
Curtis, John A.; Tovar Reaños, Miguel Angel; Grilli, Gianluca

Working Paper

Access to and consumption of natural gas: Spatial and
sociodemographic drivers

ESRI Working Paper, No. 639

Provided in Cooperation with:
The Economic and Social Research Institute (ESRI), Dublin

Suggested Citation: Curtis, John A.; Tovar Reaños, Miguel Angel; Grilli, Gianluca (2019) : Access to and
consumption of natural gas: Spatial and sociodemographic drivers, ESRI Working Paper, No. 639,
The Economic and Social Research Institute (ESRI), Dublin

This Version is available at:
https://hdl.handle.net/10419/228289

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/228289
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Access to and consumption of natural gas: spatial and socio-
demographic drivers

John Curtis*a,b, Miguel Angel Tovara,b and Gianluca Grillia,b

Abstract: In the context of reducing greenhouse gas emissions in the residential sector, fuel switching from coal and oil to 
natural gas is considered as a policy option. The paper considers fuel choice decisions among households within 30 metres of the 
Irish natural gas network. Consistent with earlier research a range of building attributes and household characteristics are 
associated with fuel choice for household space heating. Additionally, there are substantial distance decay effcts with respect to 
gas network connection within relatively close proximity to the network, meaning that properties further distant from the gas 
network are less likely to be gas customers. The distance decay effects are likely attributed to network connection fees, which 
are proportional to the connection distance. The paper simulates the impact of eliminating distance decay effects, i.e. the 
marginal connection cost associated with distance is set to zero, and examines emission and expenditure impacts across socio-
economic groups. The analysis finds that up to 13% of unconnected properties are likely to respond to such an incentive, yielding 
a 3.9% reduction in greenhouse gas emissions and a 1.5% reduction in fuel expenditure relative to pre-policy levels of 
unconnected households within the study. Expenditure and emission impacts differ across socio-economic groups with the 
largest reductions expected to occur among semi-skilled/unskilled households, which are frequently among the least affluent 
households. Though counter-intuitive, greenhouse gas emissions from the residential sector could be reduced by incentivising 
connections to the natural gas network.
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Access to and consumption of natural gas: spatial and socio-demographic drivers

1. Introduction

Policy interest in residential energy demand, including how access to grid supplied natural gas impacts
on demand for other fuels, has a long history (e.g. Halvorsen, 1975; Houthakker, 1951; Blattenberger et al.,
1983). Recent public policy attention on climate change and efforts to reduce greenhouse gas emissions has
led to a renewed focus on residential heating fuel choice decisions. Households’ domestic heating systems
and the carbon intensity of the associated fuels, along with the level of energy service demand, are key fac-
tors affecting overall environmental quality. Carbon dioxide (CO2) emissions, predominantly from coal, oil
and gas in western countries, contribute to substantial climate change related environmental externalities.
In the European Union about 16% of CO2 emissions are estimated to occur in residential buildings, where
space and water heating account for 67% and 14% of residential energy consumption, respectively (Euro-
pean Commission, 2011a,b). Similarly, in the United States roughly one-quarter of energy consumption
occurs in residential buildings (U.S. Department of Energy, 2012, Table 1.1.3). Hence, improved knowl-
edge of households’ decisions around heating systems, as well as, the factors that determine the choice of
these systems are of relevance for climate mitigation policies. Understanding what drives households to
make (or not make) such decisions will help policy-makers better design incentives to encourage transition
to low-carbon residential heating systems.

Prior research on residential energy demand is wide ranging, though disproportionately focuses on
network fuels (i.e. natural gas and electricity), which possibly reflects data availability (e.g. Halvorsen,
1975; Houthakker, 1951; Blattenberger et al., 1983; Filippini, 1999; Holtedahl and Joutz, 2004; Dergiades
and Tsoulfidis, 2008; Harold et al., 2015). Though other residential fuels such as firewood, oil, liquefied
petroleum gas, etc., have also been studied (e.g. Kayacan et al., 2012; Garbacz, 1984; Wadud et al., 2010;
Garbacz, 1985; Lillemo and Halvorsen, 2013; Couture et al., 2012; Arabatzis and Malesios, 2011). The
majority of demand studies are country specific, with some cross-country comparisons (e.g. Krishnamurthy
and Kriström, 2015; Pindyck, 1980). Whether the studies concentrate on residential energy demand or the
narrower subject of space-heating fuel demand (e.g. Meier and Rehdanz, 2010; Nesbakken, 2001), a com-
mon research focus is the estimation of price elasticities of demand (e.g. Labandeira et al., 2017; Okajima
and Okajima, 2013), which have relevance for policymakers and energy suppliers. Another research fo-
cus is examining how policy efforts to improve energy efficiency impact on energy demand (e.g. Haas and
Schipper, 1998; Cebula, 2012; Filippini and Hunt, 2012).

While energy demand studies are usually conditional on socio-demographic characteristics, a parallel
research strand focuses specifically on non-price drivers associated with residential energy demand. For
example, Allcott (2011) examines how communicating social norms impacts on energy consumption. Or
examinations of how behavioural interventions (e.g. home energy audits; historical or peer comparison,
etc.) impact on household energy use (e.g. Delmas et al., 2013; Allcott and Rogers, 2014; Frederiks et al.,
2015). This paper is positioned within the literature examining key building and occupant attributes associ-
ated with varying levels of residential fuel access and demand. Price and income are critical determinants
of demand but other factors play an important role, which is the focus here. Even in the case of income the



empirical findings are mixed. The use of oil and coal is more often associated with lower income home-
owners (Fu et al., 2014; Laureti and Secondi, 2012; Özcan et al., 2013) though in many cases income effects
are negligible or absent (Braun, 2010; Lillemo et al., 2013; Couture et al., 2012).

