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Abstract

We use laboratory experiments to study communication games with partially
verifiable information. In these games, based on Glazer and Rubinstein (2004,
2006), an informed sender sends a two-dimensional message to a receiver, but
only one dimension of the message can be verified. We compare a treatment
where the receiver chooses which dimension to verify with one where the
sender has this verification control. We find significant differences in outcomes
across treatments. However, receivers’ payoffs do not differ significantly across
treatments, suggesting they are not hurt by delegating verification control. We
also show that in both treatments the receiver’s best reply to senders’ observed
behavior is close to the optimal commitment strategy identified by Glazer and
Rubinstein.
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1 introduction

1 introduction

We report experiments based on partially verifiable information games. In these

games an informed sender (he) wants to persuade an uninformed receiver (she)

to take a certain action. To do so he sends costless messages about his private

information to the receiver, who can then verify some (but not all) of the messages.

Thus, the receiver acts on a combination of hard evidence and cheap talk.

Such situations are commonplace, since in practice informed parties often make

claims about their private information and it is typically infeasible or prohibitively

costly for a receiver to verify all claims. Also, in practice, the verification process

varies: in some cases the sender can choose which claims to verify, while in others

the receiver can choose what to verify.

For example, consider a job interview where a candidate wishes to persuade an

employer to hire him. In some interview formats the candidate may make claims

about his various skills, and also be able to demonstrate some (but not all) of these.

Which skills will the candidate choose to demonstrate? In other formats the em-

ployer may target certain skills and use particular questions to discover the candi-

date’s command of these. As another example, consider a business owner trying

to convince an investor to invest in his business. The owner may make claims

about the business, but also provide hard evidence to back up these claims (e.g.

sales figures, market research reports). Again, which evidence is provided might

be determined both by the business owner and the potential investor.

When senders decide which claims to verify, will they disclose their strongest

evidence? When receivers decide, will they investigate the strongest claims? Does

it matter whether the sender or receiver has control over the verification process?

To answer these questions we focus on games that are based on theoretical models

of partially verifiable information (Glazer and Rubinstein, 2004, 2006) and we bring

experimental evidence to bear on them. As far as we are aware, this is the first

experimental study of strategic information transmission in which both cheap talk

and hard evidence are present.

In the games we study the state of the world is based on the values of two

aspects which are known to the sender, but not to the receiver; in some states of

the world the players’ interests are aligned while in others they are opposed. In
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1 introduction

our first game the sender sends a message about the two aspects to the receiver,

who then chooses one of the aspects to observe before taking an action (we refer to

this as the “Receiver Verifies” game). This game is based on the model introduced

in Glazer and Rubinstein (2004), who use a mechanism design approach to iden-

tify a receiver’s optimal strategy assuming that the receiver is able to commit to a

strategy. The game we implement is an extensive-form game in which the receiver

cannot commit. Nevertheless, it has a sequential equilibrium where the receiver

uses an optimal commitment strategy and attains the optimal payoff of the game

with commitment (Glazer and Rubinstein, 2004, section 7). We note that there are

many other sequential equilibria leading to a lower receiver payoff, and no obvious

reason why the receiver’s preferred equilibrium would be played.

The second game we study differs from the first in that the sender decides which

aspect will be observed by the receiver. This “Sender Reveals” game is similar to the

model introduced in Glazer and Rubinstein (2006), except that in their model there

are no messages and the receiver can commit to a strategy. Using a mechanism de-

sign approach, they show that the payoff from the receiver’s optimal strategy is the

same as in the model where the receiver decides which aspect to verify. Again, our

laboratory extensive form game has sequential equilibria that result in the receiver

attaining this optimal payoff, but many other sequential equilibria resulting in a

lower receiver payoff as well.

In summary, the maximum equilibrium payoff for the receiver is the same in

both games, but each game has multiple equilibria. Thus, equilibrium theory (ab-

sent any refinement criteria) does not offer a sharp prediction about how each game

will be played, or which game is better for the receiver. Our experiment allows us

to observe how the games are actually played, whether receivers are able to attain

their maximal equilibrium payoff, and whether control of the verification process is

beneficial to the receiver.

In Sender Reveals, we find that senders typically reveal their stronger aspect

and make inflated claims about their weaker aspect. Given this, receiver behavior

can be described as a “noisy best response”, and the noise results in receivers earn-

ing less than their theoretically optimal commitment payoff. In Receiver Verifies

senders also usually inflate their weaker aspect. But in response, receivers use a

noisy checking strategy, resulting in them being less likely to observe the sender’s

stronger aspect. Again, receivers earn less than their theoretically optimal commit-
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2 related literature

ment payoff. Overall we find that receiver payoffs are similar across treatments,

suggesting that the receiver has nothing to lose from delegating verification control.

Our experiment also complements the analysis of optimal receiver strategies in

Glazer and Rubinstein (2004, 2006). Whereas they identify optimal commitment

strategies for a receiver facing a sender who best responds to the receiver’s strat-

egy, we compare the performance of several receiver strategies against the empiri-

cally observed sender behavior. Interestingly, in both treatments the best perform-

ing strategy is one of the theoretically optimal commitment strategies identified in

Glazer and Rubinstein (2004, 2006). Moreover, while there are multiple theoreti-

cally optimal commitment strategies, which differ from one another in how they

condition on messages, and we find a particular one of these that performs best.

A theoretically optimal commitment strategy is one which, when the sender best

responds to it, gives the receiver her highest expected payoff. Thus, intuitively, such

a strategy is difficult for a sender to exploit. Our subject senders sometimes “come

clean”, truthfully admitting that the state is unfavorable. The theoretically optimal

commitment strategy that performs best against our subject senders is one which

conditions on messages so as to be difficult to exploit, and at the same time is able

to take advantage of truthful senders.

The rest of the paper is organized as follows. In Section 2 we discuss the related

literature. In Section 3 we describe the partially verifiable information games and

their equilibria in detail. Section 4 describes how we implement these games in

the lab and presents the experimental design. In Section 5 we report the results of

our experiment, and analyze the receiver best response to the empirically observed

sender behavior. Section 6 concludes.

2 related literature

Our experiment studies strategic communication in a setting where an informed

sender can send messages about private information and these messages are par-

tially verifiable. To this end, our paper stands at the intersection between the cheap

talk and the disclosure research agendas.
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2 related literature

A substantial experimental literature has examined cheap talk games based on

the model of Crawford and Sobel (1982) (see Blume et al., 2020, for a review), and

similarly, previous experiments have studied verifiable message (disclosure) games

based on the models of Milgrom (1981) and Grossman (1981) (see e.g. Forsythe

et al., 1989, 1999; Hagenbach and Perez-Richet, 2018; Jin et al., 2018; King and Wallin,

1991; Li and Schipper, 2020; Penczynski and Zhang, 2017). The game we use differs

from a cheap talk game in that messages can be (partially) backed by evidence, and

differs from a verifiable message game in that we force partial disclosure (whereas

in verifiable message games senders may remain silent or fully reveal their type).

This combination has important theoretical implications. For example, the typical

theoretical result in verifiable message games is that senders always reveal their

type (the unraveling principle). This does not apply to games with partial disclosure

such as ours.

Only a few theoretical studies combine elements of cheap talk games and dis-

closure games. Among these, Lipman and Seppi (1995) examine the role of com-

petition between senders in a model where information is partially verifiable while

Forges and Koessler (2005) characterize the equilibrium set of such games when a

communication mediator is present. Though these aspects seem useful in increas-

ing the amount of reliable information the receiver can extract from the sender, in

this paper we focus solely on two-person interactions, based on theoretical models

introduced by Glazer and Rubinstein (2004, 2006). Carroll and Egorov (2019) pro-

vide a theoretical analysis of situations that are similar to those studied in Glazer

and Rubinstein (2004). They find that for a specific class of sender payoff functions

the receiver can learn the sender’s private information fully. The models that we

consider in this study do not belong to this class.

Glazer and Rubinstein (2004) analyze a situation where a sender is privately

informed about a multi-dimensional state of the world and sends a message about

this to a receiver.1 The receiver then chooses a single dimension of the state to

observe, and can thus verify part of the message, before taking one of two actions,

Accept or Reject. The sender prefers the receiver to accept independent of the

state, whereas the receiver’s optimal action depends on the state. The authors

1Glazer and Rubinstein (2004) refer to this setting as a persuasion game. This is not to be confused
with the Bayesian persuasion games of Kamenica and Gentzkow (2011). These are sender-receiver
games where the sender can commit to a message strategy (see Fréchette et al. (2018) and Aristidou
et al. (2019) for experiments that allow sender commitment). In contrast, Glazer and Rubinstein
(2004) do not allow sender commitment in their model.
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3 partially verifiable information games

identify optimal mechanisms from the receiver’s point of view, i.e. mechanisms

that maximize the receiver’s expected payoff, when the receiver can commit. Glazer

and Rubinstein (2006) modify this model by removing messages and the receiver’s

option to verify and instead allowing the sender to reveal truthfully one dimension

of the state. They show that the receiver’s optimal mechanism in this case yields

the same expected payoff to the receiver. Thus, theoretically the receiver does not

suffer by losing verification control.

Glazer and Rubinstein (2004, 2006) also discuss the corresponding extensive

form games where the receiver cannot commit to a strategy. In both settings they

show that the receiver’s payoff from the optimal mechanism can still be achieved

in a sequential equilibrium of these games. Our study is designed to test the effect

of losing verification control on the receiver’s payoff in these extensive form games.

In the next section we discuss this setup in more detail.

3 partially verifiable information games

We study two partially verifiable information games. In both games the sender’s

type is determined by the value of two aspects, and the privately-informed sender

makes a claim about the values of these aspects. In the ”Receiver Verifies game”,

the receiver then chooses one of the aspects to be checked and, after observing the

actual value of that aspect, decides whether to accept or reject. In the ”Sender Re-

veals” game, after the message is sent the sender decides which aspect is observed

by the receiver. Hence, the two games differ only in who controls the verification

process. We describe the games formally below.

3.1 The ”Receiver verifies” (Rv) game

The “Receiver verifies” game (henceforth Rv) is based on Glazer and Rubinstein

(2004). There are two players: a sender and a receiver. The sender’s type depends

on the values of two aspects. Aspect i = 1, 2 is a random variable that can take

values in the set Xi = {1, ..., 9}. The set of possible types is then X = X1 × X2. A

generic element of X will be denoted as x = (x1, x2). The probability of type x ∈ X
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3 partially verifiable information games

is denoted as px = 1
81 . The sender’s type is ”good” if x belongs to the set G, where

G = {(x1, x2)|x1 + x2 ≥ 11}; and ”bad” otherwise.2

Payoffs depend on type and action, as summarized in Table 1. The receiver

wants to take action a (”accept”) if the sender’s type is good, and action r (”reject”)

if the sender’s type is bad. The sender always wants the receiver to take the action

a, irrespective of type. Note that the receiver’s utility is 1 if the optimal action has

been chosen (i.e., if either x ∈ G and a has been taken, or x ∈ X\G and r has

been taken) and 0 otherwise. Hence, both types of errors (rejecting a good type

and accepting a bad type) are assumed to be equally costly for the receiver, and an

expected utility maximizing receiver minimizes the probability of making an error.

Table 1: Payoff Matrix (sender’s payoff listed first in each cell)

Receiver accepts Receiver rejects

Good type (1, 1) (0, 0)
Bad type (1, 0) (0, 1)

The timing of the game is as follows. First, the sender sends a message. The set

of available messages is denoted by M, and a generic element of M will be denoted

by m = (m1, m2). A (mixed) strategy for the sender is a function σ : X → ∆M. We

assume that the set of messages coincides with the set of types, i.e., M = X, but we

will keep the notation M to refer to the set of messages for the sake of clarity. We

denote the probability that the sender sends message m when the sender’s type is

x by σ(m|x).

After observing the sender’s message, the receiver decides which aspect to check

and which action to take depending on the message and on the value of the aspect

that has been observed. The strategy of the receiver f = (π, d) consists of:

A checking rule that determines which aspect to check after receiving the mes-

sage. The function π1 : M→ [0, 1] denotes the probability of checking aspect 1 as a

function of the message received (the receiver must check exactly one aspect, hence

π2 : M→ [0, 1] satisfies π2(m) = 1− π1(m) for all m ∈ M).

2Our parametrization is taken from the online experiment of Glazer and Rubinstein at http://

gametheory.tau.ac.il/exp5/. In their experiment, the receiver is a computerized player playing
an undisclosed strategy. We also conducted sessions with a different parametrization. The results
are qualitatively similar to those we report below; for completeness we summarize these sessions
in Appendix F.
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3 partially verifiable information games

A decision rule for each aspect that determines the probability of acceptance

depending on the message received and the value observed. We denote by dk :

M× Xk → [0, 1] the probability of accepting after checking aspect k as a function of

the value observed and of the message.

An example strategy for the receiver would be the fair random strategy (analogous

to the fair random mechanism of Glazer and Rubinstein (2004)) where π1(m) =

π2(m) = 0.5, and dk(m, xk) = 1 if and only if m ∈ G and xk = mk; that is, the

receiver checks one aspect at random and accepts when the sender claims to be of

a good type and the observed value coincides with the message.

3.1.1 Equilibria of Rv

Our equilibrium concept is sequential equilibrium. A sequential equilibrium con-

sists of strategies and beliefs such that (1) at any information set, the player who

has the move is playing a best response, given the beliefs and assuming that play-

ers will subsequently stick to their strategies (sequential rationality) (2) beliefs are

determined by Bayes’ rule and the players’ equilibrium strategies (consistency of

beliefs)3. Note that there are two opportunities for the receiver to update the prior

beliefs: after the message is sent, and after the value of an aspect has been observed.

In the first case, the updating of the prior may determine which aspect to check; in

the second case, the updating of the prior may determine which action to take. See

Appendix A for further details.

The Rv game has multiple equilibria. First, there is a family of equilibria which

results in the following outcome: hands are accepted if and only if at least one as-

pect takes a value of at least 7 (henceforth 7+). We will refer to this outcome as the

GR outcome, since this is also the outcome resulting from an optimal receiver com-

mitment strategy as analyzed in Glazer and Rubinstein (2004) (see Appendix B). It

follows that these equilibria achieve the receiver’s maximum equilibrium expected

payoff.

