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Abstract 

Is punishment of free riders driven by descriptive social norms of cooperation and punishment? 

We conduct experiments in which participants interact in a one-shot social dilemma with 

punishment. We study how punishment of free riders is influenced by behavior among 

members of a payoff-irrelevant reference group. Participants can condition punishment on 

either the level of cooperation or the level of punishment in the reference group, respectively 

reflecting descriptive norms of cooperation and punishment. We observe considerable 

heterogeneity in punishment behavior. Among punishers, the most common strategies are to 

increase punishment with higher levels of cooperation (‘norm enforcement’), and to increase 

punishment with higher levels of punishment in the reference group (‘conformist punishment’). 

By means of a simple dynamic model, we demonstrate that these conditional punishment 

strategies can substantially promote cooperation: conformist punishment helps cooperation to 

gain a foothold in a population, and norm enforcement helps to maintain cooperation at high 

levels. Our study illustrates how punishment is shaped by the social context, and highlights 

the potential of conditional punishment strategies to promote the emergence and maintenance 

of cooperation. 
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Introduction  

For organizations, communities, and society as a whole to function, individuals often have to 

engage in activities that are costly for themselves, but beneficial for others. Peer punishment 

is considered to be one of the key mechanisms to explain why humans often cooperate in 

situations where private and collective incentives do not align: many people are willing to 

punish those who free ride on the cooperation of others, even if punishment is costly and 

cannot lead to future benefits (1–8). The threat of punishment makes free riding less attractive 

and can thereby help maintain cooperation at high levels (4, 5, 9–18).  

Given that peer punishment can play a pivotal role in sustaining cooperation, it is critical to 

understand what factors influence people’s willingness to punish. When studying the drivers 

of peer punishment, laboratory studies typically focus on aspects specific to the interaction at 

hand, such as peers' cooperation decisions, the cost and impact of punishment, or the 

potential for future interaction or retaliation (e.g., 4, 10, 15, 19–21). In doing so, these studies 

generally abstract away from the broader social context in which an interaction takes place. 

Cross-cultural experiments, however, show that social context matters for the effectiveness of 

punishment to support cooperation: people from different societies use peer punishment in 

systematically different ways (3, 22–28). Because societies differ from each other in myriad 

ways, such cross-cultural comparisons have limited ability to identify exactly which aspects of 

the social context underlie any observed differences.  

In this paper, we investigate an important way in which the social context may influence 

punishment of free riding: through indicating ‘descriptive norms’ specifying what behavior is 

typical in the current interaction setting (29–31). Studies from across the social sciences have 

shown that people tend to conform to descriptive norms (29, 32–37). In social dilemmas, it has 

been established that many people are more willing to cooperate if they believe that others 

will do so as well (8, 20, 28, 31, 38–40). Whether, and if so how, descriptive norms influence 

peer punishment, however, remains unclear. Here, we first provide experimental evidence that 

many people condition their punishment of a free-riding partner on descriptive norms of 

cooperation and punishment. With a simple dynamic model, we then show that such 

conditional punishment strategies can have pronounced implications for the emergence and 

maintenance of cooperation in groups.  

For the decision to punish a free riding peer, two descriptive norms may be important. First, 

punishment might be guided by the descriptive norm of cooperation: is free riding the typical 

action in the population? It has been shown that people often infer injunctive norms (what one 

ought to do) from descriptive norms (what most people actually do): people tend to judge 

behaviors that are less common in a population to be less socially appropriate (or ‘moral’) and 
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consequently more deserving of punishment (41–48). If people use descriptive norms of 

cooperation to form moral judgments in this manner, they will judge free riding more harshly 

when it is atypical, which will increase their willingness to punish. Second, punishment might 

be guided by a descriptive norm of punishment: is punishment a typical reaction to free riding? 

Descriptive norms of punishment can signal a ‘principle of social proof’ (49) that free riding is 

disapproved of, and that punishment is an appropriate and legitimate reaction. Conformity to 

these norms would lead people to punish free riding if others do so as well. Examining the 

impact of these two descriptive norms on sanctioning behavior increases our understanding 

of how the social context can affect individuals' punishment of free riding and thereby influence 

the emergence and maintenance of cooperation. 

To investigate whether descriptive norms of cooperation and punishment impact peer 

punishment, we conduct a large-scale decision-making experiment. Participants are randomly 

paired and play a prisoner’s dilemma with punishment. Our implementation consists of two 

stages. In the first stage, participants decide to either ‘cooperate’ or ‘defect’. In the second 

stage, they decide how severely they want to punish their partner if their partner chose to 

defect. We add minimal social context by allowing participants to condition their punishment 

decisions on the levels of cooperation and punishment displayed by participants who 

previously interacted in the same setting (hereafter, the ‘reference group’). In two between-

subject treatments, participants can either condition their punishment decisions on (i) the level 

of cooperation, or (ii) the level of punishment in the reference group. Importantly, the decisions 

of members of the reference group do not affect payoffs of the focal participants.  

Our setup enables us to classify individual participants according to how their punishment 

decisions respond to descriptive norms, thereby deepening empirical understanding of 

individual differences in (conditional) punishment. Individual differences in conditional 

cooperation have received considerable attention in prior research, indicating that the 

dynamics of cooperation in groups strongly depend on the interplay of individuals’ conditional 

strategies and their beliefs about others’ cooperativeness (40, 50, 51). In sharp contrast, little 

is known about individual differences in conditional punishment and the way in which these 

differences may affect the emergence of cooperation. Our experimental design allows us to 

isolate the possible effects of descriptive norms on punishment from related considerations 

such as a preference for coordinated punishment or positive reciprocity towards other 

punishers (7, 52–55). Finally, by creating controlled conditions that systematically differ in 

terms of descriptive norms of cooperation and punishment, our setup complements cross-

cultural experiments on punishment that rely on natural variation in social context (3, 22, 24–

28, 56).  
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Our results demonstrate that on aggregate, people's willingness to punish their free riding 

partner increases both with the level of cooperation and with the level of punishment in the 

reference group. Importantly, we observe substantial heterogeneity in how people react to the 

level of cooperation and the level of punishment. Among punishers, we find that three 

strategies predominate: ‘independent punishment’, applying the same punishment intensity 

irrespective of the descriptive norm, ‘norm enforcement’, increasing punishment intensity with 

the fraction of cooperators in the reference group, and ‘conformist punishment’, increasing 

punishment intensity with punishment levels in the reference group.  

To examine the possible long-term implications of the experimentally observed conditional 

punishment strategies, we develop a simple dynamic model in which a population of agents 

recurrently interact in a social dilemma game with punishment similar to our experiment. We 

use analytical methods and agent-based simulations to evaluate how the experimentally 

observed punishment strategies can shape cooperation in a population.  

The model captures key qualitative features of social norm dynamics, involving prolonged 

periods of stability and sudden shifts. Moreover, the model shows that, in conjunction with 

independent punishers, norm enforcement and conformist punishment can effectively support 

cooperation. Importantly, we find that norm enforcement and conformist punishment play 

markedly different roles in promoting cooperation: conformist punishment can effectively 

promote the establishment of cooperation in a population, whereas norm enforcement is 

particularly effective at maintaining cooperation at high levels. Overall, our model shows that 

the experimentally observed conditional punishment strategies can have a strong and positive 

impact on the dynamics of cooperation. 

 

Experimental design 

We randomly matched participants in pairs to play a two-stage game in which they could earn 

points (which were converted into dollars at the end of the game). In the first stage, the two 

players simultaneously choose to cooperate or defect. Joint payoffs are highest when both 

partners cooperate, with both earning 18 points. However, each individual can increase their 

personal payoffs in this stage by choosing to defect: unilateral defection leads to 25 points for 

self and 9 points for the other. Mutual defection leads to 16 points for each. In the second 

stage, participants have the opportunity to punish their interaction partner if their partner chose 

to defect (by design excluding ‘antisocial punishment’; see 26), by assigning up to 10 

deduction points to them. Each assigned deduction point reduces the participant’s payoffs with 
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1 point, and the partner’s payoffs with 3 points. The Nash equilibrium of this one-shot game is 

to defect in the first stage, and to never assign any deduction points in the second stage. 

We report on two separate treatments (total N=999), in which participants could condition their 

punishment on descriptive norms of cooperation (CC treatment; N=498) or descriptive norms 

of punishment (CP treatment; N=501). We operationalized these descriptive norms as 

behavior in a reference group of individuals who previously interacted in the same setting, but 

who were irrelevant for the payoffs in the current interaction. Participants had to indicate how 

many deduction points they would assign to their partner (if the partner chose to defect) for a 

set of situations that vary with respect to the reference group’s levels of cooperation or 

punishment. The actual behavior in the reference group determined which of the situations 

was implemented and used to calculate payoffs (see Methods for details; the SI shows the 

experimental materials in full).  

Results 

Experimental results. Treatments did not differ in terms of cooperation rates (CC: 68.5%; 

CP: 65.5%; Χ2(1)=1.02, P=0.313). Participants’ overall punishment levels, averaged across all 

situations, were also similar across treatments (CC: 2.68; CP: 2.47 deduction points; two-

sample Wilcoxon rank-sum test: d.f.=997, z=1.703, P=0.089).  

On aggregate, behavior in the reference group impacted the participants’ punishment 

decisions: both the fraction of cooperators and the average intensity of punishment had a 

significantly positive effect on the average number of deduction points that participants 

assigned to their free riding partners (ordinary least squares regression: P<0.01 for both 

treatments; Table S1; Fig. S1). We interpret this as evidence that the social context impacts 

peer punishment, with both descriptive norms of cooperation and descriptive norms of 

punishment modulating people’s overall willingness to punish defectors. 

Participants substantially differed in their punishment behavior (Fig. 1). Among participants 

who punished at least once (64% and 55% for CC and CP, respectively), three distinct 

punishment strategies predominate (Fig. 1A,B): (i) ‘independent punishment’, applying the 

same punishment intensity irrespective of the behavior in the reference group (Fig. 1A,B; 

orange bars), (ii) ‘norm enforcement’, monotonically increasing punishment with the level of 

cooperation in the reference group (Fig. 1A; green bar), and (iii) ‘conformist punishment’, 

monotonically increasing punishment with the level of punishment in the reference group (Fig. 

1B; green bar). In the CC treatment, a smaller portion of participants decreased their 

punishment of free riders as cooperation became more common in the reference group (Fig. 
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1A; blue bar); in the CP treatment, such ‘decreasing punishment’ was virtually absent (Fig. 1B, 

blue bar). These results indicate that people substantially vary in how they condition 

punishment of free riders on the levels of cooperation and punishment in the social 

environment.  

 

 

 

 

 

 

 

Fig. 1. Punishment strategies observed in our experiment. (A and B) Frequency distributions of 
punishment strategies in the CC and CP treatment, among participants who punish at least once. (C 
and D) For each strategy, the average number of deduction points (+/- 1 SEM) assigned to free riding 
partners for the situations in the CC and CP treatment. 
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Figure 1C and 1D show, for each of the punishment strategies, the average number of 

deduction points assigned. Participants who engaged in norm enforcement (Fig. 1C; green) 

and participants who engaged in conformist punishment (Fig. 1D; green) strongly reacted to 

the level of cooperation and punishment in the reference group. On average, ‘norm enforcing’ 

participants assigned 1.6 deduction points when the percentage of cooperators in the 

reference group was less than 5%. Their punishment increased to 6.3 deduction points when 

more than 95% of the participants in the (payoff-irrelevant) reference group cooperated (Figure 

1C; green line). Similarly, in the CP treatment, participants who punished conformistically 

assigned about 0.8 deduction points when participants in the reference group assigned 0 

deduction points on average. Their punishment increased sharply to 6.5 deduction points 

when the average number of deduction points assigned by members of the reference group 

was 10. Taken together, these results show that the punishment behavior of participants who 

use conditional strategies is strongly affected by the social environment.  

