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Abstract: In experimental games, a substantial minority of players often fail to best respond. Using 

two-person 3x3 one-shot games, we investigated whether ‘structuring’ the pre-decision deliberation 

process produces greater consistency between individuals’ stated values and beliefs on the one hand 

and their choice of action on the other. Despite this intervention, only just over half of strategy choices 

constituted best responses. Allowing for risk aversion made little systematic difference. Distinguishing 

between players according to their other-regarding preferences made a statistically significant 

difference, but best response rates increased only marginally. It may be that some irreducible minimum 

level of noise/imprecision generates some proportion of sub-optimal choices. If so, more research might 

usefully be directed towards competing models of stochastic strategic choice. (119 words) 
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1. Introduction 

The experimental game literature has produced a number of studies showing that a substantial 

proportion of individuals’ strategy choices are not best responses, as judged according to the belief-

weighted values of the available options, especially in environments where games are complex and 

learning opportunities are limited (e.g., see Costa-Gomes and Weizsäcker, 2008; Danz et al., 2012; 

Hoffman, 2014; Polonio and Coricelli, 2019; Sutter et al., 2013). 

Possible reasons include subjects’ naivety, low engagement, or limited understanding of the 

strategic environment, especially when subjects are inexperienced and a game is presented for the first 

time. Some have suggested that there may be a lack of game-form recognition, i.e., a failure to 

understand correctly the relationship between possible choices, outcomes and payoffs (e.g., Bosch-Rosa 

and Meissner, 2019; Cason and Plott, 2014; Chou et al., 2009; Cox and James, 2012; Fehr and Huck, 

2016; Rydval et al., 2009; Zonca et al., 2018). Studies using choice process data (e.g., Brocas et al., 

2014; Devetag et al., 2016; Hristova and Grinberg, 2005; Polonio et al., 2015; Stewart et al., 2016) 

suggest that when choosing an action, subjects often pay disproportionally more attention to their own 

payoffs or to specific salient matrix cells, and a non-negligible fraction of subjects never look at the 

opponent’s payoff, thereby completely disregarding the strategic nature of the game they are playing. 

As a result, some part of the observed inconsistency might be driven by a failure to incorporate all 

relevant information, or by the use of heuristic rules that correspond to a simplified - and often incorrect 

- version of the actual game in question.  

Another possible source of the seeming failure to best respond might lie in the existence of 

other-regarding motives (see e.g., Fehr and Schmidt, 2006; Sobel, 2005 for overviews of the literature). 

If individuals’ choices are not solely driven by self-interest but involve social preferences, it should not 

be surprising that subjects depart from best responses calculated on the basis of own payoffs only. To 

date, the role of other-regarding motives in normal form games has been investigated mainly indirectly 

by monitoring the patterns of information acquisition using eye- or mouse-tracking and connecting the 

revealed search patterns to different types of other-regarding preferences (e.g., Costa-Gomes et al., 

2001; Devetag et al., 2016; Polonio et al., 2015; Polonio and Coricelli, 2019). While evidence from the 

aforementioned literature suggests that other-regarding motives may interact with the observed levels 

of strategic sophistication, the correspondence between choice and process data in establishing causal 

links is less than perfect, since all the inferences are drawn via subjects’ information search patterns. 

Ideally, what is needed is an explicit measure of individuals’ other-regarding propensities as related to 

the payoff structures of the games under consideration. 

Another possibility is that many people’s preferences are inherently imprecise, so that some 

degree of variability or ‘noise’ enters into strategic choice, with the result that in some proportion of 

cases an option other than the best response may be chosen. Such variability has been widely reported 
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in the domain of individual choice between pairs of risky monetary lotteries: even though the payoffs 

of each lottery are familiar sums of money and their respective probabilities are clearly specified and 

implemented via some simple transparent random mechanism, most subjects have a propensity to 

choose differently on at least one occasion when the same pair is presented several times in the course 

of an experimental session (see Bardsley et al., 2010, Chapter 7, for an overview). The implication is 

that even if an individual’s ‘best response’ to the choice offered to them were to be selected more often 

than the other option, we would still observe some frequency of non-optimal choices. If that is the case 

for relatively straightforward binary choices between well-specified lotteries, perhaps there is even 

greater scope for noise and imprecision to generate non-optimal decisions when the scenarios are more 

complex: that is, when the outcomes are pairs of own-other payoffs involving some other-regarding 

preferences, when the decision weights are beliefs about others’ behaviour rather than objective explicit 

probabilities, and when there are three options rather than just two.   

 The issue we address is whether enabling subjects to become more familiar with the elements 

of the game they are facing and encouraging them to think more systematically about the subjective 

values they assign to the payoff pairs and also about the weights they attach to other players’ possible 

actions would increase best response rates. Is it possible to structure the decision environment in such 

a way that it is easier to make the computations that are assumed to underpin the identification of 

optimal choices? Would such a manipulation increase best response rates? If so, is this equally true for 

purely self-interested individuals and for those exhibiting some form of social preferences? Or is it the 

case that even under such favourable circumstances there will still be some tendency for a proportion 

of strategy choices to be non-optimal, accounted for, perhaps, by some intrinsic imprecision in people’s 

values and judgments? 

 In this paper, we investigate these questions using a laboratory experiment in which participants 

are presented with a set of 8 two-person 3×3 normal-form games. We try to make it as easy as 

reasonably possible for players to best respond by prompting them to think about their evaluation of 

payoffs in conjunction with their beliefs about the other players’ possible choices, after which they 

choose their own strategies in the light of those deliberations and with that information still in front of 

them.  

Specifically, using a ranking task, we first ask subjects to consider the subjective value they 

attach to the various cells in each 3×3 game. Based on subjects’ stated rankings, we can infer something 

about their other-regarding motives, thus relaxing the assumption of pure self-interest (as used by most 

previous literature) in cases where it does not seem appropriate. Some previous studies (e.g., Bayer and 

Renou, 2016) have tried to infer subjects’ social preferences from their behaviour in a scenario such as 

a modified dictator game and then ‘import’ this information into the games that are their main focus. 

However, other-regarding motives are highly context-dependent and findings from a different decision 

environment might not carry over (see Galizzi and Navarro-Martinez, 2019, for evidence and a meta-
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analysis). By contrast, our ranking task explores the expression of other-regarding preferences in a 

format which is intrinsic to the strategic situation faced in the actual games under consideration. 

Second, using a belief task, we ask subjects to quantify the chances of each of the opponents’ 

strategies being played. Importantly, we do not require those estimates to conform to any particular 

assumptions about the rationality of reasoning of the other players; we simply ask subjects for their best 

judgements. Previous literature investigating the effect of belief elicitation on equilibrium play has 

obtained mixed results with inconclusive evidence: some studies find that belief elicitation does not 

affect game play (e.g., Costa-Gomes and Weizsäcker, 2008; Inavov, 2011; Nyarko and Schotter, 2002; 

Polonio and Coricelli, 2019), whereas others (e.g., Hoffmann, 2014) show that whether belief elicitation 

influences game play depends on the properties of the game (see Schlag et al., 2015 and Schotter and 

Trevino, 2014, for reviews). In contrast to these studies, here we investigate the effect of beliefs in 

conjunction with stated rankings over payoffs, rather than the effect of beliefs alone. 

To see how far and in what ways our intervention alters behaviour, we compare the patterns of 

strategy choice in what we shall call the Structured sample with the responses of a different sample 

drawn from the same population who we shall call the Unstructured sample and who were presented 

with exactly the same games but were asked to make their decisions without any prior structured tasks. 

Since the great majority of game experiments to date have been conducted in this unstructured manner, 

it is of interest to see how, if at all, the patterns of choice might be affected.  

