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EFFECTIVENESS OF HEDGING STRATEGIES UNDER MODEL
MISSPECIFICATION AND TRADING RESTRICTIONS

ANTJE DUDENHAUSEN

ABSTRACT. The following paper focuses on the incompleteness arising from model mis-
specification combined with trading restrictions. While asset price dynamics are assumed
to be continuous time processes, the hedging of contingent claims occurs in discrete time.
The trading strategies under consideration are understood to be self-financing with re-
spect to an assumed model which may deviate from the “true” model, thus associating
duplication costs with respect to a contingent claim to be hedged. Based on the robust-
ness result of Gaussian hedging strategies, saying that a superhedge is achieved for convex
payoff-functions if the “true” asset price volatility is dominated by the assumed one, the
error of time discretising these strategies is analysed. It turns out that the time discreti-
sation of Gaussian hedges gives rise to a duplication bias caused by asset price trends,
which can be avoided by discretising the hedging model instead of discretising the hedging
strategies. Additionally it is shown, that on the one hand binomial strategies incorporate
similar robustness features as Gaussian hedges. On the other hand, the distribution of the
cost process associated with the binomial hedge coincides with the distribution of the cost
process associated with the Gaussian hedge in the limit. Together, the last results yield
a strong argument in favour of discretising the hedge model instead of time discretising
the strategies.

1. INTRODUCTION

Pricing by No-Arbitrage relies on the existence of self-financing and duplicating portfolio
strategies which are specified on the basis of an assumed asset price dynamic which may
of course deviate from the “true” asset price dynamic. The analysis of the implications
of so called model misspecification to pricing and hedging contingent claims has achieved
great acknowledgement in the scientific research. By assuming that the hedging strategies
are carried out according to a model which differs from the true dynamic of market prices,
the effectiveness of such strategies is analyzed in El Karoui, Jeanblanc-Piqué and Shreve
(1998) and Dudenhausen, Schlégl and Schlégl (1998). The key result states that if the
true volatility is locally bounded, then the hedging strategies implied by Black/Scholes-
like models' corresponding to the upper volatility bound are robust with respect to convex
payoff-functions. By using a strategy which is self-financing with respect to the “hedging
model”, the payoff of any contingent claim with convex payoff structure is dominated al-
most surely under any equivalent measure. The upper price bound is given by the initial
investment into this hedging strategy. Similarly, a subhedging strategy is achieved by using

Date. May 17, 2002.

Financial support by Deutsche Forschungsgemeinschaft is gratefully acknowledged. The author would
like to thank Philipp Schénbucher and Dieter Sondermann (at the University of Bonn) for fruitful discus-
sions. The usual disclaimers apply.

'In particular, Black/Scholes-like models or Gaussian models are based on the assumption of a deter-
ministic volatility structure such that the model is complete in the sense of Harrison and Pliska (1983)
guaranteeing the existence of a self-financing trading strategy duplicating the payoff of the claim to be
hedged.



MODEL MISSPECIFICATION AND TRADING RESTRICTIONS 2

the Black/Scholes model corresponding to the lower volatility bound. This strategy yields
the lower arbitrage free price bound such that according to an uncertain volatility model
there exists a whole interval of arbitrage free prices.

Additional to the effects of model misspecification on the effectiveness of continuos time
trading strategies the effects of time discretising these strategies are analysed. In partic-
ular, using a trading strategy in discrete time gives rise to a non-vanishing cost process
even if the strategy is self-financing if applied in continuous time. Obviously, non trivial®
discrete time strategies are not able to perform in a self-financing way, while asset price
dynamics are described by continuous time processes. The discrete application of a self-
financing strategy may even lack to be self-financing in the mean unless the asset price
processes are martingales under the objective probability measure, i.e. the drift of asset
prices is unequal to zero.

Furthermore, if market incompleteness is not only due to sources of model and parameter
misspecification but also to trading restrictions, a superhedge cannot be obtained even
if volatility is bounded. Strategies, even if robust in continuous time, do not succeed if
applied in discrete time, which is due to a discretisation error arising from applying a time
continuous strategy only in discrete time. Combining the topic of model misspecification
and trading restrictions, hedging strategies may be composed according to a continuous
time hedging model but discretised in time, or they may be composed from a discretised
hedging model. The first approach allows a decomposition of duplication costs into one
part arising purely because of the deviation of assumed asset price dynamic and the “true”
one as well as another part caused by the discretisation error.

For both approaches we study the case of a European option to exchange two assets,
defining a suitably general payoff. At the same time discrete time hedging strategies can
be calculated explicitely as follows: Either by assuming that the relevant dynamics are
lognormal, receiving a time continuous strategy which is discretised in time afterwards or
by assuming that the relevant dynamics are given by a binomial model yielding directly a
discrete time trading strategy. The strategies under consideration are recalculated under
the assumed model according to a discrete set of trading dates, given the market prices
generated by the true dynamics. Therefore, we have inflows and/or outflows of funds from
our hedging portfolio, defining a cost process along the lines of Follmer and Sondermann
(1986).

Considering the above outline of the analysis, the following paper is deeply related to
several important issues of option pricing and hedging including topics like incomplete
markets, model misspecification, option replication in discrete time and from discrete time
to continuous time convergence. Obviously, the relevant literature is easily able to span
several pages. We try to mention some of the most important and related works without
postulating to give a complete summary of the existent literature. Listed according to the
main topics we have:

Regarding the issue of incomplete markets, we refer to the papers of Féllmer and Sonder-
mann (1986), Follmer and Schweizer (1991), Schweizer (1991-94), Delbaen and Schacher-
mayer (1996), Delbaen, Monat, Schachermayer, Schweizer and Stricker (1997), Laurent
and Pham (1999) as well as Pham, Rheinldnder and Schweizer (1998).

2Non trivial in the sense of excluding static hedging.
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The topic of model misspecification is studied in Avellaneda, Levy and Parés (1995), Lyons
(1995), Bergman and Grundy (1996), El Karoui, Jeanblanc-Piqué and Shreve (1998), Hob-
son (1998)) or Dudenhausen, Schlogl and Schlogl (1998).

