. Bottom row: Comparisons with sampling bias. Centre:
Desc vs. E-All. Legends report the parameters of the weighting function that was used to fit the curves.
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The bottom three panels provide a similar exercise but focused on the impact of sam-

pling bias. Here we highlight, in particular, the impact of under-representation of rare

events: in line with the discussion of Table 3, relative to the E-Amb treatment, we see the

under-representation of rare events reducing the weights associated with both desirable and

undesirable rare events (i.e. the weighting function for E-Under lies below the E-Amb func-

tion for low probabilities and above it for high ones). Finally, the comparison in the central

panel, capturing the visual effect of the average DE gap, provides support for the ‘relative

underweighting hypothesis’ (Kopsacheilis, 2018). Although both weighting functions are in-

verse S-shaped, that of E-All exhibits less overweighting – i.e, it is closer to the diagonal -

when compared to Desc for small and high probabilities.

An obvious question is how far the suggestion of treatment differences is supported by

more formal statistical analysis. We address this via Table 4 which reports the P-values from

a series of 2-tailed Mann–Whitney (MW) U tests. The set of tests mirrors the structure

of the treatment-level comparisons presented in Figure 3: we compare the same pairs of

treatments testing for gaps and effects, but we use the RDEU approach to conduct a series

of tests at each probability level for every treatment comparison.

We highlight three main observations based on this analysis. First, considering the

bottom half of the table which tests the impact of individual factors operating in isolation,

we confirm the finding of our model-free analysis that sampling bias, in the form of under-

representation of rare events, has a major impact on the revealed weights. Second, and again

in line with the model-free analysis, the bottom half of the table shows no evidence (at 5%

significance or better) to support the impact of any factor beyond sampling bias.

Third, the RDEU analysis presented above offers some new insights too. Based on the

results presented in the top half of Table 4, we now can detect a significant DE gap in some

cases where there was no sampling bias. Specifically, we find evidence of a significant gap in

the comparison of Desc vs E-NR for small values of p (desirable rare events). This confirms
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the visual impression (from top right panel of Figure 4) that desirable rare events receive

lower weights in treatment E-NR relative to E-Unamb and Desc (the latter two functions

being almost identical). We take these results as indicating that there may be a replicable

effect worthy of further investigation. On that assumption, it is helpful to reflect on the

differences in weighting between Desc and E-NR.

Referring back to Figure 1, note that we get from Desc to E-NR in two steps: one changes

the likelihood representation; the other removes the history table. The evidence presented in

Figure 4 and Table 4 provides tentative support for thinking that the removal of the history

table may be the more important of the two manipulations: memory has a more marked

effect on the shape of the weighting functions (comparing top left and top right panels of

Figure 4) and in the bottom of Table 4, the memory effect in isolation does reach significance

at 5% at one probability level (p = 0.1). As noted earlier, removal of the history table may

be interpreted as not purely cognitive if subjects are aware of their forgetfulness and react to

the resulting ambiguity. Hence, to the extent that removing the history table has a genuinely

distinct effect, we are not entitled to interpret it as a purely cognitive one, as there may be

some preference component too. This leads to Result 4.

Result 4 We find evidence that there are factors other than sampling bias that contribute

to the DE gap. These factors are most clearly seen when our memory aide is removed and,

thus, involve cognitive factors and responses to them.
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5 Conclusion

We have reported the results of a lab experiment investigating the Description - Experi-

ence (DE) gap, an empirical phenomenon pointing to a marked sensitivity of risk attitudes

according to whether they are elicited from description or from experience.

According to the most popular interpretation of the canonical finding in this literature,

when uncertainty is communicated through descriptions, people behave as if overweighting

rare events relative to their probability while, conversely, when this uncertainty is experienced

they tend to make decisions consistent with underweighting rare events.

We taxonomized the key factors that might drive this empirical discrepancy into three

broad categories by distinguishing between factors pertaining to: informational (sampling

bias), preferential (ambiguity) or cognitive (likelihood representation and memory) aspects of

decision making. Then, we implemented a novel 5-treatment design comprising one standard

version of description and 4 variations of experience. Our treatment protocol was designed

to isolate these factors through a series of pairwise comparisons. At the same time, this

design allowed us to elicit a series of DE gap variants; one for each comparison of description

with a variant of experience. Moreover, to account for different measuring traditions, our

design allows us to employ two measuring approaches.