These equilibria differ in the role of messages. In some of these equilibria, the

message simply informs the checking decision; the acceptance decision is indepen-

3If all information sets can be reached given the strategies, beliefs are completely determined by
Bayes rule. If not, sequential equilibrium requires that the strategies and beliefs are found as
the limit of a sequence of fully mixed strategies together with the beliefs that follow from those
strategies using Bayes rule.
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3 partially verifiable information games

dent of whether the value observed coincides with the message. For example, the

following is an equilibrium. The receiver checks the highest claim (checking at ran-

dom if both claims are equal) and, conditional on this checking behavior, accepts if

and only if the observed value is 7+. The sender sends (1, 9) if he has at least one

7+ aspect and x2 > x1, (9, 1) if he has at least one 7+ aspect and x1 > x2, and ran-

domizes between (9, 1) and (1, 9) in all other cases. Essentially the message ”points

to” the 7+ aspect if the sender has one. To see that this is an equilibrium, note that,

given the receiver’s strategy, hands without a 7+ aspect are rejected irrespective of

the sender’s message, and hands with two 7+ aspects are accepted irrespective of

the sender’s message. Hands with only one 7+ aspect will be accepted if the sender

reports the 7+ aspect as the higher aspect, and this is what the sender’s strategy

does. The sender’s strategy has been constructed so that the receiver maximizes

expected payoff by checking the higher message and accepting if and only if the

observed value is 7+. See Appendix C for details.

Other equilibria that also result in the GR outcome use the message to inform

both the checking and acceptance decisions. For example, the sender sends a mes-

sage as shown in Table 2 below. In this table, senders with a good type report it

truthfully, while some senders with a bad type inflate their lower aspect. The re-

ceiver checks the higher claim (π1 = 1 if m1 > m2; π1 = 0.5 if m1 = m2 and π1 = 0

if m1 < m2) and, conditional on this checking behavior, accepts if and only if a good

type is reported and the observed value coincides with the claimed value and is 7+

(di = 1 if m1 + m2 ≥ 11, mi = xi and xi ≥ 7; otherwise di = 0).

Table 2: Example of an equilibrium sender’s message strategy in Rv

9 (2,9) (2,9) (3,9) (4,9) (5,9) (6,9) (7,9) (8,9) (9,9)
8 (3,8) (4,8) (3,8) (4,8) (5,8) (6,8) (7,8) (8,8) (9,8)
7 (4,7) (5,7) (6,7) (4,7) (5,7) (6,7) (7,7) (8,7) (9,7)
6 (5,6) (6,6) (7,6) (4,6) (5,6) (6,6) (7,6) (8,6) (9,6)

x2 5 (7,5) (6,5) (3,5) (4,5) (5,5) (6,5) (7,5) (8,5) (9,5)
4 (8,4) (7,4) (3,4) (4,4) (5,4) (6,4) (7,4) (8,4) (9,4)
3 (8,3) (2,3) (3,3) (4,3) (5,3) (6,7) (7,6) (8,3) (9,3)
2 (9,2) (2,2) (3,2) (4,7) (5,6) (6,6) (7,5) (8,4) (9,2)
1 (1,1) (2,9) (3,8) (4,8) (5,7) (6,5) (7,4) (8,3) (9,2)

1 2 3 4 5 6 7 8 9
x1

Note: Gray-highlighted messages are bad hands profitably lying (since they are accepted).
Messages in bold are bad hands lying even though they are rejected.

Given this receiver strategy, senders without a 7+ aspect are rejected irrespective

of their message, while senders with a 7+ aspect can be accepted by sending an
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3 partially verifiable information games

appropriate message. The gray-highlighted messages in Table 2 are sent by bad

types with a 7+ aspect, who best respond to the receiver strategy by inflating the

value of the lower aspect, while keeping the claim below the value of the higher

aspect, so that the highest claim remains truthful. These types are profitably lying.

Good types with a 7+ aspect tell the truth and are accepted.

Table 2 has been constructed so that it is a best response for the receiver to fol-

low the above strategy. Note that not all messaging strategies where the sender

reports good types truthfully and inflates bad types with a 7+ aspect would induce

a sequential equilibrium. For example, consider message (7,4). If the sender only

inflates bad types up to the bare minimum needed to make up a good type, after

receiving message (7,4) and verifying that the 7 is correct, the type is equally likely

to be (7,4), (7,3), (7,2) and (7,1). Only one out of four is a good type, hence the re-

ceiver should reject. In order to have an equilibrium, the sender cannot concentrate

the lies on messages that add up exactly to the threshold; one possibility is that (7,3)

reports (7,6), (7,2) reports (7,5) and (7,1) reports (7,4) as in the table.

The sender’s strategy should also be such that it is optimal for the receiver to

always verify the aspect with the highest claimed value. For example, if the message

(7,4) were sent only by the (7,4) and (7,1) types, the receiver would want to check

the 4 since that would ensure discovering the bad type. The equilibrium would

require some types (e.g. (2,4), as in the table) to send (7,4) as well even though it

has no benefit for them. All types that send a bolded message in Table 2 are lying

not because it is (strictly) profitable to do so, but in order to preserve the optimality

of the receiver’s strategy.

The equilibrium described also requires the receiver to reject some good types,

such as (6,6). If (6,6) is the only type that sends message (6,6), then the receiver

would know for sure that this is a good type and should accept instead. In order to

have an equilibrium, one needs to assume that either (6,6) reports one of the aspects

as 7+ (even though this will be discovered for sure given the strategy of the receiver)

or there are bad types that also report (6,6) (as in Table 2), so that a claim of (6,6) is

not unambiguously a good type. In both cases, there are sender types that are lying

even though they have nothing to gain from doing so.

There are also many sequential equilibria that lead to different outcomes and

lower payoffs to the receiver. For example, an equilibrium giving the receiver their

lowest equilibrium payoff involves the sender sending a message at random, the

9



3 partially verifiable information games

receiver checking an aspect at random and accepting if and only if the observed

value is at least 6. Types without a 6+ are rejected, types with two 6+ aspects are

accepted, while types with one 6+ may or may not be accepted depending on which

aspect the receiver observes. In this equilibrium, messages play no role whatsoever,

and both players earn a lower payoff than in the GR outcome. There are also other

equilibria where messages play a role and in which the sender is better off than in

the GR outcome (see Appendix D for details).

3.2 The “Sender reveals” (Sr) game

The “Sender reveals” game (henceforth Sr) is based on Glazer and Rubinstein (2006).

The strategy of the sender g = (σ, ρ) consists of:

A message rule that determines the message as a function of type. As in Rv, we

denote the message rule as σ : X → ∆M and the probability of sending message m

as a function of type as σ(m|x).

A revelation rule that determines which aspect is to be observed by the receiver

depending on the message and on the type. The function ρ1 : X ×M → [0, 1] de-

notes the probability of revealing aspect 1 as a function of type and of the message4.

Since exactly one aspect is revealed, ρ2(x, m) = 1− ρ1(x, m).

The receiver’s strategy consists of a decision rule for each aspect, that is, dk :

M×Xk → [0, 1] for k = 1, 2. Given the aspect k to be observed, the receiver strategy

determines the probability of acceptance as a function of the message m and the

value of the aspect observed xk.

3.2.1 Equilibria of Sr

The Sr game also has multiple sequential equilibria. As in Rv, there is a family

of equilibria which results in senders being accepted if and only if at least one

aspect takes a value of 7+. Also as in Rv, this is the outcome that results from a

4In our experiment the sender first inputs the message and then the aspect to be revealed. Equiva-
lently we could think of the sender first deciding which aspect to reveal and then which message
to send. The two decisions are interrelated (for example, we would expect the sender to report the
aspect revealed truthfully).
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3 partially verifiable information games

receiver optimal commitment strategy (see Appendix B), hence we refer to it as the

GR outcome. In some of these equilibria, the sender displays the higher of the two

aspects and sends an uninformative message (e.g., sends a message at random, or

always sends the same message). For example, ρ1 = 1 if x1 > x2, ρ1 = 0 if x1 < x2

and ρ1 = 0.5 if x1 = x2, and σ(m|x) = 1
81 for all m ∈ M, x ∈ X. The receiver then

best responds by setting di(m, xi) = 1 if xi ≥ 7 and di(m, xi) = 0 if xi < 7 for i = 1, 2

irrespective of m. Note that in this equilibrium the receiver’s strategy depends only

on the value observed and not on the message.

There are also equilibria that lead to the GR outcome but differ in the role of

messages. Again analogously to Rv, consider the following strategy combination.

The sender shows the higher of the two aspects and uses the messaging strategy in

Table 2. The receiver accepts if and only if a good type is reported, the observed

value coincides with the reported value and the observed value is 7+ (di(m, xi) = 1

if xi ≥ 7, m1 + m2 ≥ 11 and xi = mi; di(m, xi) = 0 otherwise for i = 1, 2). This

constitutes an equilibrium where the receiver conditions the acceptance decision

not only on the aspect observed but also on the message.

Again similarly to Rv, not all messaging strategies where the sender reports good

types truthfully and inflates bad types with a 7+ aspect would induce a sequential

equilibrium. In order for the receiver’s strategy to be a best response to the sender’s

strategy, the sender cannot concentrate the lies on messages that add up to the bare

minimum required to make up a good type, and, if all good types tell the truth,

there must be bad types that send messages (6, 6), (6, 5) and (5, 6) even though

there is no strict gain from doing so.5

There are also equilibria resulting in different outcomes and a lower payoff for

the receiver. Some of these give a lower payoff for the sender. For example, the

following equilibrium gives the sender a 0 payoff. Senders with good types reveal

their lower aspect, while senders with bad types reveal their higher aspect (if both

aspects are equal, senders reveal an aspect at random), and all types send a mes-

sage at random. Given this sender strategy, the receiver best responds by rejecting

irrespective of the value of the aspect observed. Given that the receiver is rejecting

whatever she observes, the sender has no incentive to deviate.
5Because the sender chooses which aspect to reveal, bold messages in Table 2 other than (6,6), (6,5)
and (5,6) could be changed to truthful messages without affecting the receiver’s best response.
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4 experimental design

Other equilibria result in a higher payoff for the sender than the GR outcome.

Appendix D describes an equilibrium which results in types being accepted if and

only if the sender has a 6+ aspect.

Given the multiplicity of equilibria in both Sr and Rv, an obvious question is

which of these, if any, would be observed in actual game play. What messages will

be sent? For example, will senders with one high aspect (7+) inflate the lower aspect

while keeping the highest claim truthful? What evidence will be observed and how

will receivers respond to this? For example, will the receiver observe the sender’s

high aspect and accept if and only if it is 7+? How will receivers condition their

decisions on messages and evidence? Will receivers be able to attain a payoff as

high as that realized in the receiver’s best equilibrium? Will the receiver be better

off by being able to choose which aspect is verified?

The next section describes our experiment, designed to answer these questions.

4 experimental design

The experiment was conducted in the CeDEx laboratory at the University of Not-

tingham, UK. There were 192 subjects, recruited from a university-wide pool of un-

dergraduate and graduate students using ORSEE (Greiner, 2015). The experiment

was programmed in z-Tree (Fischbacher, 2007).

Our experiment varies the game (Sr and Rv) across sessions. 4 sessions of each

treatment were conducted with 24 subjects per session, and each session was di-

vided into two matching groups. This gives us 8 independent observations per

treatment.6

Upon arrival at a session, subjects were randomly allocated a seat number and

given a set of instructions, which were then read aloud by the experimenter.7 The

decision-making part of the experiment consisted of 30 periods, where subjects

were randomly matched in each period to play the relevant game. Subjects were re-

6Recall that we also conducted treatments with a lower threshold determining a good hand which
resulted in qualitatively similar findings to those reported below. We present a summary of these
additional treatments in Appendix F.

7See Appendix G for a copy of the instructions.
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matched within their matching group at the beginning of each period, but retained

the same role (sender or receiver) during the entire session.

At the beginning of each period, each sender is dealt two cards (blue and orange).

Each of the cards is equally likely to be any integer value between 1 and 9, and all

draws are independent across colors and senders.8 A hand is defined as “good” if

the sum of the values of the two cards is at least 11. Having observed the two cards,

the sender sends a message to the receiver of the form “The value of the orange card

is ; The value of the blue card is ”. Next, the receiver chooses one of the cards

to observe (Rv treatment) or the sender chooses one of the cards for the receiver

to observe (Sr treatment). The receiver then accepts or rejects. The sender earns 1

point if the receiver accepts and 0 if the receiver rejects; the receiver earns 1 point if

she accepts a good hand or rejects a bad hand, and 0 otherwise.

At the end of each period, a summary screen displayed the true values of the

two cards, the message sent by the sender, the card chosen to be observed (by the

receiver or by the sender, depending on treatment), the receiver’s decision, and the

point-earnings of the two subjects.

At the end of the experiment subjects received their accumulated earnings for

the 30 periods (1 point = £0.50) plus a £3 participation fee. Each session lasted

around 90 minutes, and average earnings were £12.92.

5 results

We report our results in three subsections. First we analyze subjects’ decisions in

the order they were sequenced in the experiment: message, revelation/verification,

acceptance. Next, we look at the implications for game outcomes and payoffs. In

the final subsection, we examine the receiver’s best response given the empirically

observed sender behavior.

Unless otherwise specified, all statistical tests are two-tailed signed-rank tests

taking the matching group as the unit of observation. (Recall, for comparisons

8For the Rv treatment the card draws were randomized using the random number generator during
the session. To enhance comparability across treatments, we then used these realizations in the
corresponding sessions of the Sr treatment. This allows us to perform the statistical comparisons
on paired observations.
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between treatments, our design allows us to perform statistical comparisons on

paired observations.) Also, unless otherwise specified, tests are based on the data

pooled from all periods. (We also examined whether there were any dynamic trends

in behavior and how these might affect our results. We find only mild evidence of

learning effects, and the results based on the pooled data are robust to these - see

Appendix E for details.)