Transaction costs can naturally explain the purpose of discrete time hedging. Option
replication in discrete time with transaction costs and its implication, conducted by Le-
land (1985), is also studied in Bensaid, Lesne and Scheinkman (1992), Boyle and Vorst
(1992), in Avenalleda and Paras (1994), Grannan and Swindle (1996), Toft (1996).°
Discretely adjusted option hedges, firstly analysed in Boyle and Emanuel (1980) is as well
analysed in Bertsimas, Kogan and Lo (1998).

For convergence results, i.e. from discrete to continuous time finance we refer to He (1990)
and most importantly to Duffie and Protter (1992).

Including a short review of the robustness result of Gaussian hedges, the main results of this
paper are: Gaussian hedging strategies are only robust under modelmisspecification with
respect to convex payoff-functions iff applied in continuous time. Trading restrictions bias
the effectiveness of a Gaussian strategy in the following way: If the asset price dynamic
incorporates a non vanishing drift component under the objective probability measure,
Gaussian strategies are less than self-financing on average. Binomial strategies proove out
to incorporate similar robustness features as Gaussian hedges.* They can be suitably ad-
justed to asset price trends such that they are self-financing or even over-financing in the
mean while the distribution of their cost process coincides with the distribution of the cost
process associated with the Gaussian hedge if trading restrictions vanish.

The paper is organized as follows. The next section introduces the probabilistic setup.
The well known robustness result of Gaussian hedges is summarised in section 3. Using
the change of measure technique, the expected hedging costs with respect to continuous
time trading are derived. We then proceed to formalise the pragmatic approach of as-
suming the dynamics of a suitable process to be lognormal for hedging purpose while
nevertheless recalibrating to market prices in discrete time. In section 4 the duplication
bias arrising if asset prices incorporate a drift component under the objective probability
measure is analysed. Section 5 discusses the discretisation of the hedging model instead
of the time discretisation of Gaussian strategies, yielding a similar robustness result for
binomial hedging strategies compared to Gaussian strategies. The effectiveness of discrete
time strategies coinciding only in its limiting cost processes are compared, explaining why
binomial strategies are able to be self- or over-financing on average while the time discre-
tised Gaussian hedges are not. Most of the theoretical findings are illustrated using Monte
Carlo simulations. The last section concludes.

2. PROBABILISTIC FRAMEWORK

As already mentioned in the introduction, there are two reasons why the strategies under
consideration are not self-financing. The continuous time trading strategies under consid-
eration may deviate from being self-financing due to the effects of model misspecification
or model incompleteness. The failure of these strategies is described by a continuous time

3In his paper, expected hedging costs are calculated in order to adjust the hedging volatility to trans-
action cotst.

‘Binomial strategies achieve a superhedge for convex payoffs, if the returns of the relevant assets are
dominated by the up and down-parameters of the assumed binomial process.
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cost process. Obviously, discrete time strategies give rise to a discrete time cost process.
If the discrete time strategy is given by a time discretisation of a continuous time strategy,
the difference of the two cost processes is describing the costs of discretisation.

For these reasons, we adopt a more general definition of trading strategies which does not
include the self-financing requirement. Associated with each strategy is a cost process
resulting for its application in continuous time as well as the corresponding cost process
if the strategies are applied in discrete time. The introduction of these processes which
define the costs of discretisation is the main purpose of this section. We collect definitions
and fix some terminology along the way.

All the stochastic processes we consider are defined on an underlying stochastic basis
(&, F,F = (F)ecjo,r+, P) , which satisfies the usual hypotheses. Trading terminates at
time T > 0. We assume that the price processes of underlying assets are described by
strictly positive, continuous semimartingales. By a contingent claim C' with maturity
T € [0,7*], we simply mean a random payoff received at time 7', which is described by
the Fr-measurable random variable C.

DEFINITION 2.1 (Trading Strategy, Duplication). Let S, ..., S") denote the price pro-
cesses of underlying assets. A trading strategy ¢ in these assets is given by an R"—
valued, predictable process which is integrable with respect to S. The value process V(¢)
associated with ¢ is defined by

N
V(g) =) o050,
=1

If C is a contingent claim with maturity 7', then ¢ duplicates X iff
Vr(¢p) =C P —as.

DEFINITION 2.2 (Cost Process). If ¢ is a trading strategy in the assets S0, ..., S the
cost process L(¢) associated with ¢ is defined as follows:

N t ) )
Li6) = Vi) = Vo(e) = 3 [ ol asp.
=1

In particular, Ito’s lemma implies

N et N et
1) =3 [ s+ [ a9, 59
=1 =1

Imagine now a trader who favors the strategy ¢ but places his trading decisions only in
discrete time such that the restriction of the strategy ¢ to a discrete set of trading dates
T is to be analysed. In the following, the discrete application of ¢ is emphasized by the
notation ¢7, the value process of ¢” is denoted by V' (¢; 7) (respectively L(¢;7) for the cost
process). The trading dates 7 are given by a sequence of refinements 7" of the interval
[0,7], i.e.
m={tg=0<t <--- <ty =T}

with |t;§+1 — t7,3| — 0 for n — oo for all # = 0,...,n. The buy and sell decisions are
carried out immediately after the prices are announced in discrete time and held constantly
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throughout the time period until the next decision happens. In particular, qﬁ{él is t}_4-
measurable’.

DEFINITION 2.3 (Discrete time version of trading strategies). The discrete time version of
a trading strategy ¢ with respect to the refinement 7" is defined for all ¢ € [0, 7] by:

¢r = ¢ for t €]ty ti -
The value process V (¢; 7") associated with ¢7" is defined by setting V(¢; 7") := Vi(¢) and

N
Vilgs ) =D oS for teltp,tn), s 0<k<n—1.

The cost process L(¢;7") associated with ¢”" is given by

N
Li(g;7) = Vi) = Vol(o) — (Z S ( i t(]i)) + (S — S(é)))
i=1 =0
for all ¢t €]ty t7,1], 0 <k <n—1.