Several factors have been identified as being associated with use of specific residential fuels, including
supply proximity, education, economic status, age, as well as property age, size and type. Where there
are indigenous or local fuel supplies, particularly peat or firewood, cultural norms impact on fuel choice
(Couture et al., 2012; Laureti and Secondi, 2012; Fu et al., 2014). Access to natural gas networks play an
important role in fuel choice decisions across several countries. Mansur et al. (2008) find that US house-
holds with gas network access make different consumption choices compared to those without access. In
France Couture et al. (2012) model residential fuel choice and find that gas network access increases the
likelihood that a property uses gas as the primary source of energy by 8 percentage points, with oil being
the fuel that is displaced to the greatest extent. In Ireland Fu et al. (2014) find that the likelihood of solid
fuels being the primary residential heating source declines by 4 percentage points in areas within a threshold
distance of the natural gas network, and more recently Curtis et al. (2018) find that households aware of a
possibility of a local network connection are 59 percentage points more likely to choose gas when upgrad-
ing their heating system compared to respondents not aware of the accessibility of the network gas. Also in
Ireland McCoy and Curtis (2018) find that even where the gas network is readily accessible that distance to
network matters. A 1 percent increase in average distance to the network is associated with a 12 percentage
point reduction in the proportion of users in the local area connected to the network. The reason distance
matters to homeowners is that connection fees are proportional to the connection distance.

The association between economic status, education, income and age with residential fuel type are
broadly similar; households with higher levels of these attributes are generally further up the so-called ‘en-
ergy ladder’ of cleaner, more efficient fuels (Hosier and Dowd, 1987). For example, Özcan et al. (2013) find
that household heads aged 50 and above are more likely to choose gas, oil and electricity compared to coal
and other solid fuels for reasons of ease of use and for health concerns. But findings are often case specific,
with multiple studies finding no association between fuel type and age, education nor income (Decker and
Menrad, 2015; Curtis et al., 2018). Property age is often associated with specific fuel types (Laureti and
Secondi, 2012; Michelsen and Madlener, 2012) whereas property size and type are more relevant in others
(Michelsen and Madlener, 2016). Beyond socio-demographic drivers of fuel choice decisions, Curtis et al.
(2018) additionally consider whether home-owners’ environmental knowledge or behaviours are associ-
ated with more sustainable choices surrounding home heating systems, specifically lower CO2 emissions
intensity. Even among home-owners actively making decisions about home heating, their environmental
knowledge/behaviours have little explanatory power related to their heating choices. This reflects wider re-
search that finds pro-environmental attitudes do not always foster pro-environmental behaviour (Poortinga
et al., 2004; Schultz and Zelezny, 1999; Finger, 1994).

This paper makes a number of contributions. First, it adds to the literature examining residential heating
decisions. With respect to gas, we specifically examine distance decay effects, i.e. how distance to the
network affects connection to gas. As noted earlier, research findings are generally case or country specific,
therefore, further studies of this nature contribute to the body of knowledge in this field. Second, the paper
introduces an innovative analysis quantifying the expected net effect on greenhouse gas emissions from a
transition towards less carbon intensive residential heating fuels. Third, it identifies the distributional ef-
fects of increasing gas access and suggests possible policies to achieve this goal. And finally, the analysis
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provides practical guidance both to policy makers and industry practitioners involved in driving the energy
transition. It quantifies where new connections to the natural gas network can lead to a substantial reduction
in greenhouse gas emissions, both in the short and longer term, plus help focus the design of fuel switching
incentives to achieve the greatest reduction in emissions.

A brief summary of our research findings are that poorer households and those in rented properties
are less likely to use gas, while the greater the distance to the gas network, the smaller the probability of
gas connection, which confirms previous research. Increasing the number of dwellings connected to the
gas network has the potential to reduce emissions if households switch from more carbon intensive fuels.
Based on a scenario that fixes the gas connection fee to a flat rate irrespective of distance, which leads to
an increase in the probability of gas network connection, we estimate a 3.9% reduction in emissions from
currently unconnected households within 30 metres of the gas network. There is an associated reduction in
expenditure on heating fuels of 1.5%. These results suggest that the policy goals of reducing inequality and
protecting the environment can be jointly targeted in this instance.

The paper is organized as follow: in section 3 we describe the methods and data used in the estimation.
In section 4 we provide empirical analysis of current gas consumption and simulations on changes in the
emission and heating expenditure when unconnected dwellings switch to the gas network. We also provide
in section 5 a policy discussion and in section 6 we conclude.

2. Background

3. Material and methods

3.1. Data description

The data for the analysis comprises anonymised household level data on gas network connection, gas
consumption, property attributes, and household socio-demographic characteristics. The detailed household-
level information is a major advantage of our dataset, as research microdata that combines distance to the gas
network and gas consumption are rare. The Central Statistical Office (CSO) of Ireland created the research
data file, which entailed merging the 2016 census of population records at household level, which includes
information both on household occupants and property attributes, with data from the gas network operator,
Gas Network Ireland (GNI). The latter includes distance to gas network, network connection, and con-
sumption information. Each observation represents one residential unit with information on the main fuel
used for central heating, distance between the property and the gas network, property attributes and house-
hold characteristic variables. Gas consumption data is obviously only available for premises connected to
the gas network and we account for this selection aspect in our econometric specifications. In construc-
tion of the dataset gas consumption data was matched with census records at building level, which means
that it was not always possible to definitively match consumption records with the associated households
in multi-household buildings, e.g. apartments. Consequently the dataset excludes households situated in
multi-family properties (e.g. apartments) that could not be separately identified. The dataset also excludes
properties beyond 30 metres distance from the gas network. As the dataset was specifically constructed
to examine residential connections to the gas network, and as relatively few residential properties connect
beyond that distance (largely attributed to a connection fee exceeding e1000 beyond 30m) the dataset was
truncated at 30 metres distance. The dataset contains records for 466,929 households after data cleaning
for missing observations, etc.. Table 1 summarises the descriptive statistics of the main variables that were
included in the analysis. Based on the census of population data, the majority of households use gas as their
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main heating fuel (77 percent), 17 percent use oil, while lower proportions use solid fuels or electricity.
From official gas consumption data 19 percent of the sample are not gas consumers, which is obviously less
than the 23 percent from census records. This difference is reconciled by the fact that some households use
other fuels as the primary fuel for central heating but use natural gas as a secondary heating fuel or for other
purposes (e.g. cooking). Some 55 percent of the buildings are less than 15 metres distant from the network,
31 percent are between 15 and 20 metres, while the remaining 14 percent are located within a range of
20–30 metres.

