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1 Introduction

Vega-Redondo (1997) showed that imitators in a symmetric finite n-firm

Cournot Oligopoly with strictly decreasing inverse demand for a homoge-

neous good converge to the Walrasian outcome. This result is rather striking

since the Cournot Nash equilibrium appears to be very robust. Imitators

mimic the action of a most successful player in the previous round. The ad-

justment process has inertia, that is not every period all players will adjust

their actions. Players are allowed to make mistakes, i.e. with a small prob-

ability they randomize with full support. The imitation dynamics is a finite

Markov chain that is perturbed by mistakes. Vega-Redondo (1997) showed

that as the noise goes to zero, the unique invariant distribution converges to

the Walrasian outcome. The key factor to understand this result is that a

player adjusting towards the Walrasian outcome may decrease his payoff but

decreases the opponents’ payoffs even further.

We generalize Vega-Redondo’s result to symmetric finite aggregative games

that are quasi-submodular in a player’s action and the aggregate of all play-

ers’ actions. E.g., if a player prefers an action to a lower action for a given

aggregate of all players’ actions, then he must also prefer this action to the

lower action for a lower aggregate. In short, we show that Vega-Redondo’s

result applies to a wider class of games than just Cournot games.

As in Vega-Redondo (1997), our analysis makes use of stochastic stability

analysis. However, instead of using the basic graph theoretic arguments

applied by Kandori, Rob, and Mailath (1993) and Young (1993), we employ

as a short cut the concept of recurrent set (see Samuelson, 1997).
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2 Submodularity

A lattice is a partially order set 〈X, <〉 whose least upper bound and greatest

lower bound are defined by x′ ∨ x′′ = sup{x′, x′′} and x′ ∧ x′′ = inf{x′, x′′},

for all x′, x′′ ∈ X respectively. For example, if X is the product of several

ordered sets, one may define x′ ∨ x′′ (likewise x′ ∧ x′′) as the component-wise

max (min) to define a lattice. Note that the direct product of a lattice is a

lattice, i.e. if X is a lattice then so is X2 = X ×X. A real valued function

f : X −→ R on a lattice X is called submodular on X if ∀x′, x′′ ∈ X,

f(x′ ∧ x′′) + f(x′ ∨ x′′) ≤ f(x′) + f(x′′). (1)

The function f is called strictly submodular if the inequality holds strictly

for all unordered x′, x′′ ∈ X. The function f is called quasi-submodular on

X if ∀x′, x′′ ∈ X,

f(x′ ∨ x′′) ≥ (>)f(x′′) =⇒ f(x′) ≥ (>)f(x′ ∧ x′′), (2)

f(x′ ∧ x′′) ≥ (>)f(x′′) =⇒ f(x′) ≥ (>)f(x′ ∨ x′′). (3)

Note that submodularity implies quasi-submodularity but not vice versa (see

Topkis, 1998).

Definition 1 (Aggregative Quasi-Submodular game). A symmetric

(finite) strategic game Γ = 〈N, S, a, π〉 is called aggregative quasi-submodular

if

(i) N = {1, ..., n} is the finite set of players,

(ii) the set of actions Si, ∀i ∈ N , is a totally ordered (finite) lattice,

(iii) the aggregator ai : ×j∈NSj −→ T , T being a totally ordered (finite) lat-

tice, is strictly isotone and invariant to permutations of its arguments1,

1The function ai : ×j∈NSj −→ T is invariant to permutations of its arguments if
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(iv) the payoff function πi : S × T −→ R is quasi-submodular in (s, t),

∀i ∈ N , i.e. ∀(s′, t′), (s′′, t′′) ∈ S × T ,

πi((s
′, t′) ∨ (s′′, t′′)) ≥ (>)πi(s

′′, t′′) =⇒

πi(s
′, t′) ≥ (>)πi((s

′, t′) ∧ (s′′, t′′)), (4)

πi((s
′, t′) ∧ (s′′, t′′)) ≥ (>)πi(s

′′, t′′) =⇒

πi(s
′, t′) ≥ (>)πi((s

′, t′) ∨ (s′′, t′′)). (5)

(v) the action sets and payoff functions are symmetric, i.e. Si = S and

πi = π, ∀i ∈ N .

Examples of the class of aggregative quasi-submodular games are as fol-

lows:

Example 1. (Cournot Oligopoly with a homogeneous good) The

payoff function is π(s, t) = p(t)s − c(s) with s being interpreted as a firm’s

quantity, p being a strictly decreasing inverse demand function and c a cost

function (see also Schipper, 2001). The aggregator is simply the total quan-

tity over all firms a(s1, ..., sn) = Σi∈Nsi .