The strategy ¢ (¢ ) is self-financing iff the cost process L(¢) (L(¢,7™)) is identically zero.
However, if ¢ is self-financing this is not necessarily true for the discrete time version ¢”" .
Notice that

- St (e S50 o, - 5) )

=1 j=0

Assuming that ¢ is self-financing yields

N oo M E ) :
Li¢i7") = Va(@)+) /0 o) dst — (%(¢)+ZZ¢E§B (S§§11—S§§)))
=1

i=1 j=0
N k-1 Zan )
ARG
=1 7=0

Without additional assumptions it is even not clear if the strategy ¢7 is self-financing in
expectation®, i.e. if

Ep [Li(¢;7)] = 0,
where Ep denotes the expectation with respect to the objective measure P. Furthermore,

the value of the discrete version ¢7" of ¢ is different to the value of the continuous strategy
¢, unless the strategy ¢ itself is partwise constant. At time ¢, ¢ €]t,},,] it holds

N
Vo) ~ Viloim) = > (o - o) 81,
i=1
In particular, if ¢ is duplicating the claim C' with maturity 7', i.e. Vr(¢) = Cr, this is not
true for @™, i.e. Vp(d, ") = ¢m_ St. Using the strategy ¢ in order to hedge the payoff

5Using the agreement Fin, = Fip.
6A sufficient condition for ¢™" to be self-financing is given by assuming that the asset prices are mar-
tingales under the objective measure P.
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Cr, the hedging error LY (¢) equals the final costs Ly (¢). The hedging error of ¢7" is given
by

N
LE(6, ™) = Lp(p,m)+Cr— Y ¢4 SY
=1

= LT(¢; Tn) + VT(¢) - VT(d)a Tn)
n N

_ (1) i)
=Y (w;(@ - Zcbt}lst;) :

j=1 i=1
It is thus straightforward to interpret the cost of using the strategy ¢ only in discrete time
as the costs of discretisation according to the difference of the cost processes corrected
with the difference in value.

DEFINITION 2.4 (Costs of Discretization). If ™" is the discrete time version of the strat-
egy ¢ in the assets S ... S the cost process D(¢,7") associated with the discrete
application of ¢ is defined as follows:
Dt(¢7 Tn) = Lt(d): Tn) + V:‘,(d)) - V;i(d)a Tn) - Lt(¢)’ for all ¢ 6]07 T]
The duplication costs of ¢7" with respect to the claim C maturing at T are given by
Lg(¢7 Tn) = DT(d): Tn) + LT(d))

In particular, the costs of discretisation at 71" are given by

N n1l e .
Dr(¢,7) = Y3 / (60 - 6) dsg.

i=1 j=0 Yt}
However, if the trading strategies are continuous semimartingales themselves, we have
lim Vi(¢;7") = Vi(4)
n—oo

k-1 "
; @) (@) _ @) _ () _ @)y _ (@) 7a)
Jin S (5, =) (sl ) = [[avas
‘]:

such that the costs of discretisation are vanishing in the limit, i.e.
lim D;(¢,7") =0 and lim L$(¢,7") = L1 ().
n—oo n—oo

In particular, if ¢ is self-financing, this is true for the limit of the discrete time version
of ¢ as well. If ¢ is superreplicating the payoff of the contingent claim C, i.e. L(¢) < 0,
this is a priori only true for the limit of the discrete time version as well. However, trad-
ing in discrete time may bias the outcome of the hedging strategy. Even the expectation
with respect to P of the costs of discretisation may differ from zero. Generally, this will be
the case unless the asset price dynamics are martingales under the (subjective) measure P.

Assuming that the probability space (€2, F, P) supports an d—dimensional Brownian mo-
tion W and that F is the augmented filtration generated by W we may without loss of
generality write

ds® = s (u,@ dt + 0" dW) :

with ¢® : [0, T[— ]Ri. Furthermore we assume that the usual regularity conditions apply
to u® and o®.
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50 ‘ ‘ ‘ ‘ ‘ 0.05
40 0.04
S 30
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FIGURE 1. Duplication costs associated with a discrete time (static) Black-
Scholes hedging strategy for an at the money call option maturing in three
months. Given that the asset price follows a geometric Brownian Motion
with volatility equal to the volatility of the Black-Scholes hedge, the tracking
error vanishes in expectation if there is no drift in the underlying asset price
process. Otherwise, the duplication costs are positively biased, i.e. the
payoff is not sufficiently hedged in the mean.

PROPOSITION 2.5 (Expected Costs of Discretisation). In a model where u and o) are
only depending on time, the expected costs of applying the strateqy ¢ according the discrete
set " of trading dates can be represented as follows:
u
/ dqbgi)] du
&

N .nfl t;'l+1 ' u '
ErDeo, ] = 250X [T w0 e { [ u06)ds} B
i=1 j=0 V1]

N ) n—1 e o ) s ) )
= Z S((]Z) Z Epi /]+ (exp {/ H u® (u) du} — exp {/ p® (u) du}) dgbgz)] ,
i=1 =0 t 0 0

where dP) = Z aP, with Z” := exp {fot o (u) dW, — % fot |lo® (u)]|? du}

ProOOF: The proof is given in the appendix.

In order to analyse the discretisation bias further we have to use additional assumptions
about the strategies. The choice of the hedge model is based on the robustness result
of Gaussian hedging strategies which is reviewed in the next section. Figure 1 already
motivates the later finding that using a Gaussian hedge yields a positive duplication bias if
there is an asset price trend (positive or negative) under the objective probability measure.
In particular any convex payoff-function is subhedged on average.

3. DUPLICATION C0OSTS ASSOCIATED WITH CONTINUOUS TIME (GAUSSIAN
STRATEGIES DUE TO MODEL MISSPECIFICATION

According to the previous section, the cost process of a time discretisized trading strat-
egy is viewed as a decomposition consisting of two parts. The costs purely due to model
misspecification, i.e. assuming that continuous time hedging is possible, are considered on
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the one hand. On the other hand, there are additional costs arising from the time discrete
application of the originally time continuos strategy, i.e. the discretisation error. Before
putting things together, the costs are analysed by parts.

First, a short review of the robustness result according to Gaussian hedging strategies
is given along the lines of Avellaneda, Levy and Pards (1995) and Dudenhausen, Schligl
and Schlogl (1998). Black/Scholes—like formulae for pricing derivatives follow from the as-
sumption that the stochastic dynamics of the process relevant for hedging are driven by a
geometric Brownian motion. In particular, this implies that the volatility is deterministic.
Hedge ratios can then be expressed in terms of the cumulative distribution function of the
standard normal distribution, therefore the term “Gaussian hedges”.

DEFINITION 3.1 (Lognormal Process). We call a stochastic process Z lognormal iff it can
be written in the form

with deterministic dispersion coefficients 5 : [0, T[— R%.