For participants who punished independently and cooperated in stage 1, the modal behavior 

in both treatments was to assign 8 deduction points (Fig. 2A,B). By contrast, assigning 8 

deduction points is very rare among independent punishers who defected in stage 1 (see Fig. 

S3-5 for a full breakdown of punishment decisions by cooperators and defectors in each 

treatment). This level of punishment equalizes the earnings between a cooperator and their 

free-riding partner, suggesting that some participants’ do not punish to reciprocate the unkind 

action, but rather to eliminate disadvantageous inequality (Fehr and Schmidt 1999; Raihani & 

Bshary 2019).  

Figure 2C and D show the distributions of assigned deduction points among participants 

engaging in norm enforcement in the CC treatment (Fig. 2C) and conformist punishment in 

the CP treatment (Fig 2D). We observe large numbers of data points on the diagonal in the 

graph for conformist punishment in the CP treatment. This indicates that participants engaging 

in conformist punishment frequently chose to exactly match the average number of deduction 

points assigned in the reference group. Norm enforcement in the CC treatment showed a less 

pronounced pattern.  
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Fig. 2. Punishment behavior for the most common punishment strategies. (A and B) Distributions of 
deduction points assigned by participants who punished independently and cooperated in the first stage 
of the game. The mode behavior for both treatments (assigning 8 deduction points; vertical dotted line) 
equalizes the earnings of a cooperator and a free rider. (C and D) Deduction points assigned by 
participants who engaged in ‘norm enforcement’ in the CC treatment, and ‘conformist punishment’ in 
the CP treatment. Dot sizes reflect the numbers of observations.  
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Dynamic model. Our experimental results reveal that people’s punishment of free riders is 

shaped by descriptive norms of cooperation and punishment, and that various punishment 

strategies (conditional and unconditional) co-exist. This raises the question of how the 

observed punishment strategies interact to drive dynamics of cooperation over time. To 

address this question, we study a simple model using analytical methods and agent-based 

simulations. The model allows us to examine how the dynamics of cooperation depends on 

the composition of the population regarding the agents’ punishment strategies.  

We consider a population of n agents who interact repeatedly for T periods in a setting similar 

to our experiment. In each period, agents (i) are randomly matched into pairs, (ii) choose 

whether to cooperate or defect, and (iii) choose whether to punish their partner if their partner 

defects. For ease of exposition and to facilitate tractability, we model both cooperation and 

punishment as binary decisions. In each period, each agent samples m agents from the 

population and counts how many of them cooperated and how many of them were willing to 

punish defectors in the previous period. The counts divided by m become their beliefs about 

the rates of cooperation and punishment in the current period (respectively denoted by 𝑏𝑐 and 

𝑏𝑝). An agent cooperates in the current period if they believe that the proportion of punishers 

exceeds a threshold (𝑏𝑝 > 𝜃𝐶), and defects otherwise.  

An agent’s punishment strategy determines whether they punish a defecting partner. Based 

on our experimental results, we consider four punishment strategies: (i) independent 

punishment: punish irrespective of beliefs; (ii) norm enforcement: punish if the perceived 

cooperation rate exceeds a threshold (𝑏𝑐 > 𝜃𝑁𝐸); (iii) conformist punishment: punish if the 

perceived punishment rate exceeds a threshold (𝑏𝑝 > 𝜃𝐶𝑃); and (iv) never punish. For the sake 

of exposition, we will here focus on the case where 𝜃𝐶 = 𝜃𝑁𝐸 = 𝜃𝐶𝑃 = 0.5.  In the 

Supplementary Analysis, we present results for arbitrary threshold values. We further assume 

that agents’ punishment strategies are fixed throughout all periods and mutually exclusive. 

The dynamics are stochastic: with probability 𝜀 > 0, an agent makes a mistake and behaves 

randomly; with complementary probability 1 − 𝜀 the agent behaves according to its strategy 

(Young 1993, Kandori et al. 1993; see Methods for more details).  

Our goal is to assess how relative frequencies of independent punishment (𝑄𝐼𝑃) , norm 

enforcement (𝑄𝑁𝐸), and conformist punishment (𝑄𝐶𝑃) affect the dynamics of cooperation. First, 

we derive analytical results about the stationary distribution of the dynamic when the 

observation sample is large (m=n) and the mistake probability is vanishingly small (𝜖 → 0). 

The stationary distribution reflects the relative frequencies of different population states in the 

long run (𝑇 → ∞). We show that if 𝑄𝐼𝑃 +
1

2
(𝑄𝑁𝐸 + 𝑄𝐶𝑃) >

1

2
, only the cooperation equilibrium 
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occurs with a positive frequency in the stationary distribution; conversely, if 𝑄𝐼𝑃 +
1

2
(𝑄𝑁𝐸 +

𝑄𝐶𝑃) <
1

2
, only the defection equilibrium occurs with a positive probability in the stationary 

distribution (see SI, Supplementary Analysis for formal proof). This analysis shows that, 

perhaps unsurprisingly, independent punishment is the most potent strategy for promoting 

cooperation. Importantly, however, when independent punishment is not sufficiently frequent, 

conditional strategies of norm enforcement and conditional punishment can be key for 

sustaining cooperation in the long run.  

Next, we use simulations to examine the short-run dynamics of our model: how conditional 

punishment strategies drive the emergence and breakdown of cooperation, and how their 

relative frequencies affect the time it takes for a population between states of high and low 

cooperation. Simulations also allow us to consider small observation samples and non-

negligible mistake probabilities. To account for path-dependence, the simulations consider 

different starting conditions by varying agents' initial beliefs about the rates of cooperation and 

punishment. To evaluate how norm enforcement and conformist punishment affect 

cooperation, we fix the frequency of independent punishers at thirty percent and vary the 

frequencies of the conditional punishment strategies. Further robustness checks are detailed 

at the end of this section. 
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Fig. 3. Effects of conditional punishment strategies on cooperation dynamics. Across all panels, we 
hold fixed the frequency of independent punishers at 30%. 𝑄𝑁𝐸  is the frequency of norm enforcement, 
and 𝑄𝐶𝑃  is the frequency of conformist punishment. Columns of panels vary agents’ initial beliefs 

regarding the frequencies of punishment and cooperation in the population, either starting high (𝑏𝑐 =
𝑏𝑝 = 0.75; left column) or starting low (𝑏𝑐 = 𝑏𝑝 = 0.25; right column;  see Methods for details). In each 

panel, black lines show mean cooperation rates over time across 100 simulation runs; grey lines show 
individual runs, with a representative run highlighted in green. Further simulation settings: n = 100, m = 
10, ε = 0.05. 
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Figure 3 shows the dynamics of cooperation in situations where independent punishment is 

not sufficiently frequent to sustain cooperation by itself. We first confirm that, if independent 

punishers alone are too rare to support cooperation on their own, and neither of the conditional 

punishment strategies is present in the population, cooperation never emerges in our 

simulations (Fig. 3A,B). Next, we consider cases where independent punishment is 

complemented with conditional punishment strategies, raising the overall frequency of 

punishers. The presence of norm enforcement has a strong stabilizing effect once high levels 

of cooperation have been achieved (Fig. 3C). However, it might take considerable time for 

cooperation to emerge (Fig. 3D). These dynamics are driven by a positive feedback loop 

between norm enforcement and cooperation, locking a population into a state of either high or 

low cooperation, making it hard to transition from one state to the other. 

By contrast, in the presence of conformist punishers cooperation readily emerges, but is not 

stable (Fig. 3E,F). The population alternates between states with low and high levels of 

cooperation, with rapid shifts between these states. These dynamics are driven by another 

positive feedback loop: when levels of cooperation and punishment are low, some agents may 

punish their free riding partner due to mistakes or—in the case of conformist punishers—due 

to sampling bias. In turn, these stochastic events may prompt other conformist punishers to 

punish too in the next period, thereby increasing the levels of cooperation and punishment 

even more, and possibly tipping the population to high levels of cooperation and punishment. 

However, similar stochastic processes may also cause cooperation to suddenly break down 

when conformist punishers stop punishing when they happen to underestimate the level of 

punishment in the population.  

When both conformist punishment and norm enforcement are present in the population—but 

keeping the overall frequency of conditional punishment the same—cooperation rapidly 

emerges and remains stable at high levels (Fig. 3G,H). Conformist punishers still amplify the 

impact of stochasticity when cooperation is low, facilitating the emergence of cooperation. 

Subsequently, norm enforcement locks the population into a state of high cooperation. This 

result highlights that the concerted action of conformist punishment and norm enforcement 

can efficiently support cooperation.  
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Fig. 4. Effects of conditional punishment strategies on the emergence and breakdown of cooperation. 
Lines show the cumulative probability of cooperation to rise above 75 percent (A) or fall below 25 
percent (B), as a function of time. Time is shown on a logarithmic scale, and each line represents 500 
simulation runs. Across both panels, we hold fixed the frequency of independent punishers at 30%. 

𝑄𝑁𝐸  is the frequency of norm enforcement, and 𝑄𝐶𝑃  is the frequency of conformist punishment. 

Frequencies of these conditional strategies were chosen such that—according to our analytical 
results—cooperation would emerge (Panel A) or break down (panel B) in the long run. Initial beliefs 
regarding cooperation and punishment levels start low in Panel A (𝑏𝑐 = 𝑏𝑝 = 0.25), and high in Panel B 

(𝑏𝑐 = 𝑏𝑝 = 0.75; see Methods for details). Each simulation runs for 100,000 (105) periods. Further 

simulation settings: n = 100, m = 10, ε = 0.05. Results for additional population compositions with regard 
to punishment strategies confirm the general pattern shown here (Fig. S8). 

 

These results indicate that different conditional punishment strategies can promote 

cooperation in different ways: conformist punishment facilitates the emergence of cooperation; 

norm enforcement helps to maintain it after its emergence. Figure 4 confirms these insights. 

When a population starts from a state of low cooperation, the presence of conformist 

punishment, rather than norm enforcement, can strongly increase the rate at which it shifts to 

a state of high cooperation (Fig. 4A). Conversely, the presence of norm enforcement can 

substantially extend the time that a population remains in a state of high cooperation (Fig. 4B).  

In the Supplementary Information we examine the generalizability and robustness of our 

model results. We confirm that our main model results hold across different ranges of relative 

frequencies of the various (conditional) punishment strategies and different initial beliefs about 

cooperation and punishment in the population (Fig. S9-10). Furthermore, we show that the 

presence of agents who decrease their punishment of free riding as cooperation becomes 

more common—as observed in the CC treatment (‘decreasing punishment’ in Fig. 1A)—
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destabilizes the non-cooperative equilibrium. By itself, decreasing punishment cannot support 

high levels of cooperation. However, in conjunction with other conditional punishment 

strategies, norm enforcement in particular, decreasing punishment can boost the likelihood 

that a population reaches high and stable levels of cooperation (Fig. S11).  

 

Discussion 

Our experiment provides large-scale behavioral evidence that punishment of free riding in 

social dilemmas is shaped both by descriptive norms of cooperation (“is free riding a typical 

action in the population?”) and by descriptive norms of punishment (“what is the typical 

punishment reaction to free riding?”). On aggregate, punishment increases both with the level 

of cooperation and the level of punishment in a payoff-irrelevant reference group. At the 

individual level, we observe substantial heterogeneity in how people react to these descriptive 

norms. Whereas a sizable fraction of participants punishes independently of what others are 

doing ('independent punishment'), at least as many participants display conditional 

punishment strategies, increasing their punishment either with higher levels of cooperation 

('norm enforcement) or with higher level of punishment ('conformist punishment') in the 

reference group. Overall, our experimental results support the emerging view that conditional 

strategies are not limited to the domain of positive reciprocity (i.e., cooperation; 40, 49, 50, 

56), but are also important in the domain of negative reciprocity (i.e., punishment; 47, 53, 54, 

57, 58). 