First, we study the gap without relying on any behavioural model by focusing on choice

proportions from paired gambles. This allowed us to compare our findings with those in

earlier literature, where the DE gap was first established. We find that despite our depart-

ing quite markedly from the ‘sampling paradigm’ - arguably the best-known experimental

framework for studying the phenomenon - our average elicited DE gap coincides in direc-

tion and size with the literature’s average (Result 1) suggesting that the phenomenon is

robust. Moreover, we find that each causal factor that we isolate contributes positively to

the phenomenon and therefore, comparisons entailing more than one factor, induce bigger
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effects. Among those factors, the most important and the only statistically significant one

in isolation, is sampling bias due to under-representation of rare events (Result 2).

Second, assuming a rank dependent expected utility model, we compare decision-weighting

functions across treatments. These are elicited semi-parametrically and at the individual

level with the use of the bisection variant of the certainty equivalents method. This level of

analysis allowed us to examine probability weighting while controlling for utility curvature,

as well as to explore a variety of probability regions separately. We find the two levels of

analysis to be complimentary. The model-mediated approach replicates the findings of the

model-free analysis. However, the use of weighting functions and their shape allows us to

shed some more light on aspects of behaviour that would otherwise be inaccessible.

One such aspect derives from observing the shape of weighting functions. There, we

find that when we control for sampling bias, probability weighting is generally inverse S-

shaped, consistent with overweighting of rare events in both description and experience

treatments (Result 3). This adds to the evidence that overweighting of rare events can be

found beyond the narrow confines of described risk. Indeed, our average DE gap is best

summarized by a ‘relative underweighting hypothesis’ (Kopsacheilis, 2018), whereby rare

events are overweighted in experience, only less so than in description.

Taking stock of our findings, we confirm the existence of a DE gap, one whereby people

appear to be overweighting rare events significantly less in experience than in description.

When we consider factors in isolation, sampling bias due to the under-representation of rare

events was the only significant driver of this gap. Does this mean that the DE gap can be

simply reduced to an information asymmetry between description and experience? If that

were the case, the implications for the theory of risk preferences would be limited. The

core of risk preference models would not require any revisions, though it might have some

implications for how we apply such models. We would need to consider for example whether

a particular application is one where sampling bias might arise. Predicted behaviour would
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then depend on both the theory of preference and the extent of such information biases.

Notwithstanding the convenience of this interpretation, we do not endorse it undeservedly.

There are two reasons we suggest that searching for the gap beyond information asymmetries

is worthwhile, even if -at least in our study- this pursuit required that the researcher be

equipped with a magnifying glass - for the gap was not as big - and a compass - for it was

not ubiquitous.

First, although we maintain that our treatment design was apt in capturing the essence of

the underlying factors, it is still possible that some of these factors might be more prominent

in different environments. Second, even though when considered in isolation, factors that

did not involve sampling bias left only faint traces, when more than one of those factors were

considered in tandem, their effect was significantly bigger - especially when such mixtures

involved memory limitations.

An interpretation that combines elements of sampling bias and memory, inspired by the

similarities in typical weighting functions for subjects with no memory aides and for subjects

with samples that under-represent rare evens is that the same statistical property of the

binomial distribution is at work in both cases. If so, this could reflect the evolutionary idea

of synergistic biases leading to second-best adaptations (see Waldman, 1994, for an example

of how aversion to effort and overestimation of one’s own abilities can act synergistically).

Specifically, the behavioural bias to overweight rare events (as captured by several non-

expected utility models such as Prospect Theory) may be countering the statistical (and/or

cognitive) bias to under-represent them in small - collected or recollected - samples. As a

result, the corresponding weighting curves can be indistinguishable from the diagonal - as it

is often the case in our data - and therefore from the normative18 expected utility benchmark.

18See Wakker (2010) for a discussion about the normative character of expected utility theory.
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Moré, J. J. (1978). The levenberg-marquardt algorithm: implementation and theory. In

Numerical analysis, pages 105–116. Springer.

Murad, Z., Sefton, M., and Starmer, C. (2016). How do risk attitudes affect measured

confidence? Journal of Risk and Uncertainty, 52(1):21–46.

Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior & Orga-

nization, 3(4):323–343.

Rakow, T., Demes, K. A., and Newell, B. R. (2008). Biased samples not mode of presenta-

tion: Re-examining the apparent underweighting of rare events in experience-based choice.

Organizational Behavior and Human Decision Processes, 106(2):168–179.

Slovic, P., Monahan, J., and MacGregor, D. G. (2000). Violence risk assessment and risk

communication: The effects of using actual cases, providing instruction, and employing

probability versus frequency formats. Law and human behavior, 24(3):271–296.

Trautmann, S. T. and Van De Kuilen, G. (2015). Ambiguity attitudes. The Wiley Blackwell

handbook of judgment and decision making, 1:89–116.

Tversky, A. and Fox, C. R. (1995). Weighing risk and uncertainty. Psychological Review,

102(2):269–283.