5.1 Decisions

5.1.1 Messages

Figure 1 presents the distribution of the realized and the reported hands. The

middle panel (b) displays the 1,440 random hands dealt in each treatment. Recall

that the random draws are identical across treatments. As each combination of

values was equally likely, the distribution of the realized draws is approximately

uniform. Panel (a) presents the distribution of the values reported by senders in the

Sr treatment; panel (c) presents the distribution of reports in the Rv treatment.

(a) Reported hands in Sr (b) Realized hands (c) Reported hands in Rv

Figure 1: Distribution of realized vs. reported hands in Sr and Rv

The realized and the reported distributions clearly differ and there is a shift in

the distribution of reported values towards the area where these add up to at least

11. Table 3 reports the truthtelling rate in both treatments. When senders have a

good hand they tend to report it truthfully, although slightly and significantly more

often in Rv. Notably, senders tend to lie about bad hands; less than 20% of bad

hands are truthfully reported in both treatments.9 In Sr this is especially the case

9Interestingly, very few subjects can be characterized as truth-tellers (never misreporting). Out of
48 senders per treatment, we observed only 2 truth-tellers in the Rv treatment and 1 in the Sr
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when they have a 7+ card; less than 8% of senders with a 7+ card tell the truth

compared with more than 24% of senders without a 7+ card (p-value=0.008).

Table 3: Truth-telling rates in Sr and Rv

Truth-telling rate

Type of hand obs. Sr Rv p-value

Good
hands

High card < 7 51 0.863 0.941 0.313
High card ≥ 7 580 0.847 0.916 0.016

All good hands 631 0.848 0.918 0.016

Bad
hands

High card < 7 591 0.245 0.201 0.461
High card ≥ 7 218 0.073 0.170 0.188
All bad hands 809 0.199 0.193 0.813

All hands 1440 0.483 0.510 0.461

Table 4 focuses on the reporting behavior of senders with bad hands with a 7+

card. Recall there are equilibria resulting in the GR outcome (i.e., all hands with a

7+ card are accepted and all other hands are rejected) where these senders report

a good hand by inflating the reported value of the lower card while keeping the

higher claim truthful. Table 4 shows that most reports are consistent with these

equilibria in both treatments, and this behavior is more prevalent in Sr than Rv

(79% vs 61%).

Table 4: Proportions of different types of reports (bad hands with a 7+ card)

Sr Rv

Good hand reported; higher message is truthful 0.789 0.606
Good hand reported; lower message is truthful 0.018 0.069
Good hand reported; one out of two equal messages is truthful 0.092 0.078
Good hand reported; neither message is truthful 0.005 0.055
Bad hand reported 0.096 0.193

Result 1 Senders with a bad hand and a 7+ card usually inflate the value of the lower card

while keeping the higher claim truthful. This happens significantly more often in Sr than in

Rv ( p− value = 0.031).

treatment. Thus, our setting does not induce a very strong norm of honesty (cf. Abeler et al. (2019)).
This could be due to the conflict of interests which may crowd out lying aversion (Cabrales et al.,
2020; Minozzi and Woon, 2013), or it could reflect a different norm induced by the framing of our
game.
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5.1.2 Revelation/verification

When the sender reports a bad hand, the verification strategy is immaterial since the

sender is almost certainly telling the truth (indeed, more than 98% of all reported

bad hands are actually bad hands in both treatments). In what follows we focus on

cases where the sender reports a good hand. We also focus on cases where, for Rv,

the two reported values are different and, for Sr, the two card values are different.

In Sr, senders nearly always reveal the higher of the two cards: 96.23% of cases.

In Rv, receivers check the higher of the two reports only in 64.86% of the cases.

Thus, it appears that revealing the higher card is a more compelling strategy for

senders than verifying the higher claim is for receivers.

Result 2 Senders reveal the higher card significantly more often than receivers check the

higher claim (p− value = 0.008).

It is informative to look at this behavior at the individual level. Figure 2 shows

the individual propensity to reveal the higher card (Sr) or check the higher claim

(Rv). Not surprisingly given the high aggregate frequency of revealing the higher

of the two cards, in Sr 60% of senders always reveal the higher card. In contrast,

none of the receivers in Rv checks the higher claim all the time. Instead, receivers’

behavior is more like a random auditing strategy, though most receivers check the

higher claim more often than not.

An implication of this different revelation/verification behavior is that the sender’s

high card is almost always observed in Sr, while in Rv the sender’s low card is ob-

served about a third of the time.

5.1.3 Acceptance

When the sender reports a bad hand, the receiver nearly always rejects (over 96% of

cases in both treatments). In what follows, we focus on cases where a good hand is

reported.

One important factor that influences the receiver’s decision is the value of the

observed card. The upper panel of Figure 3 presents the acceptance rate conditional
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(a) Sr

(b) Rv

Figure 2: Individual propensity to reveal the higher card (Sr) or check the higher claim (Rv)

on the value observed by the receiver. Acceptance rates increase with the observed

value and are generally higher in Rv than Sr.

Result 3 Conditional on the observed value, the acceptance rate is higher in Rv than Sr.

This difference is significant for observed values 3-7 (p− value < 0.047 for each case).
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Figure 3: Acceptance rates conditional on the value of the observed card and corresponding rela-
tive frequencies of each observed value (reported good hands only; 1245 observations for Sr, 1242
observations for Rv)

The lower panel in Figure 3 depicts the relative frequency of each value observed

by receivers. Even though the same random draws are used for both treatments,

differences in the distributions of observed values arise from different behavior

across treatments. Specifically, the observed card in Sr is almost certain to be the

highest of the two, while this is not the case in Rv. Consequently, the distribution

of observed cards in Sr is very similar to the distribution of the maximum value of

the two cards, while the distribution in Rv is comparatively flat.

An implication of this is that, for a given value of the observed card, the hand is

more likely to be good in Rv than in Sr, hence the higher propensity to accept in Rv

may be justified (we will return to this point when we discuss Figure 4a below). It

is also worth noting that overall acceptance rates conditional on the sender claiming

to have a good hand are very similar (60% in Sr and 62% in Rv). The reason for this

is that, while the receiver is more likely to accept for a fixed value of the observed

card in Rv, she is also more likely to observe lower cards in Rv (and lower cards

are less likely to be accepted). We will also return to this later in our discussion of

payoffs.
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Another factor that influences receivers’ decisions is how the observed card com-

pares with the message. In Sr, senders hardly ever misreport the card they reveal

(less than 4% of the time), but in Rv a misreport is observed in 30% of cases. Re-

ceivers typically reject when observing a misreport (93% of the time in Sr and 95%

in Rv). Rejecting after observing a misreport is optimal for the receiver since only

about 10% of such hands are actually good hands. Figure 4a shows the acceptance

rates conditional on the value of the observed card given that no misreport is ob-

served.

(a)

(b)

Figure 4: Acceptance rates (a) and proportion of good hands (b) given that a good hand was claimed
and no misreport was observed (1199 observations for Sr, 862 observations for Rv)
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As the figure shows, the receiver is very likely to accept in Rv if no misreport is

observed. This behavior is not as costly as one may think since a) some bad hands

have been weeded out when a misreport is discovered (the sender’s messaging

behavior facilitates this) and b) the receiver’s verification strategy implies that the

card observed is not always the higher of the two. This is confirmed in Figure 4b

which shows the proportion of good hands when a good hand is reported and no

misreport is observed. The figure includes a dotted line at 50% - above this line, it

is optimal to accept, while below this line it is optimal to reject.10

In Sr, receivers are clearly better off rejecting values of 6 and less, and this is

what they usually do, though for the value of 6 they accept more than 40% of the

time. For values of 8 or 9, they are clearly better off accepting and this is what they

almost always do. When a 7 is observed, accepting would give a slightly higher

average payoff than rejecting, and receivers do so about two thirds of the time. In

Rv, the probability of a good hand remains close to 0.5 even for values as low as 3,

and so even though the receiver is too lenient for low observed values, the cost of

an acceptance decision is small in terms of payoffs.

To further investigate factors influencing receivers’ acceptance decisions we con-

duct a probit analysis. We include as explanatory variables the value of the observed

card, the value of the unverified claim, and a dummy for whether a misreport is

observed. We also include four control variables. We include a color dummy to

test whether receivers condition on the color of the observed card. We include a

good hand dummy to check whether there is any other information apart from the

included variables that may help (if they are more likely to accept a good hand) or

harm (if they are less likely to accept a good hand) receivers. We include a period

trend to check for potential learning effects. Finally, we include a gender dummy.

In Table 5 we present the results based on all periods (first two columns) and after

excluding the first five periods (third and fourth columns).

We begin by discussing the regressions based on all periods. The value of the

observed card has a significantly positive effect on the acceptance probability, but

the effect in Sr is more than twice that in Rv. In addition, the value of the unverified

claim has a significant, though smaller positive effect on the acceptance probabil-

10Optimality here refers to strategies that do not condition on other features of the message. In
principle, if the message is informative (for example, by always inflating bad hands up to the
bare minimum) it would be possible for the receiver to use the message to improve the accuracy
of the acceptance decision. Below, we check whether there is any evidence receivers are able to
distinguish between good and bad hands.
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Table 5: Probit analysis of acceptance decision

Dependent variable: Acceptance Decision

(all periods) (excluding first 5 periods)

Rv Sr Rv Sr

Value of observed card 0.110∗∗∗ 0.256∗∗∗ 0.131∗∗∗ 0.286∗∗∗

(0.025) (0.023) (0.027) (0.024)
Value of unverified claim 0.059∗∗∗ 0.048∗∗∗ 0.078∗∗∗ 0.049∗

(0.021) (0.018) (0.024) (0.026)
Misreport observed −0.722∗∗∗ −0.335 −0.742∗∗∗ −0.370

(0.039) (0.303) (0.033) (0.465)
Observed card = orange 0.040 0.020 0.053 0.057

(0.043) (0.039) (0.034) (0.043)
Hand = good 0.049 0.065∗ 0.005 0.041

(0.048) (0.032) (0.038) (0.043)
Period −0.006∗∗∗ −0.005∗∗∗ 0.000 −0.000

(0.001) (0.002) (0.003) (0.002)
Female −0.027 −0.035 −0.044 −0.041

(0.039) (0.063) (0.036) (0.061)

Observations 1,242 1,245 1,050 1,044

Notes: The table presents marginal effects; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01;
standard errors in parentheses are clustered at the matching group level.
The analysis excludes cases where the sum of the two reports was less than
11 (claimed bad hands).

ity in both treatments. Observing a misreport substantially reduces the receiver’s

acceptance probability; the estimated effect in Sr is not significant. In terms of the

control variables, the regressions give no evidence of a color bias or gender effect.

In Rv, it appears that after controlling for other variables, bad hands are as likely to

be accepted as good hands. In Sr, receivers are slightly more likely to accept good

hands; however, this effect is small and only marginally significant. The period

variable has a small but statistically significant coefficient in both treatments.

The significant period effect is essentially picking up an effect that takes place

over the first few periods. The last two columns of Table 5 report the same regres-

sion dropping the first five periods. We find that the period variable, and the good

hand dummy in Sr, are no longer significant, while the significance and approxi-

mate size of the other coefficients remain unchanged.
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5.2 Outcomes and payoffs

What are the implications of this behavior for outcomes and payoffs? Figure 5

shows the observed acceptance rates conditional on the value of the higher card, for

good and bad hands separately. The dashed lines represent the GR outcome, where

a hand is accepted if and only if it contains a 7+ card. In Sr, hands with a 7+ card

are usually accepted, and hands without a 7+ card are usually rejected. Thus, the

outcome of most hands in Sr is consistent with the GR outcome. Outcomes appear

to conform less well with the GR outcome in Rv.
(a) Bad hands (b) Good hands

Figure 5: Acceptance rates for a given value of the highest card

In Table 6, we present the acceptance rates, conditioning on whether the hand

is good or bad and on whether the hand is accepted or rejected in the GR outcome.

Hands that are rejected in the GR outcome (highest card < 7) are more likely to be

accepted in Rv than Sr. Bad hands that are accepted in the GR outcome (highest

card ≥ 7) are more likely to be accepted in Sr than Rv.

Table 6: Acceptance rates for good and bad hands conditional on the value of the highest card

Acceptance rate

Type of hand obs. Sr Rv p-value

Highest
card < 7

Bad hands 591 0.139 0.228 0.039
Good Hands 51 0.431 0.686 0.016

All hands 642 0.162 0.265 0.008

Highest
card ≥ 7

Bad Hands 218 0.679 0.440 0.039
Good hands 580 0.869 0.884 0.469

All hands 798 0.817 0.763 0.461

Turning to payoffs, note that the sender’s average payoff is simply the acceptance

rate. Although some types of senders get a higher payoff in Sr than Rv (e.g. senders
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with a bad hand and a 7+ card), other types prefer Rv to Sr (e.g. senders with a

bad hand and no 7+ card). Overall, it turns out that, averaging over types, the

sender’s payoff does not significantly differ between treatments (see Table 7). The

receiver’s average payoff is a weighted average of her payoffs from good and bad

hands, where her average payoff from good hands is the acceptance rate for good

hands and her average payoff from bad hands is one minus the acceptance rate for

bad hands. The receiver’s average payoff also does not differ significantly between

treatments (see Table 7).

Table 7: Average payoffs comparison across treatments

Sr Rv p− value

Receiver 0.767 0.782 0.641
Sender 0.525 0.541 0.469

Result 4 Average payoffs do not differ significantly between treatments.

5.3 Best-response analysis

Given that the sender always wants the receiver to accept, how should the receiver

respond to different messages and evidence? We answer this question by identify-

ing the optimal strategy for the receiver given the observed sender’s behavior. We

begin with Sr.

5.3.1 Sender reveals

In the Sr game, the receiver only has an acceptance decision to make. The infor-

mation available to the receiver when making this decision consists of the revealed

value and the sender’s message. How should the receiver use this information op-

timally? To identify an optimal benchmark, we allow the sender to condition on

the revealed value and the claim about the other card.11 Table 8 presents the pro-

portion of good hands conditional on the revealed value and the unverified claim.