Our finding that people punish free riding more when cooperation is more common provides 

novel behavioral evidence for the idea that people infer injunctive norms (what is ‘moral’) from 

descriptive norms (what is ‘common’; 41–46, 48, 60). In doing so, we complement existing 

research that largely relied on (non-incentivized) moral judgments (43, 45, 46, 48; see 47 for 

a rare exception). Our behavioral approach, however, does not allow us to pin down the 

psychological mechanisms underlying the different punishment strategies. Previous evidence 

suggests that norm enforcement may be driven by increased disapproval of free riding when 

cooperation is common (47). Similarly, conformist punishers' observing others punishing 

defectors may increase their own disapproval of defection. Alternatively, it could be also that 

conformist punishers follow a simple heuristic of copying what others are doing (47, 61, 62). 

The finding that conformist punishers frequently chose to exactly match the average 

punishment of others (Fig. 2D) suggests that the latter may be more likely. Future work should 

combine behavioral data with survey data to investigate to what extent (conditional) 
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punishment reflects changes in people's moral judgments after observing others' actions, and 

to what extent it reflects people's conformist inclinations. 

An important open question for understanding conditional punishment strategies is whether 

people who condition their punishment behavior on that of others do so consistently across 

different decision settings. Although it seems plausible that some individuals are generally 

more responsive than others to their social environment, it remains an open question whether 

individuals who engage in norm enforcement when informed of cooperation rates in their 

environment, would also tend to punish conformistically when informed of punishment rates. 

Similarly, conditional punishment strategies might correlate with well-studied strategies of 

conditional cooperation. Experiments addressing these associations would provide deeper 

insights into the behavioral architecture of cooperation and punishment, contributing to 

ongoing debates around the generality of strategies across settings involving positive and 

negative reciprocity (51, 55, 63). 

Our model demonstrates how the experimentally identified conditional punishment strategies 

can have important implications for cooperation dynamics. Analytical results reveal that 

conformist punishment strategies can considerably broaden the set of conditions under which 

cooperation can emerge and persist in the long run. Agent-based simulations yield deeper 

insights into the different roles that norm enforcement and conformist punishment play in this 

dynamic. Norm enforcers punish free riders when the cooperation rate in the population is 

relatively high, which makes them effective in maintaining cooperation. However, they do not 

punish when free riding predominates and are therefore of little help for cooperation to emerge 

from scratch. In contrast, conformist punishers sanction free riders as long as sufficiently many 

others do—irrespective of the cooperation rate—and can, therefore, play a valuable role in 

helping cooperation gain a foothold in a population.  

Whereas our experiment shows that the behavior of an individual can be influenced by what 

the collective is doing, our model illustrates how these individual strategies can subsequently 

impact collective dynamics. We deliberately employ a simple stylized model to illustrate the 

basic effects of conditional punishment strategies on the dynamics of cooperation. Despite its 

simplifying assumptions (e.g., mutually exclusive punishment strategies, binary punishment 

and cooperation choices, random re-matching after every interaction), our model produces 

intuitive and robust results. Moreover, the model is able to capture key qualitative features of 

the dynamics of social norms: prolonged periods of stability which are punctuated by tipping 

points, where one norm is rapidly replaced by another (Fig. 3; 63). In line with the results 

obtained by (47), we find that especially the positive social feedback provided by norm 

enforcers is critical to capture these patterns in norm dynamics.  



17 

Our simulations illustrate how conformist punishment can amplify stochastic events, leading 

to both rapid alternation between the emergence and breakdown of cooperation in a 

population (Fig. 3, 4). In contrast, norm enforcement can engender a process of positive 

feedback with cooperation, locking a population into a state of either high or low levels of 

cooperation, making it hard to transition to the other state (Fig. 3). These results give pointers 

for efficiently promoting desirable behaviors, such as voting, tax compliance, or energy 

conservation. In particular, facilitating the observability of (or accessibility to) information about 

other people's behavior may be effective when the majority of the population displays the 

desired behavior: this information can boost norm enforcement, ensuring that adherence to 

the present norm remains high. Conversely, when a majority of the population shows the 

undesired behavior, it may be more effective to provide people with information that informs 

them that many people disapprove of the undesirable behavior. Such information may trigger 

conformist punishment and shift the system to the more desirable outcome. 

 

Methods 

Experimental Procedures. We recruited participants from Amazon Mechanical Turk (MTurk; 

average age 35.5 (s.d.=10.3), range 18-71; 43% male) during September 2017 and 

September 2019. Our main experimental results do not differ between these two waves of 

data collection (Fisher's exact test does not reject the hypothesis that the distributions of 

punishment strategies (Fig. 1A,B) are the same; CC treatment: X2(4)=3.472, P=0.482; CP 

treatment: chi2(4) = 2.320, P=0.677). Hence we pool the data in our analysis. We restricted 

our sample to the United States for reasons of comprehension of English instructions. The 

only other participation criterion was to have at least 95% of previous HITs approved (HITs 

are jobs performed on MTurk; see Supplementary Information, Experimental Procedures). 

The experiment was programmed in LIONESS Lab (65), code is available in the online GitHub 

repository associated with this paper; experimental instructions are documented in full in the 

Supplementary Information. Ethical approval was given by the Research Ethics Committee at 

the School of Economics, University of Nottingham, UK.  

After reading the instructions and passing compulsory control questions, participants entered 

stage 1 and made their binary cooperation decisions. In stage 2, participants completed 

another set of compulsory control questions (see Figs. S6 and S7 for details), before we asked 

them to provide their punishment responses to descriptive norms of cooperation and 

punishment. We used the strategy method (66) to obtain a full punishment profile for each 

individual (55, 67–69). In the CC treatment, we operationalized the descriptive norm of 
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cooperation as the fraction of cooperative choices in a payoff-irrelevant reference group 

(sampled from a pre-recorded pool; details below). We presented participants with eleven 

situations regarding the proportion of cooperators in this reference group, spanning the full 

range of possible outcomes. For each of these situations, participants had to indicate how 

many deduction points they would assign to their current interaction partner. In the CP 

treatment, we operationalized the descriptive norm of punishment as the average intensity of 

punishment in the reference group, and participants indicated for each possible situation how 

many deduction points they would assign to their current interaction partner.  

The pre-recorded pool consisted of a total of 273 MTurkers who played a prisoner’s dilemma 

with punishment mirroring our experiment (cooperation rate: 69%; average punishment of free 

riding partners: 2.7 deduction points). For each dyad in the main experiment, we independently 

sampled 50 participants from the pre-recorded pool to form the reference group. The behavior 

of the reference group defined the situation that was used to calculate participants' earnings. 

Since participants did not know which situation was the actual one beforehand, they were 

incentivized to consider each situation as if it was real.  

Once participants had completed the two decision making stages of the experiment, they were 

placed in a lobby, in which they would be matched with another participant as soon as they 

completed their decisions as well. Excluding the time spent in the lobby, our experiment on 

average lasted 9.9 minutes. In our experiment, participants could earn points which were 

converted to US dollars at the end of the experiment (20 points were worth $1.00). Average 

earnings were $1.96 (range $0.41 - $2.51), which translates to an hourly wage of $12.00.  

We define independent punishment as using the same (non-zero) level of punishment across 

all situations. We defined conditional punishment strategies of norm enforcement and 

conformist punishment as showing a weakly monotonic increase in punishment in responses 

to increasing levels of cooperation (CC treatment) and punishment (CP treatment) in the 

reference group. This approach based on monotonicity is a conservative way to identify 

conditional punishment strategies: an alternative classification method based on linear 

regression models would lead all individuals with non-monotonic response patterns (cf. Fig. 1) 

to be identified as using either independent, increasing, and decreasing punishment strategies.  

Dynamic model. In the first period of the simulations, agents are endowed with initial beliefs 

about the norms of cooperation and punishment, and respond to the beliefs according to their 

specified strategies. For Starting High in Fig. 3 and Fig. 4B, agents initially believe that 75% 

of the agents in the population will cooperate (𝑏𝑐 = 0.75) and 75% of the agents would punish 

free riding (𝑏𝑝 = 0.75). For all agents, the payoff maximizing response to these beliefs is to 
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cooperate; independent punishers, norm enforcers, and conformist punishers punish their 

defecting partner when holding these beliefs. For Starting Low in Fig. 3 and Fig. 4A, agents 

have initial beliefs 𝑏𝑐 = 𝑏𝑝 = 0.25. For all agents, the payoff maximizing response to these 

beliefs is to defect; only independent punishers punish defectors when holding these beliefs. 

In each subsequent period, each agent updates their beliefs by sampling m agents from the 

population with probability 𝑢. We set 𝑢 = 0.5 in our simulations; our analytical results apply to 

any 𝑢 with 0 < 𝑢 < 1. Assuming 𝑢 < 1 prevents that all agents simultaneously update in a 

period with probability one (69–72; see Remarks in Supplementary Analysis, Long-run 

Equilibrium). Agents make mistakes with probability 𝜀 . Mistakes are independent across 

agents, periods, and cooperation and punishment decisions. Full simulation code is available 

from the public repository associated with this paper 

(https://github.com/LucasMolleman/LMD_Conditional_punishment). 
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Supplementary Figures 

 

Fig. S1. Average intensity of punishment as a function of cooperation and punishment among 
participants in the payoff-irrelevant reference group. Panel A (B) summarizes decisions in the CC (CP) 
treatment, showing the average deduction points for each of the situations presented to participants 
(see screenshots of punishment stage in the experiment). Error bars indicate standard errors of the 
means (SEM). For statistical analysis, see Table S1. 

 

 



3 

 

Fig. S2. Distributions of punishment strategies in each treatment, broken down by cooperation decision 
in Stage 1. 
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Fig. S3. Distribution of deduction points for independent punishers who defected in Stage 1. As in the 
equivalent figure showing behavior of independent punishers who cooperated in Stage 1 (main text Fig. 
2A,B), vertical axes show counts. Note that, in contrast to cooperators, defectors do not equalize payoffs 
between themselves and their partners by assigning 8 deduction points (potentially explaining why this 
response was much more frequent among cooperators than among defectors).  
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Fig. S4. Deduction points assigned by cooperators, broken down by treatments and punishment 
strategy. Sizes of dots indicate numbers of observations. 
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Fig. S5. Deduction points assigned by defectors, broken down by treatment and punishment strategy. 
Sizes of dots indicate numbers of observations.  
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Fig. S6. Distributions of failed attempts at the compulsory control questions, broken down by 
punishment strategy in each treatment. Each jittered data point shows a participant. The y-axis is 
displayed in log scale to account for outliers with many attempts before passing the 9 control questions 
(7 of which are open questions about game payoffs). Diamond symbols show the means.   

  



8 

 

 

 

Fig. S7. Distributions of punishment strategies in each treatment, excluding participants with more than 
10 Quiz Fails (A and B) and those more than 3 Quiz Fails (C and D), respectively. These plots suggest 
that the distribution of strategies remains stable when we consider different subsets of participants 
based on their number of attempts on the control questions.  
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Fig. S8. Effects of conditional punishment strategies on the emergence and breakdown of cooperation. 
Lines show the cumulative probability of cooperation to rise above 75 percent (A) or fall below 25 
percent (B), as a function of time. Time is shown on a logarithmic scale, and each line represents 500 
simulation runs. Across both panels, we hold fixed the frequency of independent punishers at 30%. 