The dataset just described has no information on energy consumption levels (with exception of gas). To
explore the impact of transition to gas we utilise a national residential consumption survey, the Household
Budget Survey (HBS), also compiled by the Central Statistical Office (CSO). The 2015-2016 HBS dataset
is employed to impute household energy consumption in kilowatt hours (kWh) using prices for different
fuels to convert expenditure from monetary terms to kWh.

3.2. Methodologial approach

The analysis is organised into two main parts. In the first part, we analyse the types of fuel that cur-
rently supply residential buildings and fuel consumption. This analysis identifies what fuels are consumed
and what is the level of emissions and expenditures of Irish households for energy. With respect to gas
connection we investigate distance decay effects, i.e. the household connection rate to the gas network de-
clines with distance (Nekola and White, 1999; Choi, 2013; Knapp and Ladenburg, 2015). In the second part
we implement a micro-simulation exercise, where we assume absence of distance decay for non-connected
buildings and simulate expected energy expenditure and emission abatement when gas is more accessible
to households. In the next two subsections we detail the econometric approach.

3.2.1. Analysis of current fuel use and gas consumption
The first task is to model the choice for building heating fuel. In Ireland, the primary fuel for residential

units can be one of the following: gas, oil (incl. LPG), electricity or solid fuels (peat, coal, biomass). The
response variable takes four discrete non-ordinal values. The probability of using one of these four fuels as
the main central heating fuel is modelled using a multinomial logit model (MNL). Similar to Baker et al.
(1989) and Braun (2010) the ‘choice’ of fuel in this model is understood as use or availability, rather than
an actual purchase decision. In a MNL setting the probability yi that building n is fuelled with fuel i is given
by:

Pr (yi|βi, xn) = Pi =
exp

(
β′i xin

)
J∑

i=1
exp

(
β′i xin

) , (1)

where X is a matrix that includes distance from the gas network and a set of building and personal charac-
teristics and βi is a vector of coefficients expressing the effect of the variables on the probability of fuel i
connection and J is the set of fuel alternatives. Direct interpretation of the MNL parameter estimates is dif-
ficult and instead marginal effects are calculated, which show the absolute change in probability of heating
fuel i in response to a change in some observed factor z ∈ xin (Train, 2009):

∂Pi

∂z
= βzPi(1 − Pi) (2)
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Table 1: Descriptive statistics of the variables

Proportions Sd min max
Fuel Type:
Gas 0.766 0.424 0 1
Oil 0.170 0.376 0 1
Solid Fuels 0.038 0.190 0 1
Electricity 0.027 0.161 0 1
Gas consumption:
No kWh 0.192 0.394 0 1
<2500 kWh 0.041 0.199 0 1
2500–5000 kWh 0.055 0.228 0 1
5000-7500 kWh 0.108 0.310 0 1
7500-10000 kWh 0.142 0.349 0 1
10000-12500 kWh 0.138 0.345 0 1
12500-15000 kWh 0.110 0.313 0 1
15000-20000 kWh 0.125 0.331 0 1
>20000 kWh 0.088 0.284 0 1
Distance from Gas network:
Less than 15m 0.548 0.498 0 1
15–20m 0.311 0.463 0 1
20–30m 0.141 0.348 0 1

Number of rooms 5.642 1.637 1 28

Year of construction:
before 1960 0.254 0.435 0 1
1961–1990 0.399 0.489 0 1
1991–2016 0.347 0.476 0 1
House type:
Detached houses 0.170 0.376 0 1
Semi-detached houses 0.496 0.500 0 1
Terraced houses 0.326 0.469 0 1
Flats 0.007 0.083 0 1
Tenure:
Owner with mortgage 0.394 0.489 0 1
Outright owner 0.374 0.484 0 1
Tenants 0.132 0.338 0 1
Social housing (public) 0.095 0.293 0 1
Social housing (private) 0.006 0.078 0 1
Owners of a pc 0.742 0.438 0 1
Higher social class 0.637 0.481 0 1
Household size 2.977 1.512 1 16
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The second task is to model gas consumption. As shown in Table 1 the dataset only contains consump-
tion brackets instead of the actual kWh per building. The dependent variable is discrete and ordinal and is
modelled using an ordered probit model, which assumes that energy consumption is a continuous (latent)
outcome but it is only observed in a discrete form. The continuous variable y∗ describing the energy con-
sumption is modelled as follows:

y∗ = β′X + υ (3)

where X is a set of building-specific variables and household characteristics, β is a set of parameters to be
estimated, indicating the effect of each variable on energy consumption, υ is the error component assumed
to be distributed normal (Greene, 2003). y∗ is a continuous measure of the energy consumption, ranging in
the interval [−∞,+∞] (Greene and Hensher, 2009). However, y∗ is only observed in the discrete form y, as
follows:

y =


0, if −∞ < y∗ ≤ τ0

1, if τ0 ≤ y∗ ≤ τ1

...

j, if τ j−1 ≤ y∗ < +∞

(4)

in which τ0...τ j−1 are the threshold parameters to be estimated. The probability of outcome j is given by:

Prob[y = j|X] = F[τ j − β
′X] − F[τ j−1 − β

′X], j = 0, 1, 2, .., J − 1. (5)