11Thus, we ignore the claim about the revealed value. This does not affect the conclusions of our
analysis because misreports of the revealed value are rare (less than 5% of cases) and, when a
misreport is revealed, the optimal decision would be reached in over 95% of cases without using
this information.
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If this proportion is greater than 50%, it is optimal for the receiver to accept, and

these cells are highlighted (when the proportion of good hands is equal to 50%, any

decision is a best response). We refer to the strategy of making the optimal deci-

sion for each combination of revealed value and unverified claim as the empirical

best response. The resulting expected payoff is 0.827, and we refer to this as the

empirical optimum.

Table 8: Proportion of good hands given revealed value and unverified claim

Revealed Value
1 2 3 4 5 6 7 8 9

U
nv

er
ifi

ed
C

la
im

1 0% 0% 0% 0% 11% 0% 50% 33 % 0%
2 0% 0% 0% 0% 0% 0% 0% 0% 78%
3 0% 0% 0% 0% 0% 0% 0% 55% 88%
4 0% 0% 0% 0% 0% 0% 49% 52% 75%
5 0% 0% 0% 0% 0% 27% 43% 74% 89%
6 0% NA 0% 0% 0% 32% 74% 86% 98%
7 0% 0% 0% 0% 4% 50% 63% 88% 100%
8 NA 0% 10% 0% 10% 20% 67% 75% 100%
9 0% 3% 0% 0% 0% 0% 50% 100% 100%

Note: Highlighted cells represent the cases where accepting yields an expected payoff above 50%.

Next, we evaluate the performance of some alternative strategies. Table 9 presents

the alternatives. We categorize these based on the amount of information used to

inform the receiver’s strategy. For the strategies in which the receiver uses a thresh-

old acceptance rule, conditioning on the value of the observed card, we present the

threshold that gives rise to the highest payoff and the two closest thresholds.

First, note that if the receiver ignores messages and evidence, the best she can

do is to always reject since the prior probability of a good hand is below 50%. The

receiver can do substantially better by using evidence to inform the acceptance de-

cision; the optimal threshold rule is to accept if the revealed card is 7+. This is an

optimal commitment strategy and would result in the GR outcome if the sender

best responds to it. The receiver can do slightly better by considering both the mes-

sage and the evidence; the highest payoff in this class of strategies is achieved by

accepting when a 7+ is revealed and the hand is claimed to be good. This is also

an optimal commitment strategy. If the sender best responds to the receiver, these

optimal commitment strategies do equally well. However, because some senders

own up to having a bad hand, the strategy that considers both messages and evi-

dence does slightly better. In fact, the strategy of accepting if and only if a good
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Table 9: Receiver’s expected payoff given observed sender behavior in Sr

Strategy Payoff

Empirical Best Response 0.827

Ignore message and evidence
- - - accept or reject at random 0.500
- - - always reject 0.562

Ignore message
accept iff
- - - xk ≥ 8 0.794
- - - xk ≥ 7 0.810
- - - xk ≥ 6 0.750

Use message for acceptance decision
accept iff reported sum ≥ 11 &
- - - xk ≥ 8 0.800
- - - xk ≥ 7 0.822
- - - xk ≥ 6 0.768

hand is claimed and a 7+ is revealed prescribes very similar decisions to those of

the empirical best response, and as a result achieves a very similar payoff.

Result 5 Given the sender’s observed behavior in Sr, following the optimal commitment

strategy of accepting if and only if a good hand is claimed and a 7+ card is revealed gives

the receiver 99.40% of the empirical optimum.

5.3.2 Receiver verifies

For Rv, the receiver must decide which card to verify and whether to accept or reject.

We allow the verification strategy to depend on the message, and the acceptance

decision to depend on the message and on whether the verified card was equal to

the claim or misreported.

Given the actual sender behavior in the Rv treatment, should the receiver check

the card corresponding to the highest or to the lowest claim? Moreover, should

she pay attention to the unverified claim? Lastly, which values should the receiver

accept? First, if the sender reports a bad hand, the hand is almost certainly bad

(only 1 out of 198 reported bad hands is good). In this case, it is optimal to reject

independent of which card is checked and whether the check reveals a truthful

claim or a lie.

25



5 results

What about the hands that are reported as good? In Table 10 we present the

payoffs corresponding to each checking and acceptance decision for all messages

representing reported good hands. We see that checking the highest claim and

accepting if this is true is the better choice for most messages since it leads to

a higher expected payoff. Why is it better for the receiver to accept only if the

checked claim turns out to be true? This is because the vast majority of discovered

misreports (i.e. 89.76%) represent bad hands.
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Table 10: Receiver’s best response to sender messages in Rv

Message12
Absolute
frequency

of message

Absolute
frequency of
good hands

given message

Expected payoff
from: check

highest claim &
accept if true13

Expected payoff
from: check

lowest claim &
accept if true14

Expected payoff
from: check

either claim &
always reject15

Expected payoff
from: check

either claim &
always accept16

(9,9) 55 32 0.773 0.773 0.418 0.582
(9,8) 40 35 0.900 0.900 0.125 0.875
(9,7) 45 38 0.978 0.933 0.156 0.844
(9,6) 36 34 0.972 0.944 0.056 0.944
(9,5) 55 45 0.909 0.945 0.182 0.818
(9,4) 29 24 0.966 0.862 0.172 0.828
(9,3) 55 35 0.800 0.836 0.364 0.636
(9,2) 73 23 0.932 0.438 0.685 0.315
(8,8) 31 22 0.726 0.726 0.290 0.710
(8,7) 40 29 0.850 0.850 0.275 0.725
(8,6) 51 40 0.941 0.843 0.216 0.784
(8,5) 52 37 0.885 0.827 0.288 0.712
(8,4) 69 27 0.739 0.681 0.609 0.391
(8,3) 117 32 0.786 0.496 0.726 0.274
(7,7) 47 24 0.872 0.872 0.489 0.511
(7,6) 41 31 0.902 0.927 0.244 0.756
(7,5) 81 30 0.691 0.704 0.630 0.370
(7,4) 129 38 0.798 0.527 0.705 0.295
(6,6) 56 25 0.696 0.696 0.554 0.446
(6,5) 140 30 0.586 0.621 0.786 0.214

Note: Highlighted cells represent receiver’s optimal payoff for a given message.

12Each message gives the highest claim first and ignores whether this claim refers to the blue or orange card.
13Computed by counting the instances in which the highest claim is untrue and the hand is bad and those where the highest claim is true and the hand is

good. This is then divided by the frequency of the corresponding message.
14Computed by counting the instances in which the lowest claim is untrue and the hand is bad and those where the lowest claim is true and the hand is

good. This is then divided by the frequency of the corresponding message.
15Computed by counting the number of bad hands and then dividing by the frequency of the corresponding message.
16Computed by counting the number of good hands and then dividing by the frequency of the corresponding message.
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Next, the receiver should check the highest claim as this claim is more likely to

be false. Since a misreport is very often a bad hand, checking the highest claim

allows the receiver to take as many bad hands out of the sample as possible by

rejecting. This also increases the probability that the hand is good conditional on

the claim being true and reduces the number of errors in case of acceptance. In

cases where this probability is less than 50% for both messages, it is optimal to

reject all hands and which message is checked is immaterial. This is the case of the

(6,5) message when the receiver is better off rejecting even if the observed value is

as reported.

The receiver’s expected payoff from best responding to each message is 0.853.

How does this payoff compare to what the receiver could get from other possible

strategies? Table 11 presents some alternatives. Again, we categorize these based

on the amount of information used to inform the receiver’s strategy.17

We start by recalling that there are more bad hands than good hands, hence the

receiver can obtain more than 50% by rejecting, regardless of messages or evidence.

By checking at random and accepting if the observed card is high enough, the

receiver does even better. The optimal threshold is to accept if the observed card

is 6+ (leading to a payoff of 0.752). The receiver does even better using the ”fair

random mechanism” of checking at random and accepting if a good hand is claimed

and no misreport is observed (0.792).

Using messages to inform the checking decision is potentially beneficial. Table

11 shows that checking the high claim is better than checking the low claim (or

checking at random). The best performing strategy in this category checks the

high claim and accepts if a 7+ is observed (0.817). Interestingly, this is an optimal

commitment strategy: if the sender best responds it leads to the GR outcome.

The final category of strategies use messages for both checking and acceptance

decisions. It turns out that it pays to use messages in this way. The best perform-

ing strategy is to check the higher claim and accept if and only if no misreport is

observed, a good hand is claimed, and the observed value is 7+, and this gives a

payoff of 0.848. This is also an optimal commitment strategy. Note that although

there are multiple optimal commitment strategies, all leading to the GR outcome if

the sender best responds, they do not perform equivalently given senders’ observed

17For the strategies in which the receiver uses a threshold acceptance rule based on the value of the
observed card we present the threshold that gives the highest payoff and the two closest thresholds.
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Table 11: Receiver’s expected payoff given observed sender behavior in Rv

Strategy Payoff

Empirical Best Response 0.853

Ignore message
accept or reject at random 0.500
always reject 0.562
check at random & accept iff:
- - - xk ≥ 7 0.740
- - - xk ≥ 6 0.752
- - - xk ≥ 5 0.740

Use message for acceptance decision only
check at random & accept iff:
- - - mk = xk & mi + mj ≥ 11 (fair random) 0.792

Use message for checking decision only
check lower claim & accept iff:
- - - xk ≥ 6 0.731
- - - xk ≥ 5 0.758
- - - xk ≥ 4 0.730
check higher claim & accept iff:
- - - xk ≥ 8 0.796
- - - xk ≥ 7 0.817
- - - xk ≥ 6 0.772

Use message for checking and acceptance decision
check lower claim & accept iff:
- - - mk = xk & mi + mj ≥ 11 0.753
- - - mk = xk & mi + mj ≥ 11 & xk ≥ 5 0.765
- - - mk = xk & mi + mj ≥ 11 & xk ≥ 4 0.766
- - - mk = xk & mi + mj ≥ 11 & xk ≥ 3 0.765
check higher claim & accept iff:
- - - mk = xk & mi + mj ≥ 11 0.831
- - - mk = xk & mi + mj ≥ 11 & xk ≥ 8 0.802
- - - mk = xk & mi + mj ≥ 11 & xk ≥ 7 0.848
- - - mk = xk & mi + mj ≥ 11 & xk ≥ 6 0.831
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behavior. In fact, using the message to inform acceptance pays off because it allows

the receiver to take advantage of cases where the sender owns up to having a bad

hand or misreports the high card.

Result 6 Given the sender’s observed behavior in Rv, following an optimal commitment

strategy of checking the higher claim and accepting if and only if no misreport is observed,

a good hand is claimed, and the observed value is 7+, gives the receiver 99.41% of the

empirical optimum.

6 conclusion

Sender-receiver games in which a sender’s cheap talk claims are partially backed

by evidence reflect many natural environments. In buyer-seller interactions a buyer

is often exposed to a sales pitch or advertisements but can also test products (e.g.

test-drive a car or download a sample of software). In lobbying environments, pol-

icy makers listen to claims of lobbyists but can also investigate claims. Such settings

have been analysed in a growing theoretical literature, but they have attracted lit-

tle experimental research. In this paper we introduce an experimental approach

focussing on two theoretical models of Glazer and Rubinstein (2004, 2006).

While Glazer and Rubinstein focus on optimal mechanisms where the receiver

can commit to a verification/acceptance rule, we focus on non-cooperative games in

which the receiver cannot commit. We study two games in which a sender has pri-

vate information about two aspects. These aspects determine whether the sender’s

type is good or bad, where the receiver’s optimal action is to accept good types and

reject bad types and all sender types want the receiver to accept. The sender makes

claims about both aspects and the receiver, before making a decision, then gets ev-

idence about one of them. The games differ in the control the receiver has over

the available information. In the “Sender reveals” game the sender chooses which

cheap talk claim to back up with evidence, while in the “Receiver verifies” game

the receiver chooses which cheap talk claim to verify. Both games have multiple

equilibria, including, but not limited to, equilibria that result in the same outcome

as the optimal commitment strategy.

We find that in the “Sender reveals” game, senders almost always reveal their

strongest aspect. When the sender’s type is bad, they usually accompany this with
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an inflated claim about the weaker aspect. The receiver’s acceptance behavior de-

pends on both the observed evidence and the claim about the unverified aspect.

Receivers almost always reject when senders claim to be a bad type. When senders

claim to be a good type, acceptance behavior can be described as a noisy best re-

sponse: they are more likely to accept the higher the observed aspect, while the best

response would be a threshold strategy.

In “Receiver verifies”, senders also usually misreport when their type is bad.

Receivers respond to the message with a ”random auditing” strategy. They are

more likely to check the higher claim but check the lower claim about a third of

the time. Moreover, receivers almost always reject if they uncover a misreport, and

usually accept when the evidence is consistent with the sender’s claim.

There are some notable differences between the two treatments. For example,

the receiver is less likely to observe the strongest aspect in “Receiver verifies”, and

acceptance behavior is more sensitive to the value observed in “Sender reveals”.

This translates into some differences in outcomes; for example when the sender’s

type is bad but the sender has one sufficiently strong aspect, the sender would fare

better in “Sender reveals” (and the receiver would fare better in “Receiver verifies”).

Conversely, when the sender’s type is bad and neither aspect is sufficiently strong,

the sender would fare better in “Receiver verifies” (and the receiver would fare

better in “Sender reveals”). Overall, averaging over all possible sender types, there

are no significant differences in payoffs between treatments.