Our main results can be summarized as follows. In line with previous literature (Costa-Gomes 

and Weizsäcker, 2008; Danz et al., 2012; Hoffman, 2014; Polonio and Coricelli, 2019; Sutter et al., 

2013) we find that a sizeable minority of players fail to best respond to their own stated beliefs. While 

we find that the level of consistency increases significantly when we make some allowance for other-

regarding preferences as revealed by the ranking task, the observed difference is relatively small (54% 

vs. 57%). In fact, if we consider only the subset of individuals that exhibit no other-regarding concerns 

in the ranking task, their best response rate is unaffected (55%). For subjects we classify as inequity 

averse, in contrast, best response rates increase significantly from 54% to 61% when using rankings 

instead of own payoffs. This shows that the observed increase at the aggregate level is almost entirely 

driven by those subjects who are not motivated only by their own earnings. This is reassuring, as it 

shows that the ranking task is picking up something that feeds into subjects’ strategy choices. 

Our results also suggest that the likelihood of choosing non-optimally is decreasing in the costs 

of doing so. That is, while non-optimal choices are relatively common when the expected payoffs from 

the different strategies are very similar, such choices become less and less likely as the difference in 

expected payoffs between strategies grows, whether measured in terms of foregone monetary payoffs 

or in terms of foregone ranking values. This appears to be compatible with the notion of Quantal 

Response Equilibrium (McKelvey and Palfrey, 1995) or some other ‘error’ model (see Harrison, 1989, 
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for a discussion of the “flat maximum” critique). Finally, when comparing patterns of choice in the 

Structured and Unstructured treatments, we find overall no impact of structuring the decision process: 

our attempts to induce “harder thinking” did not cause subjects to choose more sophisticated strategies. 

The rest of the paper is organized as follows. In Section 2, we describe the design and 

implementation of the experiment. We present our main results in Section 3. Section 4 discusses and 

concludes.  

2. The experiment 

We chose a set of eight 3×3 normal-form games that were adjusted versions of the games used in 

Colman et al. (2014). The games are displayed in Figure 1.1 In each cell, the first number indicates the 

payoff to the BLUE (row) player and the second number indicates the payoff to the RED (column) 

player. The payoffs in each cell were sums of money (in UK pounds).  The games were chosen because 

they have no obvious payoff-dominant solutions and because they were explicitly designed to 

differentiate between competing theoretical explanations (see Table 1). Furthermore, previous evidence 

from the patterns of strategy choices in these games suggests relatively low effort thinking, which gives 

us enough room to detect whether structuring responses leads to higher levels of reasoning (see Colman 

et al., 2014; Pulford et al., 2018). 

Table 1 summarizes the strategic structure for each game and player role. Besides the Nash 

equilibrium prediction, we consider additionally Level-k models, which often out-predict equilibrium 

play (e.g., Camerer et al., 2004; Costa-Gomes and Crawford, 2006; Ho et al., 1998; Nagel, 1995; Stahl 

and Wilson, 1994, 1995) to allow for bounded depth of reasoning. The Level-1 model assumes that a 

player best responds to the belief that assigns uniform probabilities to their counterparts’ actions. The 

Level-2 model predicts that a player best responds to the belief that their counterpart is playing 

according to the Level-1 model. 

At the beginning of the experiment, subjects were randomly allocated either the role of the 

BLUE (row) or the RED (column) player, and they remained in that role throughout the whole 

experiment. Participants were then presented with each game in turn, proceeding at their own speed. 

The order in which the eight games were displayed was randomized and subjects received no feedback 

about others’ choices until the end of the experiment.  

 

                                                           
1 Our games differ from Colman et al. (2014) as follows. We doubled all the original payoffs in order to bring 

earnings more into line with other studies in this literature (relatedly Pulford et al., 2018 multiply all payoffs by 

five and find no evidence of a stake size effect). We also substituted the original Game 8 with a new game, because 

the original Game 8 yielded similar predictions to Game 6.  
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Figure 1. Experimental games. Underlined payoffs indicate the Nash equilibria in pure strategies. 

 

  

Table 1. Structure of the games and models’ predicted actions. 

Game 
Unique 

Nash 

Nash 

Pareto 

dominated 

Symmetric Nash Level-1 Level-2 

1    C-F B-E C-F 

2    A-D B-F B-E 

3    C-F B-E C-F 

4    A-D B-F B-E 

5    B-E C-D C-F 

6    C-D A-E B-E 

7    B-E C-D C-F 

8    A-D C-E B-F 

Notes. We indicate whether a game has a unique Nash equilibrium or not (Unique Nash), whether another cell 

constitutes a strict Pareto improvement (Nash Pareto dominated), whether it is symmetric or not (Symmetric), 

as well as predictions according to the Nash, Level-1 and Level-2 models. For Game 2 that has multiple Nash 

equilibria we report predictions on the Pareto optimal.  
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For each game, subjects completed three different tasks: a ranking, a belief and a choice task.2 

The purpose of the first two tasks was to structure subjects’ decision making process and to induce them 

to think about all relevant aspects of a game before choosing their preferred strategy. In all tasks, we 

recorded how much time subjects spent before submitting their decisions. To make each response 

incentive compatible, it was explained that one out of the eight games would be randomly selected for 

payment, followed by another random draw to determine whether subjects’ earnings were determined 

according to the ranking, the belief, or the choice task. We now describe each of those tasks in turn, 

together with the mechanism designed to motivate subjects to give thoughtful and accurate responses. 

In the ranking task, subjects were asked to rank all possible unique payoff combinations in a 

particular game from their most preferred to their least preferred one. Figure 2 shows a screenshot of 

the interface of this task as shown to the subjects.  

Figure 2. Screenshot of the ranking task 

 

At the top of the screen, subjects were shown the game being played. In the bottom left corner 

of the screen, they were shown all the possible payoff pairs, ordered as they appear in the game from 

top left to bottom right.3 They stated their ranking of these pairs by typing in a number between 1 and 

9, where 1 corresponds to the pair they liked best and 9 indicated their least preferred pair. Subjects had 

to state a complete and strict monotonic ranking: i.e., they were not allowed to state indifference. 

                                                           
2 In the experiment, the different tasks were called Type I, Type II, and Type III decisions respectively (see 

Figure 2 – 4, as well as the experimental instructions in Appendix C). 

3 The order of the payoffs from top left to bottom right was per row for the BLUE player and per column for the 

RED player in order to correspond to their actual strategies in the choice task.  
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In the event that the ranking task was selected for payment, one player in a pair of players 

(either RED or BLUE) was selected as the decision maker. We then randomly picked two of the possible 

payoff combinations from the selected game and paid both players according to the combination that 

the randomly selected decision maker had ranked as more preferable.   

Once subjects had submitted their ranking, they proceeded automatically to the belief task. In 

this task, players were asked to think about the ten players participating in the same session who had 

been assigned to the role of the other colour and they were asked to state their best estimates about how 

many of these ten players would choose each of their three possible strategies available to them.4 A 

screenshot of the interface used in the belief task is shown in Figure 3. 

Figure 3. Screenshot of the belief task 

 

In the event that the belief task was selected for payment, we randomly picked one of the three 

strategies available to the other colour of player and then compared the subject’s stated belief about the 

frequency of that choice with the actual frequency among the ten players assigned to that colour in the 

session. If both numbers matched, subjects were paid £5. Otherwise they received no payoff.5 

Finally, on the last screen of each game subjects had to indicate their preferred strategy in the 

choice task (see Figure 4 for a screenshot of the interface) on the usual understanding that if this task 

were selected as the basis for payment, they would be paired at random with another participant and 

each member of the pair would be paid according to the intersection of their strategy choice. 