This lognormality assumption’ allows the derivation of self-financing hedges if applied in
continuous time:

PROPOSITION 3.2. Let X, Y be the price processes of two assets. Consider an option to

exchange X for'Y at the maturity date T, i.e. an European option with payoff [X7 —Yr|T.

In a model where the quotient process Z := % 18 lognormal, the hedge portfolio ® =

(®)o<i<r for this option in terms of the assets X andY given by

oX = NV, Z)) units of X
and @Y = —N(AD(t,2,)) wunits of Y.

N denotes the cumulative distribution function of the standard normal distribution and
the functions bV and h® are given by

In(z) + 3 [ ll64(s) 12ds
VI 16(5)12ds

(3) WO 2) = h(l)(t,z)—\/ /t 16.2(5)|2ds.

In particular, the price process of the exchange option is given by
C(t, Zy) = XtN(h(l)(ta Zy)) — YtN(h(Q) (t, Z1))-
PROOF: See Margrabe (1978) or Frey and Sommer (1996).

(2) Wt 2) =

O

It is remarkable that the hedging strategy can be specified exclusively in X and Y, regard-
less of the dimension of the driving Wiener process. In particular, the pricing and hedging
in theorem 3.2 is the same as for a model driven by a one-dimensional Wiener process

"For a succinct treatment of the significance of this assumption, see Rady (1997).
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where

T
dzZM = op(t) dW, with Bp(t) := \// 162 (s)||>ds.
t

dZM is denoting the martingale part of the Doob-Meyer decomposition of Z, the standard
deviation vr defining the volatility used to specify the strategy @ is called hedge volatility.
The trading strategy ® given in (b) duplicates the exchange option at maturity even in the
case of model misspecification if applied in continuous time. It is self-financing iff the true
dynamics of X and Y are such that Z is lognormal and the true volatility of Z equals the
assumed volatility. However, in the following paper it is not aquired that the true volatility
o matches the assumed volatility 6 such that the hedge volatility ¥ may be misspecified.
Starting with the continuous time application of the strategy ¢ described in proposition
3.2 referring to the assets (Z, 1) where Z = 3 instead of (X,Y’) we have:

LEMMA 3.3. In a model where X and Y are lognormal processes with volatilities ox and
oy, respectively, Z is lognormal as well with

pz(t) = px(t) — py () + oy (1) (0 (1) — 0x (1)),
o7(t) = ox(t) — oy (t).

PRrROOF: Itd’s chain rule implies

t t t
Zt:Z0+/ Xde31+/ YsldXs+/ d(X, Y1),
0 0 0

Furthermore, we have
t t
Y;—l — Yb—l _/ Y;—Z dY;; +/ Y;_S d<Y>3
0 0

t t _
— vyt / Yo (16 ()12 = v (s)) ds — / YL div,.

0

Using (X,Y 1), =— JX—: x(8)oy(s)ds

—_~

implies Zt = Z() +/0 (,U,)((S) — ,lj,y(S) + 5'}/(8)) ds +/O (5')((8) — 5'y(8)) dWs
O

In particular, the lognormality of X and Y is sufficient, but not necessary for the applica-
tion of the strategy ®. This remains valid in the degenerate cases where either X7 or Yr
is deterministic, so that proposition 3.2 can be applied to a standard put or call option on
an asset with a lognormal price process.

PROPOSITION 3.4 (Costs of misspecification). The discounted cost process L*(¢) is given
by

t 11 (1) U
(@) 50 = [ 2202 oy - out)l?) au
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PROOF:
L) = v - (e [ o)
- /O AN (WO (u, 7)) — /O LN (WO, 7)) + /0 L2 N (),

Since h@(t,z) = KV (t,2) — &(t) and N'(hP (¢, 2)) = 2N" (A (t, 2)), it holds
AN (W2 (u, Z,)) = ZydN (KO (u, Z,))
— N'(hY(u, Z,))Z, (ﬁ'(u) dt + %6(u)(h9)(u, Z,))? d(Z)u) :

where h{" denotes the partial derivative given by Y = ﬁ Assuming that the true
dynamics of Z is given by
dZt = Zt (,utdt + O'Z(t)th)

yields

AN (B (u, Z,)) = Z, ( AN (AD (u, Z2)) + N (AD (, 2,)) 12D ”22; éf(t)ﬁl(t) du) |

Finally, we have —25(t)i'(t) = [|5(2)||” and (Z, N (hM)), = Z,XC82D | 5(1)|? du.

Notice, that the above result holds true as well, if the true volatility is an arbitrary stochas-
tic process and matches the result of El Karoui, Jeanblanc-Piqué and Shreve (1998) and
Avellaneda, Levy and Pards (1995) that Gaussian hedging strategies for convex payoff—
functions yield a superhedge, i.e. a decreasing cost process almost surely iff the true volatil-
ity is dominated by the assumed one. A detailed analysis of Gaussian hedging strategies
including the application to fixed income products is given in Dudenhausen, Schlégl and
Schlégl (1998).

Since option prices are increasing in volatility of the underlying, one would certainly expect
that dominating the true volatility implies superreplication on average (under the equiva-
lent martingale measure). What is remarkable, however, is that it implies superreplication
with probability 1 under any equivalent measure, including the real-world probabilities. In
particular, even if the underlying asset prices are driven by a drift component. Thus, if
the purpose of hedging is the complete elimination of risk, given uncertainty about present
and future volatility, one should hedge at the upper volatility bound. In cases where this
upper bound is too high for this to be practicable, one could instead hedge at the upper
bound of some confidence interval for the volatility, resulting in a superhedge as long as
the realized volatility remains below this upper bound. The effectiveness in the sense of
the cost distribution of a Gaussian superhedge, i.e. hedging at the upper volatility bound
as well as the effectiveness of a confidence hedge are obviously depending on the asset price
drift pz.