Given the observed senders’ behavior, we find a simple receiver strategy for each

game that would give the receiver more than 99% of her best possible payoff. For

“Sender reveals”, the strategy involves accepting if and only if the sender claims

a good type and the aspect revealed is sufficiently high. For “Receiver verifies”,

this strategy involves checking the high claim, and accepting if and only if the

observed aspect is sufficiently high, no misreport is detected, and the sender claims

to be a good type. Interestingly, these strategies are optimal commitment strategies

in a situation where the receiver can commit to verification/acceptance rules as

shown by Glazer and Rubinstein (2004, 2006). Thus, the strategies they identify

are not only theoretically optimal commitment strategies, they also provide good

recommendations for how a receiver should play our games.
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A appendix

A P P E N D I X

a sequential equilibrium definition in rv and sr

a.1 The Rv game

An equilibrium consists of a sender’s message strategy σ(m|x), a receiver’s check-

ing rule π1(m), a receiver’s decision rule for each aspect, d1(m, y1) and d2(m, y2),

where yk is the observed value of aspect k = 1, 2, receiver’s beliefs after each mes-

sage, b(x|m), and receiver’s beliefs after having checked an aspect, b1(x|m, y1) and

b2(x|m, y2), satisfying the conditions (i)-(v) below.

In what follows, denote by bk(yk|m) = ∑x:xk=yk
b(x|m) the belief probability the

receiver assigns to observing value yk if she checks aspect k after receiving message

m.

Also, denote by gk(m, yk) = ∑x∈G bk(x|m, yk) the belief probability that the re-

ceiver assigns to the sender being a good type after receiving message m, checked

aspect k and observed value yk.

(i) (Sender sequential rationality) For all x ∈ X, m ∈ M, σ(m|x) > 0 ⇒ m ∈
arg maxm′∈M US(m′|x), where US(m′|x) = π1(m′)d1(m′, x1) + [1− π1(m′)]d2(m′, x2)

is the probability that type x is accepted if he sends message m′, given the receiver’s

strategy.

(ii) (Sequential rationality of the receiver’s decision rule) For all m ∈ M, yk ∈ Xk

and k = 1, 2, the receiver sets dk(m, yk) = 1 if gk(m, yk) > 0.5, and dk(m, yk) = 0 if

gk(m, yk) < 0.5.

(iii) (Sequential rationality of the receiver’s checking rule)

For all m ∈ M, π1(m) = 1 if

∑
y1

b1(y1|m)[d1(m, y1)g1(m, y1) + [1− d1(m, y1)][1− g1(m, y1)]]

> ∑
y2

b2(y2|m)[d2(m, y2)g2(m, y2) + [1− d2(m, y2)][1− g2(m, y2)]]
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and π1(m) = 0 if

∑
y1

b1(y1|m)[d1(m, y1)g1(m, y1) + [1− d1(m, y1)][1− g1(m, y1)]]

< ∑
y2

b2(y2|m)[d2(m, y2)g2(m, y2) + [1− d2(m, y2)][1− g2(m, y2)]]

(iv) (Consistency of receiver beliefs after receiving the message)

For all x ∈ X, m ∈ M,

b(x|m) =
σ(m|x)px

∑z∈X σ(m|z)pz
whenever ∑

z∈X
σ(m|z)pz > 0.

(v) (Consistency of receiver beliefs after having checked an aspect)

For each k = 1, 2 it holds that bk(x|m, yk) = 0 for all x such that xk 6= yk, and

bk(x|m, yk) =
σ(m|x)px

∑z:zk=yk
σ(m|z)pz

whenever ∑
z:zk=yk

σ(m|z)pz > 0 and xk = yk.

Condition (i) requires that the sender only sends messages that maximize the

probability that the receiver accepts. Condition (ii) requires that the receiver takes

the action that maximizes the probability of taking the right decision (i.e., accepting

a good type or rejecting a bad type) given the message, the aspect checked, the

value observed and the beliefs. In order to do this, the receiver should accept if she

believes that the type is more likely to be good than bad, and reject if she believes

the type is more likely to be bad. Condition (iii) requires that, given the receiver’s

beliefs after receiving the message, the receiver checks the aspect that maximizes

the probability of taking the right decision.

Conditions (iv) and (v) state that the receiver’s beliefs must be determined by

Bayes rule whenever possible, given the prior and the players’ strategies. Condition

(iv) requires that, for messages observed on the equilibrium path, the belief proba-

bility assigned by the receiver to type x after observing message m is derived as the

probability that the sender is of type x and sends message m divided by the total

probability of message m being sent. If ∑z∈X σ(m|z)pz = 0, no sender type ever

sends message m, so the receiver’s beliefs are not constrained by Bayes rule. The

35



A appendix

sequential equilibrium refinement does not bite either, since it is possible to support

any beliefs as the limit of a sequence. Condition (v) requires that the receiver rules

out sender types with xk 6= yk after observing yk; for other types, the belief proba-

bility is the ratio of the probability that the sender is of type x and sends message

m divided by the overall probability that the sender is of a type with zk = yk and

sends message m. If message m is never sent by a type with zk = yk, the receiver’s

beliefs are not constrained except by the value yk itself (i.e., the receiver may have

any beliefs as long as the total probability of 1 is distributed among types with

zk = yk).

a.2 The Sr game

An equilibrium consists of a sender’s message strategy σ(m|x), a sender’s revela-

tion rule ρ1(x, m) (with ρ2(x, m) := 1− ρ1(x, m)), a receiver’s decision rule for each

aspect revealed, d1(m, y1) and d2(m, y2), where yk is the observed value of aspect

k = 1, 2, and receiver’s beliefs after receving the message and observing the ac-

tual value of an aspect, b1(x|m, y1) and b2(x|m, y2), satisfying the conditions (i)-(iii)

below.

Let σ(m, k|x) = σ(m|x)ρk(x, m) denote the probability that type x sends message

m and reveals aspect k. Analogously to Rv, denote by gk(m, yk) = ∑x∈G bk(x|m, yk)

the belief probability that the receiver assigns to the sender being a good type given

that the sender sends message m, reveals aspect k and the observed value is yk.

(i) Sender sequential rationality

For any type x ∈ X, any message m ∈ M and any aspect k = 1, 2, σ(m, k|x) > 0

implies dk(m, xk) ≥ dj(m′, xj) for all m′ ∈ M, j = 1, 2.

(ii) Receiver sequential rationality

For all m ∈ M, yk ∈ Xk and k = 1, 2, the receiver sets dk(m, yk) = 1 if gk(m, yk) >

0.5, and dk(m, yk) = 0 if gk(m, yk) < 0.5.

(iii) Consistency of receiver beliefs
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For each k = 1, 2 it holds that bk(x|m, yk) = 0 for all x such that xk 6= yk, and

bk(x|m, yk) =
σ(m, k|x)px

∑z:zk=yk
σ(m, k|z)pz

whenever ∑
z:zk=yk

σ(m, k|z)pz > 0 and xk = yk.

Condition (i) states that the sender strategy maximizes the probability of accep-

tance. If a combination of message and aspect being revealed has positive proba-

bility, it must be the case that the sender cannot do better by sending a different

message and/or revealing a different aspect.

Condition (ii) is identical to the corresponding condition in Rv.

Condition (iii) is analogous to the corresponding condition in Rv, but not iden-

tical. Given that the sender decided to reveal aspect k and that the value of aspect

k is yk, the receiver must rule out all types x with xk 6= yk. For sender types with

xk = yk, the probability that the sender is of type x equals the probability that the

sender sends message m and reveals aspect k, divided by the total probability that

a sender has value yk of aspect k and reveals aspect k. When the sender reveals,

two senders with the same value of aspect k may send the same message but have

different probabilities of revealing aspect k; when the receiver chooses which aspect

is observed, any two senders that send the same message must induce the same

probability of observing aspect k, since the receiver has no way to distinguish the

two cases.
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b optimal commitment strategies in rv and sr games

b.1 Receiver Verifies

We will apply Glazer and Rubinstein (2004) proposition 0 (the L-principle). Glazer

and Rubinstein define an L-set to be a set of three types, where x ∈ G, y ∈ X\G
and z ∈ X\G, such that x1 = y1 and x2 = z2, that is, each of the bad types differs

from the good type in the value of exactly one aspect. The idea of the L-principle is

that, since the receiver can only verify one aspect and the sender best replies to the

strategy of the receiver, the receiver must make a mistake for at least one of these

three types. Either the good type x is rejected, in which case the receiver is making

an error for this type, or the good type x is accepted after the receiver checks aspect

1 (in which case the bad type y must be accepted as well, since a sender of type y

would have the option of pooling with type x), or the good type x is accepted after

the receiver checks aspect 2 (in which case the bad type z must be accepted as well,

since a sender of type z would then be able to pool with type x). A consequence

of proposition 0 is that, when the prior probability distribution is uniform as in our

case, ”an optimal mechanism can be found by using a technique that relies on the

L-principle: finding a mechanism that induces H mistakes, and finding H disjoint

L-sets” (Glazer and Rubinstein, 2004, p. 1721). The number of disjoint L-sets sets

a lower bound on the receiver’s mistake probability. Thus, the L-principle ensures

that a mechanism leading to the same number of mistakes as the number of disjoint

L-sets is optimal for the receiver.18

Table B1 shows the set of possible types in our game, and indicates the good

types by the letter G. We mark 15 disjoint L-sets (the three elements of each L are

indicated by the same number; for example, types (9, 2), (9, 1) and (1, 2) constitute

and L-set). Thus, by the L-principle, there is no commitment strategy that yields

fewer than 15 mistakes when the sender best responds. A receiver commitment

strategy that, when the sender best responds to it, results in all types with 7+ being

accepted and all other types being rejected implies 15 mistakes for the receiver,

and hence is an optimal commitment strategy. An example of such a strategy is

18The reference to the ”number of mistakes” suggests a deterministic strategy on the part of the
receiver. Glazer and Rubinstein point out on p. 1721 that when the prior distribution of types
is uniform, the optimal mechanism does not require randomization when the sender’s aim is to
persuade the receiver that the average [or, equivalently, the sum] of the two aspects is above a
certain threshold.
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checking the higher claim and accepting if and only if the aspect observed is 7+.

Our example is analogous to Example 2 in Glazer and Rubinstein (2004) and the

table below is analogous to Figure 2 in Glazer and Rubinstein (2004). Note that our

notation differs slightly from theirs: we denote the set of good types by G, while

they denote it by A.

Table B1

9 15 G15 G G G G G G G
8 13 14 G13 G14 G G G G G
7 10 11 12 G10 G11 G12 G G G
6 9 8 6 G9 G8 G6 G G

x2 5 5 7 G7 G5 G G
4 3 4 G4 G3 G
3 2 12 6 G2 G
2 1 10 9 8 5 3 G1
1 15 13 14 11 7 4 2 1

1 2 3 4 5 6 7 8 9
x1

b.2 Sender Reveals

Glazer and Rubinstein (2006) show that the same L-principle technique can be ap-

plied to the game where the sender chooses which aspect to reveal (see Lemma 2

on p. 400 of their paper; note also that their Proposition 1 shows that there is an

optimal commitment strategy that is deterministic, so there is no loss in focusing on

deterministic commitment strategies). Therefore, as per the above analysis for the

Rv game, a commitment strategy that, when the sender best responds, induces 15

mistakes is an optimal commitment strategy for the receiver. An example of such a

strategy is to ignore the message and accept if and only if a 7+ aspect is revealed.

This strategy results in hands with a 7+ aspect being accepted and other hands

being rejected, just as the strategy we presented for Rv.

39



C appendix

c proof that the gr outcome can be supported as a sequential

equilibrium

There are multiple sequential equilibria resulting in the GR outcome in both games.

In this section we describe two equilibria that differ in the role of messages for each

game.

c.1 Receiver verifies

We start by presenting a sequential equilibrium in which the message informs the

checking decision (by pointing the receiver to a 7+ aspect if the sender has one),

but the acceptance decision is independent of whether the value observed coincides

with the message.

c.1.1 A sequential equilibrium leading to the GR outcome where the message is used for

the checking decision only

Let the sender’s message strategy be as in Table C1 below, where the first entry in

a cell is the reported value of x1, and the second entry is the reported value of x2;

for empty cells the sender randomizes between messages (1,9) and (9,1).

Table C1

9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9
8 1,9 1,9 1,9 1,9 1,9 1,9 1,9 9,1
7 1,9 1,9 1,9 1,9 1,9 1,9 9,1 9,1
6 9,1 9,1 9,1

x2 5 9,1 9,1 9,1
4 9,1 9,1 9,1
3 9,1 9,1 9,1
2 9,1 9,1 9,1
1 9,1 9,1 9,1

1 2 3 4 5 6 7 8 9
x1

In words, the sender’s strategy only uses two messages. If both aspects are

equal, or if the sender has no 7+ aspect, the sender sends one of the two messages
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at random. Otherwise the sender reports the higher value as 9 and the lower value

as 1.

We now construct a strategy for the receiver such that the sender and receiver

strategies, together with appropriate beliefs, constitute a sequential equilibrium.

The receiver’s checking strategy is to check the higher claim, checking at ran-

dom if both reports are equal. The acceptance strategy for messages (9, 1) and (1, 9)

is as follows: conditional on having checked the higher claim, accept if and only if

a 7+ value is observed. Conditional on having checked the lower claim (i.e., con-

ditional on the receiver having deviated from their own checking strategy), accept

if and only if a 5+ value is observed. For messages other than (9, 1) and (1, 9),

the acceptance strategy is to accept if and only if a 7+ is observed irrespective of

what claim was checked. We now check the optimality of the receiver’s acceptance

strategy, starting from subgames on the equilibrium path.

Suppose the message was (9, 1) (the case (1, 9) is analogous) and, having checked

the higher claim (i.e. the first aspect), the receiver observes a value of 7. Given the

messaging strategy it is not possible for the value of the second aspect to be 8 or

9 (those sender types send message (1, 9)). The second aspect may be any value

from 1 to 7; those values are equally likely except 7 itself, which is only half as

likely given that types of the form (7, x2) with x2 < 7 send message (9, 1) while

type (7, 7) randomizes between (9, 1) and (1, 9). The probability of a good type is

then 3.5
6.5 = 7

13 > 0.5, hence it is optimal for the receiver to accept, which is what the

acceptance strategy specifies. An analogous reasoning applies if the value observed

is 8 or 9 (the corresponding probabilities of a good type are 11
15 and 15

17 ).