𝑄𝑁𝐸  is the frequency of norm enforcement, and 𝑄𝐶𝑃 is the frequency of conformist punishment. 

Frequencies of these conditional strategies were chosen such that—according to our analytical 
results—cooperation would emerge (Panel A) or break down (panel B) in the long run. Initial beliefs 
regarding cooperation and punishment levels start low in Panel A (𝑏𝑐 = 𝑏𝑝 = 0.25), and high in Panel B 

(𝑏𝑐 = 𝑏𝑝 = 0.75; see Methods for details). Each simulation runs for 100,000 (105) periods. Further 

simulation settings: n = 100, m = 10, 𝑢 = 0.5, ε=0.05.  
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Fig. S9.  Frequency of cooperation for different population compositions and different initial 

conditions. Colors (and number in the cells) indicate average percentages of cooperation across all 

periods of the simulation (see right hand side for color key). Each cell represents 30 simulation runs. 

Initial beliefs regarding cooperation and punishment start low in Panel A (𝑏𝑐 = 𝑏𝑝 = 0.25), and high in 

Panel B (𝑏𝑐 = 𝑏𝑝 = 0.75). 𝑄𝐼𝑃 is the frequency of independent punishment, 𝑄𝑁𝐸  is the frequency of 

norm enforcement, and 𝑄𝐶𝑃 is the frequency of conformist punishment. Each simulation runs for 

100,000 (105) periods. Further simulation settings: n = 100, m = 10, 𝑢 = 0.5, ε=0.05.  
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Fig S10. Waiting time for transitions between low and high cooperation given different 
population compositions. The color of each cell shows the median number of waiting periods across 
30 simulation runs for cooperation to rise above 75% (Panel A) or fall below 25% (Panel B). Initial beliefs 
regarding cooperation and punishment start low in Panel A (𝑏𝑐 = 𝑏𝑝 = 0.25), and high in Panel B (𝑏𝑐 =

𝑏𝑝 = 0.75). 𝑄𝐼𝑃 is the frequency of independent punishment, 𝑄𝑁𝐸  is the frequency of norm enforcement, 

and 𝑄𝐶𝑃 is the frequency of conformist punishment. The plots rely on the same simulation data used for 
Fig S9.  
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Fig S11. Effects of ‘Decreasing Punishment’ (DP) (cf. Fig 1A, blue bar) on cooperation dynamics. 
Agents with this strategy punish free riders if they believe cooperation rates are lower than 50% (𝑏𝑐 < 
0.5). Triangles show outcomes of simulations that vary the relative proportion of norm enforcement, 
conformist punishment, and decreasing punishment, with independent punishment fixed at 30%. The 
top row shows the percentage of periods for which cooperation was higher than 75% for each 
combination of strategies, whereas the bottom row shows the frequency of cooperation over all periods. 
𝑄𝐷𝑃 is the frequency of decreasing punishment, 𝑄𝑁𝐸  is the frequency of norm enforcement, and 𝑄𝐶𝑃 is 
the frequency of conformist punishment. Results are the average outcome of simulations where 
cooperation either started high (𝑏𝑐 = 𝑏𝑝 = 0.75) or low (𝑏𝑐 = 𝑏𝑝 = 0.25). In particular, for each possible 

combination of 𝑄𝑁𝐸 , 𝑄𝐶𝑃, and 𝑄𝐷𝑃averages are based on 10 simulations (5 with high and 5 with low 
initial beliefs). Each simulation runs for 10,000 (104) periods. Further simulation settings: n = 100, m = 

10, 𝑢 = 0.5, ε=0.05.  
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Supplementary Tables 

Table S1. Determinants of punishment.  

  CC treatment CP treatment Pooled 

 (i) (ii) (iii) 

Reference_cooperation   
(cooperators in the reference group; 1 unit = 10% 
increase) 

0.051**   

(0.016)   

Reference_punishment  
(mean deduction points of the reference group) 

 0.156***  

 (0.016)  

Cooperator  
(1 if cooperate in stage 1; 0 otherwise) 

1.239*** 1.776***  1.510*** 

(0.249) (0.241) (0.023)   

Reference_cooperation × Cooperator    

   

Reference_punishment × Cooperator    

   

Reference_behavior   0.051** 

  (0.016) 

Treatment_CP   -0.689*** 

  (0.184)  

Reference_behavior × Treatment_CP   0.105** 

  (0.023) 

Male 0.199 0.212 0.193   

  (0.257 (0.260)   (0.183) 

Age -0.012 0.019 0.004 

  (0.013) (0.012) (0.009)  

Constant 1.907*** -0.272 1.157** 

 (0.495) (0.473)  (0.357) 

Observations 5,434 5,478  10,912 

Number of participants 494 498 992 

R-square 0.038  0.095  0.064 

Notes: The table displays results from OLS regression analyses of the number of deduction points that 
participants assigned to their defecting partners. Reference_cooperation (Reference_punishment) 
ranges from 0 to 10, corresponding to the 11 situations presented in stage 2 of the CC (CP) treatment.  
In the pooled regression (vii), Reference_behavior equals to Reference_cooperation for the CC 
treatment and Reference_punishment for the CP treatment. Treatment_CP is a dummy variable that 
takes the value of 1 if the participant was in the CP treatment, and 0 otherwise. .Robust standard errors 
(in parentheses) are corrected for clustering at the participant level. Asterisks denote statistical 
significance. Asterisks denote statistical significance: * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Regression (i) shows that in the CC treatment, an increase of 10% of cooperators in the reference group 

leads to an average increase of 0.051 deduction points assigned to a defecting interaction partner (F-

test: P<0.01). Regression (ii) shows that in the CP treatment, an average increase of one deduction 

point assigned in the reference group leads to an average increase of about 0.157 deduction points (F-

test: P<0.001). Regression (iii) pools the data of both treatments. The coefficient of the interaction term 

‘Reference_behavior × Treatment_CP is significantly positive (F-test: P<0.001). This suggests that, on 

average, participants’ punishment of their interaction partner was more strongly influenced by 

punishment than by cooperation in the reference group. Additionally, we find that participants who 

cooperated themselves punish their defecting interaction partner more severely, on average, deduction 

points assigned by cooperators are 1.2 to 1.8 points higher than those assigned by defectors.  
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Supplementary Analysis 
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Here we use analytical methods to evaluate our model, addressing how the experimentally 

identified punishment strategies interact to shape the dynamics of cooperation in the long run. 

Section 1 describes and formalizes the interaction setting. Section 2 describes the strategies 

we consider. Sections 3 and 4 analyze the effects of conditional punishment strategies on 

cooperation in the short run and in the long run, respectively. 

 

1. Setting  

We consider the following decision setting, which is similar to the task used in the experiment. 

Two agents, A and B, are randomly drawn from a large population to play a two stage game. 

In Stage 1, they can either cooperate or defect. Table S2 shows how the Stage 1 material 

payoffs  for both agents depend on their choices.   

 

Table S2. Payoffs from stage 1. 

  Agent B 

  Cooperate Defect 

 
Agent A 

Cooperate 𝑎, 𝑎 𝑑, 𝑒 

Defect 𝑒, 𝑑 𝑐, 𝑐 

Note: we consider a prisoner’s dilemma, which is characterized by 𝑒 >  𝑎 >  𝑐 >  𝑑. In the experiment, 

the values used were: 𝑒 = 25, 𝑎 = 18, 𝑐 = 16, 𝑑 = 9.  

 

In Stage 2, each agent can punish their partner, if their partner defected in Stage 1. We depart 

from the experiment by considering binary punishment decisions (rather than choosing 

integers on a 0-10 scale). Punishment incurs a cost 𝑘 > 0 to the punisher and a loss 𝑙 > 0 to 
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the defector. As consistent with our experiment, our model considers punishment of defectors 

and ignores antisocial punishment of cooperators. The final payoffs from the game are the 

payoffs from Stage 1 minus the costs of conducting punishment and losses from being 

punished in Stage 2.  

 

We focus on binary punishment decisions for the sake of exposition and tractability. Compared 

with the task in our experiment, focusing on binary punishment decisions in our model is not 

without loss of generality. Binary punishment excludes the possibility that an individual’s 

punishment is not weakly monotonic—i.e., that it is neither independent, nor weakly increasing 

or weakly decreasing—in response to increasing cooperation rate or punishment rate in the 

population. Our experimental results, however, suggest that non-monotonic punishment 

behavior is much less common than independent punishment, norm enforcement, and 

conformist punishment (Fig. 1 in the main text). Furthermore, the group of participants who 

show non-monotonic punishment behavior becomes very small (less than 10 percent) if we 

exclude participants who had difficulty answering the nine compulsory control questions (Fig. 

S7), suggesting that such non-monotonic behavior is likely to be the result of inattentive choice 

behavior, rather than a real preference. 

 

2. Strategies 

 

Cooperation. We assume that an agent’s choice to cooperate or defect depends on which 

choice generates the highest expected material payoffs. Let 𝑏𝑐 ∈ [0,1] denote an agent’s belief 

about the cooperation rate in the population, and 𝑏𝑝 ∈ [0,1] the punishment rate. From Table 

S2 we can see that the expected payoff from choosing cooperate is  

(1)  𝑏𝑐𝑎 + (1 − 𝑏𝑐)𝑑. 

The expected payoff from choosing defect is   

(2)  𝑏𝑐𝑒 + (1 − 𝑏𝑐)𝑐 − 𝑏𝑝𝑙. 

An agent cooperates if and only if (1) ≥ (2) (assuming they cooperate if expected payoffs are 

the same). Rearranging the terms leads to the condition 

(3)  𝑏𝑝 ≥ 𝜃𝐶 ≡
1

𝑙
[𝑏𝑐(𝑒 − 𝑎) + (1 − 𝑏𝑐)(𝑐 − 𝑑)]. 

This shows that an agent cooperates if and only if their beliefs of being punished if they defect 

(𝑏𝑝) exceeds a threshold. This threshold is linearly increasing in the temptation to defect 

𝑏𝑐(𝑒 − 𝑎) + (1 − 𝑏𝑐)(𝑐 − 𝑑), and decreasing in the loss from being punished 𝑙. In the analysis 
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presented in the main text, we assume 𝜃𝐶 = 0.5. Here, we consider the general case of 

arbitrary threshold values.  

Punishment. Our implementation of punishment strategies is informed by our experimental 

results. We consider four distinct ‘types’ of agents: i) independent punishers who punish 

independently of 𝑏𝑐 and 𝑏𝑝, ii) norm enforcers who punish if and only if 𝑏𝑐is high enough, and 

iii) conformist punishers who punish if and only if 𝑏𝑝 is high enough; and iv) non-punishers, 

who never punish. For simplicity and ease of illustration, we assume that the four strategies 

above are mutually exclusive and stable: each individual has a unique strategy that doesn’t 

change over time. 

The frequencies of punishment types in the population—independent punishers (𝑄𝐼𝑃), norm 

enforcers (𝑄𝑁𝐸), conformist punishers (𝑄𝐶𝑃) and non-punishers (𝑄0)—sum up to 1. Agents do 

not know the punishment strategy of their interaction partners. Norm enforcers punish if and 

only if 𝑏𝑐 ≥ 𝜃𝑁𝐸 . Conformist punishers punish if and only if 𝑏𝑝 ≥ 𝜃𝐶𝑃. In the main text, we 

assume 𝜃𝑁𝐸 = 𝜃𝐶𝑃 = 0.5. Here we will consider the case of arbitrary threshold values.  

We characterize short-run (Nash) equilibria and long-run equilibria of the game. First, we show 

that there are often two Nash equilibria: one in which all agents cooperate, and another in 

which all agents defect. Second, we analyze how the relative frequencies of the different 

punishment strategies (𝑄𝐼𝑃 , 𝑄𝑁𝐸 , 𝑄𝐶𝑃 , 𝑄0) affect the likelihood of either equilibrium to emerge 

and persist in the long run. Finally, we construct a stochastic model to examine how dynamics 

of cooperation and punishment may evolve over time.  