This can easily be explained if one notes that (4) can alternatively be written in terms of
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Distributions of hedging costs for dominated constant local volatilities under
different drift scenarios

1 : : 1
3
drift I drift
0.8 0.8
— 0.0 | 0.0
>0.6 ~--0.4 >0.6 ~-0.4
'a - 40.4 -;) S 40.4
c c
50.4 5
0.2
8 6 4 2 0 8 6 4 2 0
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Thus, as does the Black/Scholes gamma or theta, the cost process reacts more sensitively
as the time to maturity decreases, in particular if the option is at the money. This serves
on the one hand as an intuitive explanation why in order to obtain a superhedge it is not
sufficient to dominate the total volatility®. On the other hand, it can be concluded that
the costs process tends to be more sensitive if the asset price drift is given such that the
asset price are close to the option strike immediately before maturity. While dominating
the true volatility yields higher withdrawals (negative costs) from the duplicating portfolio
if asset prices tend to be at the money immediately before maturity, this effect is reversed
if the true volatility dominates the assumed volatility.

The effects mentioned above are illustrated in figure 2 and figure 3, resembling the cost
distribution of Gaussian heding strategies composed according to 6z = 0.4 with respect
to varying drift scenarios. Each cost distribution is generated by a Gauss—kernel density
estimation from 50000 simulated hedging paths. The parameters for the underlying as-
set price process Z under the objective probability measure are given by oz = 0.3 and
pz = 0.4 (respectively -0.4 and zero). Time to maturity of the (plain vanilla call) option
to be hedge is one year, the initial underlying price is 100 while the strike K of the options
under consideration is chosen to be 70 and 150, the hedging frequency is 1000.

In particular, with respect to the in-the-money option and positive drift (z > 0), the

8Details and implications are given in Dudenhausen, Schldgl and Schlsgl (1998)
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expected withdrawals of hedge funds are higher under the objective measure P than under
the risk neutral measure P* corresponding to asset price simulation under y = 0. Ob-
viously, this effect is reversed in case of the out—of-the—-money option. This can also be
justified theoretically by explicitely calculating the expected hedge costs. i.e.

ProOPOSITION 3.5 (Expected costs of misspecification).

(5) Ep[Li(#)] = Zo / t usas N(AO (u, el 12O b 7))

0 QET(U)

(loz (I = l62(w)]?) du.

where the functions KV, h®, and vy are given by
_ In(z) + s0A(t) - _
© 0,2 = S Rz < FO ) - orly
U

(7) ur(t) = \//0 ||0'Z(5)||2d8—1-/t 152(s)[[*ds.

PROOF: Using a change of measure yields (cf. proposition 2.5)
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Furthermore, in appendix B (cf. lemma B.2) it is shown that

Eps [N'(hO(t, 2,))] = i;gg

N' (RO (t, o pz ) ds 7)),

There are a few remarks necessary concerning proposition 3.5. Notice, that 92(t) denotes
the average variance from time 0 up to time 7" given the knowledge of the average “true”
variance up to time ¢ (0 < ¢ < T). In particular, it holds

T

P2(0) = / 162(s)|%ds, (T) = / lo2(s)]ds.

Let
(t, 2) == 2N (MV(t, 2)) — N (M2(t, 2)),

then C(t, F;) can be understood as a “Gaussian” ty—price of the exchange option under
consideration given the “true” volatility until time ¢ and the assumed volatility from time
t up to time T which is evaluated at the asset price F; = elo nz(s) 4 7,. Analoguously to
the above comments, equation 5 can again be written in terms of the gamma or 0 of C.
Since the asset price dynamic of F' is deterministic, the expected costs of misspecification
can be expressed in closed form: With equation (5) and

loz@* — [|52(®)]?

Wt 2) = 2N'(MV(L,2)0'(t) = 2N (MV(t, 2)) 200 (1)

C,(t,z) = N(BWY(L2))

it follows

t
Ep[Li(¢)] = C_’(u,ZO ef(}‘uz(s)ds”z_ / Zouz(u)efg‘uz(s)ds N(ﬁ(l)(u’efouﬂz(s)dszo))du'
0
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In particular, the expected duplication costs of the claim to be hedged are given by
Ep[L%(¢)] and can be expressed through the difference of C (T, Z, elo 12(s) ) and C(0, Zp)
which is corrected with the value of rolling over the shares invested in Z according
to a continuously money account with interest rate equal to pz. On the one hand,

C(T, Z, elo 1z (S)ds) corresponds to the “true” t,—price evaluated at the initial asset price
Zy adjusted to the expected growth under P. On the other hand C(0, Z) equals the initial
investment into the Gaussian hedge composed under the assumed volatility. In particular,
the expected costs of misspecification are given by the difference of “true” and assumed
price iff uz = 0. With respect to the risk neutral measure P* it holds

Ep. [Li(9)] = C(t, Zy) — C(0, Zy).
COROLLARY 3.6 (Expected costs of misspecification).
Ep[Li(#)] — Ep- [L{(9)] =
Z /0 t piz(w)elo #z()ds (N(B<1>(t, elo #z(s)ds 7)) —N(/‘zﬂ)(u,efé‘uz(s)fiszo))du).

Proor: Corollary 3.6 is a direct consequence of the above remarks and

Zo eJS #z(s)ds
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Zy

t
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4. BIAS ARRISING FROM TIME DISCRETISING A GAUSSIAN HEDGE

However, the above result does of course not carry through if the Gaussian strategy ®
is carried out with restriction to discrete time 7". ®7" neither duplicates the claim at
maturity, ®"" is not self-financing even in the case without model misspecification, nor is
it a superhedge if the true voaltility is dominated.

PROPOSITION 4.1 (Expected Costs of Discretisation). If the quotient process Z is lognor-
mal with uy and oz depending on time, i.e.

dZy = Z, (Mz(t)dt + Oz(t)th) s

the expected costs of applying the strateqy ® = (¢*, ¢¥) with hedging volatility v in terms
of the assets Z = X and 1 according the discrete set ™ of trading dates, i.e.

Y
O = (dp, byp)  for tEN ],

are given by:

n—1 t".‘+1 o .
B D30 = Ay [ (o — v

5z (N'(RD (s, Z, ) ~ 9
Por OO T (16) 3 (Qostol - a1
s TR (s, ZON (WD (s, Z, L
- B B ZI (oo~ o) s




MODEL MISSPECIFICATION AND TRADING RESTRICTIONS 14

where dP? = DZ? dP, with D? = exp {fot oz(u) — I [ oz(u ||2du}

ProoF: Notice, that with proposition 2.5 we have

Z/ WO (u, Z,)) — N(h(l)(t?,Zt?))) dZ,
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An application of It6’s lemma implies
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Ep [D3(6,7")] = FEp

where h;, h, and h,, denote partial derivatives, i.e. given
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Notice, that o'(t)9(t) = —3||52(¢)||>. Together with dW, = dW, + o dt it follows

AN (Y, Z)) = N'(hWV (e, Zt))[~()th

500
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COROLLARY 4.2. If 04(t) = 67(t) and either uz(t) > 0 or uz(t) < 0 for all t € [0,T],
then the strategy ¢™ of proposition 4.1 is positively biased, i.e.