Now suppose the message was (9, 1) and, having checked the first aspect as the

checking rule specifies, the receiver observes a value of 6. Given the sender’s mes-

saging strategy, the second aspect may be 1, 2, 3, 4, 5 or 6, and all these values have

the same probability because types of the form (6, x2) with x2 ≤ 6 send message

(9, 1) with probability 0.5, while types of the form (6, x2) with x2 > 6 never send

message (9, 1). The probability that the type is good is then equal to 2
6 , and it is op-

timal for the receiver to reject, which is what the acceptance strategy specifies. An

analogous reasoning applies if the value observed is 5 or less (the corresponding

probabilities of a good type are 1
6 if 5 is observed and 0 if 4 or less is observed).
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Still dealing with subgames on the equilibrium path, let us look at the optimality

of the receiver’s checking strategy, conditional on having received message (9, 1) or

(1, 9). The receiver’s checking strategy is optimal if it minimizes the overall proba-

bility of error. The overall probability of error is the probability of error conditional

on the observed value, weighted by the probability of observing that particular

value. The tables below show these probabilities conditional on message (9, 1) or

(1, 9) being received, depending on whether the receiver checks the higher claim

(Table C2) or the lower claim (Table C3).

In Table C2 below, the first column contains each possible value that may be

observed. The second column contains the probability of observing each value; this

probability depends on the sender’s messaging strategy and on the fact that the

receiver is checking the higher claim. The third column contains the probability of

a good type conditional on the observed value. The fourth column gives the proba-

bility of error that results from the receiver’s acceptance strategy for each possible

observed value. The overall probability of error if the receiver checks the aspect

reported as 9 and takes the optimal acceptance decision can then be calculated as
6
81 ·

1
6 +

6
81 ·

1
3 +

13
81 ·

6
13 +

15
81 ·

4
15 +

17
81 ·

2
17 = 5

27 .

Table C2: Probabilities after receiving (1,9) or (9,1) and checking the higher claim

yi Prob(yi) Prob(GoodHand|yi) Prob(Error|yi)

1 6
81 0 0

2 6
81 0 0

3 6
81 0 0

4 6
81 0 0

5 6
81 1/6 1/6

6 6
81 1/3 1/3

7 13
81 7/13 6/13

8 15
81 11/15 4/15

9 17
81 15/17 2/17

If the receiver checks the lower claim after receiving message (9, 1) or (1, 9), the

relevant probabilities can be found in Table C3 below. The table also illustrates that

accepting if the observed aspect is 5+ is optimal in this situation, precisely what

the receiver’s strategy specifies. The overall error probability if the receiver checks

the lower claim and takes the optimal acceptance decision is 7
27 , which is above 5

27 .

This shows the optimality of the checking strategy of the receiver conditional on
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having received message (9, 1) or (1, 9): the receiver is less likely to make an error

by checking the higher claim.

Table C3: Probabilities after receiving (1,9) or (9,1) and checking the lower claim

yi Prob(yi) Prob(GoodType|yi) Prob(Error|yi)

1 12
81 0 0

2 12
81 1/6 1/6

3 12
81 1/3 1/3

4 12
81 0.5 0.5

5 12
81 7/12 5/12

6 12
81 2/3 1/3

7 5
81 1 0

8 3
81 1 0

9 1
81 1 0

We have established the optimality of the receiver’s checking and acceptance

strategies conditional on message (9, 1) or (1, 9) being received. Receiver beliefs

about the probability of a good type or about the probability of observing each

value follow directly from the strategies and Bayes rule.

There are other information sets that are not reached given the strategy of the

sender, namely information sets where messages other than (9, 1) and (1, 9) are

used. We can construct a sequence of fully mixed strategies for the sender that

converge to the strategy played, and that would induce beliefs that would make

it optimal for the receiver to check the higher claim and accept if and only if the

observed value is 7+, also for other messages.19

For example, consider the following fully mixed strategy: senders with a 7+ as-

pect send the message prescribed by Table C1 with probability 1− ε and randomize

between all 81 messages with the remaining probability; senders with no 7+ aspect

send the message prescribed by Table C1 with probability 1− 2ε and randomize

between all 81 messages with the remaining probability. Receiver’s beliefs for mes-

sages other than (9, 1) and (1, 9) are constructed from this fully mixed strategy

using Bayes rule.

19In principle we would also need to specify a fully mixed strategy for the receiver but the details
of this strategy are of no consequence. For example, let the receiver check the higher claim with
probability 1− ε and then take the optimal acceptance decision with probability 1− ε.
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This sender strategy clearly converges to the strategy specified earlier as ε →
0. Furthermore, if a message other than (9, 1) or (1, 9) is received, it does not

matter which of the two reports is checked, hence the receiver may as well check

the higher claim if the two reports are different, and check at random if they are

equal (the probability of observing each of the 9 possible values of an aspect and

the probability of a good type conditional on the value observed do not depend on

which claim is checked). As for the acceptance strategy, accepting if and only if the

value observed is 7+ is still optimal. In particular, if a value of 6 is observed, given

that types without a 7+ aspect are disproportionately likely to deviate, the type is

slighly more likely to be bad than good. This is crucial since otherwise the receiver

would accept 6 given a message other than (9, 1) and (1, 9), and the sender would

then have an incentive to deviate.20

c.1.2 A sequential equilibrium leading to the GR outcome where the receiver uses the

message to inform both the checking and the acceptance strategy

The sender’s messaging strategy is in Table 2.

The receiver’s strategy is to check the higher claim (checking at random if both

reports are equal) and accept if and only if a good type is reported, the observed

value coincides with the claim and the observed value is 7+.21

The sender’s strategy is optimal since, given the receiver’s strategy, it results

in all sender types with a 7+ being accepted; this is the best the sender can do

given that the receiver’s strategy conditions acceptance on observing a 7+ aspect,

so senders with no 7+ aspect cannot be accepted.

As for the receiver strategy, let us begin by the subgames in which the sender

is sticking to the messaging strategy in Table 2. In some of the cells (for example

(4, 4)) the sender is reporting a bad type. All bad type reports in Table 2 are sent

by senders with bad types, hence it is optimal for the receiver to (check the higher

claim and) reject, which is what the strategy specifies. In other cells (for example

(9, 5)) the sender has a good type and is reporting it truthfully; no other sender type

20If a value of 6 is observed, the other aspect may be any value between 1 and 9 but the distribution
is not uniform. Each value between 1 to 6 is twice as likely to occur as each value between 7 and
9, hence the probability of a good type conditional on observing a value of 6 would be 7/15. If a 7
is observed, we know a sender type with a 7+ aspect has deviated, and the other aspect is equally
likely to be any value between 1 and 9; the probability of a good type is then 6/9.

21The 7+ threshold is relaxed at some information sets that are not reached in equilibrium, see below.
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is sending the same message, so it is optimal for the receiver to (check the higher

claim and) accept.22 Finally, there are messages such that the sender is reporting a

good type, and these messages are sent by several sender types. The types that send

those messages form an L-set (cf Table B1). For example, if the message received

is (9,2), the receiver’s prescribed strategy is to check the higher claim and, if the

value observed is indeed a 9, accept. Conditional on the message and on observing

a 9, the type is equally likely to be (9,2) and (9,1), so it is optimal for the receiver to

accept; if a 1 is observed, the type is sure to be a bad type, hence the receiver should

reject which is what the strategy specifies. Could the receiver have done better by

checking the lower claim upon receiving message (9,2)? Conditional on observing

a value of 2, the type is equally likely to be (9,2) and (1,2); it is (weakly) optimal to

reject as the strategy specifies. If a 1 is observed, the type is sure to be (9,1) given

the sender’s strategy, and it is optimal to reject as the strategy specifies. Overall,

the probability of error is 1/3 irrespective of which message is checked (the receiver

erroneously accepts type (9, 1) if the higher claim is checked and erroneously rejects

type (9, 2) if the lower claim is checked), so it is optimal to check the higher message.

Something analogous happens for messages like (6, 6), where the sender reports a

good type but the receiver rejects. After checking either message, if a 6 is observed

the type has an equal probability of being good or bad and it is weakly optimal to

reject; if a 2 is observed instead, the type is sure to be a bad type and it is optimal

to reject.

In all the subgames above, the sender is sticking to their prescribed strategy and

the receiver’s beliefs follow by Bayes rule.

We now turn to the optimality of the receiver strategy for combinations of values

and messages that cannot be observed given the sender strategy (this involves all

messages that are never sent by the sender in equilibrium as well as cases such as

receiving message (9, 2) and, having checked the first aspect, observing a value of

5). The definition of sequential equilibrium requires the receiver to have beliefs that

make it optimal for the receiver to check the higher claim and (irrespective of what

claim was checked) accept if and only if a good type is reported, the value observed

coincides with the claim, and the value observed is 7+.
22Similarly to the previously described equilibrium, there is some relaxation of the acceptance thresh-

old at information sets where the receiver deviates from their own checking strategy. Since there
are messages that are only sent by good types, the receiver’s acceptance strategy if the lower claim
is checked is to accept if one of those messages are received and the value observed coincides with
the message. The receiver cannot gain from checking the lower claim for these messages.
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Let the receiver beliefs place probability 1 on the type being bad for all those

situations that have 0 probability given the sender’s strategy. In order to have a

sequential equilibrium, these beliefs must be obtainable as the limit of a sequence

of beliefs, which themselves are derived (by Bayes rule) from a sequence of fully

mixed sender strategies that converge to the strategy in Table 2.

The auxiliary sequence of fully mixed strategies for the sender is as follows.

Senders with a good type send the message prescribed by Table 2 with probabil-

ity 1− ε2 and randomize between all 81 messages with the remaining probability;

senders with a bad type send the message prescribed by Table 2 with probability

1− ε and randomize between all 81 messages with the remaining probability. Re-

ceiver beliefs are the limit when ε → 0 of the beliefs that follow from this sequence

by Bayes rule. At any subgame that cannot be reached given the sender strategy,

the receiver is certain that the type is bad.

For example, suppose the receiver gets message (7, 4) and, upon checking the

higher claim, observes a 9. The receiver then believes that the type is certain to

be (9, 1), and rejects. This belief can be constructed as the limit when ε → 0 of
1

81 ε
1

81 ε+ 8
81 ε2 = 1

1+ε . Hence, we can construct beliefs that justify the receiver rejecting

when the observed value does not coincide with the message, even if the observed

value is 7+. Analogously, if the receiver gets a message that is not in Table 2 such

as (8, 2), the receiver believes that the message comes from a bad type, even if the

observed value coincides with the claim. Note that all messages not used in Table 2

correspond to reported bad types. The beliefs we have constructed make it optimal

for the receiver to reject when a bad type is reported, irrespective of the observed

value or of whether it coincides with the claim.

The checking strategy is also optimal off the equilibrium path. If a message off

the equilibrium path is observed, the receiver is indifferent between checking the

higher and the lower claim, so may as well check the higher claim.
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c.2 Sender reveals

c.2.1 A sequential equilibrium leading to the GR outcome where the acceptance decision

does not depend on the message

The sender sends one of the 81 possible messages at random, and reveals the aspect

with the higher value (revealing one aspect at random if both aspects have the same

value). The receiver accepts if and only if the observed value is 7+ irrespective of

the message.

This strategy combination leads to the GR outcome: all types with a 7+ are

accepted, and all other types are rejected.

To see that this is a sequential equilibrium, note that the strategy of the sender

is a best response: all types with a 7+ are accepted, while other types cannot be

accepted given the receiver’s strategy. As for the strategy of the receiver, it is a best

response because, conditional on a 7+ value being observed, the type is more likely

to be good than bad (and this is true irrespective of the message); conditional on a

value under 7 being observed, the type is more likely to be bad than good (again,

irrespective of the message). For example, if a 7 is observed, the other aspect may

be any value between 1 and 7, with 7 itself being only half as likely; this results

in a probability of 7
13 > 0.5 that the type is good, so it is optimal to accept as the

strategy specifies. If a 6 is observed, the other aspect may be any value between 1

and 6, with 6 itself being half as likely; this results in a probability of 3
11 < 0.5 that

the type is good, so it is optimal to reject as the strategy specifies.

Note also that we have constructed the strategy of the sender in such a way that

all combinations of messages and values are observed in equilibrium, so the receiver

never knowingly encounters an off-equilibrium information set and the sequential

equilibrium requirement does not bite. The sender’s messaging strategy is already

fully mixed, and a fully mixed revelation strategy can be constructed in such a way

that the sender reveals the higher value with probability 1− ε and the lower value

with probability ε. The receiver’s beliefs are such that the receiver places probability

1 on the higher of the two values being revealed.
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c.2.2 A sequential equilibrium leading to the GR outcome where the acceptance decision

depends on the message

The sender follows the message strategy in Table 2 and reveals the aspect with the

higher value (revealing an aspect at random if both aspects have the same value).

The receiver accepts if and only if a good type is reported and a 7+ aspect is re-

vealed.

The sender’s strategy is a best response to the receiver’s strategy since all types

with a 7+ are reporting a good type and revealing a 7+ aspect, ensuring acceptance.

Other types cannot be accepted given the receiver’s strategy.

Given the sender’s strategy, there are combinations of messages and values ob-

served that are never observed if the sender sticks to the strategy described. In

order to have a sequential equilibrium, we need to construct an auxiliary sequence

of strategies and beliefs as explained earlier.

Take the following sequence of fully mixed strategies for the sender. The sender

follows the messaging strategy in Table 2 with probability 1− ε− ε2. Senders with

good types and a 7+ aspect send one of the 36 good type messages at random

with probability ε; with probability ε2 they send one of the 45 bad type messages at

random. All other senders send one of the 45 bad type messages at random with

probability ε and one of the 36 good type messages at random with probability ε2.

As for the revelation strategy, all senders reveal the higher aspect with probability

1− ε (and reveal one aspect at random if both values are equal).

A sequence of receiver beliefs is constructed from the sequence of sender beliefs

using Bayes rule. The beliefs that we specify for the receiver are the limit of this

sequence of beliefs, and the receiver strategy we have specified must be optimal

given these beliefs.