The data on energy consumption were only available for buildings fuelled with gas and some 19 percent
of the buildings had no information on consumption. To address this issue we use a modified version of the
ordered probit model that accounts for sample selection of the dependent variable. Sample selection models
were first proposed by Heckman (1979) for linear models and our approach represents a generalisation for
ordered outcomes. Ordinarily the MNL model (1) could be used to control for sample selection, however,
in practice model estimation did not converge to within normal tolerance levels. An alternative simplified
approach is proposed following De Luca and Perotti (2011), where an ordered response model with sam-
ple selection is represented by a bivariate model. The latent energy consumption model is redefined for
outcomes, i = 1, 2, and two observational rules:

y∗i = β′i Xi + υi (6)

S 1 = I(z1γ + υ1 > 0) (7)

S 2 =

J∑
j=0

I(τ j < y∗2 ≤ τ j+1) if S 1 = 1 (8)

where I(A) denotes the indicator function observing event A and where z j is a matrix of covariates. Ob-
servability of S 2 ∈ (0, 1, 2, . . . , j) is confined to the subsample of observations for which S 1 = 1, i.e. the
sub-sample of households with energy (gas) consumption data. S 1 = 0 occurs for households that consume
other fuels as the primary heating fuel in the MNL model (i.e. oil, electricity and solid fuels ). Selectivity
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effects operate through the correlation between the latent regression errors υ1 and υ2. A bivariate normal
distribution is assumed for the pair of error terms (υ1, υ2) with mean zero and covariance Σ.

Σ =

[
1 ρ

ρ 1

]
(9)

The log-likelihood estimator for a random sample of N observations is the following:

L(θ) =

N∑
n=1

{
(1 − S 1n)lnπ0n(θ) +

J∑
j=0

S 1nI(S 2n= jln)π1 jn(θ)
}

(10)

where θ = (β, τ, γ, ρ) is the vector of parameters to be estimated and where π0n and π1n are respectively:π0n = Pr(S 1 = 0) = 1 − Φ(βX)
π1n = Pr(S 1 = 1, S 2 = j) = Φ2(βX)

(11)

For identification reasons the selection equation must contain at least one variable that is not included in
the main equation that models energy consumption (De Luca and Perotti, 2011). In estimation the distance
from homes to the gas network is used to explain selection, which is not included in the equation of energy
consumption because distance affects connection but not the level of consumption.

3.3. Expected change in emissions and expenditures due to increased access to gas

The first part of the analysis provides a snapshot of the variables affecting the probability of gas con-
nection and household consumption. As shown in Table 2, using gas is less polluting per unit energy and
cheaper than other fuels therefore a wider adoption of gas is an advantageous public policy. Connection to
the gas network has a cost that is proportional to the distance of the building from the network. At present
the cost is e249.70 for buildings within 15m of the existing network, increasing by e51.32 per metre there-
after. Our dataset reports the distance from network in three brackets (see Table 1). In the presence of
distance decay, the probability of gas connection decreases at increasing distance due to higher connection
cost.

Emissions factors are sourced from SEAI (2018), while fuel costs are our own estimates based on data
provided by the Sustainable Energy Authority of Ireland (SEAI). Using a simulation exercise we assess how
emissions and expenditures are expected to change when distance decay effects are reduced, i.e. when the
cost of connection is set equivalent to the minimum cost of e249.70 for all properties, i.e. within 30 metres
of the existing network. The procedure follows these four steps:

1. Estimate households’ emissions and fuel expenditures
2. Estimate a model that explains the probability of gas connection due to distance decay (using modi-

fication of model (1) described below)
3. For properties not connected to the gas network estimate the effect of distance decay on gas connec-

tions as the marginal probability of being connected to the gas network at the two distance categories,
15–20m and 20–30m (with 0–15m as the reference category) conditional on building type, age and
tenure.

4. Assuming constant energy demand for each household, estimate the expected changes in emissions
and expenditures associated with an increased probability of switching to gas if the distance decay
effects are removed (i.e. the marginal cost of gas connections beyond 15m is zero)

7



Table 2: Emission factors and fuel prices

Fuel Emissions (g CO2/kWh) Cost e/kWh
Gas 204.7 0.0723
Oil (kerosene) 257.0 0.0658
Electricity 482.8 0.2167
Solid Fuels 357.0 0.0708
Data sourced from SEAI (2018) and directly from SEAI

For the primary census-gas dataset it is not feasible to calculate a household’s total energy use, the only
energy consumption data relates to gas as categorical variables, as reported in Table 1. For step 1 the HBS
dataset is used to model fuel consumption as a function of household attributes, which is then employed to
predict total household fuel consumption within the main census-gas dataset. The HBS dataset is a nation-
ally representative expenditure survey. Fuel consumption (kWh) are recovered by dividing expenditures
by prices from Table (2). Total energy consumption across fuels is then regressed on building attributes
and household characteristics, including building age, type and size, as well as tenure and economic status.
The same explanatory variables are available in the primary census-gas dataset, which permits estimation
of total energy consumption and subsequently used in step 4.

To explore the association between gas connection and distance in step 2 we estimate a modified version
of the MNL proposed in equation 1, in which the dependent variable is binary and equal to 1 if the primary
heating fuel is gas and 0 otherwise. This modification is necessary to preclude simulation anomalies where
connections to non-gas fuels increase when gas distance decay effects are removed (i.e. the marginal cost
of gas connections beyond 15m is zero). With this logit, as opposed to multinomial logit model, marginal
effects of distance for each household are calculated. Marginal effects show the change in probability when
a discrete explanatory variable increases by one unit.

In step 3 marginal probabilities of connection to the gas network are calculated for all properties not
connected to the gas network. To simulate the removal of a distance decay effect, we set the marginal prob-
ability of gas connection among households within the 15-20m and 20-30m distance brackets equivalent
to the marginal probability of connection associated with properties within 0–15m of the network. In the
policy simulations marginal probabilities of gas connection for each household, MPh, are calculated condi-
tional on distance to gas network, building type, age and tenure.