                                                           
4 All Structured sessions were conducted with 20 participants each, 10 BLUE and 10 RED players.  

5 We chose this incentive mechanism instead of the quadratic scoring rule because of its simplicity and to avoid 

distortion due to the possibility of participants reporting beliefs away from extreme probabilities (see the 

discussion in Schlag et al., 2015). 
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Figure 4. Screenshot of the choice task 

 

Importantly, in order to reinforce the effect of previous deliberation on the selected strategy and 

to control for differences in working memory capacity (see e.g. Devetag et al., 2016), at the time they 

were choosing their strategy, subjects could see their responses in the ranking and in the belief tasks (as 

shown in Figure 4), making it as easy as we could for them to weight the values they placed on payoffs 

by their beliefs about the other players’ actions, if that is what they wished to do.  

In order to judge whether our Structured manipulation had any substantial systematic effect on 

strategy choice, we ran a separate Unstructured control treatment: using the exact same games, subjects 

were simply asked to state – without any prior deliberation tasks – which of the three available strategies 

they wanted to play. In this treatment, we simply picked one game at random and then paid subjects 

according to the intersection of their choices.6  

The experiment was run at the CeDEx laboratory at the University of Nottingham using students 

from a wide range of disciplines recruited through ORSEE (Greiner, 2015). The experiment was 

computerized using z-Tree (Fischbacher, 2007). We conducted ten sessions (five per treatment) with a 

total of 194 subjects (100 in the Structured treatment, 94 in the Unstructured treatment, 61% of them 

female, average age 20.8 years). At the beginning of each session, subjects were informed about their 

role (BLUE or RED) and about the payment procedure that would follow at the end of the experiment. 

Before the experiment started, participants were asked to read some preliminary instructions of an 

example 3x3 game and to demonstrate they fully understand the required tasks by answering a series of 

                                                           
6 In this Unstructured treatment, the sequence of the eight games was repeated twelve times. In the present paper 

we discuss only the data from the first sequence. Since subjects had no information about the number of sequences, 

the repetition could have not affected their choices when they saw each game for the first time. Further details 

about the patterns of behaviour in subsequent repetitions is available from the corresponding authors on request. 
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control questions before they could proceed to the actual experiment. Sessions lasted approximately an 

hour, and average earnings were about £6.90 (including a £3 show-up fee). 

3. Results 

We organise our results as follows. In Section 3.1, we start with a descriptive analysis of choices and 

stated beliefs in the Structured treatment and discuss to what extent subjects best respond to their beliefs 

assuming they are only interested in maximizing their own payoff. In Section 3.2, we then turn to the 

ranking task, analysing the extent to which subjects are motivated by other-regarding concerns. We then 

investigate whether accounting for such social preferences increases the proportion of optimal choices. 

In Section 3.3, we discuss possible determinants of non-optimal behaviour. Finally, to test whether 

structuring subjects’ decision process had any effect on behaviour, in Section 3.4 we compare patterns 

of chosen strategies in the choice task across the Structured and the Unstructured treatments. 

3.1 Beliefs, choices and best response 
 

The aggregate data in Table 2 show that the fraction of Nash equilibrium choices varies considerably 

across games with a minimum of 0.09 (Game 7) and a maximum of 0.49 (Game 6). The average rate of 

equilibrium choices in games with a unique Nash equilibrium (all but Game 2) is equal to 0.27, which 

is significantly lower than would be predicted by chance (t-test, p = 0.003). Table 2 further reveals that, 

in line with previous evidence (e.g., Costa-Gomes and Weizsäcker, 2008; Polonio and Coricelli, 2019), 

the Level-1 and Level-2 models both outperform equilibrium predictions. The fractions of choices 

consistent with the Level-1 and Level-2 prediction amount to 0.50 and 0.41, respectively, on average, 

compared with 0.27 for the Nash equilibrium.  

At the aggregate level, a similar pattern emerges for beliefs. Most participants do not expect 

their counterparts to play according to equilibrium: the average probability with which participants 

estimated that the counterpart is playing the equilibrium strategy (in games with a unique Nash 

equilibrium) is equal to 0.28. Instead, it is most often predicted that the counterpart would choose 

according to the Level-1 model (probability = 0.52), followed by the Level-2 model (probability = 0.34).  

The fact that both choices and beliefs are best described by the Level-1 model already provides 

first aggregate evidence that subjects do not always best-respond. In particular, the proportion of Level-

2 choices is much lower than the proportion of Level-1 beliefs (see Polonio and Coricelli, 2019 for 

similar evidence). To provide more conclusive evidence on subjects’ best response behaviour, in the 

following, we investigate the level of consistency between choices and stated beliefs at the individual 

level. To test whether subjects best respond to their stated beliefs, we calculate a player’s expected 

payoff for each possible strategy available to them on the basis of their stated beliefs, assuming either 

linear utility of payoffs, or some degree of risk aversion. More specifically, we use the power law 
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function 𝑥𝛼 with 𝛼 = 1, 𝛼 = 0.8, and 𝛼 = 0.5. We then simply count how often a subject chooses the 

strategy that gives them the highest expected utility. The results are given in Table 3. 

Table 2. Consistency of beliefs and choices with theoretical predictions 

 Choice task  Belief task 

Game Nash Level-1 Level-2  Nash Level-1 Level-2 

1 0.31 0.53 0.31  0.32 0.46 0.32 

2 0.33 0.44 0.46  0.26 0.56 0.38 

3 0.42 0.42 0.42  0.26 0.52 0.26 

4 0.26 0.28 0.59  0.29 0.43 0.48 

5 0.17 0.63 0.50  0.14 0.64 0.40 

6 0.49 0.45 0.27  0.51 0.40 0.20 

7 0.09 0.62 0.58  0.12 0.63 0.44 

8 0.15 0.67 0.18  0.29 0.48 0.22 

Average 0.27 0.50 0.41  0.28 0.52 0.34 

Notes: The left side shows the average proportion of choices in accordance with the different models’ 

predictions. The right side shows the stated beliefs (average probabilities on model predictions) about the 

model of choice of the counterpart. For Game 2, which has two Nash Equilibria, we show the rate with 

which subjects chose the Pareto dominant Nash Equilibrium. Tables A1 and A2 in Appendix A report these 

rates separately for the row and column players. The total average for the Nash equilibrium is calculated 

over the games with unique equilibrium (excluding Game 2).  

 

Table 3 reveals that with linear utilities of payoffs (𝛼 = 1), the average proportion of best 

responses varies from a minimum of 0.42 (Game 8) to a maximum of 0.68 (Game 7). Averaged over 

all games, the best response rate is 0.54. Although this is significantly higher than predicted by chance 

(t-test, p < 0.001), it means that almost half of all strategy choices are non-optimal. Furthermore, the 

average best response rate does not change if we allow for some degree of risk aversion (see last two 

columns of Table 3). These data are in line with results from previous literature (e.g., Costa-Gomes and 

Weizsäcker, 2008; Polonio and Coricelli, 2019; Rey-Biel, 2009; Sutter et al., 2013), which report 

consistency levels ranging from 54% to 67%. That is, despite having their personal rankings of payoff 

pairs and their stated beliefs about their counterparts’ strategies on display at the time they are choosing 

their own strategy, participants often choose options which do not maximise the expected utility of their 

own payoffs.   
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Table 3. Frequency of best responses using expected payoffs  

Game 𝑼(𝒙) = 𝒙 𝑼(𝒙) = 𝒙𝟎.𝟖 𝑼(𝒙) = 𝒙𝟎.𝟓 

1 45% 47% 46% 

2 54% 52% 55% 

3 49% 51% 50% 

4 53% 52% 50% 

5 55% 53% 51% 

6 67% 64% 63% 

7 68% 65% 64% 

8 42% 46% 54% 

Average 54% 54% 54% 

 

3.2 The role of other-regarding preferences 

A possible explanation for the seeming failure to best respond as described above might be that 

individuals do not only care about their own payoff, but also incorporate the payoffs to others into their 

utility function (see, for example, Sobel, 2005, for an overview of the literature at that time). It could 

be that choices which appear non-optimal under the assumption of pure self-interest might be fully 

rational once we allow for subjects’ other-regarding preferences. 