For combinations of values and messages that are possible given Table 2, the

receiver beliefs are derived from Table 2 itself (recall that ε → 0, so for example if

(9, 2) is sent and a 9 is displayed, the receiver believes the type is equally likely to be

(9, 1) and (9, 2)); we have already established that the receiver acceptance strategy

is optimal in these cases (see our earlier discussion for Rv, where the sender also

uses the message strategy in Table 2).
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As for other cases, receiver beliefs constructed as the limit of the sequence are

such that, irrespective of what value is observed, the receiver believes that the aspect

being observed is the higher of the two. This means that, using the information of

the value observed only, a value of 6 or less suggests the type is more likely to be

bad than good. The message does not change this conclusion since it contains no

additional information as to whether the type is good or bad.

For types with a 7+ however, the receiver strategy is such that they are accepted

if the reported type is good but rejected if the reported type is bad. Bad types with

a 7+ aspect are disproportionately more likely to report a bad type in the sequence

we constructed, and this justifies receiver’s beliefs that a bad type message makes

the type more likely to be bad than good even if a 7+ value is observed.
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d other equilibrium examples

d.1 Receiver verifies

d.1.1 Receiver’s worst equilibrium

The receiver achieves their lowest possible equilibrium payoff when the message is

uninformative (e.g. all sender types send each of the possible messages with equal

probability, or all sender types send the same message). In such an equilibrium

the receiver does not condition the checking decision on the message (e.g. the

receiver always checks the same aspect, or checks each of the two aspects with equal

probability), and, upon observing one of the aspects, takes the optimal acceptance

decision given that the other aspect is equally likely to be any value between 1 and 9.

In our game the optimal acceptance decision is to accept if and only if the observed

aspect is 6 (since in 5/9 of cases the sum is at least 11) or higher. This equilibrium

gives rise to a payoff of 61
81 for the receiver and 36

81 for the sender.

It is not possible for the receiver to obtain a lower expected payoff in equilib-

rium. This is because, given any sender message, the receiver can always ignore

the message, check the first aspect and accept if and only if the observed value is

6+. If, in equilibrium, the receiver does something different conditional on the re-

ceived message, the receiver must be at least as well off as if she followed the above

strategy.

d.1.2 Sender’s best equilibrium

Table D1 below depicts the sender’s message strategy in an equilibrium which gives

the highest possible equilibrium payoff to the sender. The receiver’s checking strat-

egy is as follows. If message (6, 1) or (1, 6) is received, the receiver checks the claim

of 6 (and checks at random if any other message is received). The acceptance strat-

egy is to accept if and only if the observed value is 6+, irrespective of which claim

was checked.
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Table D1

9 1,6 1,6 1,6 1,6 1,6 1,6 6,1 6,1 6,1
8 1,6 1,6 1,6 1,6 1,6 6,1 6,1 6,1 6,1
7 1,6 1,6 1,6 1,6 1,6 6,1 1,6 1,6 1,6
6 1,6 1,6 1,6 1,6 1,6 6,1 1,6 1,6 1,6

x2 5 6,1 6,1 6,1 6,1 1,6 6,1 6,1 6,1 6,1
4 6,1 6,1 6,1 6,1 1,6 6,1 6,1 6,1 6,1
3 1,6 1,6 1,6 1,6 1,6 6,1 6,1 6,1 6,1
2 1,6 1,6 1,6 1,6 1,6 6,1 6,1 6,1 6,1
1 1,6 1,6 1,6 1,6 6,1 6,1 6,1 6,1 6,1

1 2 3 4 5 6 7 8 9
x1

Note that in this equilibrium the sender uses only two messages, (6,1) and (1,6).

These messages are used, together with the checking strategy, to ensure that the

receiver observes a 6+ aspect if there is one. The acceptance strategy then results

in all senders with a 6+ aspect being accepted. The lower acceptance threshold

(compared to the equilibrium discussed earlier that results in the GR outcome) is

made possible by the strategy of the sender, which does not necessarily point to the

higher of the two aspects when both aspects are 6+.

The sender is clearly playing a best response to the receiver’s strategy, since the

receiver accepts only after observing a 6+ aspect and the sender’s strategy leads to

all types with a 6+ being accepted.

The receiver’s strategy can be divided into acceptance strategy and checking

strategy. It is tedious but straightforward to check that the receiver is playing a

best response to the sender. For example, suppose the message is (6, 1), the re-

ceiver checks the first aspect (as required by the strategy) and observes a value of

6. Given the sender’s strategy in the table, this means that the type is equally likely

to be any of the types where x1 = 6 and x2 < 9; since four out of eight such types

are good types it is indeed optimal for the receiver to accept. As for the checking

strategy, conditional on message (6, 1) or (1, 6) being received and on the receiver’s

acceptance strategy, the receiver is making 20 errors (all consisting of accepting bad

types). Can the receiver do better by checking the other aspect? Suppose the mes-

sage is (6, 1). If the receiver checks the first aspect and accepts if the observed value

is 6+, the receiver is making 10 errors (accepting (6, 4), (6, 3), (6, 2), (6, 1), (7, 3),

(7, 2), (7, 1), (8, 2), (8, 1) and (9, 1)). If the receiver checks the second aspect instead,

it is still optimal to accept if the observed aspect is 6+ and to reject otherwise, and

the receiver would still make 10 errors (rejecting the good types that send the mes-

51



D appendix

sage (6, 1) and have x2 < 6, namely (6, 5), (7, 5), (8, 5), (9, 5), (7, 4), (8, 4), (9, 4),

(8, 3), (9, 3) and (9, 2)). Analogously, it can be checked that if (1, 6) is sent but the

receiver checks the first aspect, the receiver would still make at least 10 errors.

As for messages other than (6, 1) and (1, 6), we have specified that the receiver

checks a claim at random and accepts if and only if a 6+ value is observed. Is this

strategy part of a sequential equilibrium? Consider the following sequence of fully

mixed strategies by the sender. The sender plays the messaging strategy described

above with probability 1 − ε, and sends one of the 81 messages at random with

probability ε. If the receiver gets a message other than (1, 6) or (6, 1), the message is

not informative and each of the 81 possible types is equally likely. It would then be

optimal for the receiver to check either aspect and accept if and only if a 6+ value

is observed.

In this equilibrium, all good types and 20 bad types are accepted. The only way

the sender could obtain a higher payoff would be if another bad type was accepted,

but this would bring the receiver’s payoff below 61/81, which is the lower bound

for the receiver’s equilibrium payoff (see previous subsection).

d.2 Sender reveals

d.2.1 Receiver’s worst equilibrium

We now describe an equilibrium that attains the receiver’s lowest equilibrium payoff.

In this equilibrium the sender sends a random message and reveals the highest

aspect for bad types and the lower one for good types (when the two aspects are

equal, one is revealed at random). The receiver rejects irrespective of the observed

value and of the message.

To see that this is an equilibrium, we note that given the sender’s strategy, the

probability of the type being good is lower than 0.5 for any combination of message

and value observed. For example, suppose the sender reveals that the first aspect

is a 9. Given the sender’s strategy, there are only two types that reveal the first

aspect when its value is a 9: (9,1) and (9,9). Because (9,9) reveals the first aspect

with probability 0.5, while (9,1) always reveals the 9, the probability of a good type
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conditional on observing the first aspect to be a 9 is 1
3 which is less than 0.5. Hence,

the receiver best replies by always rejecting.

This equilibrium gives rise to a payoff of 45
81 for the receiver and 0 for the sender.

This is the receiver’s lowest possible equilibrium payoff since the receiver always

has the option to reject for any given message and evidence, and this would lead to

a payoff of 45
81 .

d.2.2 Sender’s best equilibrium

In this equilibrium, the sender sends a random message and reveals the lower as-

pect for types with two 6+ aspects and the higher aspect for all other types. The

receiver’s strategy is to accept if and only if the observed aspect is a 6+.

To see that this is an equilibrium, we note that given the sender’s strategy, the

probability of the type being good conditional on the observed aspect is higher

than 0.5 as long as the observed aspect is a 6+, and equal to 0 otherwise. This

makes it optimal for the receiver to accept if and only if she observes a 6+. In this

equilibrium, the receiver obtains a payoff of 51
81 while the sender gets 56

81 .

This is the best equilibrium for the sender because values of 1 to 5 of either

aspect must be rejected in any sequential equilibrium, so the best the sender can

achieve is to be accepted if he has a 6+ aspect. 23

23The proof is recursive. Start by noting that a value of 1 of either aspect must be rejected since
it is certain to be a bad type. Types with an aspect above 1 will then display the other aspect
if the other aspect has a positive probability of acceptance. This can then be used to prove (by
contradiction) that a value of 2 of either aspect must be rejected with certainty, and so on. The
recursion continues up to the value of 5.
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e dynamics in t=11

In this section we investigate whether subjects’ decisions change across periods, and

show that the results reported in the main text are robust to period effects.

e.1 Messages

We first look at the rate of truthful reporting. Figure E1 shows the average truth-

telling rate for good and bad hands in each treatment. Panel (a) suggests a small

downward trend in truth-telling for good hands in the Sr, but not the Rv, treatment,

while panel (b) suggests a small downward trend in truth-telling for bad hands in

both treatments.

Figure E1: Truth-telling rates across periods

(a) Good hands (b) Bad hands

Note: The lines represent predicted rates from probit regressions (standard errors clustered at the
matching group level).

Table E1 presents the marginal effects from a probit regression of whether the

sender’s message is truthful on the Sr treatment dummy, and variables for the inter-

action between period and each treatment.24 This analysis is performed separately

for good and bad hands. For good hands, the results show that the probability that

the sender tells the truth is stable in the Rv treatment, but decreases significantly

(p < 0.05) in the Sr treatment. For bad hands, the probability that the sender tells

24This specification allows us to directly observe if the two treatments have significant, and poten-
tially different period trends. In addition, using the Wald test, we can check if a treatment effect
is present while controlling for period effects by testing the joint hypothesis that the coefficient
on the treatment dummy is equal to 0 while the coefficients of the two interaction terms are not
different from each other. We report the associated χ2 statistic in all regression tables.
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the truth decreases significantly over periods (p < 0.05) in both treatments. Note,

however, that the estimated effects are quite small, about 0.4 percentage points per

period in each case where the decrease is significant.

Table E1: Probit analysis of truth-telling rate

Dependent variable:

Truth-telling decision

(Good hands) (Bad hands)

(1) Treatment = Sr 0.021 0.003
(0.041) (0.068)

(2) Period x (Treatment = Sr) −0.004∗∗ −0.003∗∗∗

(0.002) (0.001)
(3) Period x (Treatment = Rv) 0.002 −0.004∗∗

(0.002) (0.002)

Observations 1,262 1,618
χ2 statistic for (1) = 0 & (2) = (3) 9.146∗∗ (df=2) 0.025 (df=2)

Note: The table presents marginal effects; standard errors in parentheses
are clustered at the matching group level; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

How do these dynamics affect the robustness of Result 1? Recall, Result 1 states

that senders with a bad hand and a 7+ card usually inflate the value of the lower

card while keeping the higher claim truthful, but are significantly more likely to

do this in Sr compared to Rv. Focusing on bad hands with one 7+ card, Figure E2

shows the rates of reporting a good hand while keeping the higher message truthful

in the two treatments across periods.

The rates show a similar increasing trend in both treatments, but, except for the

very first period, the average rate is at least as high in Sr as Rv in every period.

Table E2 presents the results from a probit analysis of the senders’ likelihood of

reporting a bad hand with one 7+ card as good while keeping the higher claim

truthful. Although the treatment dummy is not individually significant, a test for

the absence of treatment effects rejects this hypothesis (see χ2 statistic in Table E2).
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Figure E2: Rates of reporting a good hand while keeping the higher message truthful across periods.
(bad hands with one 7+ card.)

Note: The lines represent predicted rates from probit regressions (standard errors clustered at the
matching group level).

Table E2: Probit analysis of the rate of reporting a good hand while keeping the higher claim truthful

Dependent variable:

Good hand claimed & higher claim truthful

(1) Treatment = Sr 0.195
(0.135)

(2) Period x (Treatment = Sr) 0.008
(0.005)

(3) Period x (Treatment = Rv) 0.008∗

(0.005)

Observations 436
χ2 statistic for (1) = 0 & (2) = (3) 7.877∗∗ (df=2)

Note: The table presents marginal effects; data includes only bad hands with
a 7+ card; standard errors in parentheses are clustered at the matching group
level; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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e.2 Revelation/verification

Our main result concerning subjects’ revelation/verification decision is that senders

are more likely to reveal their higher card in Sr than receivers are to check the higher

claim in Rv. Figure E3 shows the average rates of revealing the higher card in Sr and

verifying the higher claim in Rv across periods. The rate in Sr is above 85% in every

period and there is a slight increasing trend, while that in Rv is below 80% in every

period and there is a slight decreasing trend. A probit regression (see Table E3)

shows that the trend in Sr is significant while that in Rv is insignificant and overall

the treatment difference remains high and strongly significant after controlling for

period effects.

Figure E3: Rates of revealing the higher card / verifying the higher claim across periods. (Hands
with non-equal cards/reports).

Note: The lines represent predicted rates from probit regressions (standard errors clustered at the
matching group level).
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Table E3: Probit analysis of the rate of revealing/verifying the higher card/claim

Dependent variable:

Reveal/verify higher card/claim

(1) Treatment = Sr 0.239∗∗∗

(0.049)
(2) Period x (Treatment = Sr) 0.004∗∗

(0.001)
(3) Period x (Treatment = Rv) −0.001

(0.002)

Observations 2,167
χ2 statistic for (1) = 0 & (2) = (3) 72.16∗∗∗ (df=2)

Note: The table presents marginal effects; data for Sr excludes hands where
the two cards were equal, while for Rv, it excludes hands where the two re-
ports were equal; standard errors in parentheses are clustered at the match-
ing group level; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

e.3 Acceptance

Recall that our main result regarding receiver’s acceptance decision is that the ac-

ceptance rate conditional on the observed value is higher in Rv than Sr, significantly

so for observed values 3-7 (Result 3). We now check the robustness of this result

across periods.