Based on each households’ existing energy demand, which is calculated in step 1 from the HBS data,
expected changes in emissions and expenditures allowing for the marginal probability of switching to gas
(from step 3) are calculated in step 4. Emissions and expenditure across all fuels are calculated as follows:

Emissions =
∑

h

kWhh ∗ f actori (12)

Expenditure =
∑

h

kWhh ∗ pi (13)

where kWhh is the imputed energy consumption for household h (from step 1), f actori is the CO2 emissions
factor for fuel type i, and pi is the associated fuel price from Table 2. The expected change in emissions and
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fuel expenditure after connecting to the gas network is evaluated as:

∆emissions =
∑

h

MPh ∗ kWhh ∗ ( f actorgas − f actori) (14)

∆expenditure =
∑

h

MPh ∗ kWhh ∗ (pgas − pi) (15)

where in this instance f actori is the CO2 emission factor associated with the existing heating fuel prior to
switching to gas. Equations (14) and (15) are calculated across all households not currently connected to
the gas network, i.e. only for households where it is possible to make a new gas network connection.

4. Results

4.1. Current fuel use and gas consumption
4.1.1. Current fuel use

Estimated parameters from the MNL model are not amenable to direct interpretation and therefore not
reported. Instead Table 3 reports calculated marginal effects based on the model estimates. The figures
presented show the marginal probability of a household utilising each fuel as its primary heating source
associated with a change the explanatory variables in the model. The sum of marginal probabilities across
fuel types for a given attribute sum to zero. The MNL model was estimated using the mlogit command in
StataTM15. Marginal effects were calculated with the margins command. Where the marginal effect relates
to a categorical variable the discrete first difference from the base category is reported.

The estimates show how proximity to the gas network impacts on primary heating fuel. As distance
increases from the reference 0-15m category to 15-20m there is a 7.3 percentage point decrease in the
probability that the property is heated by gas. The decrease is 15.1 percentage points when the distance is
20-30m. As distance to the gas network increases oil is the primary alternative fuel choice with marginal
probabilities of +7.1 and +13.0 percentage points. McCoy and Curtis (2018) find that a one percent in-
crease in average distance to the Irish gas network is associated with a 12 percentage point reduction in
the proportion of gas users in an area. Estimates from these two studies are not directly comparable due to
differing metrics and datasets but appear broadly consistent with each other.

The two other variables with the largest marginal effects are building age and tenure. Homes built since
1991 have a higher marginal probability of gas fuelled heating, which reflects an expansion in the use of gas
in Ireland after 1980, with an annual growth in the number of gas consumers of 9% between 1980 and 2010
(Rogan et al., 2012). Property owners with a mortgage are the reference category for the tenure variable.
Mortgage owners are more likely to be younger families living in more recently built properties. Outright
owners (i.e. without mortgage) are 8.4 percentage points less likely than other tenure types to have a gas
heating system and 6.5 percentage points more likely to have an oil-fired heating system. This tenure group
has the greatest autonomy in freely selecting their heating fuel compared to renters or occupants living in
different types of social or public housing. The marginal probability of consuming gas is 4 percentage points
lower for families renting their home with solid fuels being the most likely alternate fuel consumed.

Among the other model variables, such as property type, size or economic status, the marginal effect es-
timates are relatively small in magnitude and may have less practical relevance for climate policy measures
seeking to encourage the transition to less carbon intensive fossil heating fuels.
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Table 3: MNL model for gas connections: Marginal effects

MNL marginal effects Gas Oil Electricity Solid fuels

Distance 15-20m -0.073*** 0.071*** 0.003*** -0.000
(0.001) (0.001) (0.001) (0.001)

Distance 20-30m -0.151*** 0.130*** 0.012*** 0.009***
(0.002) (0.002) (0.001) (0.001)

Number of rooms 0.007*** 0.007*** -0.007*** -0.006***
(0.000) (0.000) (0.000) (0.000)

Year of building construction (ref. before 1960)
Year 1961-1990 -0.020*** 0.053*** -0.027*** -0.007***

(0.002) (0.002) (0.001) (0.001)
Year 1991-2016 0.228*** -0.164*** -0.060*** -0.004***

(0.002) (0.001) (0.001) (0.001)
Tenure (ref. Owners with a mortgage)
Outright owners -0.084*** 0.065*** 0.014*** 0.005***

(0.001) (0.001) (0.001) (0.001)
Tenants -0.040*** 0.008*** -0.005*** 0.038***

(0.002) (0.002) (0.001) (0.001)
Social housing (public) 0.059*** -0.084*** 0.018*** 0.007***

(0.002) (0.002) (0.001) (0.001)
social housing (private) 0.003 -0.060*** 0.024*** 0.033***

(0.008) (0.007) (0.004) (0.004)
House type (ref. Detached houses)
Semi-detached houses 0.040*** -0.028*** -0.006*** -0.006***

(0.002) (0.001) (0.001) (0.001)
Terraces 0.064*** -0.069*** 0.005*** 0.001

(0.002) (0.002) (0.001) (0.001)
Flats 0.011 -0.085*** 0.004 0.071***

(0.008) (0.008) (0.004) (0.004)
Upper social class 0.030*** -0.011*** -0.019*** 0.000

(0.001) (0.001) (0.001) (0.001)
Household size 0.008*** -0.006*** -0.001*** -0.002***

(0.000) (0.000) (0.000) (0.000)
Employment status (ref. employed)
Other employment status 0.002 0.006*** -0.006*** -0.002***