To examine this possibility, we turn to the results of the ranking task, in which subjects in the 

Structured treatment were asked to rank the different payoff combinations in each game from most 

preferred (1) to least preferred (9). Table 4 shows the mean ranks for all own-other payoff pairs, 

averaged over all games. Not surprisingly, subjects generally prefer more money over less. That is, 

holding constant the other player’s payoff, the mean ranking score generally decreases as own payoff 

increases.  

The results also reveal that subjects on average are inequity averse (Bolton and Ockenfels, 

2000; Fehr and Schmidt, 1999). That is, in Table 4, holding constant the subject’s own payoff (i.e., 

fixing a row), the most preferred pair lies on the main diagonal (as highlighted by the grey shaded cells) 

where both players obtain the same positive payoff. The exception occurs in the first row where both 

payoffs are zero: on average, when their own payoff is zero, subjects prefer unequal payoffs even though 

this involves the other player receiving more than they do.  
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Table 4. Mean ranking for pairs of own and other’s payoffs 

 Other’s payoff 

Own payoff 0 2 4 6 8 10 

0 8.4 7.3 7.8 7.2 7.5 7.0 

2 6.5 5.7 6.5 6.0 6.4 - 

4 5.2 5.0 3.8 4.9 6.2 4.9 

6 2.9 3.0 3.3 2.1 4.3 - 

8 3.1 2.3 3.5 2.4 1.7 - 

10 1.9 - 1.7 - - 1.1 

Notes: Ranking from 1 (best) to 9 (worst). Payoff pairs that did not appear in any of our games are displayed by 

“-“. In some games there were less than nine unique payoff pairs as some payoff pairs appeared multiple times. 

In particular, in games 3, 4, and 5 there are only eight unique payoff pairs, and in game 7 there are only seven. In 

this case, subjects had to rank each payoff pair only once and hence, only ranks between 1 and 8 or 1 to 7, 

respectively, were possible. To correct for this, in Table A3 in Appendix A we display an alternative version of 

Table 3 in which we normalize the rankings. The results remain effectively unchanged. 

 

These results are further corroborated by OLS regressions, in which we use the rank as the 

dependent variable and own payoff as well as the absolute difference between own and other’s payoff 

as independent variables. The results are reported in Table 5. They confirm that increasing own payoff 

has a strong and significant negative effect on stated ranks, consistent with people preferring more 

money over less. At the same time, the absolute difference between their own and their counterpart’s 

payoff has a significant positive effect, indicating that, ceteris paribus, people dislike inequality. 

Table 5. OLS regressions: Determinants of ranking 

Dependent variable: Ranking 

 

Own payoff 𝜋𝑖 
-0.652*** 

(0.010) 

Absolute payoff difference ⁡|𝜋𝑖 − 𝜋𝑗| 
0.106*** 

(0.012) 

Constant 
7.127*** 

(0.072) 

# Observations (clusters) 6700 (100) 

R2 0.689 

Notes: This table reports coefficient estimates from an OLS regression. 

Standard errors clustered at the individual level are reported in parentheses. *** 

p < 0.01  

 

To explore whether such other-regarding concerns might account for some or many of the 

departures from own-payoff best responses, we re-calculate optimal choices based on subjects’ stated 

beliefs and rankings (rather than payoffs). That is, similar to the analysis above, we first calculate the 
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expected ranking for each possible strategy, assuming linear utilities in rankings. We then simply count 

how often a subject chooses the strategy that gives her the most preferred expected ranking.  

The results reveal that best-response rates do indeed increase relative to the case when only 

own payoffs are considered. In particular, in 6 out of 8 games the fraction of best response rates is 

higher when using subjects’ rankings rather than their own payoffs, with the difference between the two 

ranging from one to eleven percentage points (compare Table A4 in the appendix). On average, 

however, the best response rate increases only moderately from 54% to 57%, a difference that is 

nevertheless statistically significant (Signrank test, p = 0.004; paired t-test, p = 0.025).7 

 To shed some further light on the role of other-regarding motives, we explore the underlying 

heterogeneity in social preferences. In particular, while the analysis above indicates that subjects are on 

average inequity averse, previous literature has shown that individuals typically differ with regard to 

their other-regarding concerns (see e.g., the discussion in Iriberri and Rey-Biel, 2013). To test for this, 

as a simple measure of a subject’s social type, we re-estimate the model from Table 5 separately for 

each individual. We then use the sign and the significance of the coefficient for the absolute difference 

between own and other’s payoffs to classify subjects into different distributional preference types: 

Selfish (if a subject’s ranking is not significantly affected by differences between own and other’s 

payoffs), Inequity Averse (if a subject’s ranking is significantly increasing in payoff differences), and 

Inequity Seeking (if a subject’s ranking is significantly decreasing in payoff differences).  

On this basis, 55 out of 100 subjects are classified as Selfish while 44 subjects are classified as 

Inequity Averse.8 We find no subject to be Inequity Seeking.9 This classification allows us to re-

calculate the best response rates separately for each type. For Selfish individuals we find that, on 

average, the best response rate amounts to 55%, irrespective of whether using expected payoffs or 

expected rankings (Signrank test, p = 0.372; paired t-test, p = 0.766). For individuals classified as 

Inequity Averse, in contrast, we find that including their responses in the ranking task significantly 

increases their level of best response from 54% to 61% (Signrank test, p = 0.005; paired t-test, p = 

0.011). This shows that the observed increase in best response rates at the aggregate level when using 

rankings instead of own payoffs is almost entirely driven by those subjects who are not motivated only 

by their own earnings. This is reassuring as it shows that the ranking task is picking up something that 

feeds into subjects’ strategy choices. 

                                                           
7 For the test we use an individual’s average over all games as the unit of observation. 
8 One subject falls under neither of these categories as he/she did not significantly react to a change in own payoffs. 

In the following, we discard this subject from our analysis. However, all our results are robust to the inclusion of 

this subject into either of the two categories. 
9 As a robustness check, we also applied different classification procedures. In particular, we conducted a similar 

analysis as above, but, following the model of Fehr and Schmidt (1999), allowed for differences in the degree of 

advantageous and disadvantageous inequity aversion. The results are very similar and available upon request.  
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In sum, while we find that taking into account individuals’ social preferences can indeed 

improve predicted game play, the differences are only small. Our data therefore give rather limited 

support for the idea that social preferences are a major explanation for non-optimal behaviour, as 

conventionally judged in terms of maximising expected own-payoff values.  

3.3 Possible factors associated with non-optimal play 

In this section, we try to shed some light on possible determinants of non-optimal play other than social 

preferences. As a first step, we provide some descriptive statistics of the underlying heterogeneity of 

non-optimal play. At the individual level, we find substantial variation in the degree to which subjects 

best respond. While the majority of people (67% when using expected payoffs and 77% when using 

expected rankings) choose optimally in at least half of the games, only very few people choose optimally 

in all eight games (see Figure A1 in the appendix for the full distribution). The mean (median) number 

of optimal choices is 4.33 (4) when using expected payoffs, and 4.59 (4.5) when using expected 

rankings, a difference that is statistically significant (Signrank test, p = 0.004; paired t-test, p = 0.025). 