 

3. Short-run (Nash) equilibrium 

Proposition 1 shows the conditions under which cooperation can be sustained in the short run. 

Agents do not know the type of agent with whom they are matched. As is standard in the 

economic literature, we assume that agents have a common prior on the population 

composition, which corresponds to (𝑄𝐼𝑃 , 𝑄𝑁𝐸 , 𝑄𝐶𝑃 , 𝑄0) . In the next section ‘Long-run 

equilibrium’, we will address the problem of how agents form and update beliefs over time. 

Exogenous payoff parameters of the game determine the equilibria through their effects on 

the thresholds 𝜃𝐶 , 𝜃𝑁𝐸, and𝜃𝐶𝑃 .  

Proposition 1.  (Nash equilibrium) 

1. If 𝑄0 > 1 −
𝑛−1

𝑛
𝜃𝐶, then in every Nash equilibrium all agents defect.  
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2. If 𝑄𝐼𝑃 ≥
1

𝑛
+

𝑛−1

𝑛
𝜃𝐶, or if 𝑄𝐼𝑃 > 𝜃𝐶𝑃 and 𝑄𝐼𝑃 + 𝑄𝐶𝑃 ≥

1

𝑛
+

𝑛−1

𝑛
𝜃𝐶, then in every Nash 

equilibrium all agents cooperate.  

3. If 𝑄0 < 1 −
1

𝑛
−

𝑛−1

𝑛
𝑚𝑎𝑥{𝜃𝐶 , 𝜃𝐶𝑃}, then there exists a Nash equilibrium in which all 

agents cooperate, and all agents (except non-punishers)  punish defectors.  

4. If 𝑄𝐼𝑃 <
𝑛−1

𝑛
𝑚𝑖𝑛{𝜃𝐶 , 𝜃𝐶𝑃}, then there exists a Nash equilibrium in which all agents 

defect, and only those punishing independently punish defectors.  

The proof of the proposition is provided at the end of this section. The proposition states that, 

first, if there are many agents who do not punish (𝑄0 exceeds a critical threshold), then all 

agents defect in equilibrium. Second, it states that if there is a high enough level of 

independent punishment such that cooperation is the payoff maximizing choice for all 

individuals (𝑄𝐼𝑃 ≥
1

𝑛
+

𝑛−1

𝑛
𝜃𝐶), then all agents cooperate in equilibrium. Similarly, if there are 

enough independent punishers such that their behavior triggers punishment by conformist 

punishers (𝑄𝐼𝑃 > 𝜃𝐶𝑃), and their joint number is high enough to make cooperation the payoff 

maximizing choice for all agents ( 𝑄𝐼𝑃 + 𝑄𝐶𝑃 ≥
1

𝑛
+

𝑛−1

𝑛
𝜃𝐶 ), then all agents cooperate in 

equilibrium as well. 

The third statement of the proposition says that if there are not sufficiently many non-punishers 

(𝑄0 < 1 −
1

𝑛
−

𝑛−1

𝑛
𝑚𝑎𝑥{𝜃𝐶 , 𝜃𝐶𝑃}), then there exists a Nash equilibrium in which all agents 

cooperate and all agents (apart from non-punishers) punish defectors. The fourth statement 

says that if there are not sufficient independent punishers to either make cooperation the 

payoff maximizing choice (either by themselves, or in unison with conformist punishers), then 

there exists a Nash equilibrium in which all agents defect.  

Together, the third and the fourth statement imply that when both independent punishers and 

non-punishers occur at intermediate frequencies, cooperation and defection can both emerge 

as Nash equilibria. In the following section, and in the simulations reported in the main text, 

we focus on situations where there are multiple equilibria, and examine how (conditional and 

unconditional) punishment strategies affect which of these equilibria is selected in the long run. 

Proof of Proposition 1.  

(1) By contradiction: Suppose there is a (Nash) equilibrium in which some agent 

cooperates. Then for this agent, 𝑏𝑝 ≥ 𝜃𝐶  where 𝑏𝑝  is the proportion of those who 

punish among the other agents. Note 𝑏𝑝 ≤
(1−𝑄0)𝑛

𝑛−1
, where (1 − 𝑄0)𝑛 is an upper bound 
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on the number of agents who punish, and 𝑛 − 1 is the number of all other agents. 

Given 𝑄0 > 1 −
𝑛−1

𝑛
𝜃𝐶, however, we have 

(1−𝑄0)𝑛

𝑛−1
< 𝜃𝐶, contradicting with 𝑏𝑝 ≥ 𝜃𝐶. 

(2) We show the contrapositive: Suppose there is an equilibrium in which an agent defects. 

Then for the agent, 𝑏𝑝 < 𝜃𝐶, where 𝑏𝑝is at least 
𝑄𝐼𝑃𝑛−1

𝑛−1
. Hence 

𝑄𝐼𝑃𝑛−1

𝑛−1
< 𝜃𝐶, implying 

𝑄𝐼𝑃 <
1

𝑛
+

𝑛−1

𝑛
𝜃𝐶.  

Next, suppose 𝑄𝐼𝑃 > 𝜃𝐶𝑃. Then both independent punishers and conformist punishers 

punish. Hence, for each agent, the proportion of those who punish among the others 

is at least 
(𝑄𝐼𝑃+𝑄𝐶𝑃)𝑛−1

𝑛−1
.  By 𝑄𝐼𝑃 + 𝑄𝐶𝑃 ≥

1

𝑛
+

𝑛−1

𝑛
𝜃𝐶, we have 

(𝑄𝐼𝑃+𝑄𝐶𝑃)𝑛−1

𝑛−1
≥ 𝜃𝐶 . Thus 

every agent cooperates. 

(3) Consider the strategy profile such that all agents cooperate, and all agents (except 

non-punishers) punish defectors. To show that this is an equilibrium, we check the 

best-response of each agent. First, consider each agent’s cooperation decision. The 

specified condition implies 𝑏𝑝 ≥
(𝑄𝐼𝑃+𝑄𝑁𝐸+𝑄𝐶𝑃)𝑛−1

𝑛−1
≥ 𝜃𝐶  (a). Hence it is each agent’s 

best response to cooperate. Second, given that everyone cooperates, it is each norm 

enforcer’s best response to punish any defector. And by definition, each independent 

punisher also punishes. Third, it is each conformist punisher’s best response to punish 

if 
(𝑄𝐼𝑃+𝑄𝑁𝐸+𝑄𝐶𝑃)𝑛−1

𝑛−1
≥ 𝜃𝐶𝑃 (b). The condition 𝑄0 < 1 −

1

𝑛
−

𝑛−1

𝑛
𝑚𝑎𝑥{𝜃𝐶 , 𝜃𝐶𝑃} implies both 

(a) and (b). This establishes the statement.  

(4) Consider the strategy profile such that all agents defect, and no agent (except 

independent punishers) punishes defectors. We prove the statement by checking each 

agent’s best responses. First, 𝜃𝐼𝑃 <
𝑛−1

𝑛
𝜃𝐶 implies 

𝜃𝐼𝑃𝑛

𝑛−1
< 𝜃𝐶. Hence it is each agent’s 

best response to defect. Second, that all agents defect implies that it is each norm 

enforcer’s best response to not punish defectors. Third, 𝜃𝐼𝑃 <
𝑛−1

𝑛
𝜃𝐶𝑃 implies 

𝜃𝐼𝑃𝑛

𝑛−1
<

𝜃𝐶𝑃 . Hence it is each conformist punisher’s best response to not punish. This 

completes the proof.  

Q.E.D. 

3. Long-run equilibrium 

In this section we examine the long-run effects of conditional and unconditional punishment 

strategies on cooperation. We aim to delineate the conditions under which conditional 

punishment strategies (norm enforcement and conformist punishment) will, in the long run, 
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cause the population to be in or around the cooperation equilibrium for most of the time. Our 

analysis builds on (1–3).   

We consider discrete time periods: 𝑡 = 0,1,2, … , 𝑇 . In each period, agents are randomly 

matched and interact in the two-stage game described in Section 1 above. An agent’s 

punishment strategy and the population composition (𝑄𝐼𝑃 , 𝑄𝑁𝐸 , 𝑄𝐶𝑃 , 𝑄0) are fixed over time, 

but agents may update their cooperation and punishment decisions as their beliefs 𝑏𝑐 and 𝑏𝑝 

change. In each period agents react to their beliefs ‘myopically’ to maximise their expected 

payoffs in that period. 

To be more precise, each period involves two subsequent classes of events:  

I. Updating beliefs. In each period 𝑡 ≥ 1, each agent updates their beliefs with probability 

u, with 0<u<1. Belief updating works as follows. The agent randomly samples m agents 

from the population, with 0<m≤n. She counts how many agents in the sample 

cooperated and would punish according to their strategies in the previous period, and 

divide the counts by m. The results become their beliefs 𝑏𝑐 and 𝑏𝑝 in the current period.  

II. Responding myopically to beliefs. An agent cooperates in a period if and only if they 

have belief 𝑏𝑝 ≥ 𝜃𝐶. Punishment decisions are determined according to the agents’ 

types (as specified in Section 2 above).   

With a high probability, an agent’s decisions are implemented according to the rules stated 

above. With small probability 𝜀 ≥ 0, however, an agent makes a mistake (“tremble”). A mistake 

implies that the agent randomly selects a cooperative action or a punishment action. We 

assume that mistakes are independent across periods, agents, and across cooperation and 

punishment decisions. Following (1–3), we refer to the dynamic with 𝜀 > 0 as the stochastic 

dynamic, and the dynamic with 𝜀 = 0 as the best-response dynamic. 

We first analyze the stochastic dynamic in the case of 𝑚 = 𝑛 , 𝑇 → ∞ , and 𝜀 → 0  using 

analytical methods. As previous studies of the same class of stochastic dynamics show 

(Kandori et al. 1993; Young 1993, 1998), whether 𝑚 < 𝑛 or 𝑚 = 𝑛 does not affect stationary 

distributions of the dynamics. Later, we also conduct simulations to explore the cases of small 

sample size 𝑚, finite 𝑇, and non-negligible 𝜀.  

Our analytical results aim to characterize the set of long-run equilibria. These are the equilibria 

that have a positive frequency in the stationary distribution of the stochastic dynamic when the 

probability of mistakes is vanishingly small. A long run equilibrium is formally defined as follows. 

Let 𝑠 be a population state specifying the cooperation decision and punishment decision of 

each agent in the population. Let 𝑆 denote the set of all population states. Let 𝑃𝜀 ∈ 𝛥(𝑆) 
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denote the stationary distribution of the stochastic dynamic under 𝜀 > 0  and 𝑚 = 𝑛 . The 

stochastic dynamic is an irreducible Markov chain on the finite state space 𝑆. Hence 𝑃𝜀 exists 

and is unique for each 𝜀 . We obtain 𝑃𝜀  by taking 𝑇 → ∞ . Let 𝑃 ≡ 𝑙𝑖𝑚
𝑒→0

𝑃𝜀  denote the limit 

distribution as 𝜀 approaches zero. A state 𝑠 is a long-run equilibrium if 𝑃(𝑠) > 0 (1–3). If a 

state is a unique long-run equilibrium for sufficiently large 𝑛, then it is a generically unique 

long-run equilibrium. 

For the sake of exposition and analytical tractability, we restrict our attention to the parameter 

ranges specified by the Assumptions below.   

Assumption 1.   