(0.001) (0.001) (0.001) (0.001)
Standard errors in parentheses, * p<0.1, ** p<0.05, *** p<0.01
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4.1.2. Gas consumption
The ordered probit heckman selection model (equation 10) was estimated using the heckoprobit com-

mand in StataTM15 and the results are reported in Table 4. It is easier to interpret the results in terms of
marginal effects. Table 5 displays marginal probabilities for eight categories of yearly gas consumption
across different dwellings and socio-economic variables. Before proceeding we note again that the dataset
does not permit calculation of income or price effects. Calculation of marginal effects associated with
household or building attributes are feasible. For brevity we describe here results for the two extreme levels
of yearly gas consumption <2,500 kWh and >20,000 kWh. If a household is in a higher social class, or
a mortgaged owner there are similar marginal probabilities of being among the highest category gas con-
sumer 1.8–1.9 percentage points greater than other consumers, while marginal probability of the highest
consumption level is 3.2 percentage points higher for families with a retired head of household. House-
holds in social housing have a 2.2 percentage point higher probability than others of being in the lowest
consumption category. The two characteristics in Table 5 frequently associated with social disadvantage,
i.e. two forms of social housing, are the attributes with the highest marginal probability estimates for the
lowest levels of gas consumption. Further research is necessary to investigate if these finding are correlated
with fuel poverty. On building age, newer built properties are less likely to have high levels of consumption,
i.e. 12500+ kWh, relative to the reference category of pre 1960s building but more likely to have lower
levels of consumption. For example, a property built in the period 1991–2016 is 4.6 percentage points more
likely to have gas consumption of 5000–7500 kWh relative to a property built prior to 1960. Semi-detached,
terraced properties and flats are more likely to have lower levels of gas consumption relative to the detached
properties. For example, terraced properties are 7.1 percentage points more likely to have gas consumption
of 5000–7500 kWh relative to a detached property.

Table 4: Gas consumption ordered probit model with Heckman correction

Variables Consumption Heckman selection
Coefficient Std. error Coefficient Std. error

15–20m -0.301*** (0.005)
20–30m -0.608*** (0.007)
Number of rooms 0.188*** (0.001) 0.030*** (0.002)
1961–1990 -0.253*** (0.005) -0.080*** (0.006)
1991–2016 -0.414*** (0.006) 0.999*** (0.008)
Semi-detached -0.402*** (0.006) 0.186*** (0.006)
Terraced houses -0.634*** (0.006) 0.271*** (0.008)
Flats -0.493*** (0.022) -0.387*** (0.030)
With mortgage 0.119*** (0.005) -0.361*** (0.006)
Tenants -0.016*** (0.006) -0.211*** (0.008)
Social housing (public) -0.346*** (0.006) 0.180*** (0.010)
Social housing (private) -0.316*** (0.021) -0.132*** (0.032)
Higher social class 0.112*** (0.004) 0.110*** (0.005)
Household size 0.134*** (0.001) 0.033*** (0.002)
Employed -0.039*** (0.004) 0.005 (0.005)
Retired 0.186*** (0.007) -0.057*** (0.007)
County fixed effects Yes Yes
ρ 0.040*** (0.007)

Observations 466,929
Standard errors in parentheses, * p<0.1, ** p<0.05, *** p<0.01.
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Table 5: Marginal effects of gas consumption levels across different socio-economic variables

Gas consumption category, kWh
<2500 2500– 5000– 7500– 10000– 12500– 15000– >20000

5000 7500 10000 12500 15000 20000
Number of Rooms -0.012 -0.016 -0.021 -0.014 0.000 0.009 0.023 0.030
Higher social class -0.007 -0.009 -0.013 -0.008 0.000 0.006 0.014 0.018
Employed 0.003 0.003 0.004 0.003 0.000 -0.002 -0.005 -0.006
Retired -0.011 -0.015 -0.021 -0.015 -0.002 0.008 0.023 0.032
Tenure:
Mortgaged -0.008 -0.010 -0.013 -0.009 0.000 0.006 0.015 0.019
Tenants 0.001 0.001 0.002 0.001 0.000 -0.001 -0.002 -0.003
Social housing (public) 0.022 0.029 0.039 0.025 0.000 -0.017 -0.043 -0.055
Social housing (private) 0.020 0.026 0.035 0.023 0.000 -0.016 -0.039 -0.050
Building age:
1961–1990 0.016 0.021 0.028 0.018 0.000 -0.013 -0.031 -0.040
1991–2016 0.027 0.035 0.046 0.030 0.000 -0.021 -0.051 -0.066
Building type:
Semi-detached 0.026 0.034 0.045 0.029 0.000 -0.020 -0.050 -0.064
Terraced 0.041 0.053 0.071 0.046 0.001 -0.032 -0.079 -0.101
Flats 0.032 0.041 0.055 0.036 0.000 -0.025 -0.061 -0.079
The majority of estimates are statistically significant at 1 percent level, most of the remainder at 5 per cent level, with

just a few at 10 per cent level. All lower significance levels occur for estimates related to the 10000–12500 kWh category.

4.2. Expected change in emissions and expenditures due to increased access to gas
The probability of connection to the gas network declines as distance to the gas network increases, as

illustrated earlier. This section presents the results of the simulation analysis investigating the impact on
residential emissions and expenditures if the gas connection distance decay effect is eliminated, as described
in section 3.3. In practice such a scenario could arise if the marginal cost of gas connections beyond 15m is
set at zero and a flat connection fee, currently e249.70, applies to all new connections up to 30 metres.