This confirms that taking into account subjects’ social preferences increases best response behaviour, 

but that this effect is only moderate in size.  

Figure 5. Percentage of non-optimal choices as a function of foregone expected payoffs (left panel) 

and foregone expected rankings (right panel) 

 

Next, we look at the cost of non-optimal play. We compare the expected payoff (expected 

ranking) between the chosen option and the option that would have been optimal given a subject’s stated 
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beliefs. Figure 5 shows the percentage of non-optimal choices as a function of the foregone expected 

payoff (left panel) or foregone expected ranking (right panel). It appears that non-optimal strategies are 

particularly likely when the loss resulting from such choices is small, while they become less and less 

likely the larger the size of the loss. On average, conditional on choosing non-optimally, subjects forego 

2 pounds of expected payoffs (median 1.8) and 1.4 points in expected rankings (median 1).  

Table 6. Regression analysis of optimal choices  

Dependent variable: Optimal Choice Payoffs Optimal Choice Rankings 

 (1) (2) (3) (4) (5) (6) 

Std. dev. in expected payoffs 

across options 

0.201*** 

(0.070) 

0.286*** 

(0.077) 

0.221*** 

(0.076) 
   

Std. dev. in payoffs within optimal 

choice 
 

-0.359*** 

(0.090) 
    

Optimal choice contains lowest 

payoff (1 if yes, 0 otherwise) 
  

-0.896*** 

(0.191) 
   

Optimal choice contains highest 

payoff (1 if yes, 0 otherwise) 
  

0.090 

(0.165) 
   

Std. dev. in expected rankings    
0.210** 

(0.095) 

0.275*** 

(0.101) 

0.213*** 

(0.106) 

Std. dev. in ranks within optimal 

choice 
    

-0.082** 

(0.032) 
 

Optimal choice contains least 

preferred option (1 if yes, 0 otherwise) 
     

-0.687*** 

(0.190) 

Optimal choice contains most 

preferred option (1 if yes, 0 otherwise) 
     

0.081 

(0.214) 

Constant 
-0.310** 

(0.151) 

0.522** 

(0.252) 

0.194** 

(0.197) 

-0.106 

(0.150) 

0.207 

(0.190) 

0.077 

(0.162) 

# Observations (clusters) 761 (100) 761 (100) 761 (100) 767 (100) 767 (100) 767 (100) 

(Pseudo) R2 0.009 0.027 0.039 0.006 0.015 0.024 

Notes: This table reports coefficient estimates from logistic regressions. The dependent variable is whether the choice is optimal regarding 

the expected payoff (Models (1) – (3)) and the expected ranking (Models (4) – (6)). We only use data from cases in which the optimal 

choice was unique, i.e., we are excluding cases in which based on subjects’ stated beliefs two or more options were optimal. When using 

expected payoffs this is leaving us with 761 out of 800 cases. When using expected rankings this is leaving us with 767 out of 800 cases. 

Standard errors clustered at the individual level are reported in parentheses.*** p < 0.01, ** p < 0.05, * p < 0.10. 

To provide more detail, Table 6 reports results from a series of logistic regressions with 

choosing optimally as the binary dependent variable. In Model (1), we use the standard deviation in the 

expected earnings across the three available strategies as the explanatory variable. The results show a 

significant positive coefficient, indicating that the more dissimilar the available strategies are (with 

regard to their expected earnings), the higher the likelihood of choosing optimally: intuitively, if one 

strategy stands out as the best, the easier it is to choose optimally. As we show in the appendix, this is 
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further reflected in response times: the bigger the advantage of the best option, the faster subjects reach 

a decision (see Table A5 in Appendix A). 

In Model (2), we add the standard deviation of the three possible own earnings within the 

optimal choice as a second explanatory variable. The coefficient is significantly negative, indicating 

that the higher the variation in own payoffs within the choice that is optimal given the stated beliefs, 

the less likely subjects are to choose optimally. Our finding that strategy variance might act as a 

determinant of choice is in line with previous studies (see e.g., Devetag et al., 2016; Guida and Devetag, 

2013) showing that choice behaviour is susceptible to the influence of out-of-equilibrium features of 

the games under consideration.  Guida and Devetag (2013), for example, show that increasing the payoff 

variance in the strategy with the highest expected payoff significantly shifts choice behaviour away 

from that strategy.  It is not clear, however, from the aforementioned studies, whether this shift reflects 

a tendency to pick a strategy that is both attractive and relatively safe or whether it is simply an attempt 

to avoid the worst possible payoff. 

In model (3), we separate this effect by including two dummy variables indicating whether the 

optimal choice contains the lowest or highest possible payoff within a given game. The results reveal 

that containing the minimum possible payoff has a strong negative impact on the likelihood of choosing 

optimally. At the same time, containing the maximum possible payoff only has a small positive and 

insignificant effect. It thus seems that the negative effect of variation in own payoffs is mainly driven 

by subjects trying to avoid the worst possible payoff, even if this means deviating from the optimal 

strategy. In Models (4) to (6), we repeat the same analysis but now using optimal choices calculated 

based on subjects’ rankings of payoffs rather than their own payoffs only. The results corroborate our 

previous findings.  

3.4 Structuring the decision process has no significant effect on strategy choices 

Besides trying to understand what determines subjects’ best response behaviour, we were further 

interested in whether structuring subjects’ decision-making process by helping them to “think harder” 

about the game at hand, has any influence on the chosen strategies and their depth of reasoning. To test 

this, we compare the patterns of choice in the Structured treatment with those in the Unstructured 

treatment.   

Overall, we find very little evidence that structuring players’ decision processes has a 

significant effect on actual game play. That is, we find no significant differences in the rate with which 

participants play according to the Nash, Level-1, or Level-2 predictions across the two treatments. On 

average, choices in the Unstructured treatment are actually slightly more likely to be consistent with 

the Nash prediction in games with a unique Nash equilibrium (31% vs. 27%) and slightly less likely to 

be consistent with the Level-1 (46% vs. 50%) and Level-2 (38% vs. 41%) prediction, but none of these 

differences is statistically significant (all p-values > 0.139, compare Table B1 in Appendix B). These 
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results hold if we compare choices separately for each game and player type (row or column player) 

(see Tables B2 and B3 in Appendix B). In sum, in line with the results of Costa-Gomes and Weizsäcker 

(2008) who find no effect of belief elicitation on actual game play, we find no strong effect even when 

we elicit payoff rankings in conjunction with beliefs.  

4. Concluding remarks 

The notion of best response is central to the analysis of strategic behaviour, both in conventional game 

theory and in cognitive hierarchy / Level-k models which allow for more limited depths of reasoning. 

So it has troubled experimental researchers that numerous studies have reported substantial evidence of 

failures to best respond. 

Our study sought to examine the extent to which best response rates might increase if subjects’ 

possible unfamiliarity with the strategic environment were offset by asking them to focus in turn on 

their ranking of payoff pairs and on their beliefs about the other players’ probable choices before 

selecting their strategies. Structuring the decision process in this way did not increase best response 

rates when judged in terms of maximising own-payoff expected values. Nor were rates changed much 

by allowing for different levels of risk aversion using a standard utility function form (although avoiding 

the worst possible payoff did appear to carry some weight). We further examined the possible role of 

subjects’ other-regarding considerations: we found that making allowance for such preferences 

increased best response rates, but only marginally.  