1) 𝑄𝐼𝑃 < 𝑚𝑖𝑛{𝜃𝐶 , 𝜃𝐶𝑃}, 𝜃𝑁𝐸 < 1, and 𝑄0 < 1 − 𝑚𝑎𝑥{𝜃𝐶 , 𝜃𝐶𝑃}; 

2) either (i) 𝑄𝑁𝐸 ≥ |𝜃𝐶 − 𝜃𝐶𝑃|  and 𝑄𝐶𝑃 ≥ |𝜃𝐶 − 𝜃𝐶𝑃| , or (ii) 𝑄𝑁𝐸 ≤ |𝜃𝐶 − 𝜃𝐶𝑃|  and 𝑄𝐶𝑃 ≤

|𝜃𝐶 − 𝜃𝐶𝑃|; 

3) either (i) 𝜃𝐶𝑃 ≤ 𝑄𝐼𝑃 + 𝑄𝑁𝐸  and 𝜃𝐶𝑃 ≤ 𝑄𝐼𝑃 + 𝑄𝐶𝑃 , or (ii) 𝜃𝐶𝑃 ≥ 𝑄𝐼𝑃 + 𝑄𝑁𝐸  and 𝜃𝐶𝑃 ≥

𝑄𝐼𝑃 + 𝑄𝐶𝑃. 

Assumption (1) restricts our attention to cases where the following Nash equilibria both exist 

(see Proposition 1): the defection equilibrium in which all agents defects and only independent 

punishers punish defectors; and the cooperation equilibrium in which all agents cooperate and 

all agents (except non-punishers) punish defectors. The remaining two assumptions greatly 

reduce the number of cases we need to consider, but still allow us to obtain the key intuitions 

from the model. Specifically, assumption (2) holds that the proportions of conditional punishers 

(𝑄𝑁𝐸 and 𝑄𝐶𝑃) are both either high or low. Assumption (3) holds that the value of 𝜃𝐶𝑃 is either 

high or low, compared to the number of punishers.  

Now we can state the proposition about the long-run equilibrium of the stochastic dynamic. It 

shows how norm enforcement and conformist punishment interact with independent 

punishment to affect cooperation in the long run.  

Proposition 2. (Long-run equilibrium) Suppose 𝑚 = 𝑛 and Assumption 1 hold. Let 𝜃 ≡

𝑚𝑖𝑛{
1

2
(𝜃𝐶+𝜃𝐶𝑃), 2𝜃𝑁𝐸+𝜃𝐶𝑃 − 1} and  �̄� ≡ 𝑚𝑎𝑥{

1

2
(𝜃𝐶+𝜃𝐶𝑃), 2𝜃𝑁𝐸+𝜃𝐶𝑃 − 1}.  

1. If 𝑄𝐼𝑃 + 𝑄𝑁𝐸 > �̄� and 𝑄𝐼𝑃 + 𝑄𝐶𝑃 > �̄�, then the cooperation equilibrium is the 

generically unique long-run equilibrium. 

2. If 𝑄𝐼𝑃 + 𝑄𝑁𝐸 < 𝜃 𝑎𝑛𝑑 𝑄𝐼𝑃 + 𝑄𝐶𝑃 < 𝜃, then the defection equilibrium is the generically 

unique long-run equilibrium. 
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The proofs for Proposition 2 are provided at the end of this section. Fig. S12 illustrates the 

proposition, which says that, together with the independent punishment, conditional 

punishment can support cooperation as the generically unique long-run equilibrium. If the 

frequencies of independent punishment and conditional punishment are both low, then the 

cooperation equilibrium cannot be sustained in the long run.  

 

Fig. S12. Illustration of Proposition 2. When 𝑄𝐼𝑃 + 𝑄𝑁𝐸 > �̄� and 𝑄𝐼𝑃 + 𝑄𝐶𝑃 > �̄�, we expect to see the 

cooperation equilibrium in the long run. When 𝑄𝐼𝑃 + 𝑄𝑁𝐸 < 𝜃 and  𝑄𝐼𝑃 + 𝑄𝐶𝑃 < 𝜃, we expect to see the 

defection equilibrium in the long run. When 𝜃𝐶 = 𝜃𝑁𝐸 = 𝜃𝐶𝑃 = 0.5, we have 𝜃 = �̄� = 0.5.  

 

Nevertheless, the characterization by Proposition 2 is incomplete. It is silent about the case of 

𝜃 < 𝑄𝐼𝑃 + 𝑄𝑁𝐸 < �̄�  or 𝜃 < 𝑄𝐼𝑃 + 𝑄𝐶𝑃 < �̄� . Proposition 3 below provides precise cut-off 

conditions for the long-run equilibrium for the special case where  𝜃𝐶 = 𝜃𝑁𝐸 = 𝜃𝐶𝑃 =
1

2
, which 

is also the set of parameters we use in our simulations presented in the main text.  The 

assumption that all thresholds are equal to a half is somewhat arbitrary. As stated in Section 

2 of this Supplement, the threshold 𝜃𝐶 is determined by exogenous payoff parameters. Hence, 

setting it equal to a half comes down to considering a subset of the potential payoff space. For 

𝜃𝑁𝐸 and 𝜃𝐶𝑃 , however, a threshold of a half makes intuitive sense. For norm enforcement, it is 

in line with the idea that people will judge the more common behavior as the more moral one, 

and act to enforce it (4). For conformist punishment, it states that these agents follow the 

behavior of the majority.  Furthermore, our focus here is not on the comparative statics with 

respect to these thresholds, but rather on how the population composition (with respect to 

punishment strategies) affects cooperation dynamics. In this regard, the proposition below is 

illuminating. 

𝑄𝐼𝑃 

𝑄𝑁𝐸 and 𝑄𝐶𝑃  

 𝜃ҧ 

 𝜃ҧ 

 𝜃 

 𝜃 

Defect  

in the long run 

Cooperate 

in the long run 

0.5 

1 0 
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Proposition 3. Suppose 𝑚 = 𝑛 and 𝜃𝐶 = 𝜃𝑁𝐸 = 𝜃𝐶𝑃 =
1

2
.  Then  

1. If 𝑄𝐼𝑃 +
1

2
(𝑄𝑁𝐸 + 𝑄𝐶𝑃) >

1

2
, then the cooperation equilibrium is the generically unique 

long-run equilibrium;  

2. If 𝑄𝐼𝑃 +
1

2
(𝑄𝑁𝐸 + 𝑄𝐶𝑃) <

1

2
, then the defection equilibrium is the generically unique 

long-run equilibrium. 

The proof for Proposition 3 is provided at the end of this section. When 𝜃𝐶 = 𝜃𝑁𝐸 = 𝜃𝐶𝑃 =
1

2
, 

we already have 𝜃 = �̄� =
1

2
 in the conditions specified in Proposition 2. Proposition 3 further 

reveals that: if and only if independent punishers and the average number of norm enforcers 

and conformist punishers together add up to over a half of the population, then the cooperation 

equilibrium will be the only state that occurs with positive probability 𝑃(𝑠) > 0 in the long run. 

That is, the average frequency of norm enforcement and conformist punishment is important 

to support cooperation in the long run; it is as important as the role played by independent 

punishment.  

Remarks. Economists have used myopic best-response stochastic dynamics to study 

bargaining norms (5), customs in economic contracts (6), evolution of altruism (7), the 

selection of coordination actions in social networks (8, 9), diffusion of innovations (10, 11), and 

the evolution of cooperation strategies in repeated games (12). In particular, (1–3) show that 

many details of these dynamics do not affect their stationary distributions when 𝜀 → 0. In 

particular, the stationary distribution is not affected by the value of the updating probability 𝑢 

as long as 0 < 𝑢 < 1, or the sample size 𝑚 as long as 𝑚 does not become too small to affect 

the tipping thresholds, or the probability distribution used to pick actions when making 

mistakes. 

Assuming 𝑢 < 1 means that it will not occur that all agents update simultaneously in a period. 

If 𝑢 = 1 and 𝜀 is small, then besides the cooperation equilibrium and the defection equilibrium, 

the population can also be trapped in a loop of jumping back and forth between two states: in 

one, all agents defect and all punish defectors except for the non-punishers; in the other, all 

agents cooperate but no one would punish defectors except for the independent punishers. 

We exclude this possibility to focus on the transitions between the cooperation equilibrium and 

the defection equilibrium characterized by Proposition 1.  

Proof of Proposition 2.  

Preliminaries. First, we introduce necessary terminology for our proof (see, e.g., Young (1998) 

for a more extensive discussion). An absorbing set (of the best-response dynamic) is a subset 
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of states 𝑋 ⊂ 𝑆 such that (i) if the the best-response dynamic starts from a state in 𝑋 then it 

stays within 𝑋 with probability 1, and (ii) for any 𝑠, 𝑠′ ∈ 𝑋, there is a positive probability of 

transiting from 𝑠 to 𝑠′ within a finite number of periods. If an absorbing set contains only one 

state, then we call the state an absorbing state. A transition path from 𝑠  to 𝑠′ is a finite 

sequence of states, 𝑠1, 𝑠2, … , 𝑠𝐾 ∈ 𝑆, with 𝑠1 = 𝑠,𝑠𝐾 = 𝑠′, and 𝑠𝑘 ≠ 𝑠𝑘+1  for each 1 ≤ 𝑘 < 𝐾 . 

The cost of a transition path, denoted by 𝑐𝑜𝑠𝑡(𝑠1, 𝑠2, … , 𝑠𝐾), is the number of mistakes (choices 

that are not best responses) that occur along the path.  

We use stochastic trees to represent minimum transition costs between absorbing sets. A 

stochastic tree is a directed tree with each absorbing set as a vertex. The directed edges in a 

stochastic tree represent transitions among absorbing sets. Each edge is weighted by the 

minimum number of mistakes required to transit from one absorbing set to another. An 

absorbing set is said to be at the root of a stochastic tree if there is no edge (with positive 

weight) leading from it to other absorbing sets in the tree. The cost of a stochastic tree is the 

sum of the weights of all its edges. Our proof applies the following theorem: 

Theorem (Young (2)).  

1. A state is a long-run equilibrium only if it is contained in an absorbing set. 

2. If an absorbing state is at the root of the stochastic tree that strictly minimizes the cost 

among all stochastic trees, then the state is the unique long-run equilibrium.  

The best-response dynamic in our model has only two absorbing sets: one consisting of 

defection equilibrium, and the other consisting of the cooperation equilibrium. With abuse of 

notation, we denote them by 𝐷 and 𝐶, respectively. By Young’s theorem, 𝐷 and 𝐶 are the only 

candidates for a long-run equilibrium.  

We can construct two stochastic trees: 𝐷 → 𝐶 (a directed line with 𝐷 and 𝐶 as its two vertices 

connected by a unique edge leading from 𝐷 to 𝐶) and 𝐶 → 𝐷. Let 𝑀𝐶→𝐷 denote the minimum 

number of mistakes required to transit from 𝐶  to 𝐷. More precisely, 𝑀𝐶→𝐷  is the minimum 

value of 𝑐𝑜𝑠𝑡(𝑠1, 𝑠2, … , 𝑠𝐾)  among the set of all paths 𝑠1, 𝑠2, … , 𝑠𝐾  with 𝑠1 = 𝐶  and 𝑠𝐾 = 𝐷 . 

Likewise, 𝑀𝐶→𝐷  is the minimum value of 𝑐𝑜𝑠𝑡(𝑠1, 𝑠2, … , 𝑠𝐾)  among the set of all paths 

𝑠1, 𝑠2, … , 𝑠𝐾 with 𝑠1 = 𝐷 and 𝑠𝐾 = 𝐶. By Young’s theorem, it suffices to compare 𝑀𝐶→𝐷  with 

𝑀𝐶→𝐷 to determine the long-run equilibrium.  