Ep D5 (¢, )] > 0.

Considering a Gaussian hedge which is corresponding to the uniquely determined self-
financing hedging strategy if carried out continuously, we have the following result if this
hedge is applied in discrete time: besides being non-self-financing the time discretised
hedging strategy is biased in the sense that it tends to subdominate the payoff of the
exchange option if the drift u; does not change its sign. This result has already been
motivated in the last section, cf. figure (1) and is further illustrated in figure 4, 5 and 6
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Distributions of hedging costs for discrete time gaussian hedging strategies
under known volatility referring to different drift scenarios
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showing the distribution of the discrete time Gaussian hedge under different drift scenarios.
As before, each cost distribution is generated by a Gauss—kernel density estimation from
50000 simulated hedging paths. The parameters for the underlying asset price process Z
under the objective probability measure are given by o, = 0.3 and puz = 0.4 (respectively
-0.4 and zero). Time to maturity of the (plain vanilla call) option to be hedged is one year,
the initial underlying price is 100 while the strike K of the options under consideration
is chosen to be 70, 100 and 150. The duplication portfolio is rebalanced only monthly.

Again, the expected costs can finally be expressed in closed form, i.e.

THEOREM 4.3. The expected hedging costs under model misspecification and trading re-
strictions can be decomposed into two parts, associated to the misspecification error and
associated with the trading restrictions, i.e.

Ep [L7(6;7")] = Ep [Dr(¢;7")] + Ep [L7(9)],
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Distributions of hedging costs of discrete time Gaussian hedges for dominated
constant local volatilities under different drift scenarios
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where Ep [L%.(¢)] is already given in corollary 3.6 and Ep [Dj.(¢;7™)] denoting the expected
error of time discretising the Gaussian hedge (concerning the exchange option) is given by

Ep [D%(¢ ™)) =

% Z / )l (o) (N (F u, 2y e 1200189 - (l_z(l)(t;-‘, Zo el 17 dS))) .

Proor: Using lemma B.1 and lemma B.2 of the appendix gives

o (t
Epz (N'(0V(t, Z4))] = UTEthI(h( (t,efonzC)ds 7)),
t _
Ess [h(l)(t, Zt)),/\/"(h(l)(t, Zt))} — E ;h(l (t, efotﬂz(s)ds ZO)N'(h(l)(t, efotliz(s)ds 7).
Inserting in the expression of proposition 4.1 and integrating by parts yields

Er (D79, m)] = ZoZ[( s —effuz(u)du>N(ﬁ(l)(u,ef:uz<s>ds 2) |5

n

i
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t

5. DISCRETE TIME HEDGING MODEL

Of course, the incompleteness caused by proposing continuous time asset price dynamics
while hedging in discrete time is non hedgeable. Until now, we focused on the discretisation
error incurred by the inconsistency of assuming a continuous time hedging model while
applying this strategy in discrete time. A Gaussian hedging strategy which is only applied
according to discrete time implies a non vanishing cost process, even without assuming
model misspecification. Furthermore, even if the “true” volatility is bounded from above,
the time discretised version does not yield a superhedge for convex payoffs almost surely.
It turns out that the costs of time discretising a strategy ment to be applied continuously
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may incorporate a duplication bias. For convex payoffs to be hedged, these strategies give
rise to a subhedge on average, if the dynamic of the underlying price process incorporates
a drift component with respect to the objective probability measure.

Notice, that the strategies under consideration are understood to be self-financing with
respect to an assumed model called “hedging model” only. If the “true” model deviates
from the assumed one, these strategies may fail to be effective. However, while facing the
problem of model misspecification combined with trading restrictions, it is worth mention-
ing that the discrete time Gaussian hedge is in fact neither consistent with the hedging
model nor with the true model.

Naturally, one may be tempted to discretise the hedging model instead of time discretising
an originally continuous time trading strategy. Of course, there is still an inconsistency
associated by using a discrete time hedging model while facing continuous time price pro-
cesses (misspecified or not). On the other hand, strategies implied by model discretisation
are at least compatible with its underlying hedging model. The analysis of the duplication
costs arising from discretising the hedging model instead of discretising the trading strate-
gies is carried out in this section. Naturally, we compare the effectiveness of the following
hedging approach with the results of the last sections.

As before, the hedging of an exchange option is studied. W.l.o.g. we assume an equidistant
set of trading dates 7" with ¢ = %T Furthermore, for ease of notation we assume that the
parameters defining the up- and downmovements u and d of the binomial hedging model,
firstly motivated by Cox, Ross and Rubinstein (1979), are only depending on the degree

of refinement, i.e. on n.

DEFINITION 5.1. Let ¢ and g5 be defined on 7" as follows:

n(m . CgRR(tQH,“nZ) - C@RR(tz—Hﬂ dnz)
(8) gl( kaz) L (un —'dn)Z )
9) 95 (ty,2) = CCrr(ty,dnz) — g7 (t;2)dnz,

where Clpg (17, 2) = [z —1]" and

n—k j n—k—j
n n n—=k l—dn J Un—l J ki +
Cérr(ty,2) = Z( j ) (u —d> (u —d) [uﬁldn k ”z—l] , k=0,...,n—1.

J=0

LEMMA 5.2. The duplication costs LS for Op = [Zr —1]7 associated with the trading
strategy ®" = (¢, dY ) in the assets (£,1), where

(I)? = (g?(tz’zt};)’gg( Zath)) fOTt E]t;;’ Z—l—l]

and Z; = % are given by

LE(®") = > Clinn (81 73 ) = Vip (@),
j=1
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Proor: It holds

LE@") = Lp(0") +Cr — (g(tios, Zy_) 2y + 63 (Eis, Ziy_,))
= Lp(®") + Cigg (tn, Zen) — Vir (@)
n—1
-y (Lt?+1(<1>") _ Lt7(¢n)) + O (17, Zn) — Vi (@),
j=1

Notice, that
Ly (") = Lip(®") = Vi (") = Vi (") — g7 (¢}, Zir) (Zt;‘H - Zt;-‘)
= g1t Z) Zuy,, + G381 Zy) = G182 Zip) (2, = Zp) = Vi (07)

= 91}, Zip) Zep + 95 (], Zyn) — Vin (D7)

l—dn .. (o
= un—d, Comn (tﬂl’ “"Zt?) +

= Ccrr <t?> Zt?) - Vt;” (®").