Tversky, A. and Kahneman, D. (1992). Advances in prospect theory: Cumulative represen-

tation of uncertainty. Journal of Risk and Uncertainty, 5(4):297–323.

Ungemach, C., Chater, N., and Stewart, N. (2009). Are Probabilities Overweighted or

Underweighted When Rare Outcomes Are Experienced (Rarely)? Psychological Science,

20(4):473–479.

Wakker, P. P. (2010). Prospect Theory: For Risk and Ambiguity. Cambridge University

Press.

40



Waldman, M. (1994). Systematic errors and the theory of natural selection. American

Economic Review, 84(3):482–497.

Weber, E. U., Shafir, S., and Blais, A.-R. (2004). Predicting risk sensitivity in humans and

lower animals: risk as variance or coefficient of variation. Psychological Review, 111(2):430–

445.

Wulff, D. U., Mergenthaler-Canseco, M., and Hertwig, R. (2018). A meta-analytic review

of two modes of learning and the description-experience gap. Psychological Bulletin,

144(2):140–176.

6 Appendix

6.1 Instructions

Instructions were handed to participants in printed form and were read out loud by the

experimenter prior to the start of the experiment. Before the start of the experiment and

after the instructions had been read out loud, subjects played one trial round.

6.1.1 Instructions for Description

In this study you are asked to make choices that involve lotteries. For each choice, just pick

the option you prefer as there are no ‘right’ or ‘wrong’ answers. Overall you are going to

consider a total of 19 lotteries which are described by virtual decks of cards. Each deck

contains exactly two types of cards represented by two different colours. Each deck has its

own mix of these two types of cards.

The information about the relative frequency and the monetary value of each type of
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card will be provided to you (in the form of percentages) prior to making a choice. This

information is seen on the bottom of the screen.

The first 7 lotteries are all associated with the same deck of cards. This guarantees that

the relative frequency of each colour is the same for Lotteries 1 to 7. Notice however that

the rewards associated with each outcome will differ from one lottery to another.

Later in the experiment, you may have the opportunity to ‘play’ a lottery. That would

mean drawing once more from a deck you have sampled and receiving the sum of money

assigned to the colour of the drawn card.

Your task is to choose each time between playing the Lottery and receiving the Certain

Outcome. Each Lottery entails 5 such choices between the Lottery (Option A) which remains

constant across these 5 Choice-Rounds and a Certain Outcome (Option B) that will be

changing from each choice to the next.

Payoff Stage

At the end of the experiment one choice is going to be randomly selected to be played

out for real. All choices are equally likely to be drawn so each choice you make has equal

chances of affecting your final payment. There are two cases:

Case 1: If in the randomly selected choice you chose Option B (the Certain Outcome)

then the monetary value of this choice is going to be added directly to your final payment.

Case 2: If in the randomly selected choice you chose Option A (the Lottery) then the

deck of cards corresponding to that choice will reappear on the screen. You will then be

asked to draw one card from it. Then the monetary value assigned to the colour of the card

you just drew will be added to your final payment.

42



6.1.2 Instructions for the four versions of Experience

In this study you are asked to make choices that involve lotteries. For each choice, just pick

the option you prefer as there are no ‘right’ or ‘wrong’ answers. Overall you are going to

consider a total of 19 lotteries which are described by virtual decks of cards. Each deck

contains exactly two types of cards, represented by two different colours. Each deck has

its own mix of these two types of cards.

For every lottery you go through two stages:

Stage 1: the ‘Sampling Stage’

Stage 2: the ‘Choice Stage’

Exception: The first 7 Lotteries all share the same ‘Sampling Stage’ because they relate to

the same deck. This means that you will only sample once for the first seven lotteries. Each

of the lotteries 8 - 24 has its own Sampling Stage (because it relates to its own deck).

Stage 1: Sampling Stage

In each Sampling Stage you go through a particular computerized deck and explore one

by one all of their cards. The information about the relative frequency of each type of card

is unknown to you prior to the start of the sampling process. However by the end of the

process, this information will be completely revealed to you as you will have seen every card

in the deck exactly once.19 As mentioned earlier, the first 7 lotteries relate to the same deck.

This guarantees that the relative frequency of each colour is the same for Lotteries 1 to 7.

We recommend that you pay attention during this sampling process as this information is

relevant for your decisions later on and hence your final payment.

Every time you click on the ‘Draw ’ button you will observe a new card from the deck.