Transition paths. Now we examine transition paths with minimum costs between 𝐷 and 𝐶. 

Three paths are relevant to determine  the minimum cost of transitions from 𝐷 to 𝐶: 

● Path E1 (‘E’ for Emergence of cooperation): Starting from 𝐷 at time 𝑡 = 0, if 𝜃𝐶 − 𝑄𝐼𝑃 <

𝑄0, then let ⌈(𝜃𝐶 − 𝑄𝐼𝑃)𝑛⌉ non-punishers punish defectors by mistake at 𝑡 = 1 (for any real 
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number 𝑥, ⌈𝑥⌉is the lowest integer equal to or greater than 𝑥). If 𝜃𝐶 − 𝑄𝐼𝑃 ≥ 𝑄0, then let all 

non-punishers and ⌈(𝜃𝐶 − 𝑄𝐼𝑃 − 𝑄0)𝑛⌉ conformist punishers punish by mistake at 𝑡 = 1. 

At 𝑡 = 2, let all agents update their cooperation decision. Then they all cooperate (for 

brevity, if we do not explicitly mention that agents update their cooperation or punishment 

decision, then the agents do not update from the last period, and do not make any 

mistakes). At 𝑡 = 3, let all norm enforcement agents update their punishment decision. 

Then they all punish. It follows that following 𝑡 = 3, all agents cooperate, and ⌈(𝜃𝐶 +

𝑄𝑁𝐸)𝑛⌉ agents punish defectors. For a real number 𝑥, we write 𝑥+ ≡ 𝑚𝑎𝑥{0, 𝑥}. At 𝑡 = 4, 

let 𝛥1
𝐸 ≡ ⌈(𝜃𝐶𝑃 − 𝜃𝐶 − 𝑄𝑁𝐸)+𝑛⌉  agents who do not punish at 𝑡 = 3  start to punish by 

mistake. Finally, at 𝑡 = 5, let all conformist punishers update their punishment decision. 

Then by requiring all agents to update both cooperation and punishment decisions at 𝑡 =

6 , we reach 𝐶 . Counting the number of mistakes, we obtain the cost of path E1: 

𝑐𝑜𝑠𝑡(𝐸1) = ⌈(𝜃𝐶 − 𝑄𝐼𝑃)𝑛⌉ + 𝛥1
𝐸, where 𝛥1

𝐸 = 0 if 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} ≥ |𝜃𝐶 − 𝜃𝐶𝑃|. 

● Path E2: Starting from 𝐷  at 𝑡 = 0 , if 𝜃𝐶𝑃 − 𝑄𝐼𝑃 < 𝑄0 + 𝑄𝑁𝐸 , let ⌈(𝜃𝐶𝑃 − 𝑄𝐼𝑃)𝑛⌉  non-

punishers or norm enforcers punish by mistake at 𝑡 = 1. If 𝜃𝐶𝑃 − 𝑄𝐼𝑃 ≥ 𝑄0 + 𝑄𝑁𝐸, then let 

all non-punishers, all norm enforcers, and  ⌈(𝜃𝐶𝑃 − 𝑄𝑁𝐸 − 𝑄0)𝑛⌉ conformist punishers 

punish by mistake at 𝑡 = 1, resulting in ⌈𝜃𝐶𝑃𝑛⌉agents punishing. At 𝑡 = 2, let all conformist 

punishers update their punishment decision. Then all conformist punishers punish. At 𝑡 =

3, let 𝛥2
𝐸 ≡ ⌈(𝜃𝐶 − 𝜃𝐶𝑃 − 𝑄𝐶𝑃)+𝑛⌉ agents who do not punish at 𝑡 = 2 start to punish by 

mistake. At 𝑡 = 4 , let all agents update their cooperation decision. Then all agents 

cooperate. At 𝑡 = 5, let all norm enforcers update their punishment decision and start to 

punish. By requiring all agents to update both cooperation and punishment decisions at 

𝑡 = 6, we reach 𝐶. The cost of path E2 is 𝑐𝑜𝑠𝑡(𝐸2) = ⌈(𝜃𝐶𝑃 − 𝑄𝐼𝑃)𝑛⌉ + 𝛥2
𝐸, with 𝛥1

𝐸 = 0 if 

𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} ≥ |𝜃𝐶 − 𝜃𝐶𝑃|.  

● Path E3: Starting from 𝐷 at 𝑡 = 0, let ⌈𝜃𝑁𝐸𝑛⌉agents cooperate by mistakes at 𝑡 = 1. At 𝑡 =

2, let all norm enforcers update their punishment decision. Then all norm enforcers will 

punish defectors. At 𝑡 = 3, let 𝛥3
𝐸 ≡ ⌈(𝜃𝐶𝑃 − 𝑄𝐼𝑃 − 𝑄𝑁𝐸)+𝑛⌉ agents who did not punish in 

the last period start to punish by mistakes. At 𝑡 = 4, let all conformist punishers update 

their punishment decision. Then all conformist punishers will punish. At 𝑡 = 5, let all 

agents update their cooperation decision. Then by requiring all agents to update both 

cooperation and punishment decisions in 𝑡 = 6, we reach 𝐶. The cost of this is path is 

𝑐𝑜𝑠𝑡(𝐸3) = ⌈𝜃𝑁𝐸𝑛⌉ + 𝛥3
𝐸, where 𝛥3

𝐸 = 0 if 𝑄𝐼𝑃 + 𝑄𝑁𝐸 ≥ 𝜃𝐶𝑃. 

Correspondingly, the following three paths are relevant to compute the minimum cost of 

transiting from 𝐶 to 𝐷: 
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● Path B1 (‘B’ for Breakdown of cooperation): Starting from 𝐶 at 𝑡 = 0, if ⌈(1 − 𝜃𝐶 − 𝑄0)𝑛⌉ ≤

𝑄𝐼𝑃 , let ⌈(1 − 𝜃𝐶 − 𝑄0)𝑛⌉ independent punishers stop punishing by mistake at 𝑡 = 1. If 

⌈(1 − 𝜃𝐶 − 𝑄0)𝑛⌉ > 𝑄𝐼𝑃 , let all independent punishers and ⌈(1 − 𝜃𝐶 − 𝑄0 − 𝑄𝐼𝑃)𝑛⌉ 

conformist punishers stop punishing by mistakes at 𝑡 = 1. At 𝑡 = 2, let all agents update 

their cooperation decision. Then all agents now defect.  At 𝑡 = 3, let all norm enforcement 

punishers update punishment decisions and stop punishing. At𝑡 = 4, let all 𝛥1
𝐵 ≡ ⌈(𝜃𝐶 −

𝜃𝐶𝑃 − 𝑄𝑁𝐸)+𝑛⌉ agents who punish in 𝑡 = 3 stop punishing by mistake. At 𝑡 = 5, let all 

conformist punishers update punishment decisions and stop punishing. Then by requiring 

all agents to update cooperation decisions as well as punishment decisions at 𝑡 = 6, we 

reach 𝐷.  The cost of this path is 𝑐𝑜𝑠𝑡(𝐵1) = ⌈(1 − 𝜃𝐶 − 𝑄0)𝑛⌉ + 𝛥1
𝐵, where 𝛥1

𝐵 = 0 when 

𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} ≥ |𝜃𝐶 − 𝜃𝐶𝑃|. 

● Path B2: Starting from 𝐶 at 𝑡 = 0, let ⌈(1 − 𝜃𝐶𝑃 − 𝑄0)𝑛⌉ agents who punish at 𝑡 = 0 stop 

punishing by mistake at 𝑡 = 1. At 𝑡 = 2, let all conformist punishers update punishment 

decision. They all stop punishing. At 𝑡 = 3, let 𝛥2
𝐵 ≡ ⌈(𝜃𝐶𝑃 − 𝜃𝐶 − 𝑄𝐶𝑃)+𝑛⌉ agents who 

punish at𝑡 = 2 stop punishing by mistake. At 𝑡 = 4, let all agents update cooperation 

decisions and start to defect. At 𝑡 = 5, let all norm enforcers update punishment decisions 

and stop punishing. Then we reach 𝐷 by requiring all agents update both decisions at 𝑡 =

6 . The cost of this path is 𝑐𝑜𝑠𝑡(𝐵2) = ⌈(1 − 𝜃𝐶𝑃 − 𝑄0)𝑛⌉ + 𝛥2
𝐵 , where 𝛥2

𝐵 = 0  when 

𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} ≥ |𝜃𝐶 − 𝜃𝐶𝑃|.  

● Path B3: Starting from 𝐶 at 𝑡 = 0, let⌈(1 − 𝜃𝑁𝐸)𝑛⌉agents defect by mistake at 𝑡 = 1. At𝑡 =

2, let all norm enforcers update punishment decisions and stop punishing. At 𝑡 = 3, let 

𝛥3
𝐵 ≡ ⌈(1 − 𝜃𝐶𝑃 − 𝑄0 − 𝑄𝑁𝐸)+𝑛⌉ agents who punish at 𝑡 = 2 stop punishing by mistake. 

Note 𝛥3
𝐵 can also expressed by 𝛥3

𝐵 = ⌈(𝑄𝐼𝑃 + 𝑄𝐶𝑃 − 𝜃𝐶𝑃)+𝑛⌉. By requiring all agents to 

update both decisions at 𝑡 = 3, we reach 𝐷. The cost of this path is 𝑐𝑜𝑠𝑡(𝐵3) = ⌈(1 −

𝜃𝑁𝐸)𝑛⌉ + 𝛥3
𝐵, where 𝛥3

𝐸 = 0 if 𝑄0 + 𝑄𝑁𝐸 ≥ 1 − 𝜃𝐶𝑃.  

Simplifying observations. We need to determine the path with minimum cost among the six 

paths above. This requires solving a set of linear inequalities. Two observations simplify our 

calculations. First, since we are only concerned with generically unique long-run equilibria, it 

is both sufficient and necessary for the minimum cost path to have strictly lower cost than all 

transition paths of the opposite direction for infinitely many 𝑛. A sufficient and necessary 

condition for this is that there is a finite 𝑛 under which all relevant inequalities for pairwise cost 

comparisons hold strictly. This condition is equivalent to having all relevant inequalities holding 

strictly when we ignore all “⌈. ⌉” brackets, i.e., by ignoring the “least integer greater than” 

operator. To see the equivalence, first, suppose ⌈𝑥𝑛⌉ < ⌈𝑦𝑛⌉  for some positive 𝑛 . Then 
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obviously 𝑥𝑛 < 𝑦𝑛. Conversely, suppose 𝑥𝑛 < 𝑦𝑛 for some positive 𝑛. Then 𝑥 < 𝑦, and there 

is some large enough integer 𝑟 such that (𝑦 −  𝑥)𝑟 > 1, implying 𝑥𝑟 + 1 < 𝑦𝑟. Thus ⌈𝑥𝑟⌉ <

⌈𝑦𝑟⌉, and ⌈𝑥𝑛⌉ < ⌈𝑦𝑛⌉ for all 𝑛 > 𝑟. 

Second, after removing all “ ⌈. ⌉ ” brackets, the costs of the paths listed above are all 

multiplications of 𝑛. Taking the two observations together, it suffices to consider their relative 

costs 𝑐𝑜𝑠�̂�(. ) ≡ 𝑐𝑜𝑠𝑡(. )/𝑛 and ignore all “⌈. ⌉”  operators. Henceforth we will focus on 𝑐𝑜𝑠�̂�(. ) 

and remove all “⌈. ⌉”  operators. The six transition paths and their relative costs 𝑐𝑜𝑠�̂�  are 

summarized in Table S4 below.  

Table S4. Transition paths and relative costs. 