With the removal of the distance decay effect new gas connections are anticipated. The magnitude of
the distance decay effect was reported in section 4.1.1; as distance increases from the reference 0-15m cat-
egory to 15-20m there is a 7.3 percentage point decrease in the probability that the property is heated by
gas and a 15.1 percentage point decrease when the distance is 20-30m. As noted earlier, the simulation
results are based on a logit, as opposed to a multinomial logit model, to avoid irrational outcomes where
connections to non-gas fuels increase when gas distance decay effects are removed. The estimated dis-
tance decay effects from the logit model at 7.3 and 15.7 are similar to the MNL estimates. The marginal
probability of a gas connection also varies depending on other building attributes and household character-
istics. For the simulation analysis the marginal probability of a gas connection is calculated for 36 separate
combinations of building attributes and household characteristics across building type, building age, tenure
and distance to the gas network. These variables were selected because they may be useful as potential
hooks for policy measures. For example, potential policy incentives could target specific house types or
building ages. Results for just 4 combinations are reported in Table 6, representing the estimated minimum
and maximum marginal probabilities within the 15–20m and 20–30m distance categories. Accordingly,
the estimates in Table 6 bracket the range of marginal probability estimates of a gas network connection
associated with these household/property types ceasing to be impacted by network distance effects. For
households/buildings within 15–20 metres of the gas network, the marginal probability of a gas connection
is 2.3–11.2 percentage points less compared to households within 0–15 metres of the network. The corre-
sponding figures for households within 20–30 metres of the network are 5.3–22.1 percentage points. The
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category of buildings/households with the highest magnitude marginal effects are detached houses, built in
the 1960–1990 period, and which are owned outright. Housing developments with these characteristics are
likely to have the highest probability of switching to gas if the cost of gas connection is a flat fee.

Table 6: Marginal effect of network distance conditional on building and household attributes

Distance Year built House type Tenure Marginal probability Std error.
15-20 m 1960–1990 Detached Owned outright -0.112*** 0.002
15-20 m Post 1990 Terraced Mortgaged -0.023*** 0.001
20-30 m 1960–1990 Detached Owned outright -0.221*** 0.002
20-30 m Post 1990 Terraced Mortgaged -0.053*** 0.001
Marginal effects were calculated with the margins command in StataTMand standard errors calculated

by delta method. * p<0.1, ** p<0.05, *** p<0.01

If a flat connection fee is extended to cover all properties up to 30 metres one would expect new gas
connections in the 15–30 metre range. The next set of results relates to expected change in emissions and
expenditures if such a policy were implemented. In total there are 69,000 unconnected properties within
15–30 metres of the gas network. We calculate the expected change in emissions and expenditure as out-
lined in equations (14) and (15). Switching heating fuel to gas brings environmental benefits, as emissions
are expected to decrease by 3.9% across all un-connected households within 15–30 metres of the gas net-
work. The corresponding reduction in heating fuel expenditure is 1.5%. The results are reported in Table 7,
which also includes the results by distance to network. The expected number of properties making a new
gas connection is just above 9,000, or 13% of potential new connections.

There are revenue implications for the gas network operator but the reduction in emissions also has
value. The loss of connection fees to the gas network operator is estimated at e3.3 million but actual con-
nection costs may be different. The reduction in emissions does not have a direct financial value, as the
emissions from the residential sector are not within a traded carbon market, such as the EU’s Emissions
Trading Scheme. But emission reductions have value to the government, which has legally binding emis-
sion reduction targets within the EU’s burden sharing agreement. To calculate the value of carbon reduction
savings we assume that the emissions reductions persist over time and we use a 4% discount rate, which is
the standard discount rate to be used in cost-benefit and cost-effectiveness analyses for Irish public sector
projects.1 For the value of carbon we use the shadow value of carbon from the Irish public spending code,
which is e39/tCO2 in 2021 rising to e105 in 2030 and to e163 by 2040. The estimated value of discounted
emissions savings ise9m over a ten year time horizon to 2030 ore21m over a twenty year horizon to 2040.

4.3. Distributional effects of increased access to gas

Understanding the distributional effect of environmental policies is important to protect against inequal-
ities for the more vulnerable in society. For example, carbon taxes impose a heavier burden on poorer
households so implementation of new carbon taxes is often combined with other social welfare measures
(Klenert et al., 2018; Flues and Thomas, 2015; Tovar Reaños and Wölfing, 2018). Understanding the dis-
tributional effects of a measure to improve access to the gas network helps inform public funding decisions

1https://www.gov.ie/en/policy-information/1a0dcb-project-discount-inflation-rates/
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Table 7: Expected change in emissions, fuel expenditure and marginal cost needed for the connection
(of all unconnected dwellings located within 15–30m of the gas network)

Description : 15-20m 20-30m Total
∆emissions, % -2.7 -5.4 -3.9
∆expenditure, % -1.2 -2.0 -1.5

Number of dwellings unconnected to the gas network 40,733 28,706 69,439
Estimated number of new connections 3,864 5,523 9,387
Emissions savings, tCO2 6,886 10,188 17,073
Estimated connection revenue foregone, em 0.5 2.8 3.3

Table 8: Simulation outputs by socio-economic group

Socio-economic group Unconnected Change in Change in Average
Description Label households CO2 expenditure change in

within 15–30m emissions expenditure,
of gas network e/yr

Employers & managers A 14% -3.5% -0.5% -10
Professionals B+C 19% -3.6% -0.5% -9
Manual/non-manual labour D+E 31% -3.9% -1.6% -29
Semi-skilled/unskilled F+G 10% -4.2% -2.8% -50
Other Other 26% -4.1% -2.2% -43
Total 100% -3.9% -1.5% -28

for such a policy. The data available does not include information on income but socio-economic group
is is a possible proxy. Table 8 reports the simulation results for the main socio-economic groups. Of the
unconnected households within 15–30m of the gas network the largest share, at 31%, are attributed as
manual and non-manual labourers. The change emissions and expenditure for this group closely matches
all unconnected households within 15–30m of the gas network. Among unconnected households across
the socio-economic groups 74–86% of households’ existing heating fuel is oil, 6–8% solid fuels, and the
remainder electricity. Semi and unskilled workers would experience the largest reductions in both emis-
sions and expenditure, of 4.2% and 2.8% respectively. Whereas the more affluent socio-economic groups
comprising professionals, employers, and managers would experience just a 0.5% reduction in expenditure
associated with a switch to gas (and assuming unchanged kWh energy consumption). The simulated abso-
lute change in expenditure varies between e9–50 per annum per household. A e50 reduction in heating
fuel expenditure for Semi-skilled/unskilled households in some instances may represent substantial saving.
Without income data there are no conclusive results with respect to impacts on fuel poverty or the alleviation
of distributional inequalities but nominally the measure appears progressive with respect to distributional
impacts.