Un

—1 n n n
7 Corr (tj+17 anty> — Vir (2")

Un

The incremental costs of rearranging the portfolio as prescribed by the binomial hedge
coincide with the difference of the fair price proposed by the binomial model and the value
of the strategy. Taking all withdrawls from and all infusion into the portfolio ocurring
during the set of trading dates together, the duplication costs of the claim to be hedged
are matched.

PROPOSITION 5.3. If ®™ is defined as before it holds
(a) Clnn (12, 2 ) — Vi (@) =0 iff 7
(b) C%r (t}’, Zt;,) — Vi (@) < 0 iff 5 7l € [dy, un] Pas.,

j—1

)

Zyn
() Clpr (t;-‘, Zt;,) —Vip (®") > 0 iff 51 € 0o, du] U [un, 00] P-a.s..

j—1

PROOF:
Clinn (12, 2 ) = Via (87)
= Clun (6. 25) = (6761 Zu) 2 + 3 (51 2y ,) )
Inserting g7 and g% according to equation (8) and equation (9) and defining Tyn = ZTZ )
yields

.’Etn—d

Up — Tn
= Cln (82070 ,) - [ Cln (8 unZsy., ) + —d] Cl ( ?,ant?_l)} .

Uy, — dy,

It is easily shown that Cfyy (¢7, 2) is convex in z which gives the result.

COROLLARY 5.4. A superhedge is achieved iff the returns of the underlying asset are within
the range of the up and down parameters of the assumed binomial process for each trading
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period, i.e. iff
T

7 € [dp,un] P-a.s. forall j=1,... n.

tn

j—1

Obviously, a binomial hedging strategy is not able to dominate the payoff of the ex-
change option under consideration if the true asset price dynamic is driven by a geometric
Brownian motion. The requirement, that the asset price stays in the interval defined by
the assumed up- and downmovements of the binomial model, is stronger than the upper
volatility bound required for the continuous time Gauss hedge. Superhedging according
to a binomial strategy affords the incorporation of the “true” asset price drift. If super-
hedging is not possible, the drift can at least be used to assure that the binomial hedge is
self-financing (respectively over-financing) in the mean. Specifying u, and d, depending
on volatility and drift allows to avoid the discretisation error associated with a Gaussian
hedge specified exclusively through the assumed volatility. A suitable specification of u,
and d, is very straightforward and can easily be motivated as follows. For notational
convenience assume that the P-dynamic of Z is given by

Notice that the conditional expectation of the incremental costs of rearranging the binomial
hedge are given by

Ep [CSRR (t?, Zt;f) — Vi (®") | Zt;‘_l}

Y [ n—Wyn
= FEp |CCrr (t?7Ztﬂ 1 eXp(u ) tj*l)ﬂr(wtj Wtj—))
n
eu(t}?—t,’tl) _ dn n n Uy — 6#(75?_75;11) n n
B ( Up, — dy, CRR (tj ’ u”Zt?—l) + U, — dy CRR (tj ’ d"ZtJﬂ—l) 2y

The convexity of Cfry together with
p(t7 —t7_1) _ — Mt 17 1)
el BN Sl TG T
Up — dn Up — dn

n

Unp,

implies that specifying
u, = B2 ) (-0 )to/TE g (eeae?) () o/

assures that

Ep |Clnn (8 20 ) = Vip (@) | Zg,| <0,
i.e. the binomial hedge is over-financing on average. Furthermore, specifying u, and d,
suitably can additionally guarantee the convergence of the cost process associated with

the binomial hedge to the one of a Gaussian hedge in distribution if the incompleteness
arrising from trading restriction vanishes, i.e. if n — oo.

PROPOSITION 5.5. Using the JR-specification of Jarrow and Rudd (1983) of the binomial
parameters v and d, i.e. let

1~ 112 ~ 11~ 112 ~

pz — sllozl 0z pz — sllozll 0z

Uy =€ —t+ —=7, dy:=e¢ —_— = —
" Xp{ n NG n TGP n Jn
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Distributions of hedging costs for JR-like hedging strategies under known
volatility referring to different drift scenarios
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assures for n — oo a convergence in distribution of the cost process associated with the
CRR-strategy as defined in lemma 5.2 towards the cost process associated with the Gaussian
strateqy as defined in proposition 3.2.

ProoOF: Using Berry-Esseen-type inequalities it can be shown that the sequence of g7
and g% converges uniformly on the compact set [0, T to the continuous functions specifying
the Gaussian hedge, c.f. Dudenhausen (2001). Referring to corollary 5.2. of Duffie and
Protter (1992) this ensures the convergence in distribution of the gains process which also
implies the convergence in distribution of the cost process.

Once again, each cost distribution illustrated in figure 9 and figure 10 is generated by a
Gauss—kernel density estimation from 50000 simulated hedging paths. The parameters for
the underlying asset price process Z under the objective probability measure are given by
oz = 0.3 and pz = 0.4 (respectively -0.4 and zero). Time to maturity of the (plain vanilla
call) option to be hedge is one year, the initial underlying price is 100 while the strike K of
the options under consideration is chosen to be 100 and 150 while the duplication portfolio
is rebalanced only monthly. This time, the strategies under consideration are given by a
binomial model with a Jarrow Rudd specification as in proposition 5.5. Comparing these
simulation results with the ones illustrated in figure 5 and figure 6 clearly favours the
model discretisation in form of the binomial hedge, suitably adjusted to the asset price
drift.