 Relative costs 𝑐𝑜𝑠�̂� 

Transition paths from 𝐷 to 𝐶  

E1 𝜃𝐶 − 𝑄𝐼𝑃 + 𝛥1
𝐸, where 𝛥1

𝐸
= (𝜃𝐶𝑃 − 𝜃𝐶 − 𝑄𝑁𝐸)+ 

E2 𝜃𝐶𝑃 − 𝑄𝐼𝑃 + 𝛥2
𝐸, where 𝛥2

𝐸
= (𝜃𝐶 − 𝜃𝐶𝑃 − 𝑄𝐶𝑃)+ 

E3 𝜃𝑁𝐸 + 𝛥3
𝐸, where 𝛥3

𝐸
= (𝜃𝐶𝑃 − 𝑄𝐼𝑃 − 𝑄𝑁𝐸)+ 

Transition paths from 𝐶 to 𝐷  

B1 1 − 𝜃𝐶 − 𝑄0 + 𝛥1
𝐵, where 𝛥1

𝐵
= (𝜃𝐶 − 𝜃𝐶𝑃 − 𝑄𝑁𝐸)+ 

B2 1 − 𝜃𝐶𝑃 − 𝑄0 + 𝛥2
𝐵, where 𝛥2

𝐵
= (𝜃𝐶𝑃 − 𝜃𝐶 − 𝑄𝐶𝑃)+ 

B3 1 − 𝜃𝑁𝐸 + 𝛥3
𝐵, where 𝛥3

𝐵
= (𝑄𝐼𝑃 + 𝑄𝐶𝑃 − 𝜃𝐶𝑃)+ 

 

Final steps. Three final steps pin down the minimum cost path:  

Step 1: If 𝑄𝐼𝑃 + 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} > 2𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 1  then  𝑐𝑜𝑠�̂�(𝐸3) < 𝑐𝑜𝑠�̂�(𝐵3) ; if 𝑄𝐼𝑃 +

𝑚𝑎𝑥{𝑄𝑁𝐸 , 𝑄𝐶𝑃} < 2𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 1 then  𝑐𝑜𝑠�̂�(𝐸3) > 𝑐𝑜𝑠�̂�(𝐵3).  

 First, suppose 𝜃𝐶𝑃 ≤ 𝑄𝐼𝑃 + 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} . Then 𝛥3
𝐸 = 0 , and 𝛥3

𝐵 ≥ 0.  Thus, 

𝑐𝑜𝑠�̂�(𝐸3) = 𝜃𝑁𝐸, and 𝑐𝑜𝑠�̂�(𝐵3) = 1 − 𝜃𝑁𝐸 + 𝑄𝐼𝑃 + 𝑄𝐶𝑃 − 𝜃𝐶𝑃 . It follows that  

  𝑐𝑜𝑠�̂�(𝐸3) ≤ 𝑐𝑜𝑠�̂�(𝐵3) ⇔ 𝑄𝐼𝑃 + 𝑄𝐶𝑃 ≥ 2𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 1. 

Second, suppose 𝜃𝐶𝑃 ≥ 𝑄𝐼𝑃 + 𝑚𝑎𝑥{𝑄𝑁𝐸 , 𝑄𝐶𝑃} . Then 𝛥3
𝐸 ≥ 0  and 𝛥3

𝐵 = 0. Thus, 

𝑐𝑜𝑠�̂�(𝐸3) = 𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 𝑄𝐼𝑃 − 𝑄𝑁𝐸, and 𝑐𝑜𝑠�̂�(𝐵3) = 1 − 𝜃𝑁𝐸 .Then 

  𝑐𝑜𝑠�̂�(𝐸3) ≤ 𝑐𝑜𝑠�̂�(𝐵3) ⇔ 𝑄𝐼𝑃 + 𝑄𝑁𝐸 ≥ 2𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 1. 

 Taking together, we have the claimed properties.  
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In the remaining two steps, we write 𝑟𝐸 ≡ 𝑚𝑖𝑛{𝑐𝑜𝑠�̂�(𝐸1), 𝑐𝑜𝑠�̂�(𝐸2)}  and 𝑟𝐵 ≡

𝑚𝑖𝑛{𝑐𝑜𝑠�̂�(𝐵1), 𝑐𝑜𝑠�̂�(𝐵2)}.  

Step 2: In the case of 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} ≥ |𝜃𝐶 − 𝜃𝐶𝑃|, we have 𝑟𝐸 ≤ 𝑟𝐵 if and only if 2𝑄𝐼𝑃 + 𝑄𝑁𝐸 +

𝑄𝐶𝑃 ≥ 𝜃𝐶 + 𝜃𝐶𝑃.   

In this case,  𝛥1
𝐸 =  𝛥2

𝐸 = 𝛥1
𝐵 =  𝛥2

𝐵 = 0. Hence, 𝑟𝐸 = 𝑚𝑖𝑛{𝜃𝐶 , 𝜃𝐶𝑃} − 𝑄𝐼𝑃, and 𝑟𝐵 = 1 −

𝑚𝑎𝑥{𝜃𝐶 , 𝜃𝐶𝑃} − 𝑄0. It follows that  𝑟𝐸 ≤ 𝑟𝐵 ⇔ 2𝑄𝐼𝑃 + 𝑄𝑁𝐸 + 𝑄𝐶𝑃 ≥ 𝜃𝐶 + 𝜃𝐶𝑃. 

Step 3: In the case of 𝑚𝑎𝑥{𝜃𝐶 , 𝜃𝐶𝑃} ≤ |𝜃𝐶 − 𝜃𝐶𝑃|, if 𝑄𝐼𝑃 + 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} >
1

2
(𝜃𝐶+𝜃𝐶𝑃), then 

𝑟𝐸 < 𝑟𝐵; if  𝑄𝐼𝑃 + 𝑚𝑎𝑥{𝑄𝑁𝐸 , 𝑄𝐶𝑃} <
1

2
(𝜃𝐶 + 𝜃𝐶𝑃), then 𝑟𝐸 > 𝑟𝐵.    

In this case, first, suppose 𝜃𝐶𝑃 ≥ 𝜃𝐶. Then 𝛥1
𝐸 ≥ 0, 𝛥2

𝐸 = 0, 𝛥1
𝐵 = 0, and 𝛥2

𝐵 ≥ 0. Thus 

𝑟𝐸 = 𝜃𝐶𝑃 − 𝑄𝐼𝑃 − 𝑄𝑁𝐸 and 𝑟𝐵 = 1 − 𝜃𝐶 − 𝑄0 − 𝑄𝐶𝑃. Hence,   

(8)  𝑟𝐸 ≤ 𝑟𝐵  ⇔  2𝑄𝐼𝑃 + 2𝑄𝑁𝐸 ≥ 𝜃𝐶+𝜃𝐶𝑃.  

 Second, suppose  𝜃𝐶𝑃 < 𝜃𝐶. Then 𝛥1
𝐸 = 0, 𝛥2

𝐸 ≥ 0, 𝛥1
𝐵 ≥ 0, and 𝛥2

𝐵 = 0.  Hence 𝑟𝐸 =

𝜃𝐶 − 𝑄𝐼𝑃 − 𝑄𝐶𝑃 and 𝑟𝐵 = 1 − 𝜂2 − 𝑄0 − 𝑄𝑁𝐸. Therefore,  

(9)  𝑟𝐸 ≤ 𝑟𝐵  ⇔  2𝑄𝐼𝑃 + 2𝑄𝐶𝑃 ≥ 𝜃𝐶 + 𝜃𝐶𝑃.  

 Collecting (8) and (9), we establish the claim.  

To complete the proof, take together Steps 1 to 3. Then we know that if 𝑄𝐼𝑃 + 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} >

2𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 1 and  𝑄𝐼𝑃 + 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} >
1

2
(𝜃𝐶 + 𝜃𝐶𝑃), then 𝑐𝑜𝑠�̂�(𝐸3) < 𝑐𝑜𝑠�̂�(𝐵3) and 𝑟𝐸 <

𝑟𝐵, so that by Young’s theorem, 𝐶 is the generically unique long-run equilibrium. Conversely, 

if 𝑄𝐼𝑃 + 𝑚𝑎𝑥{𝑄𝑁𝐸 , 𝑄𝐶𝑃} > 2𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 1  and  𝑄𝐼𝑃 + 𝑚𝑎𝑥{𝑄𝑁𝐸 , 𝑄𝐶𝑃} <
1

2
(𝜃𝐶 + 𝜃𝐶𝑃) , then 

𝑐𝑜𝑠�̂�(𝐵3) < 𝑐𝑜𝑠�̂�(𝐸3) and 𝑟𝐵 < 𝑟𝐸, so that 𝐷 is the generically unique long-run equilibrium.  

Q.E.D. 

Proof of Proposition 3. From Table S4, we know the relative costs of transitions between 𝐶 

and 𝐷. Let 𝜃𝐶 = 𝜃𝑁𝐸 = 𝜃𝐶𝑃 = 0.5. Then  𝛥1
𝐸 =  𝛥2

𝐸 = 𝛥1
𝐵 =  𝛥2

𝐵 = 0, and    

𝑟𝐸 ≡ 𝑚𝑖𝑛{𝑐𝑜𝑠�̂�(𝐸1), 𝑐𝑜𝑠�̂�(𝐸2)} =
1

2
− 𝑄𝐼𝑃 

𝑟𝐵 ≡ 𝑚𝑖𝑛{𝑐𝑜𝑠�̂�(𝐵1), 𝑐𝑜𝑠�̂�(𝐵2)} =
1

2
− 𝑄0. 

Therefore, 𝑟𝐸 ≤ 𝑟𝐵 if and only if 𝑄𝐼𝑃 ≥ 𝑄0, which is equivalent to 2𝑄𝐼𝑃 + 𝑄𝑁𝐸 + 𝑄𝐶𝑃 ≥ 1.   
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Observe that 𝑟𝐸 , 𝑟𝐵 ≤
1

2
, but 𝑐𝑜𝑠�̂�(𝐸3), 𝑐𝑜𝑠�̂�(𝐵3) ≥

1

2
. Hence, 𝐸3 and 𝐵3 are never the 

paths with strictly minimum costs.  Therefore, by Young’s theorem, 𝑄𝐼𝑃 > 𝑄0, implying 𝑟𝐸 < 𝑟𝐵, 

is both necessary and sufficient for 𝐶 to be the generically unique long-run equilibrium. And  

𝑄𝐼𝑃 < 𝑄0, implying 𝑟𝐸 > 𝑟𝐵, is necessary and sufficient for 𝐷 to be the generically unique long-

run equilibrium.  

Q.E.D. 

 

 

Experimental Procedures and Materials 

 

Participants were recruited from Amazon Mechanical Turk (MTurk), which has been shown to 

provide good quality data in various settings (13–15), social dilemma games with punishment 

(16). After reading instructions, participants were placed in a ‘lobby’ until another participant 

arrived. Once two participants were in the lobby, they were matched and directed to the first 

decision stage of the experiment. In case no match could be made within 5 minutes, 

participants could choose to leave and receive a fixed bonus payment of $1.00, or to wait for 

another 2 minutes for a possible matching partner (as in (16)). Participants were informed that 

from the point of reaching the lobby onwards, they did not have to make any further decisions. 

 

Below we show on-screen instructions as displayed to participants. We start with the CC 

treatment in which participants could condition punishment of their interaction partner on 

descriptive norms of cooperation. Then we show the CP treatment, in which participants could 

condition punishment of their interaction partner on descriptive norms of punishment. The 

experiment was programmed in LIONESS Lab (17). Participants could not navigate the 

experimental pages at will. Each time they pressed a button, the browser history was 

automatically overwritten. 

 

 

 

 

 

 

 

 



30 

1. Instructions for the conditional cooperation (CC) treatment    
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2. Stage 2 instructions for the conditional punishment (CP) treatment    
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