Example 2. (Cournot Oligopoly with differentiated substitute prod-

ucts) The payoff function is πi(si, t) = pi(si, t)si − c(si). Goods are substi-

tutes if for example pi(si, t) = βθ(Σn
j=1s

β
j )θ−1sβ−1

i with 0 < βθ < 1, θ < 1

and 1 ≥ β > 0 (see Vives, 2000). The aggregator is a(s1, ..., sn) = Σn
j=1s

β
j .

Example 3. (Bertrand Oligopoly with differentiated complemen-

tary products) The payoff function is πi(si, t) = di(si, t)si−c(di(si, t)) with

ai(s1, ..., sn) = ai(sb(1), ..., sb(n)) for all bijections b : N −→ N .
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si being interpreted as the price for the good of firm i, di being the demand

function of good i and c the cost function. Goods are complements if for

example

di(si, t) = (βθ)
1

1−βθ
s

1
β−1

i

(Σn
j=1s

β
β−1

j )
1−θ
1−βθ

,

with 0 < βθ < 1, θ < 1 and β < 0 (see Vives, 2000). The aggregator is

a(s1, ..., sn) = Σn
j=1s

β
β−1

j .

Example 4. (Common-Pool Resource game) The payoff function is

π(si, t) = c(e−si)+
si

Σn
j=1sj

[aΣn
j=1sj−b(Σn

j=1sj)
2] if si > 0 and π(0, 0) = ce with

c, e, a, b ∈ R++ (see Walker, Gardner, and Ostrom, 1990). Each appropriator

i ∈ N has an endowment e that can be invested in the Common-Pool Re-

source or in an outside activity with marginal payoff c. si denotes appropria-

tor i’s investment into the Common-Pool Resource, where 0 ≤ si ≤ e. The re-

turn is si

Σn
j=1sj

[aΣn
j=1sj − b(Σn

j=1sj)
2]. The aggregator is a(s1, ..., sn) = Σn

j=1sj.

Example 5. (Rent-Seeking game) The payoff function is π(s, t) =

sr
i

Σn
j=1sr

j
v − si with si ≥ 0 and 0 < r < 1. Contestants compete for the rent v

by bidding si. The probability of winning is
sr
i

Σn
j=1sr

j
but the cost of bidding

equals the bid (see Hehenkamp, Leininger, and Possajennikov, 2001). The

aggregator is a(s1, ..., sn) = Σn
j=1s

r
j .

Example 6. (Generalized Nash-Demand game) The payoff function

is π(s, t) = p(t)s. The demand of a player is s. The probability of getting

the demand is p(t) which is strictly decreasing in the total of demands of all

players Σn
j=1sj. The aggregator is a(s1, ..., sn) = Σn

j=1sj.
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3 Imitation Dynamics

Time is discrete and indexed by τ = 0, 1, 2, ....

Definition 2 (Imitator). 2 An imitator i ∈ N chooses with full support

from the set

DI(τ − 1) := {s ∈ S : ∃j ∈ N s.t. s = sj(τ − 1) and

∀k ∈ N, πj(τ − 1) ≥ πk(τ − 1)}. (6)

An imitator mimics the action of the player(s) with highest payoff in the

previous period. At every time τ = 1, 2, ..., each player i ∈ N is assumed to

revise his former action si(τ − 1) with a common i.i.d. probability ρ ∈ (0, 1)

according to the imitation rule. Initially in τ = 0 players start with any

arbitrary action within the action set S.

The process induced by the imitation dynamics is a discrete time fi-

nite Markov chain on the state-space Sn = ×i∈NSi. Each state ω(τ) =

(s1(τ), s2(τ), ..., sn(τ)) induces a profit-profile (π1(τ), π2(τ), ..., πn(τ)). The

Markov operator is defined in the standard way as transition probability ma-

trix P = (pωω′)ω,ω′∈Sn with pωω′ = prob{ω′|ω}, pωω′ ≥ 0, ω, ω′ ∈ Sn and∑
ω′∈Sn pωω′ = 1, ∀ω ∈ Sn.

At every output revision opportunity τ , each player follows the imitation

rule with probability (1−ε), ε ∈ (0, η], where η is small, but with probability

ε he randomizes (“mutates”) with full support S. This noise makes the

perturbed Markov chain P (ε) irreducible and ergodic. This implies that there

exists a unique invariant distribution ϕ(ε) on Sn (see for example Masaaki,

1997). We focus on the unique limiting invariant distribution ϕ∗ of P defined

by ϕ(ε)P (ε) = ϕ(ε), ϕ∗ := limε→0 ϕ(ε) and ϕ∗P = ϕ∗. This long run

2See also Vega-Redondo (1997), p. 378.
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distribution determines the average proportion of time spent in each state of

the state-space in the long run (see Samuelson, 1997, for an introduction).