19The italicised text was present on in E-Unamb and E-NR, where there was no ambiguity regarding the
representativeness of the sampled cards. In E-Amb and E-Res this message was replaced by the following:
‘However by the end of this process you will have discovered something more about this mix because you will
have seen a selection of draws from that deck ’.
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Once you observe its colour click on ‘Proceed with the next card ’ for the ‘Draw ’ button to

reappear. You will repeat this process until you go exactly once through all the cards in

each deck. Once you have done so, a message will appear on the screen verifying that you

have seen all the cards in this deck and a button that reads: ‘Go to the Choice Stage’ will

become accessible at the bottom of the screen. Once you click on that button you will move

on to the ‘Choice Stage’.

Stage 2: ‘Choice Stage’

At this stage a monetary value is assigned to the colour of each card. This information

is seen on the bottom of the screen. Later in the experiment, you may have the opportunity

to ‘play’ a lottery. That would mean drawing once more from a deck you have sampled and

receiving the sum of money assigned to the colour of the drawn card.

On the top of the screen you will observe a ‘History Table’ where you can track your

sampling history from each lottery’s ‘Sampling Stage’. As mentioned earlier, the first 7

lotteries are all associated with the same deck of cards and hence share the same ‘History

Table’.20 Notice however that although the relative frequency of each colour of card is the

same for lotteries 1 to 7, the rewards associated with each outcome will differ from one

lottery to another.

Your task in this stage is to choose each time between playing the Lottery and receiving

the Certain Outcome. Each Lottery entails 5 such choices between the Lottery (Option A)

which remains constant across these 5 Choice-Rounds and a Certain Outcome (Option B)

that will be changing from each choice to the next.

Payoff Stage

At the end of the experiment one choice is going to be randomly selected to be played

20References to this ‘History Table’ did not feature in E-NR where there was no such visual aid.
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out for real. All choices are equally likely to be drawn so each choice you make has equal

chances of affecting your final payment. There are two cases:

Case 1: If in the randomly selected choice you chose Option B (the Certain Outcome)

then the monetary value of this choice is going to be added directly to your final payment.

Case 2: If in the randomly selected choice you chose Option A (the Lottery) then the

deck of cards corresponding to that choice will reappear on the screen. You will then be

asked to draw one card from it. Then the monetary value assigned to the colour of the card

you just drew will be added to your final payment.

6.2 Bisection method

The following table demonstrates an example of the bisection process for the lottery: (16, 0.1; 0).

Choices are represented in bold. The elicited CE for the process of this example will be the

mid-point between 0.7 (the last certain outcome preferred over the lottery) and 0.6 (the last

certain outcome that the lottery was preferred over). This yields a CE equal to 0.65.

Table 5: Illustration of the bisection method for (4, 0.8;0)

Iterations CE elicitation questions
1 (16, 0.1;0) vs. 1.6
2 (16, 0.1;0) vs. 0.8
3 (16, 0.1;0) vs. 0.4
4 (16, 0.1;0) vs. 0.6
5 (16, 0.1;0) vs. 0.7
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6.3 Utility curvature

Table 6: P-values from bilateral, MW tests for differences in utility curvature between Description and
Experience treatments

Desc vs Desc vs Desc vs Desc vs Desc vs Desc vs E-Und Desc vs E-All
E-Unamb E-NR E-Amb E-Res Over Under E-All

0.996 0.811 0.887 0.277 0.277 0.275 0.827

Table 7: P-values from bilateral, MW tests for differences in utility curvature between treatments that
isolate effects

Lik. Repr. Memory Ambiguity Samp. Bias SB-Over SB-Under
Desc vs E-Unamb vs E-Unamb vs E-Amb vs E-Amb vs E-Amb

E-Unamb E-NR E-Amb E-Res Over Under

0.996 0.852 0.950 0.250 0.250 0.249
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Figure 5: Utility curves

Note. Plotted utility curves for all 198 subjects across treatments. The estimates derive from the power
utility function: u(x) = xα. Convex curvature: those with α > 1.15, linear curvature: those with

0.85 ≤ α ≤ 1.15 and concave curvature: those with α < 0.85. Types were approximately uniformly
distributed across these three categories (approx. 1/3 in each).
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6.4 Sampling Bias

Table 8: Objective and experienced probabilities in E-Res

p fp se

0.025 0.028 0.005
0.050 0.038 0.006
0.100 0.105 0.008
0.250 0.238 0.012
0.500 0.487 0.012
0.750 0.754 0.012
0.900 0.882 0.010
0.950 0.942 0.007
0.975 0.969 0.005

Note.‘p’: Objective probability. ‘fp’: experienced probability. ‘se’: standard error of fp.

Figure 6: %OVRW as a function of sampling bias

Note. Negative (positive) values on the x-axis correspond to cases where objective probability was
under-represented (over-represented). The fitted line is calculated from a linear model and the shaded area

represents the standard errors. Spearman’s ρ = 0.878, which is significant (P=0.001).
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