 It is hard to imagine what more we might have done, within the usual experimental time and 

budget constraints, to have made it even easier for participants to best respond. The fact that, even given 

such favourable conditions, just under half of the chosen strategies were non-optimal might be taken to 

indicate some intrinsic limit to the precision with which the expected utilities of options can be judged 

by players. The evidence that the likelihood of non-optimal responses falls as the opportunity loss 

increases is consistent with various models of noise and stochastic behaviour. Quantal Response 

Equilibrium is probably the best-known of these, but others that adapt random preferences to games 

(Bardsley et al., 2010, section 7.3.2) or that apply accumulator mechanisms (Golman et al., in press) 

may also be candidates for further consideration. The persistence of stochastic behaviour even under 

our Structured condition may provide further impetus to develop and incorporate appropriate ‘error’ 

specifications into strategic decision modelling.    

Finally, the lack of any significant difference in the overall patterns of choice between 

Structured and Unstructured treatments may reassure researchers that simply asking participants to 

make their choices is an adequate way for experiments to be conducted. Dispensing with demanding 

prior ranking and belief elicitation procedures does not, on this evidence, greatly affect the quality of 

the data. Scarce laboratory time and money can instead be devoted to collecting larger and more 
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powerful datasets: not least, ones that would enable us to investigate further the stochastic component 

in strategic choice.  
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Appendix A  

Additional Tables and Figures 

 

Table A1. Consistency of beliefs and choices of the row (BLUE) player with theoretical predictions 

 Choice task  Belief task 

Game Nash Level-1 Level-2  Nash Level-1 Level-2 

1 0.38 0.46 0.38  0.26 0.55 0.26 

2 0.30 0.58 0.58  0.27 0.54 0.19 

3 0.38 0.50 0.38  0.27 0.54 0.27 

4 0.30 0.48 0.48  0.27 0.31 0.42 

5 0.12 0.74 0.74  0.17 0.66 0.17 

6 0.56 0.40 0.04  0.52 0.34 0.34 

7 0.06 0.76 0.76  0.16 0.60 0.23 

8 0.10 0.76 0.14  0.33 0.45 0.22 

Average 0.27 0.58 0.44  0.29 0.50 0.26 

Notes: The left side shows the average proportion of choices in accordance with the different models’ predictions. The 

right side shows the stated beliefs (average probabilities on model predictions) about the model of choice of the 

counterpart. For Game 2, which has two Nash Equilibria, we show the rate with which subjects chose the Pareto 

dominant Nash Equilibrium. The total average for the Nash equilibrium is calculated over the games with unique 

equilibrium (excluding Game 2).  

 

 

Table A2. Consistency of beliefs and choices of the column (RED) player with theoretical predictions 

 Choice task  Belief task 

Game Nash Level-1 Level-2  Nash Level-1 Level-2 

1 0.24 0.60 0.24  0.38 0.38 0.38 

2 0.36 0.30 0.34  0.24 0.58 0.58 

3 0.46 0.34 0.46  0.24 0.51 0.24 

4 0.22 0.08 0.70  0.31 0.54 0.54 

5 0.22 0.52 0.26  0.12 0.63 0.63 

6 0.42 0.50 0.50  0.49 0.46 0.05 

7 0.12 0.48 0.40  0.08 0.65 0.65 

8 0.20 0.58 0.22  0.25 0.52 0.23 

Average 0.27 0.43 0.39  0.27 0.53 0.41 

Notes: The left side shows the average proportion of choices in accordance with the different models’ predictions. The 

right side shows the stated beliefs (average probabilities on model predictions) about the model of choice of the 

counterpart. For Game 2, which has two Nash Equilibria, we show the rate with which subjects chose the Pareto 

dominant Nash Equilibrium. The total average for the Nash equilibrium is calculated over the games with unique 

equilibrium (excluding Game 2).  
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Table A3. Mean normalized ranking score for pairs of own and other’s payoffs 

 Other’s payoff 

Own payoff 0 2 4 6 8 10 

0 0.96 0.89 0.90 0.85 0.87 0.81 

2 0.77 0.61 0.75 0.72 0.74 - 

4 0.55 0.54 0.36 0.58 0.65 0.52 

6 0.26 0.29 0.34 0.15 0.41 - 

8 0.28 0.18 0.31 0.18 0.09 - 

10 0.12 - 0.10 - - 0.02 

Notes: Scores are calculated as follows: 𝑥′ =
𝑥−min⁡(𝑥)

max(𝑥)−min⁡(𝑥)
, where x is the actual rank given, and min(x) and 

max(x) are the minimum and maximum rank possible in a game. In particular, the maximum rank possible differs 

between 7 and 9, depending on the number of unique payoff pairs. The normalized score ranges from 0 to 1, 

where lower scores correspond to more preferred (lower-ranked) payoff pairs. 

 

 

 

Table A4. Consistency of choices per game and player type using expected payoffs and expected rankings. 

 All players Selfish Inequity Averse  

 
Exp. 

payoffs 

Exp. 

ranking 

Exp. 

payoffs 

Exp. 

ranking 

Exp. 

payoffs 

Exp. 

ranking 

1 0.44 0.52 0.47 0.44 0.41 0.61 

2 0.54 0.52 0.49 0.45 0.59 0.59 

3 0.49 0.49 0.53 0.51 0.45 0.48 

4 0.55 0.54 0.49 0.51 0.59 0.57 

5 0.56 0.65 0.58 0.67 0.52 0.61 

6 0.68 0.68 0.65 0.65 0.70 0.70 

7 0.68 0.70 0.69 0.69 0.66 0.70 

8 0.42 0.53 0.47 0.49 0.36 0.57 

Average 0.54 0.58 0.55 0.55 0.54 0.61 
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Table A5. Regression analysis of response times 

Dependent variable: Response time 

 (1) (2) 

Std. dev. in expected payoffs 
-2.978*** 

(0.680) 
 

Std. dev. in expected rankings  
-4.357*** 

(0.094) 

Constant 
26.854*** 

(2.239) 

27.875*** 

(2.151) 

# Observations (clusters) 800 (100) 800 (100) 

(Pseudo) R2 0.022 0.022 

Notes: This table reports coefficient estimates from OLS regressions. The dependent 

variable is how much time subjects spend on choosing their strategy. As independent 

variables we use the standard deviation in expected payoffs or expected rankings 

across the three available strategies for each player. Standard errors clustered at the 

individual level are reported in parentheses.*** p < 0.01, ** p < 0.05, * p < 0.10. 

 
 

 

 

Figure A1. Distribution of the number of optimal choices per subject using expected payoffs 

(left panel) and expected rankings (right panel) 
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Appendix B  

Comparing Structured vs. Unstructured Responses 

 

Table B1. Comparison of game play based on different models’ prediction. 

 

 Nash Level-1 Level-2 

Game S U p-value S U p-value S U p-value 

1 0.31 0.33 0.768 0.53 0.51 0.788 0.31 0.33 0.768 

2 0.33 0.43 0.172 0.44 0.31 0.061 0.46 0.35 0.125 

3 0.42 0.36 0.407 0.42 0.41 0.943 0.42 0.36 0.407 

4 0.26 0.34 0.224 0.28 0.32 0.553 0.59 0.54 0.506 

5 0.17 0.17 0.997 0.63 0.54 0.218 0.50 0.49 0.883 

6 0.49 0.59 0.186 0.45 0.39 0.428 0.27 0.23 0.566 

7 0.09 0.16 0.147 0.62 0.56 0.428 0.58 0.60 0.824 

8 0.15 0.23 0.140 0.67 0.61 0.358 0.18 0.16 0.706 

Average 0.27 0.31 0.139 0.50 0.46 0.162 0.41 0.38 0.348 

Notes: Average proportion of choices in accordance with the different models’ predictions in the Structured (S) and the 

Unstructured (U) treatment. P-values from logistic regressions with robust standard errors (clustered at the individual level). 