Figure E4 shows the acceptance rates in each treatment across periods. We focus

on cases where a good hand was reported and the observed value was between 3

and 7. The acceptance rates in Rv are consistently above those in Sr. A decreasing

trend in the acceptance rate in the Sr treatment leads to an increase in the difference

between treatments as subjects gain more experience.
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Figure E4: Acceptance rates across periods (claimed good hands only, observed values 3-7)

Note: The lines represent predicted rates from probit regressions (standard errors clustered at the
matching group level).

Table E4 presents the marginal effects from a probit regression of the acceptance

decision on the Sr treatment dummy, interaction terms between period and each

treatment, and the value of the observed card. The results suggest that the treatment

difference is large and highly significant even after controlling for period effects.

Table E4: Probit analysis of the acceptance decision (claimed good hands only, observed values 3-7)

Dependent variable:

Acceptance decision

(1) Treatment = Sr −0.278∗∗∗

(0.062)
(2) Period x (Treatment = Sr) −0.006∗∗∗

(0.002)
(3) Period x (Treatment = Rv) −0.001

(0.002)
(4) Value of observed card 0.172∗∗∗

(0.019)

Observations 1,304
χ2 statistic for (1) = 0 & (2) = (3) 69.677∗∗∗ (df=2)

Note: The table presents marginal effects; the data excludes cases where the
reported values add up to less than 11 and the observed value is less than 3
or greater than 7; standard errors in parentheses are clustered at the matching
group level; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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e.4 Outcomes and payoffs

Figure E5 shows the acceptance rate in each treatment across periods. This is also

the sender’s average payoff. The results of a probit analysis reported in Table E5

confirm the lack of significant period or treatment effects.

Figure E5: Acceptance rate (sender’s average payoff) across periods

Note: The lines represent predicted averages from probit regressions with standard errors clustered
at the matching group level.

Table E5: Probit analysis of acceptance rate (sender average payoff)

Dependent variable:

Acceptance decision (sender payoff)

(1) Treatment = Sr 0.002
(0.032)

(2) Period x (Treatment = Sr) −0.001
(0.001)

(3) Period x (Treatment = Rv) 0.000
(0.001)

Observations 2,880
χ2 statistic for (1) = 0 & (2) = (3) 1.242 (df=2)

Note: The table presents marginal effects; standard errors in parentheses
are clustered at the matching group level; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Figure E6 shows the receiver’s average payoff across periods. It appears that

there is a slight increasing trend in Sr and a slight decreasing trend in Rv. The
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probit analysis in Table E6 suggests that the trend in Sr is significant leading to a

significantly higher receiver payoff in Rv in early periods and a significantly higher

receiver payoff in Sr in later periods. However, further analysis shows that this is

driven by behavior in the first 5 periods. When we exclude the first 5 periods the

significant treatment differences disappear (see Table E6).

Figure E6: Receiver’s average payoff across periods

Note: The lines represent predicted averages from probit regressions with standard errors clustered
at the matching group level.

Table E6: Probit analysis of receiver average payoff

Dependent variable:

Receiver payoff

(all periods) (excluding first 5 periods)

(1) Treatment = Sr −0.065∗∗ −0.042
(0.031) (0.047)

(2) Period x (Treatment = Sr) 0.002 −0.002
(0.001) (0.002)

(3) Period x (Treatment = Rv) −0.002 −0.001
(0.001) (0.002)

Observations 2,880 2,400
χ2 statistic for (1) = 0 & (2) = (3) 5.316∗ (df=2) 0.753 (df=2)

Note: The table presents marginal effects; standard errors in parentheses
are clustered at the matching group level; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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f a different parametrization

To examine the robustness of these results to the parametrization, we also conducted

sessions of the same two games but with a different threshold (T) defining good

hands. In this implementation of the Sr and Rv games the two cards have to add

up to at least 9 to represent a good hand. Lowering the good hand threshold

does not change the multiplicity of equilibria in Sr or Rv. Moreover, there are still

multiple equilibria in both games resulting in a GR outcome (the outcome of an

optimal commitment strategy as analyzed by Glazer and Rubinstein (2004, 2006)).

The GR outcome maintains the same structure as for T=11 but now, more hands

are accepted, reflecting the different distribution of good hands: hands with at least

one 6+ card are accepted and the rest are rejected.

We used the same experimental design and procedures. There were 180 sub-

jects in total. One session in the Rv treatment had 20 instead of 24 subjects. The

corresponding session in Sr as well as one other also had only 20 subjects. In the

following analysis, for the sessions in which the Rv treatment had more subjects

than the Sr one, we drop the equivalent extra observations in Rv to maintain com-

parability between the underlying draws. The main analysis is therefore performed

on 8 independent observations, but now 4 of them comprise of 10 individuals rather

than 12.

f.1 Decisions

The results from the T=9 treatments are consistent with those from the T=11 treat-

ments. First, we note that senders’ reporting strategies are in line with Result 1:

for bad hands with a 6+ card, senders in Sr report a good hand while keeping the

highest of the two claims truthful in 85% of the cases, while in Rv this happens only

in 53% of cases which is significantly lower (p− value = 0.016). Second, consistent

with Result 2, senders reveal the higher card more often in Sr (98.56%) than receivers

verify the higher claim in Rv (82.64%), and this difference is statistically significant

(p− value < 0.001). Third, in line with Result 3, acceptance rates conditional on the

observed value are significantly higher in Rv than in Sr for intermediate observed

values (p− value = 0.008 for each value from 3 to 6).
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f.2 Outcomes and payoffs

As for Result 4, Table F1 shows that sender payoffs do not vary significantly across

treatments. Receiver payoffs however, are marginally significantly higher in Rv

(p = 0.086).

Table F1: Average payoffs when T=9

Sr Rv p-value

Receiver 0.830 0.871 0.086
Sender 0.678 0.701 0.266

To investigate this further, Table F2 reports acceptance rates for good and bad

hands, distinguishing between hands that are accepted in the GR outcome and

hands that are rejected in the GR outcome. Note that, as in T = 11, the receiver

prefers Sr for bad hands with no high card, and Rv in all other cases. However, in

T = 11, 41% of hands were in the first category, while in T = 9 there are only 28%

such hands. As a result, the receiver is marginally better-off in Rv when T=9.

Table F2: Acceptance rates for good and bad hands conditional on the value of the highest card
(T=9)

Acceptance rate

Type of hand obs. Sr Rv p-value

Highest
card < 6

Bad hands 365 0.173 0.211 0.156
Good Hands 57 0.509 0.754 0.031

All hands 422 0.218 0.284 0.039

Highest
card ≥ 6

Bad Hands 86 0.721 0.430 0.031
Good hands 812 0.911 0.948 0.234

All hands 898 0.893 0.899 0.461

f.3 Best-response analysis

The results from analyzing the receiver’s best response to the observed sender be-

havior in T = 9 are also consistent with the results reported for T = 11.

Recall that, for Sr, we restrict attention to strategies that condition on the ob-

served value and the claim about the other card. If the receiver makes the optimal

decision for each combination of observed value and unverified claim, the receiver’s
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expected payoff is 0.896, which we refer to as the empirical optimum. Analogously

to Result 5, following the optimal commitment strategy that accepts if and only if

a good hand is reported and a 6+ value is observed would give the receiver 99.88%

of the empirical optimum.

Similarly, for Rv, behaving optimally for all senders’ messages gives the receiver

an average payoff of 0.882. Analogously to Result 6, following the optimal com-

mitment strategy of checking the higher message and accepting if and only if no

misreport is observed, a good hand is claimed and the observed value is 6+, gives

the receiver 99.77% of the empirical optimum.
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g instructions

g.1 Rv, T=11

 

 

INSTRUCTIONS 
 

 

 

Welcome and thank you for participating in this experiment. Throughout the whole 

experiment you are kindly asked to remain seated and refrain from communication with the 

other participants. Mobile phones and other electronic devices should be switched off. If there 

are any questions please raise your hand and an experimenter will come to answer your 

questions in private.  

 

Payment: This experiment consists of 30 rounds. In each round you can earn points. At the 

end of the experiment you will be paid according to your accumulated point-earnings from all 

rounds. You will be paid in private and in cash with £0.50 for each point earned. 

Additionally, you will receive a participation fee of £3.  

 

All your decisions are anonymous, so your identity will be kept secret at all times. 

 

At the beginning of each round you will be randomly matched with another participant (i.e. 

the person you are paired with will change from round to round). One of you will have the 

role of Person A and the other the role of Person B. Your role will be assigned at the beginning 

of the first round and you will keep this role for all 30 rounds. 

 

 

Each round consists of 2 stages which are described below.  

 

Stage 1: Person A observes two cards and sends a message 

 

In this stage, the computer will randomly select two cards, one orange and one blue, each 

carrying a value between 1 and 9. Each combination of values on these 2 cards is equally 

probable. At this stage, only Person A will be able to observe these values.  

 

The hand is “GOOD” if the sum of the values on the two cards is at least 11. The hand is 

“BAD” if the sum of the values is 10 or below. 

 

This is an example of a BAD hand: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After observing the randomly drawn cards, Person A will send a message to Person B of the 

following form: 

  

  

 

 

 

 

where Person A fills each blank box with a number between 1 and 9. 

 

The value of the orange card is: 

 

 

The value of the blue card is:      

 

 

 

3 7 

65



G appendix

 

 

Stage 2: Person B selects one of the cards to observe and makes a decision 

 

After observing Person A’s message, Person B will select one of the two cards (orange or 

blue) and the computer will reveal its value.  

 

After observing the value on the selected card Person B will decide between “Accept” and 

“Reject”. 

 

 

End of the Round 

 

At the end of the round both Person A and Person B will receive a summary of the round 

including: 

- The cards that were randomly dealt; 

- Person A’s message; 

- Person B’s choice regarding which card to observe; 

- Person B’s decision to accept or reject; 

- Person A and Person B’s point-earnings for the round. 

 

 

 

How your point earnings are determined: 

 

Person A earns 1 point if B accepts and 0 points if B rejects.  

 

Person B earns 1 point if A has a good hand and B accepts or if A has a bad hand and B 

rejects. Person B earns 0 points otherwise.  

 

This is summarised in the Table below: 

 

 B Accepts B Rejects 

A has a GOOD hand Person A receives 1 point, 

Person B receives 1 point 

 Person A receives 0 points, 

Person B receives 0 points 

A has a BAD hand Person A receives 1 point, 

Person B receives 0 points 

Person A receives 0 points, 

Person B receives 1 point 

 

 

 

Preliminary questions: Before the 30 rounds begin, you will be asked to answer a few 

questions regarding your understanding of the instructions. The rounds will begin only after 

all participants have answered these questions correctly. 

 

 

Final questionnaire: After the 30 rounds, you will be asked to fill in a short questionnaire. 

You will then be paid your earnings in private and in cash.  
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g.2 Sr, T=11

 

 

INSTRUCTIONS 
 

 

 

Welcome and thank you for participating in this experiment. Throughout the whole 

experiment you are kindly asked to remain seated and refrain from communication with the 

other participants. Mobile phones and other electronic devices should be switched off. If there 

are any questions please raise your hand and an experimenter will come to answer your 

questions in private.  

 

Payment: This experiment consists of 30 rounds. In each round you can earn points. At the 

end of the experiment you will be paid according to your accumulated point-earnings from all 

rounds. You will be paid in private and in cash with £0.50 for each point earned. 

Additionally, you will receive a participation fee of £3.  

 

All your decisions are anonymous, so your identity will be kept secret at all times. 

 

At the beginning of each round you will be randomly matched with another participant (i.e. 

the person you are paired with will change from round to round). One of you will have the 

role of Person A and the other the role of Person B. Your role will be assigned at the beginning 

of the first round and you will keep this role for all 30 rounds. 

 

 

Each round consists of 3 stages which are described below.  

 

Stage 1: Person A observes two cards and sends a message 

 

In this stage, the computer will randomly select two cards, one orange and one blue, each 

carrying a value between 1 and 9. Each combination of values on these 2 cards is equally 

probable. At this stage, only Person A will be able to observe these values.  

 

The hand is “GOOD” if the sum of the values on the two cards is at least 11. The hand is 

“BAD” if the sum of the values is 10 or below. 

 

This is an example of a BAD hand: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After observing the randomly drawn cards, Person A will send a message to Person B of the 

following form: 

  

  

 

 

 

 

where Person A fills each blank box with a number between 1 and 9. 

 

The value of the orange card is: 

 

 

The value of the blue card is:      

 

 

 

3 7 
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Stage 2: Person A selects one of the cards for Person B to observe 

 

After Person B observes Person A’s message, Person A will select one of the two cards 

(orange or blue) for Person B to observe its value in the next stage.  

 

Stage 3: Person B observes the value of the card and makes a decision 

 

After observing the value of the selected card, Person B will decide between “Accept” and 

“Reject”. 

 

 

End of the Round 

 

At the end of the round both Person A and Person B will receive a summary of the round 

including: 

- The cards that were randomly dealt; 

- Person A’s message; 

- Person A’s choice regarding which card to be observed by Person B; 

- Person B’s decision to accept or reject; 

- Person A and Person B’s point-earnings for the round. 

 

 

 

How your point earnings are determined: 

 

Person A earns 1 point if B accepts and 0 points if B rejects.  

 

Person B earns 1 point if A has a good hand and B accepts or if A has a bad hand and B 

rejects. Person B earns 0 points otherwise.  

 

This is summarised in the Table below: 

 

 B Accepts B Rejects 

A has a GOOD hand Person A receives 1 point, 

Person B receives 1 point 

 Person A receives 0 points, 

Person B receives 0 points 

A has a BAD hand Person A receives 1 point, 

Person B receives 0 points 

Person A receives 0 points, 

Person B receives 1 point 

 

 

 

Preliminary questions: Before the 30 rounds begin, you will be asked to answer a few 

questions regarding your understanding of the instructions. The rounds will begin only after 

all participants have answered these questions correctly. 

 

 

Final questionnaire: After the 30 rounds, you will be asked to fill in a short questionnaire. 

You will then be paid your earnings in private and in cash. 
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