5. Discussion

Reducing energy demand of existing dwellings through energy efficiency improvements is a common
strategy for emission reductions across many countries. Increasing gas access is not usually advocated as
a strategy to achieve emission reduction targets but the analysis here clearly shows that there is scope for
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achieving emissions reductions through a policy that advocates transition from more carbon intensive heat-
ing fuels such as oil to fossil gas. At a national scale the magnitude of emissions reductions is relatively
small but nonetheless contributes to challenging national targets. Switching to fossil gas can be considered
as an intermediate step, as in the longer term renewable biomethane can be used as a substitute for fossil gas.
For instance, SEAI (2017) suggests Ireland has the largest potential of biogas production per capita within
the EU while Rajendran et al. (2019) recommend the introduction of incentives for biomethane production
in Ireland and its injection into the gas network to seamlessly integrate renewable gas into heating.

The fuel type used in residential buildings is strongly associated with building age and type among
other factors, as was demonstrated in the MNL model estimates. Switching to a lower or zero carbon fuel is
not a simple choice and often requires substantial investment in technology. In the case of gas, connection
fees appear to be an additional barrier, as demonstrated by the estimated marginal probabilities associated
with network distance of between 5 and 22 percentage points. The key price variable is the connection
cost, which is a function of distance to the network (McCoy and Curtis, 2018). While the distance to the
network is included in our model, we acknowledge that while projected new connections are based on a
model of socio-demographic and building characteristics, income and price effects are excluded due to ab-
sence of data. In the scenario examined, where the flat rate connection fee is extended to all properties
within 30 metres, the analysis estimates that up to 13% of potentially available properties would respond to
the improved connection incentive, though the level of connection is likely to differ substantially based on
property and household characteristics. The impact of distance on connection is particularly acute among
among owner-occupiers living in detached properties, with the marginal probability of connection declin-
ing by half as distance to network increases from 15–20m to 20–30m. Financial or budget constraints are
among the key barriers to investment in energy retrofits, which may affect new gas conversion rates in prac-
tice, as will other common barriers such as those related to information or disruption (Sorrell et al., 2004;
Caird et al., 2008; Mills and Schleich, 2012; Achtnicht and Madlener, 2014). In practice the level of new
connections following such a policy is likely to be less than 13% when the impact of barriers is incorporated.

Climate policies such as carbon taxation are generally regressive (Klenert et al., 2018; Flues and Thomas,
2015; Tovar Reaños and Wölfing, 2018) and are often combined with revenue hypothecation to compensate
those facing the most significant associated burden. Unusually, a policy support to encourage fuel switching
to gas may be progressive, as the reduction in fuel expenditure disproportionately favours socio-economic
groups that are more likely to be disadvantaged. Nominally, in this instance a single measure is achieving
two public policy goals of reducing greenhouse gas emissions and tackling income inequality. In practice
the switching to a gas based heating system requires household investment, for example in gas boilers and
associated plumbing, which may be barrier to those on low incomes. Therefore, the extent to which a pol-
icy measure supporting switching to gas can contribute to tackling both policy goals is subject to future
research. The distributional impacts of carbon taxation have been widely considered (e.g. Callan et al.,
2009; Liang and Wei, 2012; Feng et al., 2010) but there is scope for examination of other climate-energy
policy measures .

From a simple cost-benefit perspective the cost of the policy measure in terms of revenue foregone is
easily offset by the value of avoided emissions and a case to implement such a policy could be argued. In
practice, however, this is a case of split incentives. The costs of the policy support are borne solely by
the gas network operator. Households switching to gas also incur costs (e.g. installation of new heating
equipment) but benefit from reduced fuel costs. Neither the gas network operator nor households benefit
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financially from the reduction in emissions. The State is the sole beneficiary of reduced emissions in terms
of its compliance with legally binding emissions reduction targets. A solution to this split incentive problem
is to devise an incentive to all parties such that the value of the CO2 savings are shared.

6. Conclusions

The paper examines non-price drivers associated with residential fuel choice, with special focus on gas
network connection and consumption. Similar to earlier research we find that a range of building attributes
and household characteristics are associated with fuel choice. Of particular policy relevance we find sub-
stantial distance decay effects with respect to gas network connection within relatively close proximity to
the network, meaning that properties further distant from the gas network are less likely to be gas cus-
tomers. Network connection fees proportional to distance appear to be a barrier to gas as a home heating
fuel, though there may be other compounding factors such as additional installation costs. Switching from
coal or oil to natural gas for heating purposes can yield CO2 emissions reductions and the distance decay
effect can be exploited to incentivise switching to natural gas and achieve emissions savings. Simulating a
new connections policy that institutes a flat fee for all properties within 30m of the network, i.e. eliminate
the cause of the distance decay effect, we project that up to 14% of eligible unconnected properties may
respond to the incentive. In practice, the level of new connections is likely to be lower, as the analysis was
unable to incorporate the impact of several well known barriers to energy retrofits. However, the research
shows substantial variation in the probability of connection based on property age and type, tenure, and
distance to the network. In specific areas the potential for new connections is relatively high, whereas in
other areas it is quite low. The aggregate results for the simulation are a 3.9% reduction in CO2 emissions
compared to a baseline of heating related emissions from unconnected properties within 15–30m of the
network. Aggregate fuel expenditure declines by 1.5%, though the expenditure reductions are dispropor-
tionately in favour of manual and unskilled workers, cohorts that are often associated with low incomes.
The implementation cost of a flat-rate connection fee in terms of revenue foregone is relatively modest with
respect to the value of emissions avoided but the measure is subject to split incentives. While nominally
counter-intuitive, greenhouse gas emissions from the residential sector could be reduced by devising a pro-
gramme to incentivise connection to the natural gas network.
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