Consider ε = 0 and define an absorbing set A ⊆ Sn by

(i) ∀ω ∈ A, ∀ω′ /∈ A, pωω′ = 0 and

(ii) ∀ω, ω′ ∈ A, ∃m ∈ N, m finite, s.t. p
(m)
ωω′ > 0, p

(m)
ωω′ being the m-step

transition probability from ω to ω′.

Let Z be the collection of all A in Sn.

We call states ω and ω′ adjacent if exactly one mutation can change the

state from ω to ω′ (and vice versa). The set of all states adjacent to the state

ω is the single mutation neighborhood of ω denoted by M(ω). The basin of

attraction of an absorbing set A is the set B(A) = {ω ∈ Sn|∃m ∈ N,∃ω′ ∈

A s.t. p
(m)
ωω′ > 0}. A recurrent set R is a minimal collection of absorbing sets

with the property that there do not exist absorbing sets A ∈ R and A′ /∈ R

such that ∀ω ∈ A, M(ω)∩B(A′) 6= ∅. We will make use of following lemma.

Lemma 1 (Nöldeke and Samuelson). Given a perturbed finite Markov

chain, then at least one recurrent set exists. Recurrent sets are disjoint.

Let the state ω be contained in the support of the unique limiting invariant

distribution ϕ∗. Then ω ∈ R, R being a recurrent set. Moreover, ∀ω′ ∈ R,

ϕ∗(ω′) > 0.

For a proof see for example Samuelson (1997), Lemma 7.1 and Proposition

7.7., proof pp. 236-238.
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4 Result

Definition 3 (Walrasian outcome). ω∗ = (s∗1, ..., s
∗
n) is a Walrasian out-

come if for t∗ = a(ω∗),

π(s∗, t∗) ≥ π(s, t∗),∀s ∈ S. (7)

The Walrasian outcome describes a solution in which the player does not

perceive the externality of his action. An example is price-taking behavior.

Theorem. Given imitators with inertia and noise in an aggregative quasi-

submodular game, let the Walrasian outcome ω∗ ∈ Sn exist uniquely. Then

ϕ∗(ω∗) = 1.

The proof follows from below lemmatas. Recall that Z is the collection

of absorbing sets.

Lemma 2. Z = {Aω = {ω} : ω = (s, ..., s) ∈ Sn for some s ∈ S}.

Proof. By symmetry of Γ, we have by DI for every ω = (s, ..., s) ∈ Sn

that pωω = 1 and pωω′ = 0, ∀ω′ 6= ω. Conversely, since at any τ and i.i.d.

probability ρ > 0, there is positive probability that all firms adjust towards

the same action in DI(τ − 1) given any arbitrary ω(τ − 1). �

Lemma 3. M(ω) ∩B({ω∗}) 6= ∅, ∀{ω} ∈ Z\{ω∗}.

Proof. By assumption ω∗ is unique and by Lemma 2, Aω∗ = {ω∗}. Consider

any absorbing set (state) A 6= Aω∗ . We claim that starting in any A 6= {ω∗} a

single (suitable) mutation can lead the dynamics to B({ω∗}). It is sufficient

to show that ∀s ∈ S, s 6= s∗, k ∈ N, k ≤ n,

π(s∗, t) > π(s, t), (8)
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with t = a(s∗1, ..., s
∗
k, sk+1, ..., sn). a is strictly isotone and invariant to per-

mutations of it’s arguments. π is quasi-submodular. Set s∗ ≡ s′, s ≡ s′′,

t ≡ t′ and t∗ ≡ t′′. Note that the left-hand side of Formulas (4) and (5)

is the definition of the Walrasian outcome in the Inequality (7) whereas the

right-hand side is the above Inequality (8) (for s ≺ s∗ the upper Formula (4)

and for s � s∗ the lower Formula (5)). Setting k = 1 yields the desired claim

and completes the proof of the lemma. �

Lemma 4. M(ω∗) ∩B(A) = ∅, ∀A ∈ Z, A 6= {ω∗}.

Proof. By setting k = n − 1 in Inequality (8), it follows that more than

one mutation is needed to escape Aω∗ since players setting s∗ are still better

off after just one mutation. �

From previous lemmata follows that R = {ω∗}. Thus by Lemma 1,

ϕ∗(ω∗) = 1. This completes the proof of the Theorem.

Note that just a single suitable mutation is required to trigger the con-

vergence to the long run outcome. Hence, the convergence is rather fast

compared to many results in the literature obtained by the same method.

5 Conclusions

We generalize Vega-Redondo’s (1997) result to a class of aggregative quasi-

submodular games. Examples of this class are many games with strategic

substitutes. The result provides an evolutionary foundation for Walrasian

behavior in an important class of non-cooperative games. Schipper (2001)

also uses quasi-submodularity to prove that imitators are strictly better off

than are best-response-players in Cournot oligopoly. This result too applies

to aggregative quasi-submodular games.
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