6. CONCLUSION

The results of this paper present a strong argument to discretise the hedging model instead
of discretising the hedging strategies if the rebalancing of the portfolio is restricted to a
set of discrete time trading dates. Black/Scholes-type strategies and binomial strategies to
hedge derivatives with convex payoff-profiles can be understood to incorporate comparable
robustness features in the sense of superhedging. Dominating the payoff of a contingent
claim almost surely with respect to all equivalent measures is obviously independent of the
drift of the underlying under the objective measure. However, if market incompleteness
is not only due to sources of model and parameter misspecification but also to trading

10
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restrictions, a non-trivial superhedge cannot be obtained even if volatility is bounded.
Therefore, it is adequate to allow the strategy to depend on more parameters than only the
hedge volatility with vanishing influence, if the distance of trading dates converges to zero.
This can easily be conducted with binomial-strategies but not with the discrete time version
of Gaussian hedges. In comparison to a simple Black/Scholes strategy the advantage of the
CRR-like hedging strategy is particularily transparent if the market is complete without
the introduction of trading restrictions. While the Gaussian hedging strategy applied in
discrete time subdominates the convex payoff to be hedged on average for positive as well
as negative asset price trends, the binomial hedge which is suitably adjusted to the drift
component is (almost) self-financing in the mean, tending to favour the outcome of the
hedge. Since the costs processes coincide in the limit, there is nothing lost by using the
binomial hedge instead of the Gaussian hedge if the trading frequency is increased. While
employing (theoretically incompatible) lognormal models may be justified by volatility
uncertainty in the specification of the “true” model, employing binomial models although
assuming continuous time price processes may be justified by trading restrictions.

APPENDIX A. PROOF OF PROPOSITION 2.5

Proor: Notice, that the expected costs of discretisation are given by

n

—1 T . . .
> (/J” o0 as) ~ o (s, - s%?))] |

J=0

Ep [Dr(¢,7")] = Z Ep

Considering the expectation

Ep

i1

EEE I ; i i i
/ o0 ds - of) (s, - 59)
&

b

EA (43) Qi) e (8) g(0)

= ! (w)Ep [¢SP] du — | exp pw(u)du p — 1| Ep [ t}zS?}
o 7

and using a change of measure together with an application of Bayes rule yields

e N A ali e i) A3G) ali
= [ O Bp [69D05] du - (exp { [ 0w du} - 1) Bpo [0 DY 5]
t t

_ /t:}ul Ep [0 dS9) — By [ o [ng) (S(") _st(;))‘s(?ﬂ

v (A
J J

where dP") = D{" dP, with D" := exp {— fot o) dw, — : Ot ||<71(f.)||2 du}. Notice, that W
with

t
Wt = Wt —/ O'q(f) du
0
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is a P)-Brownian motion. It holds
ds{) = S (p(t) dt + oD (t) dW;)
= 5P [(1O0) + e @) dt + o (1) arby]

g . L N B A
and DPS® = Sé’)exp{— / o‘“’(u)qu—§ / IIG‘”(u)IIZdu}
0 0

e { [[Owani+ [ (w0 + o001 ) )
= Spexp { /0 t 1D (u) du}

Inserting yields

tn

41 . . . . .
Ep | [ o as® - o (s, - 55)
t;'L J j+1 J
ol [ o e (i)
= 5 / ' (u) exp / p(s)ds ¢ Ep [0] du
tn 0

G o i
— (exp {/ ne du} - 1) exp {/ 19 (u) du} Esi [ %L)]]
o 0

i 1 v ,
= 5 ! / 9 (u) exp{ / 1 (s) dS} Epw [61)] du
t;-‘ 0
Tt I (i
— | exp / py’ du o — exp / p(u)du o) Epe [%}
0 0
o9+ [ d¢s‘>]
j n
J
together with

RIS v LRSI o
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¢ 0 0 °

finally implies

Notice, that

Epi [60] = Epe

e ) ) . )
e | [ o ast) o (s, - 1)
J

4]

Nt u [ fu .
= 5 / 1 (w) exp{ / p(s) ds} Ep) / d¢§“] du
t? 0 t;.‘

n

(Z) tJ+1 () u (Z) t?+1 (Z)
= S, / p' (u) exp {/ u(s) ds} Ep / 1{tn<s<u} doy | du.
tn 0 ¢ I
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Changing the order of integration yields

/ ¢ dSt (St(?l - stg?)]

[ [ e[ 1) g ]
/t;l+1 (exp {/tﬁl 1D (u) du} — exp {/s 19 (u) du}) dd)@] .
t 0 0

APPENDIX B. USEFUL INTEGRALS

LEMMA B.1. Fora,b€ R (b > —1) it holds

Ep

- 0 P(n

= S(gi) Eﬁ(i)

() 1 /+OO —3a% az—bx? d 1 308
2 — e e xr = e
Vor J_o v1i+b
1 too 1 9 17,2 :
(i) — re 2 Ty = 3
V2T J_so (1 + b)5

PROOF:
ad (i)

_1.2 _ 1.2
e 3T eum S bz d.’E —

=l

substitution of z:= V1 +bx —

¢ vields
N
o2 +oo 1
v1+ V2T
1 ot [ Az
—— e2(1+b) z z
1 + b —00

where N denotes the cumulative distribution function of the standard normal distribution.

ad (ii)
400 +o0 2
_/ o327 peon—tba? g 2(1+b) / % (Vitbo-55)
V2T J % V2
substitution of z:=v1+bxr— yields

Vs

1 +°°
= ez<1+

= “)f—
(€

[. (5
- 11+b i :( >

e 2% dz

(=

) dz
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LemmA B.2. If W is a Brownian Motion with respect to the probability measure P and

%= 7, exp{/ot (uz(u)+ %||Uz(u)||2> du—i—/otaz(u) dW}

then it holds

() Epx WO 2] = TN EO (1 elir0% 7)),
(ZZ) Ep [h,()(t Zt)),/\f/( (t Zt))] = zzggﬁ(l)(t,eﬁuz(s)ds ZO)NI( 1)(t efouz dsZ))

ProoOF: Notice, that
Eps [N'(hV(t, Z4))]
L (0(t) 10y, finatord 1 [ -\
= —F——Lpz = o #2185/ 45 u
\/%EP 2( t )(t,e Z)-l—UT(t)/Oaz(u)dW)

1 t 2
f wnz(s)ds
= o exp{ ( oy , €0 A )) )}

/oo o[ ORO @ OS2 [l o du
s

[e's) UT (t) ’UT (t

1

exp

Using lemma B.1 part (i) of the appendix gives

Epr [N (WOt 22))] = TN (RO 1, im0 7))

T (t

The second implication follows directly with lemma B.1 part (ii).
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