For Game 2, which has two Nash Equilibria, we show the rate with which subjects chose the Pareto dominant Nash Equilibrium. 

The total average for the Nash equilibrium is calculated over the games with unique equilibrium (excluding Game 2).  
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Table B2. Comparison of game play of the row (BLUE) player based on different models’ prediction. 

 

 Nash Level-1 Level-2 

Game S U p-value S U p-value S U p-value 

1 0.38 0.28 0.283 0.46 0.51 0.620 0.38 0.28 0.283 

2 0.30 0.32 0.839 0.58 0.43 0.132 0.58 0.43 0.132 

3 0.38 0.30 0.397 0.50 0.47 0.755 0.38 0.30 0.397 

4 0.30 0.34 0.671 0.48 0.53 0.611 0.48 0.53 0.611 

5 0.12 0.17 0.486 0.74 0.62 0.199 0.74 0.62 0.199 

6 0.56 0.60 0.723 0.40 0.36 0.700 0.04 0.04 0.950 

7 0.06 0.11 0.415 0.76 0.77 0.945 0.76 0.77 0.945 

8 0.10 0.15 0.469 0.76 0.70 0.523 0.14 0.15 0.901 

Average 0.27 0.28 0.883 0.58 0.55 0.416 0.44 0.39 0.250 

Notes: Average proportion of choices in accordance with the different models’ predictions in the Structured (S) and the 

Unstructured (U) treatment. P-values from logistic regressions with robust standard errors (clustered at the individual level). 

For Game 2, which has two Nash Equilibria, we show the rate with which subjects chose the Pareto dominant Nash Equilibrium. 

The total average for the Nash equilibrium is calculated over the games with unique equilibrium (excluding Game 2).  

 

 

Table B3. Comparison of game play of the column (RED) player based on different models’ prediction. 

 

 Nash Level-1 Level-2 

Game S U p-value S U p-value S U p-value 

1 0.24 0.38 0.132 0.60 0.51 0.379 0.24 0.38 0.132 

2 0.36 0.53 0.092 0.30 0.19 0.221 0.34 0.28 0.502 

3 0.46 0.43 0.734 0.34 0.36 0.824 0.46 0.43 0.734 

4 0.22 0.34 0.191 0.08 0.11 0.657 0.70 0.55 0.139 

5 0.22 0.17 0.540 0.52 0.47 0.611 0.26 0.36 0.283 

6 0.42 0.57 0.132 0.50 0.43 0.465 0.50 0.43 0.465 

7 0.12 0.21 0.226 0.48 0.36 0.242 0.40 0.43 0.800 

8 0.20 0.32 0.185 0.58 0.51 0.495 0.22 0.17 0.540 

Average 0.27 0.35 0.074 0.43 0.37 0.189 0.39 0.38 0.804 

Notes: Average proportion of choices in accordance with the different models’ predictions in the Structured (S) and the 

Unstructured (U) treatment. P-values from logistic regressions with robust standard errors (clustered at the individual level). 

For Game 2, which has two Nash Equilibria, we show the rate with which subjects chose the Pareto dominant Nash Equilibrium. 

The total average for the Nash equilibrium is calculated over the games with unique equilibrium (excluding Game 2).  
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Appendix C  

Experimental Instructions 

STRUCTURED TREATMENT 

INTRODUCTION 

Welcome. You are now participating in a study about decision making. If you follow the instructions 

carefully you might earn a considerable amount of money which will be paid at the end of the 

experiment in private and in cash. It is important that during the experiment you remain silent. If you 

have questions or need assistance, please raise your hand. A member of the experimental team will 

come to you and answer them in private.  

The experiment consists of one task, which will be described to you below in detail. You will be 

paired with someone else in the room. Half of the people in the room will be given the role of  

decision makers and the other half will be given the role of RED decision maker.  

You have randomly selected to be a (  or RED) decision maker. You will be paired at 

random with someone of the other colour. Please remember this as you will stay in that role 

during the whole experiment.  

At the end of the experiment, after everyone has made all of their decisions, the computer will 

randomly pick one decision for each pair from the task and we will pay you according to the 

decisions that were made by you and the person you are paired with. The amount you will get from 

the randomly selected decision will be added to the £3 ‘show-up’ fee.  

Important: You must think carefully about each of your decisions as each of them can determine 

your earnings from this experiment. All decisions are anonymous, i.e., you will never be told the 

identity of the person you are paired with - it is equally likely to be anyone of the other colour. 

 

THE TASK:  

What follows is an example, intended to give you a chance to practice and check your understanding 

before doing any tasks for real.  

Please click on OK to proceed. 

THE TASK 

GENERAL DECISION SITUATION  

In the course of the task you will see a series of different situations in which you will interact with 

another person of the other colour. In each situation you will be asked to make various decisions. To 

familiarise you with the idea, please look at the decision scenario below which serves as an example. 

 

In the grid both players, BLUE and RED, have to decide between three options. The BLUE decision 

maker can choose between the rows labelled A, B and C, while the RED decision maker chooses 

between the columns labelled D, E and F. The payments that the BLUE decision maker might 

receive are coloured BLUE and the possible payments for the RED decision-maker are shown 

coloured RED. 
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 D E F 

A 4, 4 8, 6 0, 4 

 6, 8 0, 0 4, 10 

C 4, 0 10, 4 2, 2 

 

How much each person will get paid depends on the choices each makes and how these choices 

interact. For example, suppose the BLUE decision maker chooses C and the RED decision maker 

chooses D. By looking at the pair of numbers where C and D intersect, we see that BLUE gets a 

payment of 4 and RED gets a payment of 0. Now suppose that BLUE chooses C, as before, but RED 

chooses F instead of D. In this case, BLUE gets 2 and RED gets 2. The nine boxes in the grid show 

the nine pairs of payment that are possible, depending on the choices each person makes. 

 

As a check that everyone has understood, please type in answers to the following questions: 

 

If BLUE chooses A and RED chooses F, BLUE will get ___ and RED will get ___ 

If BLUE chooses B and RED chooses D, BLUE will get ___ and RED will get ___ 

 

When you have typed in your answers, please click on OK. 

 

MAKING DECISIONS 

 

In the task we ask you to make three types of decisions which we will explain to you with the help of 

the example from before. 

 

 D E F 

A 4, 4 8, 6 0, 4 

 6, 8 0, 0 4, 10 

C 4, 0 10, 4 2, 2 

 

In the first type of decision, you have to rank the number of possible pairs of payoffs from your most 

preferred pair to your least preferred pair. Each pair consists of a money amount for the  person 
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and an amount for the RED person. For example, one pair states that receives an amount of 4 

and RED receives an amount of 4. Another option states that receives an amount of 6 and 

RED receives an amount of 8. In total the number of pairs of payoffs you have to rank is equal to the 

number of unique combinations you see in a specific situation. You are asked to rank-order these 

options according to the pair of payoffs you personally prefer most, second, third, and so on down to 

the pair you like least.  

 

The following table shows an example.  

Option Rank from 

1 to 9 

4, 4  

8, 6  

0, 4  

6, 8  

0, 0  

4, 10  

4, 0  

10, 4  

2, 2  
 

In this example, someone who feels that the best result would be BLUE getting £4 and RED getting 

£4 would type in a 1 next to 4, 4 to show that they rate this pair as their 1st–ranked pair of payoffs. 

(You may not agree with that yourself, but this is only an example.) Then if their 2nd–ranked 

outcome is for BLUE getting 6 and RED getting 8, they would type the number 2 next to that pair 6, 

8. And so on, until all nine pairs have been ranked from most preferred (1) down to least preferred (9).    

Remember that the first number in each option is relevant for the person, whereas the 

second number is relevant for the RED person. 

So now, in order to give you some practice, look at the grid and type in your ranks from your most 

preferred (1) down to your least preferred (9). When you have typed in your answers, please click on 

OK. 

In the second type of decision we ask you to estimate what the participants of the other colour will 

actually choose. As you know, there are 10 people in this session who will be BLUE decision makers 

and another 10 people who will be RED decision makers. We will ask you to give your best judgment 

about which of the three alternatives the 10 BLUE (RED) decision makers will choose, i.e., how 

many (if any) of them will choose A (D), how many (if any) will choose B (E),  and how many (if 

any) will choose C (F).  So now, in order to give you some practice, look at the grid and type in your 

estimates below:  
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My best estimate of how many of the BLUE (RED) decision makers will choose A (D) is _____ 

My best estimate of how many of the BLUE (RED) decision makers will choose B (E) is _____ 

My best estimate of how many of the BLUE (RED) decision makers will choose C (F) is _____ 

 

Please make sure that your three estimates add up to 10.  

 

In the third type of decision we finally ask you to simply choose YOUR option. In the light of what 

you think BLUE (RED) might do and what you want to achieve, which option – D, E or F (A, B, or 

C) – do you choose?  

So now, in order to give you some practice, look at the grid and make a decision by selecting one of 

the three letters below. When you have typed in your answers, please click on OK. 

Calculation of earnings 

Your earnings for the task will be determined as follows. First, the computer will randomly select 

one out of the series of decision situations. Then, the computer will randomly decide whether you 

are paid according to your decision of type one, your decision of type two, or your decision of type 

three. Below we explain each of these scenarios in more detail. 

If your decision of type one is selected to determine your payment, this is what would happen: At the 

end of the experiment, we will randomly pick two of the pairs of payoffs from the selected decision 

scenario. We will then randomly determine whether each pair of people gets paid according to how 

the  person ranked those two pairs or according to how the RED person ranked them. We will 

then check which option out of the two the selected person ranked higher, and pay you and the other 

player the amount stated in that option. For example if your decision is selected to be implemented 

and you ranked 6, 8 higher than 4, 4, then the  decision maker will receive an amount of 6 and 

the RED decision maker will receive an amount of 8. Alternatively, if your decision is selected to be 

implemented and you ranked 4, 4 higher than 6, 8, then the  decision maker will receive an 

amount of 4 and the RED decision maker will receive an amount of 4. 

If your decision of type two is selected to determine your payment, this is what would happen: First, 

we would pick one of the three letters A, B, or C (D, E, or F) at random. Then, we would compare 

your estimate for that particular letter with what the 10 BLUE (RED) decision makers actually did in 

the randomly selected decision scenario. If your estimate for that letter is correct, you get £5. If your 

estimate is wrong, you get £0. There is no prize for being ‘close’ – you either get it right or you don’t, 

so please think carefully. 

If your decision of type three is selected to determine your payment, this is what would happen: 

First, we would look up your type three decision in the randomly selected scenario. Second, we would 

look up the corresponding type three decision of the BLUE/RED participant you are matched with in 

the randomly selected decision scenario. We would then look up the pair of numbers where the two 

decisions intersect and pay player BLUE and RED the BLUE and RED amount, respectively. 
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Please click on OK to start the task. Notice that for the whole duration of task, whenever you press 

OK you will not be able to return to your previous choice, so please think carefully about each of your 

decisions before pressing the OK button. 

 

UNSTRUCTURED TREATMENT  

INTRODUCTION 

Welcome. You are now participating in a study about decision making. If you follow the instructions 

carefully you might earn a considerable amount of money which will be paid at the end of the 

experiment in private and in cash. It is important that during the experiment you remain silent. If you 

have questions or need assistance, please raise your hand. A member of the experimental team will 

come to you and answer them in private.  

The experiment consists of one task, which will be described to you below in detail. You will be 

paired with someone else in the room. Half of the people in the room will be given the role of  

decision makers and the other half will be given the role of RED decision maker.  

You have randomly selected to be a (  or RED) decision maker. You will be paired at 

random with someone of the other colour. Please remember this as you will stay in that role 

during the whole experiment.  

At the end of the experiment, after everyone has made all of their decisions, the computer will 

randomly pick one decision for each pair from the task and we will pay you according to the 

decisions that were made by you and the person you are paired with. The amount you will get from 

the randomly selected decision will be added to the £3 ‘show-up’ fee.  

Important: You must think carefully about each of your decisions as each of them can determine 

your earnings from this experiment. All decisions are anonymous, i.e., you will never be told the 

identity of the person you are paired with - it is equally likely to be anyone of the other colour. 

 

THE TASK:  

What follows is an example, intended to give you a chance to practice and check your understanding 

before doing any tasks for real.  

Please click on OK to proceed. 

THE TASK 

GENERAL DECISION SITUATION  

In the course of the task you will see a series of different situations in which you will interact with 

another person of the other colour. In each situation you will be asked to make various decisions. To 

familiarise you with the idea, please look at the decision scenario below which serves as an example. 

In the grid both players, BLUE and RED, have to decide between three options. The BLUE decision 

maker can choose between the rows labelled A, B and C, while the RED decision maker chooses 

between the columns labelled D, E and F. The payments that the BLUE decision maker might 

receive are coloured BLUE and the possible payments for the RED decision-maker are shown 

coloured RED. 
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 D E F 

A 4, 4 8, 6 0, 4 

 6, 8 0, 0 4, 10 

C 4, 0 10, 4 2, 2 

 

How much each person will get paid depends on the choices each makes and how these choices 

interact. For example, suppose the BLUE decision maker chooses C and the RED decision maker 

chooses D. By looking at the pair of numbers where C and D intersect, we see that BLUE gets a 

payment of 4 and RED gets a payment of 0. Now suppose that BLUE chooses C, as before, but RED 

chooses F instead of D. In this case, BLUE gets 2 and RED gets 2. The nine boxes in the grid show 

the nine pairs of payment that are possible, depending on the choices each person makes. 

 

As a check that everyone has understood, please type in answers to the following questions: 

 

If BLUE chooses A and RED chooses F, BLUE will get ___ and RED will get ___ 

If BLUE chooses B and RED chooses D, BLUE will get ___ and RED will get ___ 

 

When you have typed in your answers, please click on OK. 

 

MAKING DECISIONS 

In the task we ask you to make decisions which we will explain to you with the help of the example 

from before. 

 

 D E F 

A 4, 4 8, 6 0, 4 

 6, 8 0, 0 4, 10 

C 4, 0 10, 4 2, 2 
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For each possible decision situation we ask you to simply choose YOUR option. In the light of what 

you think BLUE (RED) might do and what you want to achieve, which option – D, E or F (A, B, or 

C) – do you choose? Type the letter of your choice in the box below and then click OK. 

So now, in order to give you some practice, look at the grid and make a decision by selecting one of 

the three letters below. When you have typed in your answers, please click on OK. 

 

Calculation of earnings 

Your earnings for the task will be determined as follows. First, the computer will randomly select 

one out of the series of decision situations.  

First, we will look up your decision at the randomly selected situation. Second, we would look up the 

corresponding decision of the participant of the other colour you are matched with in the randomly 

selected decision situation. We would then look up the pair of numbers where the two decisions 

intersect and pay player BLUE and RED the BLUE and RED amount, respectively. 

Please click on OK to start the task. Notice that for the whole duration of task, whenever you press 

OK you will not be able to return to your previous choice, so please think carefully about each of your 

decisions before pressing the OK button. 

 

 


